1*> \brief \b CSGT01 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE CSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D, 12* WORK, RWORK, RESULT ) 13* 14* .. Scalar Arguments .. 15* CHARACTER UPLO 16* INTEGER ITYPE, LDA, LDB, LDZ, M, N 17* .. 18* .. Array Arguments .. 19* REAL D( * ), RESULT( * ), RWORK( * ) 20* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ), 21* $ Z( LDZ, * ) 22* .. 23* 24* 25*> \par Purpose: 26* ============= 27*> 28*> \verbatim 29*> 30*> CSGT01 checks a decomposition of the form 31*> 32*> A Z = B Z D or 33*> A B Z = Z D or 34*> B A Z = Z D 35*> 36*> where A is a Hermitian matrix, B is Hermitian positive definite, 37*> Z is unitary, and D is diagonal. 38*> 39*> One of the following test ratios is computed: 40*> 41*> ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp ) 42*> 43*> ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp ) 44*> 45*> ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp ) 46*> \endverbatim 47* 48* Arguments: 49* ========== 50* 51*> \param[in] ITYPE 52*> \verbatim 53*> ITYPE is INTEGER 54*> The form of the Hermitian generalized eigenproblem. 55*> = 1: A*z = (lambda)*B*z 56*> = 2: A*B*z = (lambda)*z 57*> = 3: B*A*z = (lambda)*z 58*> \endverbatim 59*> 60*> \param[in] UPLO 61*> \verbatim 62*> UPLO is CHARACTER*1 63*> Specifies whether the upper or lower triangular part of the 64*> Hermitian matrices A and B is stored. 65*> = 'U': Upper triangular 66*> = 'L': Lower triangular 67*> \endverbatim 68*> 69*> \param[in] N 70*> \verbatim 71*> N is INTEGER 72*> The order of the matrix A. N >= 0. 73*> \endverbatim 74*> 75*> \param[in] M 76*> \verbatim 77*> M is INTEGER 78*> The number of eigenvalues found. M >= 0. 79*> \endverbatim 80*> 81*> \param[in] A 82*> \verbatim 83*> A is COMPLEX array, dimension (LDA, N) 84*> The original Hermitian matrix A. 85*> \endverbatim 86*> 87*> \param[in] LDA 88*> \verbatim 89*> LDA is INTEGER 90*> The leading dimension of the array A. LDA >= max(1,N). 91*> \endverbatim 92*> 93*> \param[in] B 94*> \verbatim 95*> B is COMPLEX array, dimension (LDB, N) 96*> The original Hermitian positive definite matrix B. 97*> \endverbatim 98*> 99*> \param[in] LDB 100*> \verbatim 101*> LDB is INTEGER 102*> The leading dimension of the array B. LDB >= max(1,N). 103*> \endverbatim 104*> 105*> \param[in] Z 106*> \verbatim 107*> Z is COMPLEX array, dimension (LDZ, M) 108*> The computed eigenvectors of the generalized eigenproblem. 109*> \endverbatim 110*> 111*> \param[in] LDZ 112*> \verbatim 113*> LDZ is INTEGER 114*> The leading dimension of the array Z. LDZ >= max(1,N). 115*> \endverbatim 116*> 117*> \param[in] D 118*> \verbatim 119*> D is REAL array, dimension (M) 120*> The computed eigenvalues of the generalized eigenproblem. 121*> \endverbatim 122*> 123*> \param[out] WORK 124*> \verbatim 125*> WORK is COMPLEX array, dimension (N*N) 126*> \endverbatim 127*> 128*> \param[out] RWORK 129*> \verbatim 130*> RWORK is REAL array, dimension (N) 131*> \endverbatim 132*> 133*> \param[out] RESULT 134*> \verbatim 135*> RESULT is REAL array, dimension (1) 136*> The test ratio as described above. 137*> \endverbatim 138* 139* Authors: 140* ======== 141* 142*> \author Univ. of Tennessee 143*> \author Univ. of California Berkeley 144*> \author Univ. of Colorado Denver 145*> \author NAG Ltd. 146* 147*> \ingroup complex_eig 148* 149* ===================================================================== 150 SUBROUTINE CSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D, 151 $ WORK, RWORK, RESULT ) 152* 153* -- LAPACK test routine -- 154* -- LAPACK is a software package provided by Univ. of Tennessee, -- 155* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 156* 157* .. Scalar Arguments .. 158 CHARACTER UPLO 159 INTEGER ITYPE, LDA, LDB, LDZ, M, N 160* .. 161* .. Array Arguments .. 162 REAL D( * ), RESULT( * ), RWORK( * ) 163 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ), 164 $ Z( LDZ, * ) 165* .. 166* 167* ===================================================================== 168* 169* .. Parameters .. 170 REAL ZERO, ONE 171 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) 172 COMPLEX CZERO, CONE 173 PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), 174 $ CONE = ( 1.0E+0, 0.0E+0 ) ) 175* .. 176* .. Local Scalars .. 177 INTEGER I 178 REAL ANORM, ULP 179* .. 180* .. External Functions .. 181 REAL CLANGE, CLANHE, SLAMCH 182 EXTERNAL CLANGE, CLANHE, SLAMCH 183* .. 184* .. External Subroutines .. 185 EXTERNAL CHEMM, CSSCAL 186* .. 187* .. Executable Statements .. 188* 189 RESULT( 1 ) = ZERO 190 IF( N.LE.0 ) 191 $ RETURN 192* 193 ULP = SLAMCH( 'Epsilon' ) 194* 195* Compute product of 1-norms of A and Z. 196* 197 ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )* 198 $ CLANGE( '1', N, M, Z, LDZ, RWORK ) 199 IF( ANORM.EQ.ZERO ) 200 $ ANORM = ONE 201* 202 IF( ITYPE.EQ.1 ) THEN 203* 204* Norm of AZ - BZD 205* 206 CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO, 207 $ WORK, N ) 208 DO 10 I = 1, M 209 CALL CSSCAL( N, D( I ), Z( 1, I ), 1 ) 210 10 CONTINUE 211 CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, -CONE, 212 $ WORK, N ) 213* 214 RESULT( 1 ) = ( CLANGE( '1', N, M, WORK, N, RWORK ) / ANORM ) / 215 $ ( N*ULP ) 216* 217 ELSE IF( ITYPE.EQ.2 ) THEN 218* 219* Norm of ABZ - ZD 220* 221 CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, CZERO, 222 $ WORK, N ) 223 DO 20 I = 1, M 224 CALL CSSCAL( N, D( I ), Z( 1, I ), 1 ) 225 20 CONTINUE 226 CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, WORK, N, -CONE, 227 $ Z, LDZ ) 228* 229 RESULT( 1 ) = ( CLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) / 230 $ ( N*ULP ) 231* 232 ELSE IF( ITYPE.EQ.3 ) THEN 233* 234* Norm of BAZ - ZD 235* 236 CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO, 237 $ WORK, N ) 238 DO 30 I = 1, M 239 CALL CSSCAL( N, D( I ), Z( 1, I ), 1 ) 240 30 CONTINUE 241 CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, WORK, N, -CONE, 242 $ Z, LDZ ) 243* 244 RESULT( 1 ) = ( CLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) / 245 $ ( N*ULP ) 246 END IF 247* 248 RETURN 249* 250* End of CSGT01 251* 252 END 253