1*> \brief <b> DGELSY solves overdetermined or underdetermined systems for GE matrices</b> 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download DGELSY + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsy.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsy.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsy.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, 22* WORK, LWORK, INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK 26* DOUBLE PRECISION RCOND 27* .. 28* .. Array Arguments .. 29* INTEGER JPVT( * ) 30* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> DGELSY computes the minimum-norm solution to a real linear least 40*> squares problem: 41*> minimize || A * X - B || 42*> using a complete orthogonal factorization of A. A is an M-by-N 43*> matrix which may be rank-deficient. 44*> 45*> Several right hand side vectors b and solution vectors x can be 46*> handled in a single call; they are stored as the columns of the 47*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution 48*> matrix X. 49*> 50*> The routine first computes a QR factorization with column pivoting: 51*> A * P = Q * [ R11 R12 ] 52*> [ 0 R22 ] 53*> with R11 defined as the largest leading submatrix whose estimated 54*> condition number is less than 1/RCOND. The order of R11, RANK, 55*> is the effective rank of A. 56*> 57*> Then, R22 is considered to be negligible, and R12 is annihilated 58*> by orthogonal transformations from the right, arriving at the 59*> complete orthogonal factorization: 60*> A * P = Q * [ T11 0 ] * Z 61*> [ 0 0 ] 62*> The minimum-norm solution is then 63*> X = P * Z**T [ inv(T11)*Q1**T*B ] 64*> [ 0 ] 65*> where Q1 consists of the first RANK columns of Q. 66*> 67*> This routine is basically identical to the original xGELSX except 68*> three differences: 69*> o The call to the subroutine xGEQPF has been substituted by the 70*> the call to the subroutine xGEQP3. This subroutine is a Blas-3 71*> version of the QR factorization with column pivoting. 72*> o Matrix B (the right hand side) is updated with Blas-3. 73*> o The permutation of matrix B (the right hand side) is faster and 74*> more simple. 75*> \endverbatim 76* 77* Arguments: 78* ========== 79* 80*> \param[in] M 81*> \verbatim 82*> M is INTEGER 83*> The number of rows of the matrix A. M >= 0. 84*> \endverbatim 85*> 86*> \param[in] N 87*> \verbatim 88*> N is INTEGER 89*> The number of columns of the matrix A. N >= 0. 90*> \endverbatim 91*> 92*> \param[in] NRHS 93*> \verbatim 94*> NRHS is INTEGER 95*> The number of right hand sides, i.e., the number of 96*> columns of matrices B and X. NRHS >= 0. 97*> \endverbatim 98*> 99*> \param[in,out] A 100*> \verbatim 101*> A is DOUBLE PRECISION array, dimension (LDA,N) 102*> On entry, the M-by-N matrix A. 103*> On exit, A has been overwritten by details of its 104*> complete orthogonal factorization. 105*> \endverbatim 106*> 107*> \param[in] LDA 108*> \verbatim 109*> LDA is INTEGER 110*> The leading dimension of the array A. LDA >= max(1,M). 111*> \endverbatim 112*> 113*> \param[in,out] B 114*> \verbatim 115*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) 116*> On entry, the M-by-NRHS right hand side matrix B. 117*> On exit, the N-by-NRHS solution matrix X. 118*> \endverbatim 119*> 120*> \param[in] LDB 121*> \verbatim 122*> LDB is INTEGER 123*> The leading dimension of the array B. LDB >= max(1,M,N). 124*> \endverbatim 125*> 126*> \param[in,out] JPVT 127*> \verbatim 128*> JPVT is INTEGER array, dimension (N) 129*> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted 130*> to the front of AP, otherwise column i is a free column. 131*> On exit, if JPVT(i) = k, then the i-th column of AP 132*> was the k-th column of A. 133*> \endverbatim 134*> 135*> \param[in] RCOND 136*> \verbatim 137*> RCOND is DOUBLE PRECISION 138*> RCOND is used to determine the effective rank of A, which 139*> is defined as the order of the largest leading triangular 140*> submatrix R11 in the QR factorization with pivoting of A, 141*> whose estimated condition number < 1/RCOND. 142*> \endverbatim 143*> 144*> \param[out] RANK 145*> \verbatim 146*> RANK is INTEGER 147*> The effective rank of A, i.e., the order of the submatrix 148*> R11. This is the same as the order of the submatrix T11 149*> in the complete orthogonal factorization of A. 150*> \endverbatim 151*> 152*> \param[out] WORK 153*> \verbatim 154*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) 155*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 156*> \endverbatim 157*> 158*> \param[in] LWORK 159*> \verbatim 160*> LWORK is INTEGER 161*> The dimension of the array WORK. 162*> The unblocked strategy requires that: 163*> LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ), 164*> where MN = min( M, N ). 165*> The block algorithm requires that: 166*> LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ), 167*> where NB is an upper bound on the blocksize returned 168*> by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR, 169*> and DORMRZ. 170*> 171*> If LWORK = -1, then a workspace query is assumed; the routine 172*> only calculates the optimal size of the WORK array, returns 173*> this value as the first entry of the WORK array, and no error 174*> message related to LWORK is issued by XERBLA. 175*> \endverbatim 176*> 177*> \param[out] INFO 178*> \verbatim 179*> INFO is INTEGER 180*> = 0: successful exit 181*> < 0: If INFO = -i, the i-th argument had an illegal value. 182*> \endverbatim 183* 184* Authors: 185* ======== 186* 187*> \author Univ. of Tennessee 188*> \author Univ. of California Berkeley 189*> \author Univ. of Colorado Denver 190*> \author NAG Ltd. 191* 192*> \date November 2011 193* 194*> \ingroup doubleGEsolve 195* 196*> \par Contributors: 197* ================== 198*> 199*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n 200*> E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n 201*> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n 202*> 203* ===================================================================== 204 SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, 205 $ WORK, LWORK, INFO ) 206* 207* -- LAPACK driver routine (version 3.4.0) -- 208* -- LAPACK is a software package provided by Univ. of Tennessee, -- 209* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 210* November 2011 211* 212* .. Scalar Arguments .. 213 INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK 214 DOUBLE PRECISION RCOND 215* .. 216* .. Array Arguments .. 217 INTEGER JPVT( * ) 218 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) 219* .. 220* 221* ===================================================================== 222* 223* .. Parameters .. 224 INTEGER IMAX, IMIN 225 PARAMETER ( IMAX = 1, IMIN = 2 ) 226 DOUBLE PRECISION ZERO, ONE 227 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 228* .. 229* .. Local Scalars .. 230 LOGICAL LQUERY 231 INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN, 232 $ LWKOPT, MN, NB, NB1, NB2, NB3, NB4 233 DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX, 234 $ SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE 235* .. 236* .. External Functions .. 237 INTEGER ILAENV 238 DOUBLE PRECISION DLAMCH, DLANGE 239 EXTERNAL ILAENV, DLAMCH, DLANGE 240* .. 241* .. External Subroutines .. 242 EXTERNAL DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET, 243 $ DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA 244* .. 245* .. Intrinsic Functions .. 246 INTRINSIC ABS, MAX, MIN 247* .. 248* .. Executable Statements .. 249* 250 MN = MIN( M, N ) 251 ISMIN = MN + 1 252 ISMAX = 2*MN + 1 253* 254* Test the input arguments. 255* 256 INFO = 0 257 LQUERY = ( LWORK.EQ.-1 ) 258 IF( M.LT.0 ) THEN 259 INFO = -1 260 ELSE IF( N.LT.0 ) THEN 261 INFO = -2 262 ELSE IF( NRHS.LT.0 ) THEN 263 INFO = -3 264 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 265 INFO = -5 266 ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN 267 INFO = -7 268 END IF 269* 270* Figure out optimal block size 271* 272 IF( INFO.EQ.0 ) THEN 273 IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN 274 LWKMIN = 1 275 LWKOPT = 1 276 ELSE 277 NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 ) 278 NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 ) 279 NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 ) 280 NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 ) 281 NB = MAX( NB1, NB2, NB3, NB4 ) 282 LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS ) 283 LWKOPT = MAX( LWKMIN, 284 $ MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS ) 285 END IF 286 WORK( 1 ) = LWKOPT 287* 288 IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN 289 INFO = -12 290 END IF 291 END IF 292* 293 IF( INFO.NE.0 ) THEN 294 CALL XERBLA( 'DGELSY', -INFO ) 295 RETURN 296 ELSE IF( LQUERY ) THEN 297 RETURN 298 END IF 299* 300* Quick return if possible 301* 302 IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN 303 RANK = 0 304 RETURN 305 END IF 306* 307* Get machine parameters 308* 309 SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) 310 BIGNUM = ONE / SMLNUM 311 CALL DLABAD( SMLNUM, BIGNUM ) 312* 313* Scale A, B if max entries outside range [SMLNUM,BIGNUM] 314* 315 ANRM = DLANGE( 'M', M, N, A, LDA, WORK ) 316 IASCL = 0 317 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN 318* 319* Scale matrix norm up to SMLNUM 320* 321 CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) 322 IASCL = 1 323 ELSE IF( ANRM.GT.BIGNUM ) THEN 324* 325* Scale matrix norm down to BIGNUM 326* 327 CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) 328 IASCL = 2 329 ELSE IF( ANRM.EQ.ZERO ) THEN 330* 331* Matrix all zero. Return zero solution. 332* 333 CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) 334 RANK = 0 335 GO TO 70 336 END IF 337* 338 BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK ) 339 IBSCL = 0 340 IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN 341* 342* Scale matrix norm up to SMLNUM 343* 344 CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO ) 345 IBSCL = 1 346 ELSE IF( BNRM.GT.BIGNUM ) THEN 347* 348* Scale matrix norm down to BIGNUM 349* 350 CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO ) 351 IBSCL = 2 352 END IF 353* 354* Compute QR factorization with column pivoting of A: 355* A * P = Q * R 356* 357 CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), 358 $ LWORK-MN, INFO ) 359 WSIZE = MN + WORK( MN+1 ) 360* 361* workspace: MN+2*N+NB*(N+1). 362* Details of Householder rotations stored in WORK(1:MN). 363* 364* Determine RANK using incremental condition estimation 365* 366 WORK( ISMIN ) = ONE 367 WORK( ISMAX ) = ONE 368 SMAX = ABS( A( 1, 1 ) ) 369 SMIN = SMAX 370 IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN 371 RANK = 0 372 CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) 373 GO TO 70 374 ELSE 375 RANK = 1 376 END IF 377* 378 10 CONTINUE 379 IF( RANK.LT.MN ) THEN 380 I = RANK + 1 381 CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ), 382 $ A( I, I ), SMINPR, S1, C1 ) 383 CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ), 384 $ A( I, I ), SMAXPR, S2, C2 ) 385* 386 IF( SMAXPR*RCOND.LE.SMINPR ) THEN 387 DO 20 I = 1, RANK 388 WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 ) 389 WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 ) 390 20 CONTINUE 391 WORK( ISMIN+RANK ) = C1 392 WORK( ISMAX+RANK ) = C2 393 SMIN = SMINPR 394 SMAX = SMAXPR 395 RANK = RANK + 1 396 GO TO 10 397 END IF 398 END IF 399* 400* workspace: 3*MN. 401* 402* Logically partition R = [ R11 R12 ] 403* [ 0 R22 ] 404* where R11 = R(1:RANK,1:RANK) 405* 406* [R11,R12] = [ T11, 0 ] * Y 407* 408 IF( RANK.LT.N ) 409 $ CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ), 410 $ LWORK-2*MN, INFO ) 411* 412* workspace: 2*MN. 413* Details of Householder rotations stored in WORK(MN+1:2*MN) 414* 415* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) 416* 417 CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ), 418 $ B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO ) 419 WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) ) 420* 421* workspace: 2*MN+NB*NRHS. 422* 423* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) 424* 425 CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK, 426 $ NRHS, ONE, A, LDA, B, LDB ) 427* 428 DO 40 J = 1, NRHS 429 DO 30 I = RANK + 1, N 430 B( I, J ) = ZERO 431 30 CONTINUE 432 40 CONTINUE 433* 434* B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS) 435* 436 IF( RANK.LT.N ) THEN 437 CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A, 438 $ LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ), 439 $ LWORK-2*MN, INFO ) 440 END IF 441* 442* workspace: 2*MN+NRHS. 443* 444* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) 445* 446 DO 60 J = 1, NRHS 447 DO 50 I = 1, N 448 WORK( JPVT( I ) ) = B( I, J ) 449 50 CONTINUE 450 CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 ) 451 60 CONTINUE 452* 453* workspace: N. 454* 455* Undo scaling 456* 457 IF( IASCL.EQ.1 ) THEN 458 CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO ) 459 CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA, 460 $ INFO ) 461 ELSE IF( IASCL.EQ.2 ) THEN 462 CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO ) 463 CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA, 464 $ INFO ) 465 END IF 466 IF( IBSCL.EQ.1 ) THEN 467 CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO ) 468 ELSE IF( IBSCL.EQ.2 ) THEN 469 CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO ) 470 END IF 471* 472 70 CONTINUE 473 WORK( 1 ) = LWKOPT 474* 475 RETURN 476* 477* End of DGELSY 478* 479 END 480