1*> \brief \b SLASDQ computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SLASDQ + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasdq.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasdq.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasdq.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT, 22* U, LDU, C, LDC, WORK, INFO ) 23* 24* .. Scalar Arguments .. 25* CHARACTER UPLO 26* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE 27* .. 28* .. Array Arguments .. 29* REAL C( LDC, * ), D( * ), E( * ), U( LDU, * ), 30* $ VT( LDVT, * ), WORK( * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> SLASDQ computes the singular value decomposition (SVD) of a real 40*> (upper or lower) bidiagonal matrix with diagonal D and offdiagonal 41*> E, accumulating the transformations if desired. Letting B denote 42*> the input bidiagonal matrix, the algorithm computes orthogonal 43*> matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose 44*> of P). The singular values S are overwritten on D. 45*> 46*> The input matrix U is changed to U * Q if desired. 47*> The input matrix VT is changed to P**T * VT if desired. 48*> The input matrix C is changed to Q**T * C if desired. 49*> 50*> See "Computing Small Singular Values of Bidiagonal Matrices With 51*> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, 52*> LAPACK Working Note #3, for a detailed description of the algorithm. 53*> \endverbatim 54* 55* Arguments: 56* ========== 57* 58*> \param[in] UPLO 59*> \verbatim 60*> UPLO is CHARACTER*1 61*> On entry, UPLO specifies whether the input bidiagonal matrix 62*> is upper or lower bidiagonal, and wether it is square are 63*> not. 64*> UPLO = 'U' or 'u' B is upper bidiagonal. 65*> UPLO = 'L' or 'l' B is lower bidiagonal. 66*> \endverbatim 67*> 68*> \param[in] SQRE 69*> \verbatim 70*> SQRE is INTEGER 71*> = 0: then the input matrix is N-by-N. 72*> = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and 73*> (N+1)-by-N if UPLU = 'L'. 74*> 75*> The bidiagonal matrix has 76*> N = NL + NR + 1 rows and 77*> M = N + SQRE >= N columns. 78*> \endverbatim 79*> 80*> \param[in] N 81*> \verbatim 82*> N is INTEGER 83*> On entry, N specifies the number of rows and columns 84*> in the matrix. N must be at least 0. 85*> \endverbatim 86*> 87*> \param[in] NCVT 88*> \verbatim 89*> NCVT is INTEGER 90*> On entry, NCVT specifies the number of columns of 91*> the matrix VT. NCVT must be at least 0. 92*> \endverbatim 93*> 94*> \param[in] NRU 95*> \verbatim 96*> NRU is INTEGER 97*> On entry, NRU specifies the number of rows of 98*> the matrix U. NRU must be at least 0. 99*> \endverbatim 100*> 101*> \param[in] NCC 102*> \verbatim 103*> NCC is INTEGER 104*> On entry, NCC specifies the number of columns of 105*> the matrix C. NCC must be at least 0. 106*> \endverbatim 107*> 108*> \param[in,out] D 109*> \verbatim 110*> D is REAL array, dimension (N) 111*> On entry, D contains the diagonal entries of the 112*> bidiagonal matrix whose SVD is desired. On normal exit, 113*> D contains the singular values in ascending order. 114*> \endverbatim 115*> 116*> \param[in,out] E 117*> \verbatim 118*> E is REAL array. 119*> dimension is (N-1) if SQRE = 0 and N if SQRE = 1. 120*> On entry, the entries of E contain the offdiagonal entries 121*> of the bidiagonal matrix whose SVD is desired. On normal 122*> exit, E will contain 0. If the algorithm does not converge, 123*> D and E will contain the diagonal and superdiagonal entries 124*> of a bidiagonal matrix orthogonally equivalent to the one 125*> given as input. 126*> \endverbatim 127*> 128*> \param[in,out] VT 129*> \verbatim 130*> VT is REAL array, dimension (LDVT, NCVT) 131*> On entry, contains a matrix which on exit has been 132*> premultiplied by P**T, dimension N-by-NCVT if SQRE = 0 133*> and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0). 134*> \endverbatim 135*> 136*> \param[in] LDVT 137*> \verbatim 138*> LDVT is INTEGER 139*> On entry, LDVT specifies the leading dimension of VT as 140*> declared in the calling (sub) program. LDVT must be at 141*> least 1. If NCVT is nonzero LDVT must also be at least N. 142*> \endverbatim 143*> 144*> \param[in,out] U 145*> \verbatim 146*> U is REAL array, dimension (LDU, N) 147*> On entry, contains a matrix which on exit has been 148*> postmultiplied by Q, dimension NRU-by-N if SQRE = 0 149*> and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0). 150*> \endverbatim 151*> 152*> \param[in] LDU 153*> \verbatim 154*> LDU is INTEGER 155*> On entry, LDU specifies the leading dimension of U as 156*> declared in the calling (sub) program. LDU must be at 157*> least max( 1, NRU ) . 158*> \endverbatim 159*> 160*> \param[in,out] C 161*> \verbatim 162*> C is REAL array, dimension (LDC, NCC) 163*> On entry, contains an N-by-NCC matrix which on exit 164*> has been premultiplied by Q**T dimension N-by-NCC if SQRE = 0 165*> and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0). 166*> \endverbatim 167*> 168*> \param[in] LDC 169*> \verbatim 170*> LDC is INTEGER 171*> On entry, LDC specifies the leading dimension of C as 172*> declared in the calling (sub) program. LDC must be at 173*> least 1. If NCC is nonzero, LDC must also be at least N. 174*> \endverbatim 175*> 176*> \param[out] WORK 177*> \verbatim 178*> WORK is REAL array, dimension (4*N) 179*> Workspace. Only referenced if one of NCVT, NRU, or NCC is 180*> nonzero, and if N is at least 2. 181*> \endverbatim 182*> 183*> \param[out] INFO 184*> \verbatim 185*> INFO is INTEGER 186*> On exit, a value of 0 indicates a successful exit. 187*> If INFO < 0, argument number -INFO is illegal. 188*> If INFO > 0, the algorithm did not converge, and INFO 189*> specifies how many superdiagonals did not converge. 190*> \endverbatim 191* 192* Authors: 193* ======== 194* 195*> \author Univ. of Tennessee 196*> \author Univ. of California Berkeley 197*> \author Univ. of Colorado Denver 198*> \author NAG Ltd. 199* 200*> \date September 2012 201* 202*> \ingroup auxOTHERauxiliary 203* 204*> \par Contributors: 205* ================== 206*> 207*> Ming Gu and Huan Ren, Computer Science Division, University of 208*> California at Berkeley, USA 209*> 210* ===================================================================== 211 SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT, 212 $ U, LDU, C, LDC, WORK, INFO ) 213* 214* -- LAPACK auxiliary routine (version 3.4.2) -- 215* -- LAPACK is a software package provided by Univ. of Tennessee, -- 216* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 217* September 2012 218* 219* .. Scalar Arguments .. 220 CHARACTER UPLO 221 INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE 222* .. 223* .. Array Arguments .. 224 REAL C( LDC, * ), D( * ), E( * ), U( LDU, * ), 225 $ VT( LDVT, * ), WORK( * ) 226* .. 227* 228* ===================================================================== 229* 230* .. Parameters .. 231 REAL ZERO 232 PARAMETER ( ZERO = 0.0E+0 ) 233* .. 234* .. Local Scalars .. 235 LOGICAL ROTATE 236 INTEGER I, ISUB, IUPLO, J, NP1, SQRE1 237 REAL CS, R, SMIN, SN 238* .. 239* .. External Subroutines .. 240 EXTERNAL SBDSQR, SLARTG, SLASR, SSWAP, XERBLA 241* .. 242* .. External Functions .. 243 LOGICAL LSAME 244 EXTERNAL LSAME 245* .. 246* .. Intrinsic Functions .. 247 INTRINSIC MAX 248* .. 249* .. Executable Statements .. 250* 251* Test the input parameters. 252* 253 INFO = 0 254 IUPLO = 0 255 IF( LSAME( UPLO, 'U' ) ) 256 $ IUPLO = 1 257 IF( LSAME( UPLO, 'L' ) ) 258 $ IUPLO = 2 259 IF( IUPLO.EQ.0 ) THEN 260 INFO = -1 261 ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN 262 INFO = -2 263 ELSE IF( N.LT.0 ) THEN 264 INFO = -3 265 ELSE IF( NCVT.LT.0 ) THEN 266 INFO = -4 267 ELSE IF( NRU.LT.0 ) THEN 268 INFO = -5 269 ELSE IF( NCC.LT.0 ) THEN 270 INFO = -6 271 ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR. 272 $ ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN 273 INFO = -10 274 ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN 275 INFO = -12 276 ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR. 277 $ ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN 278 INFO = -14 279 END IF 280 IF( INFO.NE.0 ) THEN 281 CALL XERBLA( 'SLASDQ', -INFO ) 282 RETURN 283 END IF 284 IF( N.EQ.0 ) 285 $ RETURN 286* 287* ROTATE is true if any singular vectors desired, false otherwise 288* 289 ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 ) 290 NP1 = N + 1 291 SQRE1 = SQRE 292* 293* If matrix non-square upper bidiagonal, rotate to be lower 294* bidiagonal. The rotations are on the right. 295* 296 IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN 297 DO 10 I = 1, N - 1 298 CALL SLARTG( D( I ), E( I ), CS, SN, R ) 299 D( I ) = R 300 E( I ) = SN*D( I+1 ) 301 D( I+1 ) = CS*D( I+1 ) 302 IF( ROTATE ) THEN 303 WORK( I ) = CS 304 WORK( N+I ) = SN 305 END IF 306 10 CONTINUE 307 CALL SLARTG( D( N ), E( N ), CS, SN, R ) 308 D( N ) = R 309 E( N ) = ZERO 310 IF( ROTATE ) THEN 311 WORK( N ) = CS 312 WORK( N+N ) = SN 313 END IF 314 IUPLO = 2 315 SQRE1 = 0 316* 317* Update singular vectors if desired. 318* 319 IF( NCVT.GT.0 ) 320 $ CALL SLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ), 321 $ WORK( NP1 ), VT, LDVT ) 322 END IF 323* 324* If matrix lower bidiagonal, rotate to be upper bidiagonal 325* by applying Givens rotations on the left. 326* 327 IF( IUPLO.EQ.2 ) THEN 328 DO 20 I = 1, N - 1 329 CALL SLARTG( D( I ), E( I ), CS, SN, R ) 330 D( I ) = R 331 E( I ) = SN*D( I+1 ) 332 D( I+1 ) = CS*D( I+1 ) 333 IF( ROTATE ) THEN 334 WORK( I ) = CS 335 WORK( N+I ) = SN 336 END IF 337 20 CONTINUE 338* 339* If matrix (N+1)-by-N lower bidiagonal, one additional 340* rotation is needed. 341* 342 IF( SQRE1.EQ.1 ) THEN 343 CALL SLARTG( D( N ), E( N ), CS, SN, R ) 344 D( N ) = R 345 IF( ROTATE ) THEN 346 WORK( N ) = CS 347 WORK( N+N ) = SN 348 END IF 349 END IF 350* 351* Update singular vectors if desired. 352* 353 IF( NRU.GT.0 ) THEN 354 IF( SQRE1.EQ.0 ) THEN 355 CALL SLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ), 356 $ WORK( NP1 ), U, LDU ) 357 ELSE 358 CALL SLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ), 359 $ WORK( NP1 ), U, LDU ) 360 END IF 361 END IF 362 IF( NCC.GT.0 ) THEN 363 IF( SQRE1.EQ.0 ) THEN 364 CALL SLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ), 365 $ WORK( NP1 ), C, LDC ) 366 ELSE 367 CALL SLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ), 368 $ WORK( NP1 ), C, LDC ) 369 END IF 370 END IF 371 END IF 372* 373* Call SBDSQR to compute the SVD of the reduced real 374* N-by-N upper bidiagonal matrix. 375* 376 CALL SBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C, 377 $ LDC, WORK, INFO ) 378* 379* Sort the singular values into ascending order (insertion sort on 380* singular values, but only one transposition per singular vector) 381* 382 DO 40 I = 1, N 383* 384* Scan for smallest D(I). 385* 386 ISUB = I 387 SMIN = D( I ) 388 DO 30 J = I + 1, N 389 IF( D( J ).LT.SMIN ) THEN 390 ISUB = J 391 SMIN = D( J ) 392 END IF 393 30 CONTINUE 394 IF( ISUB.NE.I ) THEN 395* 396* Swap singular values and vectors. 397* 398 D( ISUB ) = D( I ) 399 D( I ) = SMIN 400 IF( NCVT.GT.0 ) 401 $ CALL SSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT ) 402 IF( NRU.GT.0 ) 403 $ CALL SSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 ) 404 IF( NCC.GT.0 ) 405 $ CALL SSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC ) 406 END IF 407 40 CONTINUE 408* 409 RETURN 410* 411* End of SLASDQ 412* 413 END 414