1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_NULLARY_FUNCTORS_H
11 #define EIGEN_NULLARY_FUNCTORS_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 template<typename Scalar>
18 struct scalar_constant_op {
scalar_constant_opscalar_constant_op19   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
scalar_constant_opscalar_constant_op20   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
operatorscalar_constant_op21   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() () const { return m_other; }
22   template<typename PacketType>
packetOpscalar_constant_op23   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { return internal::pset1<PacketType>(m_other); }
24   const Scalar m_other;
25 };
26 template<typename Scalar>
27 struct functor_traits<scalar_constant_op<Scalar> >
28 { enum { Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */,
29          PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
30 
31 template<typename Scalar> struct scalar_identity_op {
32   EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
33   template<typename IndexType>
34   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType row, IndexType col) const { return row==col ? Scalar(1) : Scalar(0); }
35 };
36 template<typename Scalar>
37 struct functor_traits<scalar_identity_op<Scalar> >
38 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
39 
40 template <typename Scalar, typename Packet, bool IsInteger> struct linspaced_op_impl;
41 
42 template <typename Scalar, typename Packet>
43 struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/false>
44 {
45   linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
46     m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)),
47     m_flip(numext::abs(high)<numext::abs(low))
48   {}
49 
50   template<typename IndexType>
51   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const {
52     typedef typename NumTraits<Scalar>::Real RealScalar;
53     if(m_flip)
54       return (i==0)? m_low : (m_high - RealScalar(m_size1-i)*m_step);
55     else
56       return (i==m_size1)? m_high : (m_low + RealScalar(i)*m_step);
57   }
58 
59   template<typename IndexType>
60   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const
61   {
62     // Principle:
63     // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
64     if(m_flip)
65     {
66       Packet pi = plset<Packet>(Scalar(i-m_size1));
67       Packet res = padd(pset1<Packet>(m_high), pmul(pset1<Packet>(m_step), pi));
68       if(i==0)
69         res = pinsertfirst(res, m_low);
70       return res;
71     }
72     else
73     {
74       Packet pi = plset<Packet>(Scalar(i));
75       Packet res = padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi));
76       if(i==m_size1-unpacket_traits<Packet>::size+1)
77         res = pinsertlast(res, m_high);
78       return res;
79     }
80   }
81 
82   const Scalar m_low;
83   const Scalar m_high;
84   const Index m_size1;
85   const Scalar m_step;
86   const bool m_flip;
87 };
88 
89 template <typename Scalar, typename Packet>
90 struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/true>
91 {
92   linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
93     m_low(low),
94     m_multiplier((high-low)/convert_index<Scalar>(num_steps<=1 ? 1 : num_steps-1)),
95     m_divisor(convert_index<Scalar>((high>=low?num_steps:-num_steps)+(high-low))/((numext::abs(high-low)+1)==0?1:(numext::abs(high-low)+1))),
96     m_use_divisor(num_steps>1 && (numext::abs(high-low)+1)<num_steps)
97   {}
98 
99   template<typename IndexType>
100   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
101   const Scalar operator() (IndexType i) const
102   {
103     if(m_use_divisor) return m_low + convert_index<Scalar>(i)/m_divisor;
104     else              return m_low + convert_index<Scalar>(i)*m_multiplier;
105   }
106 
107   const Scalar m_low;
108   const Scalar m_multiplier;
109   const Scalar m_divisor;
110   const bool m_use_divisor;
111 };
112 
113 // ----- Linspace functor ----------------------------------------------------------------
114 
115 // Forward declaration (we default to random access which does not really give
116 // us a speed gain when using packet access but it allows to use the functor in
117 // nested expressions).
118 template <typename Scalar, typename PacketType> struct linspaced_op;
119 template <typename Scalar, typename PacketType> struct functor_traits< linspaced_op<Scalar,PacketType> >
120 {
121   enum
122   {
123     Cost = 1,
124     PacketAccess =   (!NumTraits<Scalar>::IsInteger) && packet_traits<Scalar>::HasSetLinear && packet_traits<Scalar>::HasBlend,
125                   /*&& ((!NumTraits<Scalar>::IsInteger) || packet_traits<Scalar>::HasDiv),*/ // <- vectorization for integer is currently disabled
126     IsRepeatable = true
127   };
128 };
129 template <typename Scalar, typename PacketType> struct linspaced_op
130 {
131   linspaced_op(const Scalar& low, const Scalar& high, Index num_steps)
132     : impl((num_steps==1 ? high : low),high,num_steps)
133   {}
134 
135   template<typename IndexType>
136   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return impl(i); }
137 
138   template<typename Packet,typename IndexType>
139   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.packetOp(i); }
140 
141   // This proxy object handles the actual required temporaries and the different
142   // implementations (integer vs. floating point).
143   const linspaced_op_impl<Scalar,PacketType,NumTraits<Scalar>::IsInteger> impl;
144 };
145 
146 // Linear access is automatically determined from the operator() prototypes available for the given functor.
147 // If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently
148 // and linear access is not possible. In all other cases, linear access is enabled.
149 // Users should not have to deal with this structure.
150 template<typename Functor> struct functor_has_linear_access { enum { ret = !has_binary_operator<Functor>::value }; };
151 
152 // For unreliable compilers, let's specialize the has_*ary_operator
153 // helpers so that at least built-in nullary functors work fine.
154 #if !( (EIGEN_COMP_MSVC>1600) || (EIGEN_GNUC_AT_LEAST(4,8)) || (EIGEN_COMP_ICC>=1600))
155 template<typename Scalar,typename IndexType>
156 struct has_nullary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 1}; };
157 template<typename Scalar,typename IndexType>
158 struct has_unary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
159 template<typename Scalar,typename IndexType>
160 struct has_binary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
161 
162 template<typename Scalar,typename IndexType>
163 struct has_nullary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
164 template<typename Scalar,typename IndexType>
165 struct has_unary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
166 template<typename Scalar,typename IndexType>
167 struct has_binary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 1}; };
168 
169 template<typename Scalar, typename PacketType,typename IndexType>
170 struct has_nullary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
171 template<typename Scalar, typename PacketType,typename IndexType>
172 struct has_unary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 1}; };
173 template<typename Scalar, typename PacketType,typename IndexType>
174 struct has_binary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
175 
176 template<typename Scalar,typename IndexType>
177 struct has_nullary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 1}; };
178 template<typename Scalar,typename IndexType>
179 struct has_unary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
180 template<typename Scalar,typename IndexType>
181 struct has_binary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
182 #endif
183 
184 } // end namespace internal
185 
186 } // end namespace Eigen
187 
188 #endif // EIGEN_NULLARY_FUNCTORS_H
189