1*> \brief \b CHBGST
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CHBGST + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgst.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgst.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgst.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
22*                          LDX, WORK, RWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          UPLO, VECT
26*       INTEGER            INFO, KA, KB, LDAB, LDBB, LDX, N
27*       ..
28*       .. Array Arguments ..
29*       REAL               RWORK( * )
30*       COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
31*      $                   X( LDX, * )
32*       ..
33*
34*
35*> \par Purpose:
36*  =============
37*>
38*> \verbatim
39*>
40*> CHBGST reduces a complex Hermitian-definite banded generalized
41*> eigenproblem  A*x = lambda*B*x  to standard form  C*y = lambda*y,
42*> such that C has the same bandwidth as A.
43*>
44*> B must have been previously factorized as S**H*S by CPBSTF, using a
45*> split Cholesky factorization. A is overwritten by C = X**H*A*X, where
46*> X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the
47*> bandwidth of A.
48*> \endverbatim
49*
50*  Arguments:
51*  ==========
52*
53*> \param[in] VECT
54*> \verbatim
55*>          VECT is CHARACTER*1
56*>          = 'N':  do not form the transformation matrix X;
57*>          = 'V':  form X.
58*> \endverbatim
59*>
60*> \param[in] UPLO
61*> \verbatim
62*>          UPLO is CHARACTER*1
63*>          = 'U':  Upper triangle of A is stored;
64*>          = 'L':  Lower triangle of A is stored.
65*> \endverbatim
66*>
67*> \param[in] N
68*> \verbatim
69*>          N is INTEGER
70*>          The order of the matrices A and B.  N >= 0.
71*> \endverbatim
72*>
73*> \param[in] KA
74*> \verbatim
75*>          KA is INTEGER
76*>          The number of superdiagonals of the matrix A if UPLO = 'U',
77*>          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.
78*> \endverbatim
79*>
80*> \param[in] KB
81*> \verbatim
82*>          KB is INTEGER
83*>          The number of superdiagonals of the matrix B if UPLO = 'U',
84*>          or the number of subdiagonals if UPLO = 'L'.  KA >= KB >= 0.
85*> \endverbatim
86*>
87*> \param[in,out] AB
88*> \verbatim
89*>          AB is COMPLEX array, dimension (LDAB,N)
90*>          On entry, the upper or lower triangle of the Hermitian band
91*>          matrix A, stored in the first ka+1 rows of the array.  The
92*>          j-th column of A is stored in the j-th column of the array AB
93*>          as follows:
94*>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
95*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
96*>
97*>          On exit, the transformed matrix X**H*A*X, stored in the same
98*>          format as A.
99*> \endverbatim
100*>
101*> \param[in] LDAB
102*> \verbatim
103*>          LDAB is INTEGER
104*>          The leading dimension of the array AB.  LDAB >= KA+1.
105*> \endverbatim
106*>
107*> \param[in] BB
108*> \verbatim
109*>          BB is COMPLEX array, dimension (LDBB,N)
110*>          The banded factor S from the split Cholesky factorization of
111*>          B, as returned by CPBSTF, stored in the first kb+1 rows of
112*>          the array.
113*> \endverbatim
114*>
115*> \param[in] LDBB
116*> \verbatim
117*>          LDBB is INTEGER
118*>          The leading dimension of the array BB.  LDBB >= KB+1.
119*> \endverbatim
120*>
121*> \param[out] X
122*> \verbatim
123*>          X is COMPLEX array, dimension (LDX,N)
124*>          If VECT = 'V', the n-by-n matrix X.
125*>          If VECT = 'N', the array X is not referenced.
126*> \endverbatim
127*>
128*> \param[in] LDX
129*> \verbatim
130*>          LDX is INTEGER
131*>          The leading dimension of the array X.
132*>          LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
133*> \endverbatim
134*>
135*> \param[out] WORK
136*> \verbatim
137*>          WORK is COMPLEX array, dimension (N)
138*> \endverbatim
139*>
140*> \param[out] RWORK
141*> \verbatim
142*>          RWORK is REAL array, dimension (N)
143*> \endverbatim
144*>
145*> \param[out] INFO
146*> \verbatim
147*>          INFO is INTEGER
148*>          = 0:  successful exit
149*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
150*> \endverbatim
151*
152*  Authors:
153*  ========
154*
155*> \author Univ. of Tennessee
156*> \author Univ. of California Berkeley
157*> \author Univ. of Colorado Denver
158*> \author NAG Ltd.
159*
160*> \date November 2011
161*
162*> \ingroup complexOTHERcomputational
163*
164*  =====================================================================
165      SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
166     $                   LDX, WORK, RWORK, INFO )
167*
168*  -- LAPACK computational routine (version 3.4.0) --
169*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
170*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
171*     November 2011
172*
173*     .. Scalar Arguments ..
174      CHARACTER          UPLO, VECT
175      INTEGER            INFO, KA, KB, LDAB, LDBB, LDX, N
176*     ..
177*     .. Array Arguments ..
178      REAL               RWORK( * )
179      COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
180     $                   X( LDX, * )
181*     ..
182*
183*  =====================================================================
184*
185*     .. Parameters ..
186      COMPLEX            CZERO, CONE
187      REAL               ONE
188      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
189     $                   CONE = ( 1.0E+0, 0.0E+0 ), ONE = 1.0E+0 )
190*     ..
191*     .. Local Scalars ..
192      LOGICAL            UPDATE, UPPER, WANTX
193      INTEGER            I, I0, I1, I2, INCA, J, J1, J1T, J2, J2T, K,
194     $                   KA1, KB1, KBT, L, M, NR, NRT, NX
195      REAL               BII
196      COMPLEX            RA, RA1, T
197*     ..
198*     .. External Functions ..
199      LOGICAL            LSAME
200      EXTERNAL           LSAME
201*     ..
202*     .. External Subroutines ..
203      EXTERNAL           CGERC, CGERU, CLACGV, CLAR2V, CLARGV, CLARTG,
204     $                   CLARTV, CLASET, CROT, CSSCAL, XERBLA
205*     ..
206*     .. Intrinsic Functions ..
207      INTRINSIC          CONJG, MAX, MIN, REAL
208*     ..
209*     .. Executable Statements ..
210*
211*     Test the input parameters
212*
213      WANTX = LSAME( VECT, 'V' )
214      UPPER = LSAME( UPLO, 'U' )
215      KA1 = KA + 1
216      KB1 = KB + 1
217      INFO = 0
218      IF( .NOT.WANTX .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
219         INFO = -1
220      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
221         INFO = -2
222      ELSE IF( N.LT.0 ) THEN
223         INFO = -3
224      ELSE IF( KA.LT.0 ) THEN
225         INFO = -4
226      ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
227         INFO = -5
228      ELSE IF( LDAB.LT.KA+1 ) THEN
229         INFO = -7
230      ELSE IF( LDBB.LT.KB+1 ) THEN
231         INFO = -9
232      ELSE IF( LDX.LT.1 .OR. WANTX .AND. LDX.LT.MAX( 1, N ) ) THEN
233         INFO = -11
234      END IF
235      IF( INFO.NE.0 ) THEN
236         CALL XERBLA( 'CHBGST', -INFO )
237         RETURN
238      END IF
239*
240*     Quick return if possible
241*
242      IF( N.EQ.0 )
243     $   RETURN
244*
245      INCA = LDAB*KA1
246*
247*     Initialize X to the unit matrix, if needed
248*
249      IF( WANTX )
250     $   CALL CLASET( 'Full', N, N, CZERO, CONE, X, LDX )
251*
252*     Set M to the splitting point m. It must be the same value as is
253*     used in CPBSTF. The chosen value allows the arrays WORK and RWORK
254*     to be of dimension (N).
255*
256      M = ( N+KB ) / 2
257*
258*     The routine works in two phases, corresponding to the two halves
259*     of the split Cholesky factorization of B as S**H*S where
260*
261*     S = ( U    )
262*         ( M  L )
263*
264*     with U upper triangular of order m, and L lower triangular of
265*     order n-m. S has the same bandwidth as B.
266*
267*     S is treated as a product of elementary matrices:
268*
269*     S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n)
270*
271*     where S(i) is determined by the i-th row of S.
272*
273*     In phase 1, the index i takes the values n, n-1, ... , m+1;
274*     in phase 2, it takes the values 1, 2, ... , m.
275*
276*     For each value of i, the current matrix A is updated by forming
277*     inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside
278*     the band of A. The bulge is then pushed down toward the bottom of
279*     A in phase 1, and up toward the top of A in phase 2, by applying
280*     plane rotations.
281*
282*     There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1
283*     of them are linearly independent, so annihilating a bulge requires
284*     only 2*kb-1 plane rotations. The rotations are divided into a 1st
285*     set of kb-1 rotations, and a 2nd set of kb rotations.
286*
287*     Wherever possible, rotations are generated and applied in vector
288*     operations of length NR between the indices J1 and J2 (sometimes
289*     replaced by modified values NRT, J1T or J2T).
290*
291*     The real cosines and complex sines of the rotations are stored in
292*     the arrays RWORK and WORK, those of the 1st set in elements
293*     2:m-kb-1, and those of the 2nd set in elements m-kb+1:n.
294*
295*     The bulges are not formed explicitly; nonzero elements outside the
296*     band are created only when they are required for generating new
297*     rotations; they are stored in the array WORK, in positions where
298*     they are later overwritten by the sines of the rotations which
299*     annihilate them.
300*
301*     **************************** Phase 1 *****************************
302*
303*     The logical structure of this phase is:
304*
305*     UPDATE = .TRUE.
306*     DO I = N, M + 1, -1
307*        use S(i) to update A and create a new bulge
308*        apply rotations to push all bulges KA positions downward
309*     END DO
310*     UPDATE = .FALSE.
311*     DO I = M + KA + 1, N - 1
312*        apply rotations to push all bulges KA positions downward
313*     END DO
314*
315*     To avoid duplicating code, the two loops are merged.
316*
317      UPDATE = .TRUE.
318      I = N + 1
319   10 CONTINUE
320      IF( UPDATE ) THEN
321         I = I - 1
322         KBT = MIN( KB, I-1 )
323         I0 = I - 1
324         I1 = MIN( N, I+KA )
325         I2 = I - KBT + KA1
326         IF( I.LT.M+1 ) THEN
327            UPDATE = .FALSE.
328            I = I + 1
329            I0 = M
330            IF( KA.EQ.0 )
331     $         GO TO 480
332            GO TO 10
333         END IF
334      ELSE
335         I = I + KA
336         IF( I.GT.N-1 )
337     $      GO TO 480
338      END IF
339*
340      IF( UPPER ) THEN
341*
342*        Transform A, working with the upper triangle
343*
344         IF( UPDATE ) THEN
345*
346*           Form  inv(S(i))**H * A * inv(S(i))
347*
348            BII = REAL( BB( KB1, I ) )
349            AB( KA1, I ) = ( REAL( AB( KA1, I ) ) / BII ) / BII
350            DO 20 J = I + 1, I1
351               AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
352   20       CONTINUE
353            DO 30 J = MAX( 1, I-KA ), I - 1
354               AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
355   30       CONTINUE
356            DO 60 K = I - KBT, I - 1
357               DO 40 J = I - KBT, K
358                  AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
359     $                               BB( J-I+KB1, I )*
360     $                               CONJG( AB( K-I+KA1, I ) ) -
361     $                               CONJG( BB( K-I+KB1, I ) )*
362     $                               AB( J-I+KA1, I ) +
363     $                               REAL( AB( KA1, I ) )*
364     $                               BB( J-I+KB1, I )*
365     $                               CONJG( BB( K-I+KB1, I ) )
366   40          CONTINUE
367               DO 50 J = MAX( 1, I-KA ), I - KBT - 1
368                  AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
369     $                               CONJG( BB( K-I+KB1, I ) )*
370     $                               AB( J-I+KA1, I )
371   50          CONTINUE
372   60       CONTINUE
373            DO 80 J = I, I1
374               DO 70 K = MAX( J-KA, I-KBT ), I - 1
375                  AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
376     $                               BB( K-I+KB1, I )*AB( I-J+KA1, J )
377   70          CONTINUE
378   80       CONTINUE
379*
380            IF( WANTX ) THEN
381*
382*              post-multiply X by inv(S(i))
383*
384               CALL CSSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
385               IF( KBT.GT.0 )
386     $            CALL CGERC( N-M, KBT, -CONE, X( M+1, I ), 1,
387     $                        BB( KB1-KBT, I ), 1, X( M+1, I-KBT ),
388     $                        LDX )
389            END IF
390*
391*           store a(i,i1) in RA1 for use in next loop over K
392*
393            RA1 = AB( I-I1+KA1, I1 )
394         END IF
395*
396*        Generate and apply vectors of rotations to chase all the
397*        existing bulges KA positions down toward the bottom of the
398*        band
399*
400         DO 130 K = 1, KB - 1
401            IF( UPDATE ) THEN
402*
403*              Determine the rotations which would annihilate the bulge
404*              which has in theory just been created
405*
406               IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
407*
408*                 generate rotation to annihilate a(i,i-k+ka+1)
409*
410                  CALL CLARTG( AB( K+1, I-K+KA ), RA1,
411     $                         RWORK( I-K+KA-M ), WORK( I-K+KA-M ), RA )
412*
413*                 create nonzero element a(i-k,i-k+ka+1) outside the
414*                 band and store it in WORK(i-k)
415*
416                  T = -BB( KB1-K, I )*RA1
417                  WORK( I-K ) = RWORK( I-K+KA-M )*T -
418     $                          CONJG( WORK( I-K+KA-M ) )*
419     $                          AB( 1, I-K+KA )
420                  AB( 1, I-K+KA ) = WORK( I-K+KA-M )*T +
421     $                              RWORK( I-K+KA-M )*AB( 1, I-K+KA )
422                  RA1 = RA
423               END IF
424            END IF
425            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
426            NR = ( N-J2+KA ) / KA1
427            J1 = J2 + ( NR-1 )*KA1
428            IF( UPDATE ) THEN
429               J2T = MAX( J2, I+2*KA-K+1 )
430            ELSE
431               J2T = J2
432            END IF
433            NRT = ( N-J2T+KA ) / KA1
434            DO 90 J = J2T, J1, KA1
435*
436*              create nonzero element a(j-ka,j+1) outside the band
437*              and store it in WORK(j-m)
438*
439               WORK( J-M ) = WORK( J-M )*AB( 1, J+1 )
440               AB( 1, J+1 ) = RWORK( J-M )*AB( 1, J+1 )
441   90       CONTINUE
442*
443*           generate rotations in 1st set to annihilate elements which
444*           have been created outside the band
445*
446            IF( NRT.GT.0 )
447     $         CALL CLARGV( NRT, AB( 1, J2T ), INCA, WORK( J2T-M ), KA1,
448     $                      RWORK( J2T-M ), KA1 )
449            IF( NR.GT.0 ) THEN
450*
451*              apply rotations in 1st set from the right
452*
453               DO 100 L = 1, KA - 1
454                  CALL CLARTV( NR, AB( KA1-L, J2 ), INCA,
455     $                         AB( KA-L, J2+1 ), INCA, RWORK( J2-M ),
456     $                         WORK( J2-M ), KA1 )
457  100          CONTINUE
458*
459*              apply rotations in 1st set from both sides to diagonal
460*              blocks
461*
462               CALL CLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
463     $                      AB( KA, J2+1 ), INCA, RWORK( J2-M ),
464     $                      WORK( J2-M ), KA1 )
465*
466               CALL CLACGV( NR, WORK( J2-M ), KA1 )
467            END IF
468*
469*           start applying rotations in 1st set from the left
470*
471            DO 110 L = KA - 1, KB - K + 1, -1
472               NRT = ( N-J2+L ) / KA1
473               IF( NRT.GT.0 )
474     $            CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
475     $                         AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
476     $                         WORK( J2-M ), KA1 )
477  110       CONTINUE
478*
479            IF( WANTX ) THEN
480*
481*              post-multiply X by product of rotations in 1st set
482*
483               DO 120 J = J2, J1, KA1
484                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
485     $                       RWORK( J-M ), CONJG( WORK( J-M ) ) )
486  120          CONTINUE
487            END IF
488  130    CONTINUE
489*
490         IF( UPDATE ) THEN
491            IF( I2.LE.N .AND. KBT.GT.0 ) THEN
492*
493*              create nonzero element a(i-kbt,i-kbt+ka+1) outside the
494*              band and store it in WORK(i-kbt)
495*
496               WORK( I-KBT ) = -BB( KB1-KBT, I )*RA1
497            END IF
498         END IF
499*
500         DO 170 K = KB, 1, -1
501            IF( UPDATE ) THEN
502               J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
503            ELSE
504               J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
505            END IF
506*
507*           finish applying rotations in 2nd set from the left
508*
509            DO 140 L = KB - K, 1, -1
510               NRT = ( N-J2+KA+L ) / KA1
511               IF( NRT.GT.0 )
512     $            CALL CLARTV( NRT, AB( L, J2-L+1 ), INCA,
513     $                         AB( L+1, J2-L+1 ), INCA, RWORK( J2-KA ),
514     $                         WORK( J2-KA ), KA1 )
515  140       CONTINUE
516            NR = ( N-J2+KA ) / KA1
517            J1 = J2 + ( NR-1 )*KA1
518            DO 150 J = J1, J2, -KA1
519               WORK( J ) = WORK( J-KA )
520               RWORK( J ) = RWORK( J-KA )
521  150       CONTINUE
522            DO 160 J = J2, J1, KA1
523*
524*              create nonzero element a(j-ka,j+1) outside the band
525*              and store it in WORK(j)
526*
527               WORK( J ) = WORK( J )*AB( 1, J+1 )
528               AB( 1, J+1 ) = RWORK( J )*AB( 1, J+1 )
529  160       CONTINUE
530            IF( UPDATE ) THEN
531               IF( I-K.LT.N-KA .AND. K.LE.KBT )
532     $            WORK( I-K+KA ) = WORK( I-K )
533            END IF
534  170    CONTINUE
535*
536         DO 210 K = KB, 1, -1
537            J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
538            NR = ( N-J2+KA ) / KA1
539            J1 = J2 + ( NR-1 )*KA1
540            IF( NR.GT.0 ) THEN
541*
542*              generate rotations in 2nd set to annihilate elements
543*              which have been created outside the band
544*
545               CALL CLARGV( NR, AB( 1, J2 ), INCA, WORK( J2 ), KA1,
546     $                      RWORK( J2 ), KA1 )
547*
548*              apply rotations in 2nd set from the right
549*
550               DO 180 L = 1, KA - 1
551                  CALL CLARTV( NR, AB( KA1-L, J2 ), INCA,
552     $                         AB( KA-L, J2+1 ), INCA, RWORK( J2 ),
553     $                         WORK( J2 ), KA1 )
554  180          CONTINUE
555*
556*              apply rotations in 2nd set from both sides to diagonal
557*              blocks
558*
559               CALL CLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
560     $                      AB( KA, J2+1 ), INCA, RWORK( J2 ),
561     $                      WORK( J2 ), KA1 )
562*
563               CALL CLACGV( NR, WORK( J2 ), KA1 )
564            END IF
565*
566*           start applying rotations in 2nd set from the left
567*
568            DO 190 L = KA - 1, KB - K + 1, -1
569               NRT = ( N-J2+L ) / KA1
570               IF( NRT.GT.0 )
571     $            CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
572     $                         AB( L+1, J2+KA1-L ), INCA, RWORK( J2 ),
573     $                         WORK( J2 ), KA1 )
574  190       CONTINUE
575*
576            IF( WANTX ) THEN
577*
578*              post-multiply X by product of rotations in 2nd set
579*
580               DO 200 J = J2, J1, KA1
581                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
582     $                       RWORK( J ), CONJG( WORK( J ) ) )
583  200          CONTINUE
584            END IF
585  210    CONTINUE
586*
587         DO 230 K = 1, KB - 1
588            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
589*
590*           finish applying rotations in 1st set from the left
591*
592            DO 220 L = KB - K, 1, -1
593               NRT = ( N-J2+L ) / KA1
594               IF( NRT.GT.0 )
595     $            CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
596     $                         AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
597     $                         WORK( J2-M ), KA1 )
598  220       CONTINUE
599  230    CONTINUE
600*
601         IF( KB.GT.1 ) THEN
602            DO 240 J = N - 1, J2 + KA, -1
603               RWORK( J-M ) = RWORK( J-KA-M )
604               WORK( J-M ) = WORK( J-KA-M )
605  240       CONTINUE
606         END IF
607*
608      ELSE
609*
610*        Transform A, working with the lower triangle
611*
612         IF( UPDATE ) THEN
613*
614*           Form  inv(S(i))**H * A * inv(S(i))
615*
616            BII = REAL( BB( 1, I ) )
617            AB( 1, I ) = ( REAL( AB( 1, I ) ) / BII ) / BII
618            DO 250 J = I + 1, I1
619               AB( J-I+1, I ) = AB( J-I+1, I ) / BII
620  250       CONTINUE
621            DO 260 J = MAX( 1, I-KA ), I - 1
622               AB( I-J+1, J ) = AB( I-J+1, J ) / BII
623  260       CONTINUE
624            DO 290 K = I - KBT, I - 1
625               DO 270 J = I - KBT, K
626                  AB( K-J+1, J ) = AB( K-J+1, J ) -
627     $                             BB( I-J+1, J )*CONJG( AB( I-K+1,
628     $                             K ) ) - CONJG( BB( I-K+1, K ) )*
629     $                             AB( I-J+1, J ) + REAL( AB( 1, I ) )*
630     $                             BB( I-J+1, J )*CONJG( BB( I-K+1,
631     $                             K ) )
632  270          CONTINUE
633               DO 280 J = MAX( 1, I-KA ), I - KBT - 1
634                  AB( K-J+1, J ) = AB( K-J+1, J ) -
635     $                             CONJG( BB( I-K+1, K ) )*
636     $                             AB( I-J+1, J )
637  280          CONTINUE
638  290       CONTINUE
639            DO 310 J = I, I1
640               DO 300 K = MAX( J-KA, I-KBT ), I - 1
641                  AB( J-K+1, K ) = AB( J-K+1, K ) -
642     $                             BB( I-K+1, K )*AB( J-I+1, I )
643  300          CONTINUE
644  310       CONTINUE
645*
646            IF( WANTX ) THEN
647*
648*              post-multiply X by inv(S(i))
649*
650               CALL CSSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
651               IF( KBT.GT.0 )
652     $            CALL CGERU( N-M, KBT, -CONE, X( M+1, I ), 1,
653     $                        BB( KBT+1, I-KBT ), LDBB-1,
654     $                        X( M+1, I-KBT ), LDX )
655            END IF
656*
657*           store a(i1,i) in RA1 for use in next loop over K
658*
659            RA1 = AB( I1-I+1, I )
660         END IF
661*
662*        Generate and apply vectors of rotations to chase all the
663*        existing bulges KA positions down toward the bottom of the
664*        band
665*
666         DO 360 K = 1, KB - 1
667            IF( UPDATE ) THEN
668*
669*              Determine the rotations which would annihilate the bulge
670*              which has in theory just been created
671*
672               IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
673*
674*                 generate rotation to annihilate a(i-k+ka+1,i)
675*
676                  CALL CLARTG( AB( KA1-K, I ), RA1, RWORK( I-K+KA-M ),
677     $                         WORK( I-K+KA-M ), RA )
678*
679*                 create nonzero element a(i-k+ka+1,i-k) outside the
680*                 band and store it in WORK(i-k)
681*
682                  T = -BB( K+1, I-K )*RA1
683                  WORK( I-K ) = RWORK( I-K+KA-M )*T -
684     $                          CONJG( WORK( I-K+KA-M ) )*AB( KA1, I-K )
685                  AB( KA1, I-K ) = WORK( I-K+KA-M )*T +
686     $                             RWORK( I-K+KA-M )*AB( KA1, I-K )
687                  RA1 = RA
688               END IF
689            END IF
690            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
691            NR = ( N-J2+KA ) / KA1
692            J1 = J2 + ( NR-1 )*KA1
693            IF( UPDATE ) THEN
694               J2T = MAX( J2, I+2*KA-K+1 )
695            ELSE
696               J2T = J2
697            END IF
698            NRT = ( N-J2T+KA ) / KA1
699            DO 320 J = J2T, J1, KA1
700*
701*              create nonzero element a(j+1,j-ka) outside the band
702*              and store it in WORK(j-m)
703*
704               WORK( J-M ) = WORK( J-M )*AB( KA1, J-KA+1 )
705               AB( KA1, J-KA+1 ) = RWORK( J-M )*AB( KA1, J-KA+1 )
706  320       CONTINUE
707*
708*           generate rotations in 1st set to annihilate elements which
709*           have been created outside the band
710*
711            IF( NRT.GT.0 )
712     $         CALL CLARGV( NRT, AB( KA1, J2T-KA ), INCA, WORK( J2T-M ),
713     $                      KA1, RWORK( J2T-M ), KA1 )
714            IF( NR.GT.0 ) THEN
715*
716*              apply rotations in 1st set from the left
717*
718               DO 330 L = 1, KA - 1
719                  CALL CLARTV( NR, AB( L+1, J2-L ), INCA,
720     $                         AB( L+2, J2-L ), INCA, RWORK( J2-M ),
721     $                         WORK( J2-M ), KA1 )
722  330          CONTINUE
723*
724*              apply rotations in 1st set from both sides to diagonal
725*              blocks
726*
727               CALL CLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
728     $                      INCA, RWORK( J2-M ), WORK( J2-M ), KA1 )
729*
730               CALL CLACGV( NR, WORK( J2-M ), KA1 )
731            END IF
732*
733*           start applying rotations in 1st set from the right
734*
735            DO 340 L = KA - 1, KB - K + 1, -1
736               NRT = ( N-J2+L ) / KA1
737               IF( NRT.GT.0 )
738     $            CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
739     $                         AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
740     $                         WORK( J2-M ), KA1 )
741  340       CONTINUE
742*
743            IF( WANTX ) THEN
744*
745*              post-multiply X by product of rotations in 1st set
746*
747               DO 350 J = J2, J1, KA1
748                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
749     $                       RWORK( J-M ), WORK( J-M ) )
750  350          CONTINUE
751            END IF
752  360    CONTINUE
753*
754         IF( UPDATE ) THEN
755            IF( I2.LE.N .AND. KBT.GT.0 ) THEN
756*
757*              create nonzero element a(i-kbt+ka+1,i-kbt) outside the
758*              band and store it in WORK(i-kbt)
759*
760               WORK( I-KBT ) = -BB( KBT+1, I-KBT )*RA1
761            END IF
762         END IF
763*
764         DO 400 K = KB, 1, -1
765            IF( UPDATE ) THEN
766               J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
767            ELSE
768               J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
769            END IF
770*
771*           finish applying rotations in 2nd set from the right
772*
773            DO 370 L = KB - K, 1, -1
774               NRT = ( N-J2+KA+L ) / KA1
775               IF( NRT.GT.0 )
776     $            CALL CLARTV( NRT, AB( KA1-L+1, J2-KA ), INCA,
777     $                         AB( KA1-L, J2-KA+1 ), INCA,
778     $                         RWORK( J2-KA ), WORK( J2-KA ), KA1 )
779  370       CONTINUE
780            NR = ( N-J2+KA ) / KA1
781            J1 = J2 + ( NR-1 )*KA1
782            DO 380 J = J1, J2, -KA1
783               WORK( J ) = WORK( J-KA )
784               RWORK( J ) = RWORK( J-KA )
785  380       CONTINUE
786            DO 390 J = J2, J1, KA1
787*
788*              create nonzero element a(j+1,j-ka) outside the band
789*              and store it in WORK(j)
790*
791               WORK( J ) = WORK( J )*AB( KA1, J-KA+1 )
792               AB( KA1, J-KA+1 ) = RWORK( J )*AB( KA1, J-KA+1 )
793  390       CONTINUE
794            IF( UPDATE ) THEN
795               IF( I-K.LT.N-KA .AND. K.LE.KBT )
796     $            WORK( I-K+KA ) = WORK( I-K )
797            END IF
798  400    CONTINUE
799*
800         DO 440 K = KB, 1, -1
801            J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
802            NR = ( N-J2+KA ) / KA1
803            J1 = J2 + ( NR-1 )*KA1
804            IF( NR.GT.0 ) THEN
805*
806*              generate rotations in 2nd set to annihilate elements
807*              which have been created outside the band
808*
809               CALL CLARGV( NR, AB( KA1, J2-KA ), INCA, WORK( J2 ), KA1,
810     $                      RWORK( J2 ), KA1 )
811*
812*              apply rotations in 2nd set from the left
813*
814               DO 410 L = 1, KA - 1
815                  CALL CLARTV( NR, AB( L+1, J2-L ), INCA,
816     $                         AB( L+2, J2-L ), INCA, RWORK( J2 ),
817     $                         WORK( J2 ), KA1 )
818  410          CONTINUE
819*
820*              apply rotations in 2nd set from both sides to diagonal
821*              blocks
822*
823               CALL CLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
824     $                      INCA, RWORK( J2 ), WORK( J2 ), KA1 )
825*
826               CALL CLACGV( NR, WORK( J2 ), KA1 )
827            END IF
828*
829*           start applying rotations in 2nd set from the right
830*
831            DO 420 L = KA - 1, KB - K + 1, -1
832               NRT = ( N-J2+L ) / KA1
833               IF( NRT.GT.0 )
834     $            CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
835     $                         AB( KA1-L, J2+1 ), INCA, RWORK( J2 ),
836     $                         WORK( J2 ), KA1 )
837  420       CONTINUE
838*
839            IF( WANTX ) THEN
840*
841*              post-multiply X by product of rotations in 2nd set
842*
843               DO 430 J = J2, J1, KA1
844                  CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
845     $                       RWORK( J ), WORK( J ) )
846  430          CONTINUE
847            END IF
848  440    CONTINUE
849*
850         DO 460 K = 1, KB - 1
851            J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
852*
853*           finish applying rotations in 1st set from the right
854*
855            DO 450 L = KB - K, 1, -1
856               NRT = ( N-J2+L ) / KA1
857               IF( NRT.GT.0 )
858     $            CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
859     $                         AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
860     $                         WORK( J2-M ), KA1 )
861  450       CONTINUE
862  460    CONTINUE
863*
864         IF( KB.GT.1 ) THEN
865            DO 470 J = N - 1, J2 + KA, -1
866               RWORK( J-M ) = RWORK( J-KA-M )
867               WORK( J-M ) = WORK( J-KA-M )
868  470       CONTINUE
869         END IF
870*
871      END IF
872*
873      GO TO 10
874*
875  480 CONTINUE
876*
877*     **************************** Phase 2 *****************************
878*
879*     The logical structure of this phase is:
880*
881*     UPDATE = .TRUE.
882*     DO I = 1, M
883*        use S(i) to update A and create a new bulge
884*        apply rotations to push all bulges KA positions upward
885*     END DO
886*     UPDATE = .FALSE.
887*     DO I = M - KA - 1, 2, -1
888*        apply rotations to push all bulges KA positions upward
889*     END DO
890*
891*     To avoid duplicating code, the two loops are merged.
892*
893      UPDATE = .TRUE.
894      I = 0
895  490 CONTINUE
896      IF( UPDATE ) THEN
897         I = I + 1
898         KBT = MIN( KB, M-I )
899         I0 = I + 1
900         I1 = MAX( 1, I-KA )
901         I2 = I + KBT - KA1
902         IF( I.GT.M ) THEN
903            UPDATE = .FALSE.
904            I = I - 1
905            I0 = M + 1
906            IF( KA.EQ.0 )
907     $         RETURN
908            GO TO 490
909         END IF
910      ELSE
911         I = I - KA
912         IF( I.LT.2 )
913     $      RETURN
914      END IF
915*
916      IF( I.LT.M-KBT ) THEN
917         NX = M
918      ELSE
919         NX = N
920      END IF
921*
922      IF( UPPER ) THEN
923*
924*        Transform A, working with the upper triangle
925*
926         IF( UPDATE ) THEN
927*
928*           Form  inv(S(i))**H * A * inv(S(i))
929*
930            BII = REAL( BB( KB1, I ) )
931            AB( KA1, I ) = ( REAL( AB( KA1, I ) ) / BII ) / BII
932            DO 500 J = I1, I - 1
933               AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
934  500       CONTINUE
935            DO 510 J = I + 1, MIN( N, I+KA )
936               AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
937  510       CONTINUE
938            DO 540 K = I + 1, I + KBT
939               DO 520 J = K, I + KBT
940                  AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
941     $                               BB( I-J+KB1, J )*
942     $                               CONJG( AB( I-K+KA1, K ) ) -
943     $                               CONJG( BB( I-K+KB1, K ) )*
944     $                               AB( I-J+KA1, J ) +
945     $                               REAL( AB( KA1, I ) )*
946     $                               BB( I-J+KB1, J )*
947     $                               CONJG( BB( I-K+KB1, K ) )
948  520          CONTINUE
949               DO 530 J = I + KBT + 1, MIN( N, I+KA )
950                  AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
951     $                               CONJG( BB( I-K+KB1, K ) )*
952     $                               AB( I-J+KA1, J )
953  530          CONTINUE
954  540       CONTINUE
955            DO 560 J = I1, I
956               DO 550 K = I + 1, MIN( J+KA, I+KBT )
957                  AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
958     $                               BB( I-K+KB1, K )*AB( J-I+KA1, I )
959  550          CONTINUE
960  560       CONTINUE
961*
962            IF( WANTX ) THEN
963*
964*              post-multiply X by inv(S(i))
965*
966               CALL CSSCAL( NX, ONE / BII, X( 1, I ), 1 )
967               IF( KBT.GT.0 )
968     $            CALL CGERU( NX, KBT, -CONE, X( 1, I ), 1,
969     $                        BB( KB, I+1 ), LDBB-1, X( 1, I+1 ), LDX )
970            END IF
971*
972*           store a(i1,i) in RA1 for use in next loop over K
973*
974            RA1 = AB( I1-I+KA1, I )
975         END IF
976*
977*        Generate and apply vectors of rotations to chase all the
978*        existing bulges KA positions up toward the top of the band
979*
980         DO 610 K = 1, KB - 1
981            IF( UPDATE ) THEN
982*
983*              Determine the rotations which would annihilate the bulge
984*              which has in theory just been created
985*
986               IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
987*
988*                 generate rotation to annihilate a(i+k-ka-1,i)
989*
990                  CALL CLARTG( AB( K+1, I ), RA1, RWORK( I+K-KA ),
991     $                         WORK( I+K-KA ), RA )
992*
993*                 create nonzero element a(i+k-ka-1,i+k) outside the
994*                 band and store it in WORK(m-kb+i+k)
995*
996                  T = -BB( KB1-K, I+K )*RA1
997                  WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
998     $                               CONJG( WORK( I+K-KA ) )*
999     $                               AB( 1, I+K )
1000                  AB( 1, I+K ) = WORK( I+K-KA )*T +
1001     $                           RWORK( I+K-KA )*AB( 1, I+K )
1002                  RA1 = RA
1003               END IF
1004            END IF
1005            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
1006            NR = ( J2+KA-1 ) / KA1
1007            J1 = J2 - ( NR-1 )*KA1
1008            IF( UPDATE ) THEN
1009               J2T = MIN( J2, I-2*KA+K-1 )
1010            ELSE
1011               J2T = J2
1012            END IF
1013            NRT = ( J2T+KA-1 ) / KA1
1014            DO 570 J = J1, J2T, KA1
1015*
1016*              create nonzero element a(j-1,j+ka) outside the band
1017*              and store it in WORK(j)
1018*
1019               WORK( J ) = WORK( J )*AB( 1, J+KA-1 )
1020               AB( 1, J+KA-1 ) = RWORK( J )*AB( 1, J+KA-1 )
1021  570       CONTINUE
1022*
1023*           generate rotations in 1st set to annihilate elements which
1024*           have been created outside the band
1025*
1026            IF( NRT.GT.0 )
1027     $         CALL CLARGV( NRT, AB( 1, J1+KA ), INCA, WORK( J1 ), KA1,
1028     $                      RWORK( J1 ), KA1 )
1029            IF( NR.GT.0 ) THEN
1030*
1031*              apply rotations in 1st set from the left
1032*
1033               DO 580 L = 1, KA - 1
1034                  CALL CLARTV( NR, AB( KA1-L, J1+L ), INCA,
1035     $                         AB( KA-L, J1+L ), INCA, RWORK( J1 ),
1036     $                         WORK( J1 ), KA1 )
1037  580          CONTINUE
1038*
1039*              apply rotations in 1st set from both sides to diagonal
1040*              blocks
1041*
1042               CALL CLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
1043     $                      AB( KA, J1 ), INCA, RWORK( J1 ), WORK( J1 ),
1044     $                      KA1 )
1045*
1046               CALL CLACGV( NR, WORK( J1 ), KA1 )
1047            END IF
1048*
1049*           start applying rotations in 1st set from the right
1050*
1051            DO 590 L = KA - 1, KB - K + 1, -1
1052               NRT = ( J2+L-1 ) / KA1
1053               J1T = J2 - ( NRT-1 )*KA1
1054               IF( NRT.GT.0 )
1055     $            CALL CLARTV( NRT, AB( L, J1T ), INCA,
1056     $                         AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
1057     $                         WORK( J1T ), KA1 )
1058  590       CONTINUE
1059*
1060            IF( WANTX ) THEN
1061*
1062*              post-multiply X by product of rotations in 1st set
1063*
1064               DO 600 J = J1, J2, KA1
1065                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
1066     $                       RWORK( J ), WORK( J ) )
1067  600          CONTINUE
1068            END IF
1069  610    CONTINUE
1070*
1071         IF( UPDATE ) THEN
1072            IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
1073*
1074*              create nonzero element a(i+kbt-ka-1,i+kbt) outside the
1075*              band and store it in WORK(m-kb+i+kbt)
1076*
1077               WORK( M-KB+I+KBT ) = -BB( KB1-KBT, I+KBT )*RA1
1078            END IF
1079         END IF
1080*
1081         DO 650 K = KB, 1, -1
1082            IF( UPDATE ) THEN
1083               J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
1084            ELSE
1085               J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
1086            END IF
1087*
1088*           finish applying rotations in 2nd set from the right
1089*
1090            DO 620 L = KB - K, 1, -1
1091               NRT = ( J2+KA+L-1 ) / KA1
1092               J1T = J2 - ( NRT-1 )*KA1
1093               IF( NRT.GT.0 )
1094     $            CALL CLARTV( NRT, AB( L, J1T+KA ), INCA,
1095     $                         AB( L+1, J1T+KA-1 ), INCA,
1096     $                         RWORK( M-KB+J1T+KA ),
1097     $                         WORK( M-KB+J1T+KA ), KA1 )
1098  620       CONTINUE
1099            NR = ( J2+KA-1 ) / KA1
1100            J1 = J2 - ( NR-1 )*KA1
1101            DO 630 J = J1, J2, KA1
1102               WORK( M-KB+J ) = WORK( M-KB+J+KA )
1103               RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
1104  630       CONTINUE
1105            DO 640 J = J1, J2, KA1
1106*
1107*              create nonzero element a(j-1,j+ka) outside the band
1108*              and store it in WORK(m-kb+j)
1109*
1110               WORK( M-KB+J ) = WORK( M-KB+J )*AB( 1, J+KA-1 )
1111               AB( 1, J+KA-1 ) = RWORK( M-KB+J )*AB( 1, J+KA-1 )
1112  640       CONTINUE
1113            IF( UPDATE ) THEN
1114               IF( I+K.GT.KA1 .AND. K.LE.KBT )
1115     $            WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
1116            END IF
1117  650    CONTINUE
1118*
1119         DO 690 K = KB, 1, -1
1120            J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
1121            NR = ( J2+KA-1 ) / KA1
1122            J1 = J2 - ( NR-1 )*KA1
1123            IF( NR.GT.0 ) THEN
1124*
1125*              generate rotations in 2nd set to annihilate elements
1126*              which have been created outside the band
1127*
1128               CALL CLARGV( NR, AB( 1, J1+KA ), INCA, WORK( M-KB+J1 ),
1129     $                      KA1, RWORK( M-KB+J1 ), KA1 )
1130*
1131*              apply rotations in 2nd set from the left
1132*
1133               DO 660 L = 1, KA - 1
1134                  CALL CLARTV( NR, AB( KA1-L, J1+L ), INCA,
1135     $                         AB( KA-L, J1+L ), INCA, RWORK( M-KB+J1 ),
1136     $                         WORK( M-KB+J1 ), KA1 )
1137  660          CONTINUE
1138*
1139*              apply rotations in 2nd set from both sides to diagonal
1140*              blocks
1141*
1142               CALL CLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
1143     $                      AB( KA, J1 ), INCA, RWORK( M-KB+J1 ),
1144     $                      WORK( M-KB+J1 ), KA1 )
1145*
1146               CALL CLACGV( NR, WORK( M-KB+J1 ), KA1 )
1147            END IF
1148*
1149*           start applying rotations in 2nd set from the right
1150*
1151            DO 670 L = KA - 1, KB - K + 1, -1
1152               NRT = ( J2+L-1 ) / KA1
1153               J1T = J2 - ( NRT-1 )*KA1
1154               IF( NRT.GT.0 )
1155     $            CALL CLARTV( NRT, AB( L, J1T ), INCA,
1156     $                         AB( L+1, J1T-1 ), INCA,
1157     $                         RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
1158     $                         KA1 )
1159  670       CONTINUE
1160*
1161            IF( WANTX ) THEN
1162*
1163*              post-multiply X by product of rotations in 2nd set
1164*
1165               DO 680 J = J1, J2, KA1
1166                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
1167     $                       RWORK( M-KB+J ), WORK( M-KB+J ) )
1168  680          CONTINUE
1169            END IF
1170  690    CONTINUE
1171*
1172         DO 710 K = 1, KB - 1
1173            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
1174*
1175*           finish applying rotations in 1st set from the right
1176*
1177            DO 700 L = KB - K, 1, -1
1178               NRT = ( J2+L-1 ) / KA1
1179               J1T = J2 - ( NRT-1 )*KA1
1180               IF( NRT.GT.0 )
1181     $            CALL CLARTV( NRT, AB( L, J1T ), INCA,
1182     $                         AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
1183     $                         WORK( J1T ), KA1 )
1184  700       CONTINUE
1185  710    CONTINUE
1186*
1187         IF( KB.GT.1 ) THEN
1188            DO 720 J = 2, I2 - KA
1189               RWORK( J ) = RWORK( J+KA )
1190               WORK( J ) = WORK( J+KA )
1191  720       CONTINUE
1192         END IF
1193*
1194      ELSE
1195*
1196*        Transform A, working with the lower triangle
1197*
1198         IF( UPDATE ) THEN
1199*
1200*           Form  inv(S(i))**H * A * inv(S(i))
1201*
1202            BII = REAL( BB( 1, I ) )
1203            AB( 1, I ) = ( REAL( AB( 1, I ) ) / BII ) / BII
1204            DO 730 J = I1, I - 1
1205               AB( I-J+1, J ) = AB( I-J+1, J ) / BII
1206  730       CONTINUE
1207            DO 740 J = I + 1, MIN( N, I+KA )
1208               AB( J-I+1, I ) = AB( J-I+1, I ) / BII
1209  740       CONTINUE
1210            DO 770 K = I + 1, I + KBT
1211               DO 750 J = K, I + KBT
1212                  AB( J-K+1, K ) = AB( J-K+1, K ) -
1213     $                             BB( J-I+1, I )*CONJG( AB( K-I+1,
1214     $                             I ) ) - CONJG( BB( K-I+1, I ) )*
1215     $                             AB( J-I+1, I ) + REAL( AB( 1, I ) )*
1216     $                             BB( J-I+1, I )*CONJG( BB( K-I+1,
1217     $                             I ) )
1218  750          CONTINUE
1219               DO 760 J = I + KBT + 1, MIN( N, I+KA )
1220                  AB( J-K+1, K ) = AB( J-K+1, K ) -
1221     $                             CONJG( BB( K-I+1, I ) )*
1222     $                             AB( J-I+1, I )
1223  760          CONTINUE
1224  770       CONTINUE
1225            DO 790 J = I1, I
1226               DO 780 K = I + 1, MIN( J+KA, I+KBT )
1227                  AB( K-J+1, J ) = AB( K-J+1, J ) -
1228     $                             BB( K-I+1, I )*AB( I-J+1, J )
1229  780          CONTINUE
1230  790       CONTINUE
1231*
1232            IF( WANTX ) THEN
1233*
1234*              post-multiply X by inv(S(i))
1235*
1236               CALL CSSCAL( NX, ONE / BII, X( 1, I ), 1 )
1237               IF( KBT.GT.0 )
1238     $            CALL CGERC( NX, KBT, -CONE, X( 1, I ), 1, BB( 2, I ),
1239     $                        1, X( 1, I+1 ), LDX )
1240            END IF
1241*
1242*           store a(i,i1) in RA1 for use in next loop over K
1243*
1244            RA1 = AB( I-I1+1, I1 )
1245         END IF
1246*
1247*        Generate and apply vectors of rotations to chase all the
1248*        existing bulges KA positions up toward the top of the band
1249*
1250         DO 840 K = 1, KB - 1
1251            IF( UPDATE ) THEN
1252*
1253*              Determine the rotations which would annihilate the bulge
1254*              which has in theory just been created
1255*
1256               IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
1257*
1258*                 generate rotation to annihilate a(i,i+k-ka-1)
1259*
1260                  CALL CLARTG( AB( KA1-K, I+K-KA ), RA1,
1261     $                         RWORK( I+K-KA ), WORK( I+K-KA ), RA )
1262*
1263*                 create nonzero element a(i+k,i+k-ka-1) outside the
1264*                 band and store it in WORK(m-kb+i+k)
1265*
1266                  T = -BB( K+1, I )*RA1
1267                  WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
1268     $                               CONJG( WORK( I+K-KA ) )*
1269     $                               AB( KA1, I+K-KA )
1270                  AB( KA1, I+K-KA ) = WORK( I+K-KA )*T +
1271     $                                RWORK( I+K-KA )*AB( KA1, I+K-KA )
1272                  RA1 = RA
1273               END IF
1274            END IF
1275            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
1276            NR = ( J2+KA-1 ) / KA1
1277            J1 = J2 - ( NR-1 )*KA1
1278            IF( UPDATE ) THEN
1279               J2T = MIN( J2, I-2*KA+K-1 )
1280            ELSE
1281               J2T = J2
1282            END IF
1283            NRT = ( J2T+KA-1 ) / KA1
1284            DO 800 J = J1, J2T, KA1
1285*
1286*              create nonzero element a(j+ka,j-1) outside the band
1287*              and store it in WORK(j)
1288*
1289               WORK( J ) = WORK( J )*AB( KA1, J-1 )
1290               AB( KA1, J-1 ) = RWORK( J )*AB( KA1, J-1 )
1291  800       CONTINUE
1292*
1293*           generate rotations in 1st set to annihilate elements which
1294*           have been created outside the band
1295*
1296            IF( NRT.GT.0 )
1297     $         CALL CLARGV( NRT, AB( KA1, J1 ), INCA, WORK( J1 ), KA1,
1298     $                      RWORK( J1 ), KA1 )
1299            IF( NR.GT.0 ) THEN
1300*
1301*              apply rotations in 1st set from the right
1302*
1303               DO 810 L = 1, KA - 1
1304                  CALL CLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
1305     $                         INCA, RWORK( J1 ), WORK( J1 ), KA1 )
1306  810          CONTINUE
1307*
1308*              apply rotations in 1st set from both sides to diagonal
1309*              blocks
1310*
1311               CALL CLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
1312     $                      AB( 2, J1-1 ), INCA, RWORK( J1 ),
1313     $                      WORK( J1 ), KA1 )
1314*
1315               CALL CLACGV( NR, WORK( J1 ), KA1 )
1316            END IF
1317*
1318*           start applying rotations in 1st set from the left
1319*
1320            DO 820 L = KA - 1, KB - K + 1, -1
1321               NRT = ( J2+L-1 ) / KA1
1322               J1T = J2 - ( NRT-1 )*KA1
1323               IF( NRT.GT.0 )
1324     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
1325     $                         AB( KA1-L, J1T-KA1+L ), INCA,
1326     $                         RWORK( J1T ), WORK( J1T ), KA1 )
1327  820       CONTINUE
1328*
1329            IF( WANTX ) THEN
1330*
1331*              post-multiply X by product of rotations in 1st set
1332*
1333               DO 830 J = J1, J2, KA1
1334                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
1335     $                       RWORK( J ), CONJG( WORK( J ) ) )
1336  830          CONTINUE
1337            END IF
1338  840    CONTINUE
1339*
1340         IF( UPDATE ) THEN
1341            IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
1342*
1343*              create nonzero element a(i+kbt,i+kbt-ka-1) outside the
1344*              band and store it in WORK(m-kb+i+kbt)
1345*
1346               WORK( M-KB+I+KBT ) = -BB( KBT+1, I )*RA1
1347            END IF
1348         END IF
1349*
1350         DO 880 K = KB, 1, -1
1351            IF( UPDATE ) THEN
1352               J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
1353            ELSE
1354               J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
1355            END IF
1356*
1357*           finish applying rotations in 2nd set from the left
1358*
1359            DO 850 L = KB - K, 1, -1
1360               NRT = ( J2+KA+L-1 ) / KA1
1361               J1T = J2 - ( NRT-1 )*KA1
1362               IF( NRT.GT.0 )
1363     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T+L-1 ), INCA,
1364     $                         AB( KA1-L, J1T+L-1 ), INCA,
1365     $                         RWORK( M-KB+J1T+KA ),
1366     $                         WORK( M-KB+J1T+KA ), KA1 )
1367  850       CONTINUE
1368            NR = ( J2+KA-1 ) / KA1
1369            J1 = J2 - ( NR-1 )*KA1
1370            DO 860 J = J1, J2, KA1
1371               WORK( M-KB+J ) = WORK( M-KB+J+KA )
1372               RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
1373  860       CONTINUE
1374            DO 870 J = J1, J2, KA1
1375*
1376*              create nonzero element a(j+ka,j-1) outside the band
1377*              and store it in WORK(m-kb+j)
1378*
1379               WORK( M-KB+J ) = WORK( M-KB+J )*AB( KA1, J-1 )
1380               AB( KA1, J-1 ) = RWORK( M-KB+J )*AB( KA1, J-1 )
1381  870       CONTINUE
1382            IF( UPDATE ) THEN
1383               IF( I+K.GT.KA1 .AND. K.LE.KBT )
1384     $            WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
1385            END IF
1386  880    CONTINUE
1387*
1388         DO 920 K = KB, 1, -1
1389            J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
1390            NR = ( J2+KA-1 ) / KA1
1391            J1 = J2 - ( NR-1 )*KA1
1392            IF( NR.GT.0 ) THEN
1393*
1394*              generate rotations in 2nd set to annihilate elements
1395*              which have been created outside the band
1396*
1397               CALL CLARGV( NR, AB( KA1, J1 ), INCA, WORK( M-KB+J1 ),
1398     $                      KA1, RWORK( M-KB+J1 ), KA1 )
1399*
1400*              apply rotations in 2nd set from the right
1401*
1402               DO 890 L = 1, KA - 1
1403                  CALL CLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
1404     $                         INCA, RWORK( M-KB+J1 ), WORK( M-KB+J1 ),
1405     $                         KA1 )
1406  890          CONTINUE
1407*
1408*              apply rotations in 2nd set from both sides to diagonal
1409*              blocks
1410*
1411               CALL CLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
1412     $                      AB( 2, J1-1 ), INCA, RWORK( M-KB+J1 ),
1413     $                      WORK( M-KB+J1 ), KA1 )
1414*
1415               CALL CLACGV( NR, WORK( M-KB+J1 ), KA1 )
1416            END IF
1417*
1418*           start applying rotations in 2nd set from the left
1419*
1420            DO 900 L = KA - 1, KB - K + 1, -1
1421               NRT = ( J2+L-1 ) / KA1
1422               J1T = J2 - ( NRT-1 )*KA1
1423               IF( NRT.GT.0 )
1424     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
1425     $                         AB( KA1-L, J1T-KA1+L ), INCA,
1426     $                         RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
1427     $                         KA1 )
1428  900       CONTINUE
1429*
1430            IF( WANTX ) THEN
1431*
1432*              post-multiply X by product of rotations in 2nd set
1433*
1434               DO 910 J = J1, J2, KA1
1435                  CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
1436     $                       RWORK( M-KB+J ), CONJG( WORK( M-KB+J ) ) )
1437  910          CONTINUE
1438            END IF
1439  920    CONTINUE
1440*
1441         DO 940 K = 1, KB - 1
1442            J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
1443*
1444*           finish applying rotations in 1st set from the left
1445*
1446            DO 930 L = KB - K, 1, -1
1447               NRT = ( J2+L-1 ) / KA1
1448               J1T = J2 - ( NRT-1 )*KA1
1449               IF( NRT.GT.0 )
1450     $            CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
1451     $                         AB( KA1-L, J1T-KA1+L ), INCA,
1452     $                         RWORK( J1T ), WORK( J1T ), KA1 )
1453  930       CONTINUE
1454  940    CONTINUE
1455*
1456         IF( KB.GT.1 ) THEN
1457            DO 950 J = 2, I2 - KA
1458               RWORK( J ) = RWORK( J+KA )
1459               WORK( J ) = WORK( J+KA )
1460  950       CONTINUE
1461         END IF
1462*
1463      END IF
1464*
1465      GO TO 490
1466*
1467*     End of CHBGST
1468*
1469      END
1470