1*> \brief <b> DGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DGBSVX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbsvx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbsvx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbsvx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
22*                          LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
23*                          RCOND, FERR, BERR, WORK, IWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          EQUED, FACT, TRANS
27*       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
28*       DOUBLE PRECISION   RCOND
29*       ..
30*       .. Array Arguments ..
31*       INTEGER            IPIV( * ), IWORK( * )
32*       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
33*      $                   BERR( * ), C( * ), FERR( * ), R( * ),
34*      $                   WORK( * ), X( LDX, * )
35*       ..
36*
37*
38*> \par Purpose:
39*  =============
40*>
41*> \verbatim
42*>
43*> DGBSVX uses the LU factorization to compute the solution to a real
44*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
45*> where A is a band matrix of order N with KL subdiagonals and KU
46*> superdiagonals, and X and B are N-by-NRHS matrices.
47*>
48*> Error bounds on the solution and a condition estimate are also
49*> provided.
50*> \endverbatim
51*
52*> \par Description:
53*  =================
54*>
55*> \verbatim
56*>
57*> The following steps are performed by this subroutine:
58*>
59*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
60*>    the system:
61*>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
62*>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
63*>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
64*>    Whether or not the system will be equilibrated depends on the
65*>    scaling of the matrix A, but if equilibration is used, A is
66*>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
67*>    or diag(C)*B (if TRANS = 'T' or 'C').
68*>
69*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
70*>    matrix A (after equilibration if FACT = 'E') as
71*>       A = L * U,
72*>    where L is a product of permutation and unit lower triangular
73*>    matrices with KL subdiagonals, and U is upper triangular with
74*>    KL+KU superdiagonals.
75*>
76*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
77*>    returns with INFO = i. Otherwise, the factored form of A is used
78*>    to estimate the condition number of the matrix A.  If the
79*>    reciprocal of the condition number is less than machine precision,
80*>    INFO = N+1 is returned as a warning, but the routine still goes on
81*>    to solve for X and compute error bounds as described below.
82*>
83*> 4. The system of equations is solved for X using the factored form
84*>    of A.
85*>
86*> 5. Iterative refinement is applied to improve the computed solution
87*>    matrix and calculate error bounds and backward error estimates
88*>    for it.
89*>
90*> 6. If equilibration was used, the matrix X is premultiplied by
91*>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
92*>    that it solves the original system before equilibration.
93*> \endverbatim
94*
95*  Arguments:
96*  ==========
97*
98*> \param[in] FACT
99*> \verbatim
100*>          FACT is CHARACTER*1
101*>          Specifies whether or not the factored form of the matrix A is
102*>          supplied on entry, and if not, whether the matrix A should be
103*>          equilibrated before it is factored.
104*>          = 'F':  On entry, AFB and IPIV contain the factored form of
105*>                  A.  If EQUED is not 'N', the matrix A has been
106*>                  equilibrated with scaling factors given by R and C.
107*>                  AB, AFB, and IPIV are not modified.
108*>          = 'N':  The matrix A will be copied to AFB and factored.
109*>          = 'E':  The matrix A will be equilibrated if necessary, then
110*>                  copied to AFB and factored.
111*> \endverbatim
112*>
113*> \param[in] TRANS
114*> \verbatim
115*>          TRANS is CHARACTER*1
116*>          Specifies the form of the system of equations.
117*>          = 'N':  A * X = B     (No transpose)
118*>          = 'T':  A**T * X = B  (Transpose)
119*>          = 'C':  A**H * X = B  (Transpose)
120*> \endverbatim
121*>
122*> \param[in] N
123*> \verbatim
124*>          N is INTEGER
125*>          The number of linear equations, i.e., the order of the
126*>          matrix A.  N >= 0.
127*> \endverbatim
128*>
129*> \param[in] KL
130*> \verbatim
131*>          KL is INTEGER
132*>          The number of subdiagonals within the band of A.  KL >= 0.
133*> \endverbatim
134*>
135*> \param[in] KU
136*> \verbatim
137*>          KU is INTEGER
138*>          The number of superdiagonals within the band of A.  KU >= 0.
139*> \endverbatim
140*>
141*> \param[in] NRHS
142*> \verbatim
143*>          NRHS is INTEGER
144*>          The number of right hand sides, i.e., the number of columns
145*>          of the matrices B and X.  NRHS >= 0.
146*> \endverbatim
147*>
148*> \param[in,out] AB
149*> \verbatim
150*>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
151*>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
152*>          The j-th column of A is stored in the j-th column of the
153*>          array AB as follows:
154*>          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
155*>
156*>          If FACT = 'F' and EQUED is not 'N', then A must have been
157*>          equilibrated by the scaling factors in R and/or C.  AB is not
158*>          modified if FACT = 'F' or 'N', or if FACT = 'E' and
159*>          EQUED = 'N' on exit.
160*>
161*>          On exit, if EQUED .ne. 'N', A is scaled as follows:
162*>          EQUED = 'R':  A := diag(R) * A
163*>          EQUED = 'C':  A := A * diag(C)
164*>          EQUED = 'B':  A := diag(R) * A * diag(C).
165*> \endverbatim
166*>
167*> \param[in] LDAB
168*> \verbatim
169*>          LDAB is INTEGER
170*>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
171*> \endverbatim
172*>
173*> \param[in,out] AFB
174*> \verbatim
175*>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
176*>          If FACT = 'F', then AFB is an input argument and on entry
177*>          contains details of the LU factorization of the band matrix
178*>          A, as computed by DGBTRF.  U is stored as an upper triangular
179*>          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
180*>          and the multipliers used during the factorization are stored
181*>          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
182*>          the factored form of the equilibrated matrix A.
183*>
184*>          If FACT = 'N', then AFB is an output argument and on exit
185*>          returns details of the LU factorization of A.
186*>
187*>          If FACT = 'E', then AFB is an output argument and on exit
188*>          returns details of the LU factorization of the equilibrated
189*>          matrix A (see the description of AB for the form of the
190*>          equilibrated matrix).
191*> \endverbatim
192*>
193*> \param[in] LDAFB
194*> \verbatim
195*>          LDAFB is INTEGER
196*>          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
197*> \endverbatim
198*>
199*> \param[in,out] IPIV
200*> \verbatim
201*>          IPIV is INTEGER array, dimension (N)
202*>          If FACT = 'F', then IPIV is an input argument and on entry
203*>          contains the pivot indices from the factorization A = L*U
204*>          as computed by DGBTRF; row i of the matrix was interchanged
205*>          with row IPIV(i).
206*>
207*>          If FACT = 'N', then IPIV is an output argument and on exit
208*>          contains the pivot indices from the factorization A = L*U
209*>          of the original matrix A.
210*>
211*>          If FACT = 'E', then IPIV is an output argument and on exit
212*>          contains the pivot indices from the factorization A = L*U
213*>          of the equilibrated matrix A.
214*> \endverbatim
215*>
216*> \param[in,out] EQUED
217*> \verbatim
218*>          EQUED is CHARACTER*1
219*>          Specifies the form of equilibration that was done.
220*>          = 'N':  No equilibration (always true if FACT = 'N').
221*>          = 'R':  Row equilibration, i.e., A has been premultiplied by
222*>                  diag(R).
223*>          = 'C':  Column equilibration, i.e., A has been postmultiplied
224*>                  by diag(C).
225*>          = 'B':  Both row and column equilibration, i.e., A has been
226*>                  replaced by diag(R) * A * diag(C).
227*>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
228*>          output argument.
229*> \endverbatim
230*>
231*> \param[in,out] R
232*> \verbatim
233*>          R is DOUBLE PRECISION array, dimension (N)
234*>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
235*>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
236*>          is not accessed.  R is an input argument if FACT = 'F';
237*>          otherwise, R is an output argument.  If FACT = 'F' and
238*>          EQUED = 'R' or 'B', each element of R must be positive.
239*> \endverbatim
240*>
241*> \param[in,out] C
242*> \verbatim
243*>          C is DOUBLE PRECISION array, dimension (N)
244*>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
245*>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
246*>          is not accessed.  C is an input argument if FACT = 'F';
247*>          otherwise, C is an output argument.  If FACT = 'F' and
248*>          EQUED = 'C' or 'B', each element of C must be positive.
249*> \endverbatim
250*>
251*> \param[in,out] B
252*> \verbatim
253*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
254*>          On entry, the right hand side matrix B.
255*>          On exit,
256*>          if EQUED = 'N', B is not modified;
257*>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
258*>          diag(R)*B;
259*>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
260*>          overwritten by diag(C)*B.
261*> \endverbatim
262*>
263*> \param[in] LDB
264*> \verbatim
265*>          LDB is INTEGER
266*>          The leading dimension of the array B.  LDB >= max(1,N).
267*> \endverbatim
268*>
269*> \param[out] X
270*> \verbatim
271*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
272*>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
273*>          to the original system of equations.  Note that A and B are
274*>          modified on exit if EQUED .ne. 'N', and the solution to the
275*>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
276*>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
277*>          and EQUED = 'R' or 'B'.
278*> \endverbatim
279*>
280*> \param[in] LDX
281*> \verbatim
282*>          LDX is INTEGER
283*>          The leading dimension of the array X.  LDX >= max(1,N).
284*> \endverbatim
285*>
286*> \param[out] RCOND
287*> \verbatim
288*>          RCOND is DOUBLE PRECISION
289*>          The estimate of the reciprocal condition number of the matrix
290*>          A after equilibration (if done).  If RCOND is less than the
291*>          machine precision (in particular, if RCOND = 0), the matrix
292*>          is singular to working precision.  This condition is
293*>          indicated by a return code of INFO > 0.
294*> \endverbatim
295*>
296*> \param[out] FERR
297*> \verbatim
298*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
299*>          The estimated forward error bound for each solution vector
300*>          X(j) (the j-th column of the solution matrix X).
301*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
302*>          is an estimated upper bound for the magnitude of the largest
303*>          element in (X(j) - XTRUE) divided by the magnitude of the
304*>          largest element in X(j).  The estimate is as reliable as
305*>          the estimate for RCOND, and is almost always a slight
306*>          overestimate of the true error.
307*> \endverbatim
308*>
309*> \param[out] BERR
310*> \verbatim
311*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
312*>          The componentwise relative backward error of each solution
313*>          vector X(j) (i.e., the smallest relative change in
314*>          any element of A or B that makes X(j) an exact solution).
315*> \endverbatim
316*>
317*> \param[out] WORK
318*> \verbatim
319*>          WORK is DOUBLE PRECISION array, dimension (3*N)
320*>          On exit, WORK(1) contains the reciprocal pivot growth
321*>          factor norm(A)/norm(U). The "max absolute element" norm is
322*>          used. If WORK(1) is much less than 1, then the stability
323*>          of the LU factorization of the (equilibrated) matrix A
324*>          could be poor. This also means that the solution X, condition
325*>          estimator RCOND, and forward error bound FERR could be
326*>          unreliable. If factorization fails with 0<INFO<=N, then
327*>          WORK(1) contains the reciprocal pivot growth factor for the
328*>          leading INFO columns of A.
329*> \endverbatim
330*>
331*> \param[out] IWORK
332*> \verbatim
333*>          IWORK is INTEGER array, dimension (N)
334*> \endverbatim
335*>
336*> \param[out] INFO
337*> \verbatim
338*>          INFO is INTEGER
339*>          = 0:  successful exit
340*>          < 0:  if INFO = -i, the i-th argument had an illegal value
341*>          > 0:  if INFO = i, and i is
342*>                <= N:  U(i,i) is exactly zero.  The factorization
343*>                       has been completed, but the factor U is exactly
344*>                       singular, so the solution and error bounds
345*>                       could not be computed. RCOND = 0 is returned.
346*>                = N+1: U is nonsingular, but RCOND is less than machine
347*>                       precision, meaning that the matrix is singular
348*>                       to working precision.  Nevertheless, the
349*>                       solution and error bounds are computed because
350*>                       there are a number of situations where the
351*>                       computed solution can be more accurate than the
352*>                       value of RCOND would suggest.
353*> \endverbatim
354*
355*  Authors:
356*  ========
357*
358*> \author Univ. of Tennessee
359*> \author Univ. of California Berkeley
360*> \author Univ. of Colorado Denver
361*> \author NAG Ltd.
362*
363*> \ingroup doubleGBsolve
364*
365*  =====================================================================
366      SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
367     $                   LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
368     $                   RCOND, FERR, BERR, WORK, IWORK, INFO )
369*
370*  -- LAPACK driver routine --
371*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
372*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
373*
374*     .. Scalar Arguments ..
375      CHARACTER          EQUED, FACT, TRANS
376      INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
377      DOUBLE PRECISION   RCOND
378*     ..
379*     .. Array Arguments ..
380      INTEGER            IPIV( * ), IWORK( * )
381      DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
382     $                   BERR( * ), C( * ), FERR( * ), R( * ),
383     $                   WORK( * ), X( LDX, * )
384*     ..
385*
386*  =====================================================================
387*
388*     .. Parameters ..
389      DOUBLE PRECISION   ZERO, ONE
390      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
391*     ..
392*     .. Local Scalars ..
393      LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
394      CHARACTER          NORM
395      INTEGER            I, INFEQU, J, J1, J2
396      DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
397     $                   ROWCND, RPVGRW, SMLNUM
398*     ..
399*     .. External Functions ..
400      LOGICAL            LSAME
401      DOUBLE PRECISION   DLAMCH, DLANGB, DLANTB
402      EXTERNAL           LSAME, DLAMCH, DLANGB, DLANTB
403*     ..
404*     .. External Subroutines ..
405      EXTERNAL           DCOPY, DGBCON, DGBEQU, DGBRFS, DGBTRF, DGBTRS,
406     $                   DLACPY, DLAQGB, XERBLA
407*     ..
408*     .. Intrinsic Functions ..
409      INTRINSIC          ABS, MAX, MIN
410*     ..
411*     .. Executable Statements ..
412*
413      INFO = 0
414      NOFACT = LSAME( FACT, 'N' )
415      EQUIL = LSAME( FACT, 'E' )
416      NOTRAN = LSAME( TRANS, 'N' )
417      IF( NOFACT .OR. EQUIL ) THEN
418         EQUED = 'N'
419         ROWEQU = .FALSE.
420         COLEQU = .FALSE.
421      ELSE
422         ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
423         COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
424         SMLNUM = DLAMCH( 'Safe minimum' )
425         BIGNUM = ONE / SMLNUM
426      END IF
427*
428*     Test the input parameters.
429*
430      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
431     $     THEN
432         INFO = -1
433      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
434     $         LSAME( TRANS, 'C' ) ) THEN
435         INFO = -2
436      ELSE IF( N.LT.0 ) THEN
437         INFO = -3
438      ELSE IF( KL.LT.0 ) THEN
439         INFO = -4
440      ELSE IF( KU.LT.0 ) THEN
441         INFO = -5
442      ELSE IF( NRHS.LT.0 ) THEN
443         INFO = -6
444      ELSE IF( LDAB.LT.KL+KU+1 ) THEN
445         INFO = -8
446      ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
447         INFO = -10
448      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
449     $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
450         INFO = -12
451      ELSE
452         IF( ROWEQU ) THEN
453            RCMIN = BIGNUM
454            RCMAX = ZERO
455            DO 10 J = 1, N
456               RCMIN = MIN( RCMIN, R( J ) )
457               RCMAX = MAX( RCMAX, R( J ) )
458   10       CONTINUE
459            IF( RCMIN.LE.ZERO ) THEN
460               INFO = -13
461            ELSE IF( N.GT.0 ) THEN
462               ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
463            ELSE
464               ROWCND = ONE
465            END IF
466         END IF
467         IF( COLEQU .AND. INFO.EQ.0 ) THEN
468            RCMIN = BIGNUM
469            RCMAX = ZERO
470            DO 20 J = 1, N
471               RCMIN = MIN( RCMIN, C( J ) )
472               RCMAX = MAX( RCMAX, C( J ) )
473   20       CONTINUE
474            IF( RCMIN.LE.ZERO ) THEN
475               INFO = -14
476            ELSE IF( N.GT.0 ) THEN
477               COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
478            ELSE
479               COLCND = ONE
480            END IF
481         END IF
482         IF( INFO.EQ.0 ) THEN
483            IF( LDB.LT.MAX( 1, N ) ) THEN
484               INFO = -16
485            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
486               INFO = -18
487            END IF
488         END IF
489      END IF
490*
491      IF( INFO.NE.0 ) THEN
492         CALL XERBLA( 'DGBSVX', -INFO )
493         RETURN
494      END IF
495*
496      IF( EQUIL ) THEN
497*
498*        Compute row and column scalings to equilibrate the matrix A.
499*
500         CALL DGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
501     $                AMAX, INFEQU )
502         IF( INFEQU.EQ.0 ) THEN
503*
504*           Equilibrate the matrix.
505*
506            CALL DLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
507     $                   AMAX, EQUED )
508            ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
509            COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
510         END IF
511      END IF
512*
513*     Scale the right hand side.
514*
515      IF( NOTRAN ) THEN
516         IF( ROWEQU ) THEN
517            DO 40 J = 1, NRHS
518               DO 30 I = 1, N
519                  B( I, J ) = R( I )*B( I, J )
520   30          CONTINUE
521   40       CONTINUE
522         END IF
523      ELSE IF( COLEQU ) THEN
524         DO 60 J = 1, NRHS
525            DO 50 I = 1, N
526               B( I, J ) = C( I )*B( I, J )
527   50       CONTINUE
528   60    CONTINUE
529      END IF
530*
531      IF( NOFACT .OR. EQUIL ) THEN
532*
533*        Compute the LU factorization of the band matrix A.
534*
535         DO 70 J = 1, N
536            J1 = MAX( J-KU, 1 )
537            J2 = MIN( J+KL, N )
538            CALL DCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
539     $                  AFB( KL+KU+1-J+J1, J ), 1 )
540   70    CONTINUE
541*
542         CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
543*
544*        Return if INFO is non-zero.
545*
546         IF( INFO.GT.0 ) THEN
547*
548*           Compute the reciprocal pivot growth factor of the
549*           leading rank-deficient INFO columns of A.
550*
551            ANORM = ZERO
552            DO 90 J = 1, INFO
553               DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
554                  ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
555   80          CONTINUE
556   90       CONTINUE
557            RPVGRW = DLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
558     $                       AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
559     $                       WORK )
560            IF( RPVGRW.EQ.ZERO ) THEN
561               RPVGRW = ONE
562            ELSE
563               RPVGRW = ANORM / RPVGRW
564            END IF
565            WORK( 1 ) = RPVGRW
566            RCOND = ZERO
567            RETURN
568         END IF
569      END IF
570*
571*     Compute the norm of the matrix A and the
572*     reciprocal pivot growth factor RPVGRW.
573*
574      IF( NOTRAN ) THEN
575         NORM = '1'
576      ELSE
577         NORM = 'I'
578      END IF
579      ANORM = DLANGB( NORM, N, KL, KU, AB, LDAB, WORK )
580      RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, WORK )
581      IF( RPVGRW.EQ.ZERO ) THEN
582         RPVGRW = ONE
583      ELSE
584         RPVGRW = DLANGB( 'M', N, KL, KU, AB, LDAB, WORK ) / RPVGRW
585      END IF
586*
587*     Compute the reciprocal of the condition number of A.
588*
589      CALL DGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
590     $             WORK, IWORK, INFO )
591*
592*     Compute the solution matrix X.
593*
594      CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
595      CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
596     $             INFO )
597*
598*     Use iterative refinement to improve the computed solution and
599*     compute error bounds and backward error estimates for it.
600*
601      CALL DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
602     $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
603*
604*     Transform the solution matrix X to a solution of the original
605*     system.
606*
607      IF( NOTRAN ) THEN
608         IF( COLEQU ) THEN
609            DO 110 J = 1, NRHS
610               DO 100 I = 1, N
611                  X( I, J ) = C( I )*X( I, J )
612  100          CONTINUE
613  110       CONTINUE
614            DO 120 J = 1, NRHS
615               FERR( J ) = FERR( J ) / COLCND
616  120       CONTINUE
617         END IF
618      ELSE IF( ROWEQU ) THEN
619         DO 140 J = 1, NRHS
620            DO 130 I = 1, N
621               X( I, J ) = R( I )*X( I, J )
622  130       CONTINUE
623  140    CONTINUE
624         DO 150 J = 1, NRHS
625            FERR( J ) = FERR( J ) / ROWCND
626  150    CONTINUE
627      END IF
628*
629*     Set INFO = N+1 if the matrix is singular to working precision.
630*
631      IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
632     $   INFO = N + 1
633*
634      WORK( 1 ) = RPVGRW
635      RETURN
636*
637*     End of DGBSVX
638*
639      END
640