1*> \brief \b SGTTRS 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SGTTRS + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgttrs.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgttrs.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgttrs.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SGTTRS( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, 22* INFO ) 23* 24* .. Scalar Arguments .. 25* CHARACTER TRANS 26* INTEGER INFO, LDB, N, NRHS 27* .. 28* .. Array Arguments .. 29* INTEGER IPIV( * ) 30* REAL B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> SGTTRS solves one of the systems of equations 40*> A*X = B or A**T*X = B, 41*> with a tridiagonal matrix A using the LU factorization computed 42*> by SGTTRF. 43*> \endverbatim 44* 45* Arguments: 46* ========== 47* 48*> \param[in] TRANS 49*> \verbatim 50*> TRANS is CHARACTER*1 51*> Specifies the form of the system of equations. 52*> = 'N': A * X = B (No transpose) 53*> = 'T': A**T* X = B (Transpose) 54*> = 'C': A**T* X = B (Conjugate transpose = Transpose) 55*> \endverbatim 56*> 57*> \param[in] N 58*> \verbatim 59*> N is INTEGER 60*> The order of the matrix A. 61*> \endverbatim 62*> 63*> \param[in] NRHS 64*> \verbatim 65*> NRHS is INTEGER 66*> The number of right hand sides, i.e., the number of columns 67*> of the matrix B. NRHS >= 0. 68*> \endverbatim 69*> 70*> \param[in] DL 71*> \verbatim 72*> DL is REAL array, dimension (N-1) 73*> The (n-1) multipliers that define the matrix L from the 74*> LU factorization of A. 75*> \endverbatim 76*> 77*> \param[in] D 78*> \verbatim 79*> D is REAL array, dimension (N) 80*> The n diagonal elements of the upper triangular matrix U from 81*> the LU factorization of A. 82*> \endverbatim 83*> 84*> \param[in] DU 85*> \verbatim 86*> DU is REAL array, dimension (N-1) 87*> The (n-1) elements of the first super-diagonal of U. 88*> \endverbatim 89*> 90*> \param[in] DU2 91*> \verbatim 92*> DU2 is REAL array, dimension (N-2) 93*> The (n-2) elements of the second super-diagonal of U. 94*> \endverbatim 95*> 96*> \param[in] IPIV 97*> \verbatim 98*> IPIV is INTEGER array, dimension (N) 99*> The pivot indices; for 1 <= i <= n, row i of the matrix was 100*> interchanged with row IPIV(i). IPIV(i) will always be either 101*> i or i+1; IPIV(i) = i indicates a row interchange was not 102*> required. 103*> \endverbatim 104*> 105*> \param[in,out] B 106*> \verbatim 107*> B is REAL array, dimension (LDB,NRHS) 108*> On entry, the matrix of right hand side vectors B. 109*> On exit, B is overwritten by the solution vectors X. 110*> \endverbatim 111*> 112*> \param[in] LDB 113*> \verbatim 114*> LDB is INTEGER 115*> The leading dimension of the array B. LDB >= max(1,N). 116*> \endverbatim 117*> 118*> \param[out] INFO 119*> \verbatim 120*> INFO is INTEGER 121*> = 0: successful exit 122*> < 0: if INFO = -i, the i-th argument had an illegal value 123*> \endverbatim 124* 125* Authors: 126* ======== 127* 128*> \author Univ. of Tennessee 129*> \author Univ. of California Berkeley 130*> \author Univ. of Colorado Denver 131*> \author NAG Ltd. 132* 133*> \date September 2012 134* 135*> \ingroup realGTcomputational 136* 137* ===================================================================== 138 SUBROUTINE SGTTRS( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB, 139 $ INFO ) 140* 141* -- LAPACK computational routine (version 3.4.2) -- 142* -- LAPACK is a software package provided by Univ. of Tennessee, -- 143* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 144* September 2012 145* 146* .. Scalar Arguments .. 147 CHARACTER TRANS 148 INTEGER INFO, LDB, N, NRHS 149* .. 150* .. Array Arguments .. 151 INTEGER IPIV( * ) 152 REAL B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * ) 153* .. 154* 155* ===================================================================== 156* 157* .. Local Scalars .. 158 LOGICAL NOTRAN 159 INTEGER ITRANS, J, JB, NB 160* .. 161* .. External Functions .. 162 INTEGER ILAENV 163 EXTERNAL ILAENV 164* .. 165* .. External Subroutines .. 166 EXTERNAL SGTTS2, XERBLA 167* .. 168* .. Intrinsic Functions .. 169 INTRINSIC MAX, MIN 170* .. 171* .. Executable Statements .. 172* 173 INFO = 0 174 NOTRAN = ( TRANS.EQ.'N' .OR. TRANS.EQ.'n' ) 175 IF( .NOT.NOTRAN .AND. .NOT.( TRANS.EQ.'T' .OR. TRANS.EQ. 176 $ 't' ) .AND. .NOT.( TRANS.EQ.'C' .OR. TRANS.EQ.'c' ) ) THEN 177 INFO = -1 178 ELSE IF( N.LT.0 ) THEN 179 INFO = -2 180 ELSE IF( NRHS.LT.0 ) THEN 181 INFO = -3 182 ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN 183 INFO = -10 184 END IF 185 IF( INFO.NE.0 ) THEN 186 CALL XERBLA( 'SGTTRS', -INFO ) 187 RETURN 188 END IF 189* 190* Quick return if possible 191* 192 IF( N.EQ.0 .OR. NRHS.EQ.0 ) 193 $ RETURN 194* 195* Decode TRANS 196* 197 IF( NOTRAN ) THEN 198 ITRANS = 0 199 ELSE 200 ITRANS = 1 201 END IF 202* 203* Determine the number of right-hand sides to solve at a time. 204* 205 IF( NRHS.EQ.1 ) THEN 206 NB = 1 207 ELSE 208 NB = MAX( 1, ILAENV( 1, 'SGTTRS', TRANS, N, NRHS, -1, -1 ) ) 209 END IF 210* 211 IF( NB.GE.NRHS ) THEN 212 CALL SGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB ) 213 ELSE 214 DO 10 J = 1, NRHS, NB 215 JB = MIN( NRHS-J+1, NB ) 216 CALL SGTTS2( ITRANS, N, JB, DL, D, DU, DU2, IPIV, B( 1, J ), 217 $ LDB ) 218 10 CONTINUE 219 END IF 220* 221* End of SGTTRS 222* 223 END 224