1*> \brief \b CHPGV 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CHPGV + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chpgv.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chpgv.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chpgv.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, 22* RWORK, INFO ) 23* 24* .. Scalar Arguments .. 25* CHARACTER JOBZ, UPLO 26* INTEGER INFO, ITYPE, LDZ, N 27* .. 28* .. Array Arguments .. 29* REAL RWORK( * ), W( * ) 30* COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> CHPGV computes all the eigenvalues and, optionally, the eigenvectors 40*> of a complex generalized Hermitian-definite eigenproblem, of the form 41*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. 42*> Here A and B are assumed to be Hermitian, stored in packed format, 43*> and B is also positive definite. 44*> \endverbatim 45* 46* Arguments: 47* ========== 48* 49*> \param[in] ITYPE 50*> \verbatim 51*> ITYPE is INTEGER 52*> Specifies the problem type to be solved: 53*> = 1: A*x = (lambda)*B*x 54*> = 2: A*B*x = (lambda)*x 55*> = 3: B*A*x = (lambda)*x 56*> \endverbatim 57*> 58*> \param[in] JOBZ 59*> \verbatim 60*> JOBZ is CHARACTER*1 61*> = 'N': Compute eigenvalues only; 62*> = 'V': Compute eigenvalues and eigenvectors. 63*> \endverbatim 64*> 65*> \param[in] UPLO 66*> \verbatim 67*> UPLO is CHARACTER*1 68*> = 'U': Upper triangles of A and B are stored; 69*> = 'L': Lower triangles of A and B are stored. 70*> \endverbatim 71*> 72*> \param[in] N 73*> \verbatim 74*> N is INTEGER 75*> The order of the matrices A and B. N >= 0. 76*> \endverbatim 77*> 78*> \param[in,out] AP 79*> \verbatim 80*> AP is COMPLEX array, dimension (N*(N+1)/2) 81*> On entry, the upper or lower triangle of the Hermitian matrix 82*> A, packed columnwise in a linear array. The j-th column of A 83*> is stored in the array AP as follows: 84*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; 85*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. 86*> 87*> On exit, the contents of AP are destroyed. 88*> \endverbatim 89*> 90*> \param[in,out] BP 91*> \verbatim 92*> BP is COMPLEX array, dimension (N*(N+1)/2) 93*> On entry, the upper or lower triangle of the Hermitian matrix 94*> B, packed columnwise in a linear array. The j-th column of B 95*> is stored in the array BP as follows: 96*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; 97*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. 98*> 99*> On exit, the triangular factor U or L from the Cholesky 100*> factorization B = U**H*U or B = L*L**H, in the same storage 101*> format as B. 102*> \endverbatim 103*> 104*> \param[out] W 105*> \verbatim 106*> W is REAL array, dimension (N) 107*> If INFO = 0, the eigenvalues in ascending order. 108*> \endverbatim 109*> 110*> \param[out] Z 111*> \verbatim 112*> Z is COMPLEX array, dimension (LDZ, N) 113*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of 114*> eigenvectors. The eigenvectors are normalized as follows: 115*> if ITYPE = 1 or 2, Z**H*B*Z = I; 116*> if ITYPE = 3, Z**H*inv(B)*Z = I. 117*> If JOBZ = 'N', then Z is not referenced. 118*> \endverbatim 119*> 120*> \param[in] LDZ 121*> \verbatim 122*> LDZ is INTEGER 123*> The leading dimension of the array Z. LDZ >= 1, and if 124*> JOBZ = 'V', LDZ >= max(1,N). 125*> \endverbatim 126*> 127*> \param[out] WORK 128*> \verbatim 129*> WORK is COMPLEX array, dimension (max(1, 2*N-1)) 130*> \endverbatim 131*> 132*> \param[out] RWORK 133*> \verbatim 134*> RWORK is REAL array, dimension (max(1, 3*N-2)) 135*> \endverbatim 136*> 137*> \param[out] INFO 138*> \verbatim 139*> INFO is INTEGER 140*> = 0: successful exit 141*> < 0: if INFO = -i, the i-th argument had an illegal value 142*> > 0: CPPTRF or CHPEV returned an error code: 143*> <= N: if INFO = i, CHPEV failed to converge; 144*> i off-diagonal elements of an intermediate 145*> tridiagonal form did not convergeto zero; 146*> > N: if INFO = N + i, for 1 <= i <= n, then the leading 147*> minor of order i of B is not positive definite. 148*> The factorization of B could not be completed and 149*> no eigenvalues or eigenvectors were computed. 150*> \endverbatim 151* 152* Authors: 153* ======== 154* 155*> \author Univ. of Tennessee 156*> \author Univ. of California Berkeley 157*> \author Univ. of Colorado Denver 158*> \author NAG Ltd. 159* 160*> \date November 2015 161* 162*> \ingroup complexOTHEReigen 163* 164* ===================================================================== 165 SUBROUTINE CHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, 166 $ RWORK, INFO ) 167* 168* -- LAPACK driver routine (version 3.6.0) -- 169* -- LAPACK is a software package provided by Univ. of Tennessee, -- 170* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 171* November 2015 172* 173* .. Scalar Arguments .. 174 CHARACTER JOBZ, UPLO 175 INTEGER INFO, ITYPE, LDZ, N 176* .. 177* .. Array Arguments .. 178 REAL RWORK( * ), W( * ) 179 COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * ) 180* .. 181* 182* ===================================================================== 183* 184* .. Local Scalars .. 185 LOGICAL UPPER, WANTZ 186 CHARACTER TRANS 187 INTEGER J, NEIG 188* .. 189* .. External Functions .. 190 LOGICAL LSAME 191 EXTERNAL LSAME 192* .. 193* .. External Subroutines .. 194 EXTERNAL CHPEV, CHPGST, CPPTRF, CTPMV, CTPSV, XERBLA 195* .. 196* .. Executable Statements .. 197* 198* Test the input parameters. 199* 200 WANTZ = LSAME( JOBZ, 'V' ) 201 UPPER = LSAME( UPLO, 'U' ) 202* 203 INFO = 0 204 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN 205 INFO = -1 206 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN 207 INFO = -2 208 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN 209 INFO = -3 210 ELSE IF( N.LT.0 ) THEN 211 INFO = -4 212 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN 213 INFO = -9 214 END IF 215 IF( INFO.NE.0 ) THEN 216 CALL XERBLA( 'CHPGV ', -INFO ) 217 RETURN 218 END IF 219* 220* Quick return if possible 221* 222 IF( N.EQ.0 ) 223 $ RETURN 224* 225* Form a Cholesky factorization of B. 226* 227 CALL CPPTRF( UPLO, N, BP, INFO ) 228 IF( INFO.NE.0 ) THEN 229 INFO = N + INFO 230 RETURN 231 END IF 232* 233* Transform problem to standard eigenvalue problem and solve. 234* 235 CALL CHPGST( ITYPE, UPLO, N, AP, BP, INFO ) 236 CALL CHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK, INFO ) 237* 238 IF( WANTZ ) THEN 239* 240* Backtransform eigenvectors to the original problem. 241* 242 NEIG = N 243 IF( INFO.GT.0 ) 244 $ NEIG = INFO - 1 245 IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN 246* 247* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; 248* backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y 249* 250 IF( UPPER ) THEN 251 TRANS = 'N' 252 ELSE 253 TRANS = 'C' 254 END IF 255* 256 DO 10 J = 1, NEIG 257 CALL CTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ), 258 $ 1 ) 259 10 CONTINUE 260* 261 ELSE IF( ITYPE.EQ.3 ) THEN 262* 263* For B*A*x=(lambda)*x; 264* backtransform eigenvectors: x = L*y or U**H*y 265* 266 IF( UPPER ) THEN 267 TRANS = 'C' 268 ELSE 269 TRANS = 'N' 270 END IF 271* 272 DO 20 J = 1, NEIG 273 CALL CTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ), 274 $ 1 ) 275 20 CONTINUE 276 END IF 277 END IF 278 RETURN 279* 280* End of CHPGV 281* 282 END 283