1*> \brief \b CPBSTF 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CPBSTF + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpbstf.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpbstf.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpbstf.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO ) 22* 23* .. Scalar Arguments .. 24* CHARACTER UPLO 25* INTEGER INFO, KD, LDAB, N 26* .. 27* .. Array Arguments .. 28* COMPLEX AB( LDAB, * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> CPBSTF computes a split Cholesky factorization of a complex 38*> Hermitian positive definite band matrix A. 39*> 40*> This routine is designed to be used in conjunction with CHBGST. 41*> 42*> The factorization has the form A = S**H*S where S is a band matrix 43*> of the same bandwidth as A and the following structure: 44*> 45*> S = ( U ) 46*> ( M L ) 47*> 48*> where U is upper triangular of order m = (n+kd)/2, and L is lower 49*> triangular of order n-m. 50*> \endverbatim 51* 52* Arguments: 53* ========== 54* 55*> \param[in] UPLO 56*> \verbatim 57*> UPLO is CHARACTER*1 58*> = 'U': Upper triangle of A is stored; 59*> = 'L': Lower triangle of A is stored. 60*> \endverbatim 61*> 62*> \param[in] N 63*> \verbatim 64*> N is INTEGER 65*> The order of the matrix A. N >= 0. 66*> \endverbatim 67*> 68*> \param[in] KD 69*> \verbatim 70*> KD is INTEGER 71*> The number of superdiagonals of the matrix A if UPLO = 'U', 72*> or the number of subdiagonals if UPLO = 'L'. KD >= 0. 73*> \endverbatim 74*> 75*> \param[in,out] AB 76*> \verbatim 77*> AB is COMPLEX array, dimension (LDAB,N) 78*> On entry, the upper or lower triangle of the Hermitian band 79*> matrix A, stored in the first kd+1 rows of the array. The 80*> j-th column of A is stored in the j-th column of the array AB 81*> as follows: 82*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; 83*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). 84*> 85*> On exit, if INFO = 0, the factor S from the split Cholesky 86*> factorization A = S**H*S. See Further Details. 87*> \endverbatim 88*> 89*> \param[in] LDAB 90*> \verbatim 91*> LDAB is INTEGER 92*> The leading dimension of the array AB. LDAB >= KD+1. 93*> \endverbatim 94*> 95*> \param[out] INFO 96*> \verbatim 97*> INFO is INTEGER 98*> = 0: successful exit 99*> < 0: if INFO = -i, the i-th argument had an illegal value 100*> > 0: if INFO = i, the factorization could not be completed, 101*> because the updated element a(i,i) was negative; the 102*> matrix A is not positive definite. 103*> \endverbatim 104* 105* Authors: 106* ======== 107* 108*> \author Univ. of Tennessee 109*> \author Univ. of California Berkeley 110*> \author Univ. of Colorado Denver 111*> \author NAG Ltd. 112* 113*> \date November 2011 114* 115*> \ingroup complexOTHERcomputational 116* 117*> \par Further Details: 118* ===================== 119*> 120*> \verbatim 121*> 122*> The band storage scheme is illustrated by the following example, when 123*> N = 7, KD = 2: 124*> 125*> S = ( s11 s12 s13 ) 126*> ( s22 s23 s24 ) 127*> ( s33 s34 ) 128*> ( s44 ) 129*> ( s53 s54 s55 ) 130*> ( s64 s65 s66 ) 131*> ( s75 s76 s77 ) 132*> 133*> If UPLO = 'U', the array AB holds: 134*> 135*> on entry: on exit: 136*> 137*> * * a13 a24 a35 a46 a57 * * s13 s24 s53**H s64**H s75**H 138*> * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54**H s65**H s76**H 139*> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 140*> 141*> If UPLO = 'L', the array AB holds: 142*> 143*> on entry: on exit: 144*> 145*> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 146*> a21 a32 a43 a54 a65 a76 * s12**H s23**H s34**H s54 s65 s76 * 147*> a31 a42 a53 a64 a64 * * s13**H s24**H s53 s64 s75 * * 148*> 149*> Array elements marked * are not used by the routine; s12**H denotes 150*> conjg(s12); the diagonal elements of S are real. 151*> \endverbatim 152*> 153* ===================================================================== 154 SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO ) 155* 156* -- LAPACK computational routine (version 3.4.0) -- 157* -- LAPACK is a software package provided by Univ. of Tennessee, -- 158* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 159* November 2011 160* 161* .. Scalar Arguments .. 162 CHARACTER UPLO 163 INTEGER INFO, KD, LDAB, N 164* .. 165* .. Array Arguments .. 166 COMPLEX AB( LDAB, * ) 167* .. 168* 169* ===================================================================== 170* 171* .. Parameters .. 172 REAL ONE, ZERO 173 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 174* .. 175* .. Local Scalars .. 176 LOGICAL UPPER 177 INTEGER J, KLD, KM, M 178 REAL AJJ 179* .. 180* .. External Functions .. 181 LOGICAL LSAME 182 EXTERNAL LSAME 183* .. 184* .. External Subroutines .. 185 EXTERNAL CHER, CLACGV, CSSCAL, XERBLA 186* .. 187* .. Intrinsic Functions .. 188 INTRINSIC MAX, MIN, REAL, SQRT 189* .. 190* .. Executable Statements .. 191* 192* Test the input parameters. 193* 194 INFO = 0 195 UPPER = LSAME( UPLO, 'U' ) 196 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 197 INFO = -1 198 ELSE IF( N.LT.0 ) THEN 199 INFO = -2 200 ELSE IF( KD.LT.0 ) THEN 201 INFO = -3 202 ELSE IF( LDAB.LT.KD+1 ) THEN 203 INFO = -5 204 END IF 205 IF( INFO.NE.0 ) THEN 206 CALL XERBLA( 'CPBSTF', -INFO ) 207 RETURN 208 END IF 209* 210* Quick return if possible 211* 212 IF( N.EQ.0 ) 213 $ RETURN 214* 215 KLD = MAX( 1, LDAB-1 ) 216* 217* Set the splitting point m. 218* 219 M = ( N+KD ) / 2 220* 221 IF( UPPER ) THEN 222* 223* Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m). 224* 225 DO 10 J = N, M + 1, -1 226* 227* Compute s(j,j) and test for non-positive-definiteness. 228* 229 AJJ = REAL( AB( KD+1, J ) ) 230 IF( AJJ.LE.ZERO ) THEN 231 AB( KD+1, J ) = AJJ 232 GO TO 50 233 END IF 234 AJJ = SQRT( AJJ ) 235 AB( KD+1, J ) = AJJ 236 KM = MIN( J-1, KD ) 237* 238* Compute elements j-km:j-1 of the j-th column and update the 239* the leading submatrix within the band. 240* 241 CALL CSSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 ) 242 CALL CHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1, 243 $ AB( KD+1, J-KM ), KLD ) 244 10 CONTINUE 245* 246* Factorize the updated submatrix A(1:m,1:m) as U**H*U. 247* 248 DO 20 J = 1, M 249* 250* Compute s(j,j) and test for non-positive-definiteness. 251* 252 AJJ = REAL( AB( KD+1, J ) ) 253 IF( AJJ.LE.ZERO ) THEN 254 AB( KD+1, J ) = AJJ 255 GO TO 50 256 END IF 257 AJJ = SQRT( AJJ ) 258 AB( KD+1, J ) = AJJ 259 KM = MIN( KD, M-J ) 260* 261* Compute elements j+1:j+km of the j-th row and update the 262* trailing submatrix within the band. 263* 264 IF( KM.GT.0 ) THEN 265 CALL CSSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD ) 266 CALL CLACGV( KM, AB( KD, J+1 ), KLD ) 267 CALL CHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD, 268 $ AB( KD+1, J+1 ), KLD ) 269 CALL CLACGV( KM, AB( KD, J+1 ), KLD ) 270 END IF 271 20 CONTINUE 272 ELSE 273* 274* Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m). 275* 276 DO 30 J = N, M + 1, -1 277* 278* Compute s(j,j) and test for non-positive-definiteness. 279* 280 AJJ = REAL( AB( 1, J ) ) 281 IF( AJJ.LE.ZERO ) THEN 282 AB( 1, J ) = AJJ 283 GO TO 50 284 END IF 285 AJJ = SQRT( AJJ ) 286 AB( 1, J ) = AJJ 287 KM = MIN( J-1, KD ) 288* 289* Compute elements j-km:j-1 of the j-th row and update the 290* trailing submatrix within the band. 291* 292 CALL CSSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD ) 293 CALL CLACGV( KM, AB( KM+1, J-KM ), KLD ) 294 CALL CHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD, 295 $ AB( 1, J-KM ), KLD ) 296 CALL CLACGV( KM, AB( KM+1, J-KM ), KLD ) 297 30 CONTINUE 298* 299* Factorize the updated submatrix A(1:m,1:m) as U**H*U. 300* 301 DO 40 J = 1, M 302* 303* Compute s(j,j) and test for non-positive-definiteness. 304* 305 AJJ = REAL( AB( 1, J ) ) 306 IF( AJJ.LE.ZERO ) THEN 307 AB( 1, J ) = AJJ 308 GO TO 50 309 END IF 310 AJJ = SQRT( AJJ ) 311 AB( 1, J ) = AJJ 312 KM = MIN( KD, M-J ) 313* 314* Compute elements j+1:j+km of the j-th column and update the 315* trailing submatrix within the band. 316* 317 IF( KM.GT.0 ) THEN 318 CALL CSSCAL( KM, ONE / AJJ, AB( 2, J ), 1 ) 319 CALL CHER( 'Lower', KM, -ONE, AB( 2, J ), 1, 320 $ AB( 1, J+1 ), KLD ) 321 END IF 322 40 CONTINUE 323 END IF 324 RETURN 325* 326 50 CONTINUE 327 INFO = J 328 RETURN 329* 330* End of CPBSTF 331* 332 END 333