1*> \brief \b CLAQR5 performs a single small-bulge multi-shift QR sweep.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLAQR5 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr5.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr5.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr5.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
22*                          H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
23*                          WV, LDWV, NH, WH, LDWH )
24*
25*       .. Scalar Arguments ..
26*       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
27*      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
28*       LOGICAL            WANTT, WANTZ
29*       ..
30*       .. Array Arguments ..
31*       COMPLEX            H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
32*      $                   WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
33*       ..
34*
35*
36*> \par Purpose:
37*  =============
38*>
39*> \verbatim
40*>
41*>    CLAQR5 called by CLAQR0 performs a
42*>    single small-bulge multi-shift QR sweep.
43*> \endverbatim
44*
45*  Arguments:
46*  ==========
47*
48*> \param[in] WANTT
49*> \verbatim
50*>          WANTT is logical scalar
51*>             WANTT = .true. if the triangular Schur factor
52*>             is being computed.  WANTT is set to .false. otherwise.
53*> \endverbatim
54*>
55*> \param[in] WANTZ
56*> \verbatim
57*>          WANTZ is logical scalar
58*>             WANTZ = .true. if the unitary Schur factor is being
59*>             computed.  WANTZ is set to .false. otherwise.
60*> \endverbatim
61*>
62*> \param[in] KACC22
63*> \verbatim
64*>          KACC22 is integer with value 0, 1, or 2.
65*>             Specifies the computation mode of far-from-diagonal
66*>             orthogonal updates.
67*>        = 0: CLAQR5 does not accumulate reflections and does not
68*>             use matrix-matrix multiply to update far-from-diagonal
69*>             matrix entries.
70*>        = 1: CLAQR5 accumulates reflections and uses matrix-matrix
71*>             multiply to update the far-from-diagonal matrix entries.
72*>        = 2: CLAQR5 accumulates reflections, uses matrix-matrix
73*>             multiply to update the far-from-diagonal matrix entries,
74*>             and takes advantage of 2-by-2 block structure during
75*>             matrix multiplies.
76*> \endverbatim
77*>
78*> \param[in] N
79*> \verbatim
80*>          N is integer scalar
81*>             N is the order of the Hessenberg matrix H upon which this
82*>             subroutine operates.
83*> \endverbatim
84*>
85*> \param[in] KTOP
86*> \verbatim
87*>          KTOP is integer scalar
88*> \endverbatim
89*>
90*> \param[in] KBOT
91*> \verbatim
92*>          KBOT is integer scalar
93*>             These are the first and last rows and columns of an
94*>             isolated diagonal block upon which the QR sweep is to be
95*>             applied. It is assumed without a check that
96*>                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0
97*>             and
98*>                       either KBOT = N  or   H(KBOT+1,KBOT) = 0.
99*> \endverbatim
100*>
101*> \param[in] NSHFTS
102*> \verbatim
103*>          NSHFTS is integer scalar
104*>             NSHFTS gives the number of simultaneous shifts.  NSHFTS
105*>             must be positive and even.
106*> \endverbatim
107*>
108*> \param[in,out] S
109*> \verbatim
110*>          S is COMPLEX array of size (NSHFTS)
111*>             S contains the shifts of origin that define the multi-
112*>             shift QR sweep.  On output S may be reordered.
113*> \endverbatim
114*>
115*> \param[in,out] H
116*> \verbatim
117*>          H is COMPLEX array of size (LDH,N)
118*>             On input H contains a Hessenberg matrix.  On output a
119*>             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
120*>             to the isolated diagonal block in rows and columns KTOP
121*>             through KBOT.
122*> \endverbatim
123*>
124*> \param[in] LDH
125*> \verbatim
126*>          LDH is integer scalar
127*>             LDH is the leading dimension of H just as declared in the
128*>             calling procedure.  LDH.GE.MAX(1,N).
129*> \endverbatim
130*>
131*> \param[in] ILOZ
132*> \verbatim
133*>          ILOZ is INTEGER
134*> \endverbatim
135*>
136*> \param[in] IHIZ
137*> \verbatim
138*>          IHIZ is INTEGER
139*>             Specify the rows of Z to which transformations must be
140*>             applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
141*> \endverbatim
142*>
143*> \param[in,out] Z
144*> \verbatim
145*>          Z is COMPLEX array of size (LDZ,IHI)
146*>             If WANTZ = .TRUE., then the QR Sweep unitary
147*>             similarity transformation is accumulated into
148*>             Z(ILOZ:IHIZ,ILO:IHI) from the right.
149*>             If WANTZ = .FALSE., then Z is unreferenced.
150*> \endverbatim
151*>
152*> \param[in] LDZ
153*> \verbatim
154*>          LDZ is integer scalar
155*>             LDA is the leading dimension of Z just as declared in
156*>             the calling procedure. LDZ.GE.N.
157*> \endverbatim
158*>
159*> \param[out] V
160*> \verbatim
161*>          V is COMPLEX array of size (LDV,NSHFTS/2)
162*> \endverbatim
163*>
164*> \param[in] LDV
165*> \verbatim
166*>          LDV is integer scalar
167*>             LDV is the leading dimension of V as declared in the
168*>             calling procedure.  LDV.GE.3.
169*> \endverbatim
170*>
171*> \param[out] U
172*> \verbatim
173*>          U is COMPLEX array of size
174*>             (LDU,3*NSHFTS-3)
175*> \endverbatim
176*>
177*> \param[in] LDU
178*> \verbatim
179*>          LDU is integer scalar
180*>             LDU is the leading dimension of U just as declared in the
181*>             in the calling subroutine.  LDU.GE.3*NSHFTS-3.
182*> \endverbatim
183*>
184*> \param[in] NH
185*> \verbatim
186*>          NH is integer scalar
187*>             NH is the number of columns in array WH available for
188*>             workspace. NH.GE.1.
189*> \endverbatim
190*>
191*> \param[out] WH
192*> \verbatim
193*>          WH is COMPLEX array of size (LDWH,NH)
194*> \endverbatim
195*>
196*> \param[in] LDWH
197*> \verbatim
198*>          LDWH is integer scalar
199*>             Leading dimension of WH just as declared in the
200*>             calling procedure.  LDWH.GE.3*NSHFTS-3.
201*> \endverbatim
202*>
203*> \param[in] NV
204*> \verbatim
205*>          NV is integer scalar
206*>             NV is the number of rows in WV agailable for workspace.
207*>             NV.GE.1.
208*> \endverbatim
209*>
210*> \param[out] WV
211*> \verbatim
212*>          WV is COMPLEX array of size
213*>             (LDWV,3*NSHFTS-3)
214*> \endverbatim
215*>
216*> \param[in] LDWV
217*> \verbatim
218*>          LDWV is integer scalar
219*>             LDWV is the leading dimension of WV as declared in the
220*>             in the calling subroutine.  LDWV.GE.NV.
221*> \endverbatim
222*
223*  Authors:
224*  ========
225*
226*> \author Univ. of Tennessee
227*> \author Univ. of California Berkeley
228*> \author Univ. of Colorado Denver
229*> \author NAG Ltd.
230*
231*> \date September 2012
232*
233*> \ingroup complexOTHERauxiliary
234*
235*> \par Contributors:
236*  ==================
237*>
238*>       Karen Braman and Ralph Byers, Department of Mathematics,
239*>       University of Kansas, USA
240*
241*> \par References:
242*  ================
243*>
244*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
245*>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
246*>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
247*>       929--947, 2002.
248*>
249*  =====================================================================
250      SUBROUTINE CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
251     $                   H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
252     $                   WV, LDWV, NH, WH, LDWH )
253*
254*  -- LAPACK auxiliary routine (version 3.4.2) --
255*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
256*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
257*     September 2012
258*
259*     .. Scalar Arguments ..
260      INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
261     $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
262      LOGICAL            WANTT, WANTZ
263*     ..
264*     .. Array Arguments ..
265      COMPLEX            H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
266     $                   WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
267*     ..
268*
269*  ================================================================
270*     .. Parameters ..
271      COMPLEX            ZERO, ONE
272      PARAMETER          ( ZERO = ( 0.0e0, 0.0e0 ),
273     $                   ONE = ( 1.0e0, 0.0e0 ) )
274      REAL               RZERO, RONE
275      PARAMETER          ( RZERO = 0.0e0, RONE = 1.0e0 )
276*     ..
277*     .. Local Scalars ..
278      COMPLEX            ALPHA, BETA, CDUM, REFSUM
279      REAL               H11, H12, H21, H22, SAFMAX, SAFMIN, SCL,
280     $                   SMLNUM, TST1, TST2, ULP
281      INTEGER            I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN,
282     $                   JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS,
283     $                   M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL,
284     $                   NS, NU
285      LOGICAL            ACCUM, BLK22, BMP22
286*     ..
287*     .. External Functions ..
288      REAL               SLAMCH
289      EXTERNAL           SLAMCH
290*     ..
291*     .. Intrinsic Functions ..
292*
293      INTRINSIC          ABS, AIMAG, CONJG, MAX, MIN, MOD, REAL
294*     ..
295*     .. Local Arrays ..
296      COMPLEX            VT( 3 )
297*     ..
298*     .. External Subroutines ..
299      EXTERNAL           CGEMM, CLACPY, CLAQR1, CLARFG, CLASET, CTRMM,
300     $                   SLABAD
301*     ..
302*     .. Statement Functions ..
303      REAL               CABS1
304*     ..
305*     .. Statement Function definitions ..
306      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
307*     ..
308*     .. Executable Statements ..
309*
310*     ==== If there are no shifts, then there is nothing to do. ====
311*
312      IF( NSHFTS.LT.2 )
313     $   RETURN
314*
315*     ==== If the active block is empty or 1-by-1, then there
316*     .    is nothing to do. ====
317*
318      IF( KTOP.GE.KBOT )
319     $   RETURN
320*
321*     ==== NSHFTS is supposed to be even, but if it is odd,
322*     .    then simply reduce it by one.  ====
323*
324      NS = NSHFTS - MOD( NSHFTS, 2 )
325*
326*     ==== Machine constants for deflation ====
327*
328      SAFMIN = SLAMCH( 'SAFE MINIMUM' )
329      SAFMAX = RONE / SAFMIN
330      CALL SLABAD( SAFMIN, SAFMAX )
331      ULP = SLAMCH( 'PRECISION' )
332      SMLNUM = SAFMIN*( REAL( N ) / ULP )
333*
334*     ==== Use accumulated reflections to update far-from-diagonal
335*     .    entries ? ====
336*
337      ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
338*
339*     ==== If so, exploit the 2-by-2 block structure? ====
340*
341      BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 )
342*
343*     ==== clear trash ====
344*
345      IF( KTOP+2.LE.KBOT )
346     $   H( KTOP+2, KTOP ) = ZERO
347*
348*     ==== NBMPS = number of 2-shift bulges in the chain ====
349*
350      NBMPS = NS / 2
351*
352*     ==== KDU = width of slab ====
353*
354      KDU = 6*NBMPS - 3
355*
356*     ==== Create and chase chains of NBMPS bulges ====
357*
358      DO 210 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2
359         NDCOL = INCOL + KDU
360         IF( ACCUM )
361     $      CALL CLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
362*
363*        ==== Near-the-diagonal bulge chase.  The following loop
364*        .    performs the near-the-diagonal part of a small bulge
365*        .    multi-shift QR sweep.  Each 6*NBMPS-2 column diagonal
366*        .    chunk extends from column INCOL to column NDCOL
367*        .    (including both column INCOL and column NDCOL). The
368*        .    following loop chases a 3*NBMPS column long chain of
369*        .    NBMPS bulges 3*NBMPS-2 columns to the right.  (INCOL
370*        .    may be less than KTOP and and NDCOL may be greater than
371*        .    KBOT indicating phantom columns from which to chase
372*        .    bulges before they are actually introduced or to which
373*        .    to chase bulges beyond column KBOT.)  ====
374*
375         DO 140 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 )
376*
377*           ==== Bulges number MTOP to MBOT are active double implicit
378*           .    shift bulges.  There may or may not also be small
379*           .    2-by-2 bulge, if there is room.  The inactive bulges
380*           .    (if any) must wait until the active bulges have moved
381*           .    down the diagonal to make room.  The phantom matrix
382*           .    paradigm described above helps keep track.  ====
383*
384            MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 )
385            MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 )
386            M22 = MBOT + 1
387            BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ.
388     $              ( KBOT-2 )
389*
390*           ==== Generate reflections to chase the chain right
391*           .    one column.  (The minimum value of K is KTOP-1.) ====
392*
393            DO 10 M = MTOP, MBOT
394               K = KRCOL + 3*( M-1 )
395               IF( K.EQ.KTOP-1 ) THEN
396                  CALL CLAQR1( 3, H( KTOP, KTOP ), LDH, S( 2*M-1 ),
397     $                         S( 2*M ), V( 1, M ) )
398                  ALPHA = V( 1, M )
399                  CALL CLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
400               ELSE
401                  BETA = H( K+1, K )
402                  V( 2, M ) = H( K+2, K )
403                  V( 3, M ) = H( K+3, K )
404                  CALL CLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
405*
406*                 ==== A Bulge may collapse because of vigilant
407*                 .    deflation or destructive underflow.  In the
408*                 .    underflow case, try the two-small-subdiagonals
409*                 .    trick to try to reinflate the bulge.  ====
410*
411                  IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
412     $                ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
413*
414*                    ==== Typical case: not collapsed (yet). ====
415*
416                     H( K+1, K ) = BETA
417                     H( K+2, K ) = ZERO
418                     H( K+3, K ) = ZERO
419                  ELSE
420*
421*                    ==== Atypical case: collapsed.  Attempt to
422*                    .    reintroduce ignoring H(K+1,K) and H(K+2,K).
423*                    .    If the fill resulting from the new
424*                    .    reflector is too large, then abandon it.
425*                    .    Otherwise, use the new one. ====
426*
427                     CALL CLAQR1( 3, H( K+1, K+1 ), LDH, S( 2*M-1 ),
428     $                            S( 2*M ), VT )
429                     ALPHA = VT( 1 )
430                     CALL CLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
431                     REFSUM = CONJG( VT( 1 ) )*
432     $                        ( H( K+1, K )+CONJG( VT( 2 ) )*
433     $                        H( K+2, K ) )
434*
435                     IF( CABS1( H( K+2, K )-REFSUM*VT( 2 ) )+
436     $                   CABS1( REFSUM*VT( 3 ) ).GT.ULP*
437     $                   ( CABS1( H( K, K ) )+CABS1( H( K+1,
438     $                   K+1 ) )+CABS1( H( K+2, K+2 ) ) ) ) THEN
439*
440*                       ==== Starting a new bulge here would
441*                       .    create non-negligible fill.  Use
442*                       .    the old one with trepidation. ====
443*
444                        H( K+1, K ) = BETA
445                        H( K+2, K ) = ZERO
446                        H( K+3, K ) = ZERO
447                     ELSE
448*
449*                       ==== Stating a new bulge here would
450*                       .    create only negligible fill.
451*                       .    Replace the old reflector with
452*                       .    the new one. ====
453*
454                        H( K+1, K ) = H( K+1, K ) - REFSUM
455                        H( K+2, K ) = ZERO
456                        H( K+3, K ) = ZERO
457                        V( 1, M ) = VT( 1 )
458                        V( 2, M ) = VT( 2 )
459                        V( 3, M ) = VT( 3 )
460                     END IF
461                  END IF
462               END IF
463   10       CONTINUE
464*
465*           ==== Generate a 2-by-2 reflection, if needed. ====
466*
467            K = KRCOL + 3*( M22-1 )
468            IF( BMP22 ) THEN
469               IF( K.EQ.KTOP-1 ) THEN
470                  CALL CLAQR1( 2, H( K+1, K+1 ), LDH, S( 2*M22-1 ),
471     $                         S( 2*M22 ), V( 1, M22 ) )
472                  BETA = V( 1, M22 )
473                  CALL CLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
474               ELSE
475                  BETA = H( K+1, K )
476                  V( 2, M22 ) = H( K+2, K )
477                  CALL CLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
478                  H( K+1, K ) = BETA
479                  H( K+2, K ) = ZERO
480               END IF
481            END IF
482*
483*           ==== Multiply H by reflections from the left ====
484*
485            IF( ACCUM ) THEN
486               JBOT = MIN( NDCOL, KBOT )
487            ELSE IF( WANTT ) THEN
488               JBOT = N
489            ELSE
490               JBOT = KBOT
491            END IF
492            DO 30 J = MAX( KTOP, KRCOL ), JBOT
493               MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
494               DO 20 M = MTOP, MEND
495                  K = KRCOL + 3*( M-1 )
496                  REFSUM = CONJG( V( 1, M ) )*
497     $                     ( H( K+1, J )+CONJG( V( 2, M ) )*H( K+2, J )+
498     $                     CONJG( V( 3, M ) )*H( K+3, J ) )
499                  H( K+1, J ) = H( K+1, J ) - REFSUM
500                  H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
501                  H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
502   20          CONTINUE
503   30       CONTINUE
504            IF( BMP22 ) THEN
505               K = KRCOL + 3*( M22-1 )
506               DO 40 J = MAX( K+1, KTOP ), JBOT
507                  REFSUM = CONJG( V( 1, M22 ) )*
508     $                     ( H( K+1, J )+CONJG( V( 2, M22 ) )*
509     $                     H( K+2, J ) )
510                  H( K+1, J ) = H( K+1, J ) - REFSUM
511                  H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
512   40          CONTINUE
513            END IF
514*
515*           ==== Multiply H by reflections from the right.
516*           .    Delay filling in the last row until the
517*           .    vigilant deflation check is complete. ====
518*
519            IF( ACCUM ) THEN
520               JTOP = MAX( KTOP, INCOL )
521            ELSE IF( WANTT ) THEN
522               JTOP = 1
523            ELSE
524               JTOP = KTOP
525            END IF
526            DO 80 M = MTOP, MBOT
527               IF( V( 1, M ).NE.ZERO ) THEN
528                  K = KRCOL + 3*( M-1 )
529                  DO 50 J = JTOP, MIN( KBOT, K+3 )
530                     REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
531     $                        H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
532                     H( J, K+1 ) = H( J, K+1 ) - REFSUM
533                     H( J, K+2 ) = H( J, K+2 ) -
534     $                             REFSUM*CONJG( V( 2, M ) )
535                     H( J, K+3 ) = H( J, K+3 ) -
536     $                             REFSUM*CONJG( V( 3, M ) )
537   50             CONTINUE
538*
539                  IF( ACCUM ) THEN
540*
541*                    ==== Accumulate U. (If necessary, update Z later
542*                    .    with with an efficient matrix-matrix
543*                    .    multiply.) ====
544*
545                     KMS = K - INCOL
546                     DO 60 J = MAX( 1, KTOP-INCOL ), KDU
547                        REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
548     $                           U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
549                        U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
550                        U( J, KMS+2 ) = U( J, KMS+2 ) -
551     $                                  REFSUM*CONJG( V( 2, M ) )
552                        U( J, KMS+3 ) = U( J, KMS+3 ) -
553     $                                  REFSUM*CONJG( V( 3, M ) )
554   60                CONTINUE
555                  ELSE IF( WANTZ ) THEN
556*
557*                    ==== U is not accumulated, so update Z
558*                    .    now by multiplying by reflections
559*                    .    from the right. ====
560*
561                     DO 70 J = ILOZ, IHIZ
562                        REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
563     $                           Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
564                        Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
565                        Z( J, K+2 ) = Z( J, K+2 ) -
566     $                                REFSUM*CONJG( V( 2, M ) )
567                        Z( J, K+3 ) = Z( J, K+3 ) -
568     $                                REFSUM*CONJG( V( 3, M ) )
569   70                CONTINUE
570                  END IF
571               END IF
572   80       CONTINUE
573*
574*           ==== Special case: 2-by-2 reflection (if needed) ====
575*
576            K = KRCOL + 3*( M22-1 )
577            IF( BMP22 ) THEN
578               IF ( V( 1, M22 ).NE.ZERO ) THEN
579                  DO 90 J = JTOP, MIN( KBOT, K+3 )
580                     REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
581     $                        H( J, K+2 ) )
582                     H( J, K+1 ) = H( J, K+1 ) - REFSUM
583                     H( J, K+2 ) = H( J, K+2 ) -
584     $                             REFSUM*CONJG( V( 2, M22 ) )
585   90             CONTINUE
586*
587                  IF( ACCUM ) THEN
588                     KMS = K - INCOL
589                     DO 100 J = MAX( 1, KTOP-INCOL ), KDU
590                        REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
591     $                           V( 2, M22 )*U( J, KMS+2 ) )
592                        U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
593                        U( J, KMS+2 ) = U( J, KMS+2 ) -
594     $                                  REFSUM*CONJG( V( 2, M22 ) )
595  100                CONTINUE
596                  ELSE IF( WANTZ ) THEN
597                     DO 110 J = ILOZ, IHIZ
598                        REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
599     $                           Z( J, K+2 ) )
600                        Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
601                        Z( J, K+2 ) = Z( J, K+2 ) -
602     $                                REFSUM*CONJG( V( 2, M22 ) )
603  110                CONTINUE
604                  END IF
605               END IF
606            END IF
607*
608*           ==== Vigilant deflation check ====
609*
610            MSTART = MTOP
611            IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
612     $         MSTART = MSTART + 1
613            MEND = MBOT
614            IF( BMP22 )
615     $         MEND = MEND + 1
616            IF( KRCOL.EQ.KBOT-2 )
617     $         MEND = MEND + 1
618            DO 120 M = MSTART, MEND
619               K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
620*
621*              ==== The following convergence test requires that
622*              .    the tradition small-compared-to-nearby-diagonals
623*              .    criterion and the Ahues & Tisseur (LAWN 122, 1997)
624*              .    criteria both be satisfied.  The latter improves
625*              .    accuracy in some examples. Falling back on an
626*              .    alternate convergence criterion when TST1 or TST2
627*              .    is zero (as done here) is traditional but probably
628*              .    unnecessary. ====
629*
630               IF( H( K+1, K ).NE.ZERO ) THEN
631                  TST1 = CABS1( H( K, K ) ) + CABS1( H( K+1, K+1 ) )
632                  IF( TST1.EQ.RZERO ) THEN
633                     IF( K.GE.KTOP+1 )
634     $                  TST1 = TST1 + CABS1( H( K, K-1 ) )
635                     IF( K.GE.KTOP+2 )
636     $                  TST1 = TST1 + CABS1( H( K, K-2 ) )
637                     IF( K.GE.KTOP+3 )
638     $                  TST1 = TST1 + CABS1( H( K, K-3 ) )
639                     IF( K.LE.KBOT-2 )
640     $                  TST1 = TST1 + CABS1( H( K+2, K+1 ) )
641                     IF( K.LE.KBOT-3 )
642     $                  TST1 = TST1 + CABS1( H( K+3, K+1 ) )
643                     IF( K.LE.KBOT-4 )
644     $                  TST1 = TST1 + CABS1( H( K+4, K+1 ) )
645                  END IF
646                  IF( CABS1( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
647     $                 THEN
648                     H12 = MAX( CABS1( H( K+1, K ) ),
649     $                     CABS1( H( K, K+1 ) ) )
650                     H21 = MIN( CABS1( H( K+1, K ) ),
651     $                     CABS1( H( K, K+1 ) ) )
652                     H11 = MAX( CABS1( H( K+1, K+1 ) ),
653     $                     CABS1( H( K, K )-H( K+1, K+1 ) ) )
654                     H22 = MIN( CABS1( H( K+1, K+1 ) ),
655     $                     CABS1( H( K, K )-H( K+1, K+1 ) ) )
656                     SCL = H11 + H12
657                     TST2 = H22*( H11 / SCL )
658*
659                     IF( TST2.EQ.RZERO .OR. H21*( H12 / SCL ).LE.
660     $                   MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
661                  END IF
662               END IF
663  120       CONTINUE
664*
665*           ==== Fill in the last row of each bulge. ====
666*
667            MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 )
668            DO 130 M = MTOP, MEND
669               K = KRCOL + 3*( M-1 )
670               REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 )
671               H( K+4, K+1 ) = -REFSUM
672               H( K+4, K+2 ) = -REFSUM*CONJG( V( 2, M ) )
673               H( K+4, K+3 ) = H( K+4, K+3 ) - REFSUM*CONJG( V( 3, M ) )
674  130       CONTINUE
675*
676*           ==== End of near-the-diagonal bulge chase. ====
677*
678  140    CONTINUE
679*
680*        ==== Use U (if accumulated) to update far-from-diagonal
681*        .    entries in H.  If required, use U to update Z as
682*        .    well. ====
683*
684         IF( ACCUM ) THEN
685            IF( WANTT ) THEN
686               JTOP = 1
687               JBOT = N
688            ELSE
689               JTOP = KTOP
690               JBOT = KBOT
691            END IF
692            IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR.
693     $          ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN
694*
695*              ==== Updates not exploiting the 2-by-2 block
696*              .    structure of U.  K1 and NU keep track of
697*              .    the location and size of U in the special
698*              .    cases of introducing bulges and chasing
699*              .    bulges off the bottom.  In these special
700*              .    cases and in case the number of shifts
701*              .    is NS = 2, there is no 2-by-2 block
702*              .    structure to exploit.  ====
703*
704               K1 = MAX( 1, KTOP-INCOL )
705               NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
706*
707*              ==== Horizontal Multiply ====
708*
709               DO 150 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
710                  JLEN = MIN( NH, JBOT-JCOL+1 )
711                  CALL CGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
712     $                        LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
713     $                        LDWH )
714                  CALL CLACPY( 'ALL', NU, JLEN, WH, LDWH,
715     $                         H( INCOL+K1, JCOL ), LDH )
716  150          CONTINUE
717*
718*              ==== Vertical multiply ====
719*
720               DO 160 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
721                  JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
722                  CALL CGEMM( 'N', 'N', JLEN, NU, NU, ONE,
723     $                        H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
724     $                        LDU, ZERO, WV, LDWV )
725                  CALL CLACPY( 'ALL', JLEN, NU, WV, LDWV,
726     $                         H( JROW, INCOL+K1 ), LDH )
727  160          CONTINUE
728*
729*              ==== Z multiply (also vertical) ====
730*
731               IF( WANTZ ) THEN
732                  DO 170 JROW = ILOZ, IHIZ, NV
733                     JLEN = MIN( NV, IHIZ-JROW+1 )
734                     CALL CGEMM( 'N', 'N', JLEN, NU, NU, ONE,
735     $                           Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
736     $                           LDU, ZERO, WV, LDWV )
737                     CALL CLACPY( 'ALL', JLEN, NU, WV, LDWV,
738     $                            Z( JROW, INCOL+K1 ), LDZ )
739  170             CONTINUE
740               END IF
741            ELSE
742*
743*              ==== Updates exploiting U's 2-by-2 block structure.
744*              .    (I2, I4, J2, J4 are the last rows and columns
745*              .    of the blocks.) ====
746*
747               I2 = ( KDU+1 ) / 2
748               I4 = KDU
749               J2 = I4 - I2
750               J4 = KDU
751*
752*              ==== KZS and KNZ deal with the band of zeros
753*              .    along the diagonal of one of the triangular
754*              .    blocks. ====
755*
756               KZS = ( J4-J2 ) - ( NS+1 )
757               KNZ = NS + 1
758*
759*              ==== Horizontal multiply ====
760*
761               DO 180 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
762                  JLEN = MIN( NH, JBOT-JCOL+1 )
763*
764*                 ==== Copy bottom of H to top+KZS of scratch ====
765*                  (The first KZS rows get multiplied by zero.) ====
766*
767                  CALL CLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ),
768     $                         LDH, WH( KZS+1, 1 ), LDWH )
769*
770*                 ==== Multiply by U21**H ====
771*
772                  CALL CLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH )
773                  CALL CTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE,
774     $                        U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ),
775     $                        LDWH )
776*
777*                 ==== Multiply top of H by U11**H ====
778*
779                  CALL CGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU,
780     $                        H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH )
781*
782*                 ==== Copy top of H to bottom of WH ====
783*
784                  CALL CLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH,
785     $                         WH( I2+1, 1 ), LDWH )
786*
787*                 ==== Multiply by U21**H ====
788*
789                  CALL CTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE,
790     $                        U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH )
791*
792*                 ==== Multiply by U22 ====
793*
794                  CALL CGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE,
795     $                        U( J2+1, I2+1 ), LDU,
796     $                        H( INCOL+1+J2, JCOL ), LDH, ONE,
797     $                        WH( I2+1, 1 ), LDWH )
798*
799*                 ==== Copy it back ====
800*
801                  CALL CLACPY( 'ALL', KDU, JLEN, WH, LDWH,
802     $                         H( INCOL+1, JCOL ), LDH )
803  180          CONTINUE
804*
805*              ==== Vertical multiply ====
806*
807               DO 190 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV
808                  JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW )
809*
810*                 ==== Copy right of H to scratch (the first KZS
811*                 .    columns get multiplied by zero) ====
812*
813                  CALL CLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ),
814     $                         LDH, WV( 1, 1+KZS ), LDWV )
815*
816*                 ==== Multiply by U21 ====
817*
818                  CALL CLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV )
819                  CALL CTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
820     $                        U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
821     $                        LDWV )
822*
823*                 ==== Multiply by U11 ====
824*
825                  CALL CGEMM( 'N', 'N', JLEN, I2, J2, ONE,
826     $                        H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV,
827     $                        LDWV )
828*
829*                 ==== Copy left of H to right of scratch ====
830*
831                  CALL CLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH,
832     $                         WV( 1, 1+I2 ), LDWV )
833*
834*                 ==== Multiply by U21 ====
835*
836                  CALL CTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
837     $                        U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV )
838*
839*                 ==== Multiply by U22 ====
840*
841                  CALL CGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
842     $                        H( JROW, INCOL+1+J2 ), LDH,
843     $                        U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ),
844     $                        LDWV )
845*
846*                 ==== Copy it back ====
847*
848                  CALL CLACPY( 'ALL', JLEN, KDU, WV, LDWV,
849     $                         H( JROW, INCOL+1 ), LDH )
850  190          CONTINUE
851*
852*              ==== Multiply Z (also vertical) ====
853*
854               IF( WANTZ ) THEN
855                  DO 200 JROW = ILOZ, IHIZ, NV
856                     JLEN = MIN( NV, IHIZ-JROW+1 )
857*
858*                    ==== Copy right of Z to left of scratch (first
859*                    .     KZS columns get multiplied by zero) ====
860*
861                     CALL CLACPY( 'ALL', JLEN, KNZ,
862     $                            Z( JROW, INCOL+1+J2 ), LDZ,
863     $                            WV( 1, 1+KZS ), LDWV )
864*
865*                    ==== Multiply by U12 ====
866*
867                     CALL CLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV,
868     $                            LDWV )
869                     CALL CTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
870     $                           U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
871     $                           LDWV )
872*
873*                    ==== Multiply by U11 ====
874*
875                     CALL CGEMM( 'N', 'N', JLEN, I2, J2, ONE,
876     $                           Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE,
877     $                           WV, LDWV )
878*
879*                    ==== Copy left of Z to right of scratch ====
880*
881                     CALL CLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ),
882     $                            LDZ, WV( 1, 1+I2 ), LDWV )
883*
884*                    ==== Multiply by U21 ====
885*
886                     CALL CTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
887     $                           U( 1, I2+1 ), LDU, WV( 1, 1+I2 ),
888     $                           LDWV )
889*
890*                    ==== Multiply by U22 ====
891*
892                     CALL CGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
893     $                           Z( JROW, INCOL+1+J2 ), LDZ,
894     $                           U( J2+1, I2+1 ), LDU, ONE,
895     $                           WV( 1, 1+I2 ), LDWV )
896*
897*                    ==== Copy the result back to Z ====
898*
899                     CALL CLACPY( 'ALL', JLEN, KDU, WV, LDWV,
900     $                            Z( JROW, INCOL+1 ), LDZ )
901  200             CONTINUE
902               END IF
903            END IF
904         END IF
905  210 CONTINUE
906*
907*     ==== End of CLAQR5 ====
908*
909      END
910