1*> \brief \b ZGEQP3 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZGEQP3 + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqp3.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqp3.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqp3.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE ZGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, 22* INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LDA, LWORK, M, N 26* .. 27* .. Array Arguments .. 28* INTEGER JPVT( * ) 29* DOUBLE PRECISION RWORK( * ) 30* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> ZGEQP3 computes a QR factorization with column pivoting of a 40*> matrix A: A*P = Q*R using Level 3 BLAS. 41*> \endverbatim 42* 43* Arguments: 44* ========== 45* 46*> \param[in] M 47*> \verbatim 48*> M is INTEGER 49*> The number of rows of the matrix A. M >= 0. 50*> \endverbatim 51*> 52*> \param[in] N 53*> \verbatim 54*> N is INTEGER 55*> The number of columns of the matrix A. N >= 0. 56*> \endverbatim 57*> 58*> \param[in,out] A 59*> \verbatim 60*> A is COMPLEX*16 array, dimension (LDA,N) 61*> On entry, the M-by-N matrix A. 62*> On exit, the upper triangle of the array contains the 63*> min(M,N)-by-N upper trapezoidal matrix R; the elements below 64*> the diagonal, together with the array TAU, represent the 65*> unitary matrix Q as a product of min(M,N) elementary 66*> reflectors. 67*> \endverbatim 68*> 69*> \param[in] LDA 70*> \verbatim 71*> LDA is INTEGER 72*> The leading dimension of the array A. LDA >= max(1,M). 73*> \endverbatim 74*> 75*> \param[in,out] JPVT 76*> \verbatim 77*> JPVT is INTEGER array, dimension (N) 78*> On entry, if JPVT(J).ne.0, the J-th column of A is permuted 79*> to the front of A*P (a leading column); if JPVT(J)=0, 80*> the J-th column of A is a free column. 81*> On exit, if JPVT(J)=K, then the J-th column of A*P was the 82*> the K-th column of A. 83*> \endverbatim 84*> 85*> \param[out] TAU 86*> \verbatim 87*> TAU is COMPLEX*16 array, dimension (min(M,N)) 88*> The scalar factors of the elementary reflectors. 89*> \endverbatim 90*> 91*> \param[out] WORK 92*> \verbatim 93*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) 94*> On exit, if INFO=0, WORK(1) returns the optimal LWORK. 95*> \endverbatim 96*> 97*> \param[in] LWORK 98*> \verbatim 99*> LWORK is INTEGER 100*> The dimension of the array WORK. LWORK >= N+1. 101*> For optimal performance LWORK >= ( N+1 )*NB, where NB 102*> is the optimal blocksize. 103*> 104*> If LWORK = -1, then a workspace query is assumed; the routine 105*> only calculates the optimal size of the WORK array, returns 106*> this value as the first entry of the WORK array, and no error 107*> message related to LWORK is issued by XERBLA. 108*> \endverbatim 109*> 110*> \param[out] RWORK 111*> \verbatim 112*> RWORK is DOUBLE PRECISION array, dimension (2*N) 113*> \endverbatim 114*> 115*> \param[out] INFO 116*> \verbatim 117*> INFO is INTEGER 118*> = 0: successful exit. 119*> < 0: if INFO = -i, the i-th argument had an illegal value. 120*> \endverbatim 121* 122* Authors: 123* ======== 124* 125*> \author Univ. of Tennessee 126*> \author Univ. of California Berkeley 127*> \author Univ. of Colorado Denver 128*> \author NAG Ltd. 129* 130*> \ingroup complex16GEcomputational 131* 132*> \par Further Details: 133* ===================== 134*> 135*> \verbatim 136*> 137*> The matrix Q is represented as a product of elementary reflectors 138*> 139*> Q = H(1) H(2) . . . H(k), where k = min(m,n). 140*> 141*> Each H(i) has the form 142*> 143*> H(i) = I - tau * v * v**H 144*> 145*> where tau is a complex scalar, and v is a real/complex vector 146*> with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in 147*> A(i+1:m,i), and tau in TAU(i). 148*> \endverbatim 149* 150*> \par Contributors: 151* ================== 152*> 153*> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain 154*> X. Sun, Computer Science Dept., Duke University, USA 155*> 156* ===================================================================== 157 SUBROUTINE ZGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, 158 $ INFO ) 159* 160* -- LAPACK computational routine -- 161* -- LAPACK is a software package provided by Univ. of Tennessee, -- 162* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 163* 164* .. Scalar Arguments .. 165 INTEGER INFO, LDA, LWORK, M, N 166* .. 167* .. Array Arguments .. 168 INTEGER JPVT( * ) 169 DOUBLE PRECISION RWORK( * ) 170 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) 171* .. 172* 173* ===================================================================== 174* 175* .. Parameters .. 176 INTEGER INB, INBMIN, IXOVER 177 PARAMETER ( INB = 1, INBMIN = 2, IXOVER = 3 ) 178* .. 179* .. Local Scalars .. 180 LOGICAL LQUERY 181 INTEGER FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB, 182 $ NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN 183* .. 184* .. External Subroutines .. 185 EXTERNAL XERBLA, ZGEQRF, ZLAQP2, ZLAQPS, ZSWAP, ZUNMQR 186* .. 187* .. External Functions .. 188 INTEGER ILAENV 189 DOUBLE PRECISION DZNRM2 190 EXTERNAL ILAENV, DZNRM2 191* .. 192* .. Intrinsic Functions .. 193 INTRINSIC INT, MAX, MIN 194* .. 195* .. Executable Statements .. 196* 197* Test input arguments 198* ==================== 199* 200 INFO = 0 201 LQUERY = ( LWORK.EQ.-1 ) 202 IF( M.LT.0 ) THEN 203 INFO = -1 204 ELSE IF( N.LT.0 ) THEN 205 INFO = -2 206 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 207 INFO = -4 208 END IF 209* 210 IF( INFO.EQ.0 ) THEN 211 MINMN = MIN( M, N ) 212 IF( MINMN.EQ.0 ) THEN 213 IWS = 1 214 LWKOPT = 1 215 ELSE 216 IWS = N + 1 217 NB = ILAENV( INB, 'ZGEQRF', ' ', M, N, -1, -1 ) 218 LWKOPT = ( N + 1 )*NB 219 END IF 220 WORK( 1 ) = DCMPLX( LWKOPT ) 221* 222 IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN 223 INFO = -8 224 END IF 225 END IF 226* 227 IF( INFO.NE.0 ) THEN 228 CALL XERBLA( 'ZGEQP3', -INFO ) 229 RETURN 230 ELSE IF( LQUERY ) THEN 231 RETURN 232 END IF 233* 234* Move initial columns up front. 235* 236 NFXD = 1 237 DO 10 J = 1, N 238 IF( JPVT( J ).NE.0 ) THEN 239 IF( J.NE.NFXD ) THEN 240 CALL ZSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 ) 241 JPVT( J ) = JPVT( NFXD ) 242 JPVT( NFXD ) = J 243 ELSE 244 JPVT( J ) = J 245 END IF 246 NFXD = NFXD + 1 247 ELSE 248 JPVT( J ) = J 249 END IF 250 10 CONTINUE 251 NFXD = NFXD - 1 252* 253* Factorize fixed columns 254* ======================= 255* 256* Compute the QR factorization of fixed columns and update 257* remaining columns. 258* 259 IF( NFXD.GT.0 ) THEN 260 NA = MIN( M, NFXD ) 261*CC CALL ZGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) 262 CALL ZGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO ) 263 IWS = MAX( IWS, INT( WORK( 1 ) ) ) 264 IF( NA.LT.N ) THEN 265*CC CALL ZUNM2R( 'Left', 'Conjugate Transpose', M, N-NA, 266*CC $ NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK, 267*CC $ INFO ) 268 CALL ZUNMQR( 'Left', 'Conjugate Transpose', M, N-NA, NA, A, 269 $ LDA, TAU, A( 1, NA+1 ), LDA, WORK, LWORK, 270 $ INFO ) 271 IWS = MAX( IWS, INT( WORK( 1 ) ) ) 272 END IF 273 END IF 274* 275* Factorize free columns 276* ====================== 277* 278 IF( NFXD.LT.MINMN ) THEN 279* 280 SM = M - NFXD 281 SN = N - NFXD 282 SMINMN = MINMN - NFXD 283* 284* Determine the block size. 285* 286 NB = ILAENV( INB, 'ZGEQRF', ' ', SM, SN, -1, -1 ) 287 NBMIN = 2 288 NX = 0 289* 290 IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN 291* 292* Determine when to cross over from blocked to unblocked code. 293* 294 NX = MAX( 0, ILAENV( IXOVER, 'ZGEQRF', ' ', SM, SN, -1, 295 $ -1 ) ) 296* 297* 298 IF( NX.LT.SMINMN ) THEN 299* 300* Determine if workspace is large enough for blocked code. 301* 302 MINWS = ( SN+1 )*NB 303 IWS = MAX( IWS, MINWS ) 304 IF( LWORK.LT.MINWS ) THEN 305* 306* Not enough workspace to use optimal NB: Reduce NB and 307* determine the minimum value of NB. 308* 309 NB = LWORK / ( SN+1 ) 310 NBMIN = MAX( 2, ILAENV( INBMIN, 'ZGEQRF', ' ', SM, SN, 311 $ -1, -1 ) ) 312* 313* 314 END IF 315 END IF 316 END IF 317* 318* Initialize partial column norms. The first N elements of work 319* store the exact column norms. 320* 321 DO 20 J = NFXD + 1, N 322 RWORK( J ) = DZNRM2( SM, A( NFXD+1, J ), 1 ) 323 RWORK( N+J ) = RWORK( J ) 324 20 CONTINUE 325* 326 IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND. 327 $ ( NX.LT.SMINMN ) ) THEN 328* 329* Use blocked code initially. 330* 331 J = NFXD + 1 332* 333* Compute factorization: while loop. 334* 335* 336 TOPBMN = MINMN - NX 337 30 CONTINUE 338 IF( J.LE.TOPBMN ) THEN 339 JB = MIN( NB, TOPBMN-J+1 ) 340* 341* Factorize JB columns among columns J:N. 342* 343 CALL ZLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA, 344 $ JPVT( J ), TAU( J ), RWORK( J ), 345 $ RWORK( N+J ), WORK( 1 ), WORK( JB+1 ), 346 $ N-J+1 ) 347* 348 J = J + FJB 349 GO TO 30 350 END IF 351 ELSE 352 J = NFXD + 1 353 END IF 354* 355* Use unblocked code to factor the last or only block. 356* 357* 358 IF( J.LE.MINMN ) 359 $ CALL ZLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ), 360 $ TAU( J ), RWORK( J ), RWORK( N+J ), WORK( 1 ) ) 361* 362 END IF 363* 364 WORK( 1 ) = DCMPLX( LWKOPT ) 365 RETURN 366* 367* End of ZGEQP3 368* 369 END 370