1*> \brief \b SSTT21
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE SSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
12*                          RESULT )
13*
14*       .. Scalar Arguments ..
15*       INTEGER            KBAND, LDU, N
16*       ..
17*       .. Array Arguments ..
18*       REAL               AD( * ), AE( * ), RESULT( 2 ), SD( * ),
19*      $                   SE( * ), U( LDU, * ), WORK( * )
20*       ..
21*
22*
23*> \par Purpose:
24*  =============
25*>
26*> \verbatim
27*>
28*> SSTT21 checks a decomposition of the form
29*>
30*>    A = U S U'
31*>
32*> where ' means transpose, A is symmetric tridiagonal, U is orthogonal,
33*> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
34*> Two tests are performed:
35*>
36*>    RESULT(1) = | A - U S U' | / ( |A| n ulp )
37*>
38*>    RESULT(2) = | I - UU' | / ( n ulp )
39*> \endverbatim
40*
41*  Arguments:
42*  ==========
43*
44*> \param[in] N
45*> \verbatim
46*>          N is INTEGER
47*>          The size of the matrix.  If it is zero, SSTT21 does nothing.
48*>          It must be at least zero.
49*> \endverbatim
50*>
51*> \param[in] KBAND
52*> \verbatim
53*>          KBAND is INTEGER
54*>          The bandwidth of the matrix S.  It may only be zero or one.
55*>          If zero, then S is diagonal, and SE is not referenced.  If
56*>          one, then S is symmetric tri-diagonal.
57*> \endverbatim
58*>
59*> \param[in] AD
60*> \verbatim
61*>          AD is REAL array, dimension (N)
62*>          The diagonal of the original (unfactored) matrix A.  A is
63*>          assumed to be symmetric tridiagonal.
64*> \endverbatim
65*>
66*> \param[in] AE
67*> \verbatim
68*>          AE is REAL array, dimension (N-1)
69*>          The off-diagonal of the original (unfactored) matrix A.  A
70*>          is assumed to be symmetric tridiagonal.  AE(1) is the (1,2)
71*>          and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc.
72*> \endverbatim
73*>
74*> \param[in] SD
75*> \verbatim
76*>          SD is REAL array, dimension (N)
77*>          The diagonal of the (symmetric tri-) diagonal matrix S.
78*> \endverbatim
79*>
80*> \param[in] SE
81*> \verbatim
82*>          SE is REAL array, dimension (N-1)
83*>          The off-diagonal of the (symmetric tri-) diagonal matrix S.
84*>          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is the
85*>          (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2)
86*>          element, etc.
87*> \endverbatim
88*>
89*> \param[in] U
90*> \verbatim
91*>          U is REAL array, dimension (LDU, N)
92*>          The orthogonal matrix in the decomposition.
93*> \endverbatim
94*>
95*> \param[in] LDU
96*> \verbatim
97*>          LDU is INTEGER
98*>          The leading dimension of U.  LDU must be at least N.
99*> \endverbatim
100*>
101*> \param[out] WORK
102*> \verbatim
103*>          WORK is REAL array, dimension (N*(N+1))
104*> \endverbatim
105*>
106*> \param[out] RESULT
107*> \verbatim
108*>          RESULT is REAL array, dimension (2)
109*>          The values computed by the two tests described above.  The
110*>          values are currently limited to 1/ulp, to avoid overflow.
111*>          RESULT(1) is always modified.
112*> \endverbatim
113*
114*  Authors:
115*  ========
116*
117*> \author Univ. of Tennessee
118*> \author Univ. of California Berkeley
119*> \author Univ. of Colorado Denver
120*> \author NAG Ltd.
121*
122*> \date November 2011
123*
124*> \ingroup single_eig
125*
126*  =====================================================================
127      SUBROUTINE SSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK,
128     $                   RESULT )
129*
130*  -- LAPACK test routine (version 3.4.0) --
131*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
132*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
133*     November 2011
134*
135*     .. Scalar Arguments ..
136      INTEGER            KBAND, LDU, N
137*     ..
138*     .. Array Arguments ..
139      REAL               AD( * ), AE( * ), RESULT( 2 ), SD( * ),
140     $                   SE( * ), U( LDU, * ), WORK( * )
141*     ..
142*
143*  =====================================================================
144*
145*     .. Parameters ..
146      REAL               ZERO, ONE
147      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
148*     ..
149*     .. Local Scalars ..
150      INTEGER            J
151      REAL               ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM
152*     ..
153*     .. External Functions ..
154      REAL               SLAMCH, SLANGE, SLANSY
155      EXTERNAL           SLAMCH, SLANGE, SLANSY
156*     ..
157*     .. External Subroutines ..
158      EXTERNAL           SGEMM, SLASET, SSYR, SSYR2
159*     ..
160*     .. Intrinsic Functions ..
161      INTRINSIC          ABS, MAX, MIN, REAL
162*     ..
163*     .. Executable Statements ..
164*
165*     1)      Constants
166*
167      RESULT( 1 ) = ZERO
168      RESULT( 2 ) = ZERO
169      IF( N.LE.0 )
170     $   RETURN
171*
172      UNFL = SLAMCH( 'Safe minimum' )
173      ULP = SLAMCH( 'Precision' )
174*
175*     Do Test 1
176*
177*     Copy A & Compute its 1-Norm:
178*
179      CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
180*
181      ANORM = ZERO
182      TEMP1 = ZERO
183*
184      DO 10 J = 1, N - 1
185         WORK( ( N+1 )*( J-1 )+1 ) = AD( J )
186         WORK( ( N+1 )*( J-1 )+2 ) = AE( J )
187         TEMP2 = ABS( AE( J ) )
188         ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 )
189         TEMP1 = TEMP2
190   10 CONTINUE
191*
192      WORK( N**2 ) = AD( N )
193      ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL )
194*
195*     Norm of A - USU'
196*
197      DO 20 J = 1, N
198         CALL SSYR( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N )
199   20 CONTINUE
200*
201      IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
202         DO 30 J = 1, N - 1
203            CALL SSYR2( 'L', N, -SE( J ), U( 1, J ), 1, U( 1, J+1 ), 1,
204     $                  WORK, N )
205   30    CONTINUE
206      END IF
207*
208      WNORM = SLANSY( '1', 'L', N, WORK, N, WORK( N**2+1 ) )
209*
210      IF( ANORM.GT.WNORM ) THEN
211         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
212      ELSE
213         IF( ANORM.LT.ONE ) THEN
214            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
215         ELSE
216            RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
217         END IF
218      END IF
219*
220*     Do Test 2
221*
222*     Compute  UU' - I
223*
224      CALL SGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
225     $            N )
226*
227      DO 40 J = 1, N
228         WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
229   40 CONTINUE
230*
231      RESULT( 2 ) = MIN( REAL( N ), SLANGE( '1', N, N, WORK, N,
232     $              WORK( N**2+1 ) ) ) / ( N*ULP )
233*
234      RETURN
235*
236*     End of SSTT21
237*
238      END
239