1*> \brief <b> CPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CPOSVX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cposvx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cposvx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cposvx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
22*                          S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
23*                          RWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          EQUED, FACT, UPLO
27*       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
28*       REAL               RCOND
29*       ..
30*       .. Array Arguments ..
31*       REAL               BERR( * ), FERR( * ), RWORK( * ), S( * )
32*       COMPLEX            A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
33*      $                   WORK( * ), X( LDX, * )
34*       ..
35*
36*
37*> \par Purpose:
38*  =============
39*>
40*> \verbatim
41*>
42*> CPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
43*> compute the solution to a complex system of linear equations
44*>    A * X = B,
45*> where A is an N-by-N Hermitian positive definite matrix and X and B
46*> are N-by-NRHS matrices.
47*>
48*> Error bounds on the solution and a condition estimate are also
49*> provided.
50*> \endverbatim
51*
52*> \par Description:
53*  =================
54*>
55*> \verbatim
56*>
57*> The following steps are performed:
58*>
59*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
60*>    the system:
61*>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
62*>    Whether or not the system will be equilibrated depends on the
63*>    scaling of the matrix A, but if equilibration is used, A is
64*>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
65*>
66*> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
67*>    factor the matrix A (after equilibration if FACT = 'E') as
68*>       A = U**H* U,  if UPLO = 'U', or
69*>       A = L * L**H,  if UPLO = 'L',
70*>    where U is an upper triangular matrix and L is a lower triangular
71*>    matrix.
72*>
73*> 3. If the leading i-by-i principal minor is not positive definite,
74*>    then the routine returns with INFO = i. Otherwise, the factored
75*>    form of A is used to estimate the condition number of the matrix
76*>    A.  If the reciprocal of the condition number is less than machine
77*>    precision, INFO = N+1 is returned as a warning, but the routine
78*>    still goes on to solve for X and compute error bounds as
79*>    described below.
80*>
81*> 4. The system of equations is solved for X using the factored form
82*>    of A.
83*>
84*> 5. Iterative refinement is applied to improve the computed solution
85*>    matrix and calculate error bounds and backward error estimates
86*>    for it.
87*>
88*> 6. If equilibration was used, the matrix X is premultiplied by
89*>    diag(S) so that it solves the original system before
90*>    equilibration.
91*> \endverbatim
92*
93*  Arguments:
94*  ==========
95*
96*> \param[in] FACT
97*> \verbatim
98*>          FACT is CHARACTER*1
99*>          Specifies whether or not the factored form of the matrix A is
100*>          supplied on entry, and if not, whether the matrix A should be
101*>          equilibrated before it is factored.
102*>          = 'F':  On entry, AF contains the factored form of A.
103*>                  If EQUED = 'Y', the matrix A has been equilibrated
104*>                  with scaling factors given by S.  A and AF will not
105*>                  be modified.
106*>          = 'N':  The matrix A will be copied to AF and factored.
107*>          = 'E':  The matrix A will be equilibrated if necessary, then
108*>                  copied to AF and factored.
109*> \endverbatim
110*>
111*> \param[in] UPLO
112*> \verbatim
113*>          UPLO is CHARACTER*1
114*>          = 'U':  Upper triangle of A is stored;
115*>          = 'L':  Lower triangle of A is stored.
116*> \endverbatim
117*>
118*> \param[in] N
119*> \verbatim
120*>          N is INTEGER
121*>          The number of linear equations, i.e., the order of the
122*>          matrix A.  N >= 0.
123*> \endverbatim
124*>
125*> \param[in] NRHS
126*> \verbatim
127*>          NRHS is INTEGER
128*>          The number of right hand sides, i.e., the number of columns
129*>          of the matrices B and X.  NRHS >= 0.
130*> \endverbatim
131*>
132*> \param[in,out] A
133*> \verbatim
134*>          A is COMPLEX array, dimension (LDA,N)
135*>          On entry, the Hermitian matrix A, except if FACT = 'F' and
136*>          EQUED = 'Y', then A must contain the equilibrated matrix
137*>          diag(S)*A*diag(S).  If UPLO = 'U', the leading
138*>          N-by-N upper triangular part of A contains the upper
139*>          triangular part of the matrix A, and the strictly lower
140*>          triangular part of A is not referenced.  If UPLO = 'L', the
141*>          leading N-by-N lower triangular part of A contains the lower
142*>          triangular part of the matrix A, and the strictly upper
143*>          triangular part of A is not referenced.  A is not modified if
144*>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
145*>
146*>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
147*>          diag(S)*A*diag(S).
148*> \endverbatim
149*>
150*> \param[in] LDA
151*> \verbatim
152*>          LDA is INTEGER
153*>          The leading dimension of the array A.  LDA >= max(1,N).
154*> \endverbatim
155*>
156*> \param[in,out] AF
157*> \verbatim
158*>          AF is COMPLEX array, dimension (LDAF,N)
159*>          If FACT = 'F', then AF is an input argument and on entry
160*>          contains the triangular factor U or L from the Cholesky
161*>          factorization A = U**H*U or A = L*L**H, in the same storage
162*>          format as A.  If EQUED .ne. 'N', then AF is the factored form
163*>          of the equilibrated matrix diag(S)*A*diag(S).
164*>
165*>          If FACT = 'N', then AF is an output argument and on exit
166*>          returns the triangular factor U or L from the Cholesky
167*>          factorization A = U**H*U or A = L*L**H of the original
168*>          matrix A.
169*>
170*>          If FACT = 'E', then AF is an output argument and on exit
171*>          returns the triangular factor U or L from the Cholesky
172*>          factorization A = U**H*U or A = L*L**H of the equilibrated
173*>          matrix A (see the description of A for the form of the
174*>          equilibrated matrix).
175*> \endverbatim
176*>
177*> \param[in] LDAF
178*> \verbatim
179*>          LDAF is INTEGER
180*>          The leading dimension of the array AF.  LDAF >= max(1,N).
181*> \endverbatim
182*>
183*> \param[in,out] EQUED
184*> \verbatim
185*>          EQUED is CHARACTER*1
186*>          Specifies the form of equilibration that was done.
187*>          = 'N':  No equilibration (always true if FACT = 'N').
188*>          = 'Y':  Equilibration was done, i.e., A has been replaced by
189*>                  diag(S) * A * diag(S).
190*>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
191*>          output argument.
192*> \endverbatim
193*>
194*> \param[in,out] S
195*> \verbatim
196*>          S is REAL array, dimension (N)
197*>          The scale factors for A; not accessed if EQUED = 'N'.  S is
198*>          an input argument if FACT = 'F'; otherwise, S is an output
199*>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
200*>          must be positive.
201*> \endverbatim
202*>
203*> \param[in,out] B
204*> \verbatim
205*>          B is COMPLEX array, dimension (LDB,NRHS)
206*>          On entry, the N-by-NRHS righthand side matrix B.
207*>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
208*>          B is overwritten by diag(S) * B.
209*> \endverbatim
210*>
211*> \param[in] LDB
212*> \verbatim
213*>          LDB is INTEGER
214*>          The leading dimension of the array B.  LDB >= max(1,N).
215*> \endverbatim
216*>
217*> \param[out] X
218*> \verbatim
219*>          X is COMPLEX array, dimension (LDX,NRHS)
220*>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
221*>          the original system of equations.  Note that if EQUED = 'Y',
222*>          A and B are modified on exit, and the solution to the
223*>          equilibrated system is inv(diag(S))*X.
224*> \endverbatim
225*>
226*> \param[in] LDX
227*> \verbatim
228*>          LDX is INTEGER
229*>          The leading dimension of the array X.  LDX >= max(1,N).
230*> \endverbatim
231*>
232*> \param[out] RCOND
233*> \verbatim
234*>          RCOND is REAL
235*>          The estimate of the reciprocal condition number of the matrix
236*>          A after equilibration (if done).  If RCOND is less than the
237*>          machine precision (in particular, if RCOND = 0), the matrix
238*>          is singular to working precision.  This condition is
239*>          indicated by a return code of INFO > 0.
240*> \endverbatim
241*>
242*> \param[out] FERR
243*> \verbatim
244*>          FERR is REAL array, dimension (NRHS)
245*>          The estimated forward error bound for each solution vector
246*>          X(j) (the j-th column of the solution matrix X).
247*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
248*>          is an estimated upper bound for the magnitude of the largest
249*>          element in (X(j) - XTRUE) divided by the magnitude of the
250*>          largest element in X(j).  The estimate is as reliable as
251*>          the estimate for RCOND, and is almost always a slight
252*>          overestimate of the true error.
253*> \endverbatim
254*>
255*> \param[out] BERR
256*> \verbatim
257*>          BERR is REAL array, dimension (NRHS)
258*>          The componentwise relative backward error of each solution
259*>          vector X(j) (i.e., the smallest relative change in
260*>          any element of A or B that makes X(j) an exact solution).
261*> \endverbatim
262*>
263*> \param[out] WORK
264*> \verbatim
265*>          WORK is COMPLEX array, dimension (2*N)
266*> \endverbatim
267*>
268*> \param[out] RWORK
269*> \verbatim
270*>          RWORK is REAL array, dimension (N)
271*> \endverbatim
272*>
273*> \param[out] INFO
274*> \verbatim
275*>          INFO is INTEGER
276*>          = 0: successful exit
277*>          < 0: if INFO = -i, the i-th argument had an illegal value
278*>          > 0: if INFO = i, and i is
279*>                <= N:  the leading minor of order i of A is
280*>                       not positive definite, so the factorization
281*>                       could not be completed, and the solution has not
282*>                       been computed. RCOND = 0 is returned.
283*>                = N+1: U is nonsingular, but RCOND is less than machine
284*>                       precision, meaning that the matrix is singular
285*>                       to working precision.  Nevertheless, the
286*>                       solution and error bounds are computed because
287*>                       there are a number of situations where the
288*>                       computed solution can be more accurate than the
289*>                       value of RCOND would suggest.
290*> \endverbatim
291*
292*  Authors:
293*  ========
294*
295*> \author Univ. of Tennessee
296*> \author Univ. of California Berkeley
297*> \author Univ. of Colorado Denver
298*> \author NAG Ltd.
299*
300*> \date April 2012
301*
302*> \ingroup complexPOsolve
303*
304*  =====================================================================
305      SUBROUTINE CPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
306     $                   S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK,
307     $                   RWORK, INFO )
308*
309*  -- LAPACK driver routine (version 3.4.1) --
310*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
311*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
312*     April 2012
313*
314*     .. Scalar Arguments ..
315      CHARACTER          EQUED, FACT, UPLO
316      INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
317      REAL               RCOND
318*     ..
319*     .. Array Arguments ..
320      REAL               BERR( * ), FERR( * ), RWORK( * ), S( * )
321      COMPLEX            A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
322     $                   WORK( * ), X( LDX, * )
323*     ..
324*
325*  =====================================================================
326*
327*     .. Parameters ..
328      REAL               ZERO, ONE
329      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
330*     ..
331*     .. Local Scalars ..
332      LOGICAL            EQUIL, NOFACT, RCEQU
333      INTEGER            I, INFEQU, J
334      REAL               AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
335*     ..
336*     .. External Functions ..
337      LOGICAL            LSAME
338      REAL               CLANHE, SLAMCH
339      EXTERNAL           LSAME, CLANHE, SLAMCH
340*     ..
341*     .. External Subroutines ..
342      EXTERNAL           CLACPY, CLAQHE, CPOCON, CPOEQU, CPORFS, CPOTRF,
343     $                   CPOTRS, XERBLA
344*     ..
345*     .. Intrinsic Functions ..
346      INTRINSIC          MAX, MIN
347*     ..
348*     .. Executable Statements ..
349*
350      INFO = 0
351      NOFACT = LSAME( FACT, 'N' )
352      EQUIL = LSAME( FACT, 'E' )
353      IF( NOFACT .OR. EQUIL ) THEN
354         EQUED = 'N'
355         RCEQU = .FALSE.
356      ELSE
357         RCEQU = LSAME( EQUED, 'Y' )
358         SMLNUM = SLAMCH( 'Safe minimum' )
359         BIGNUM = ONE / SMLNUM
360      END IF
361*
362*     Test the input parameters.
363*
364      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
365     $     THEN
366         INFO = -1
367      ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
368     $          THEN
369         INFO = -2
370      ELSE IF( N.LT.0 ) THEN
371         INFO = -3
372      ELSE IF( NRHS.LT.0 ) THEN
373         INFO = -4
374      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
375         INFO = -6
376      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
377         INFO = -8
378      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
379     $         ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
380         INFO = -9
381      ELSE
382         IF( RCEQU ) THEN
383            SMIN = BIGNUM
384            SMAX = ZERO
385            DO 10 J = 1, N
386               SMIN = MIN( SMIN, S( J ) )
387               SMAX = MAX( SMAX, S( J ) )
388   10       CONTINUE
389            IF( SMIN.LE.ZERO ) THEN
390               INFO = -10
391            ELSE IF( N.GT.0 ) THEN
392               SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
393            ELSE
394               SCOND = ONE
395            END IF
396         END IF
397         IF( INFO.EQ.0 ) THEN
398            IF( LDB.LT.MAX( 1, N ) ) THEN
399               INFO = -12
400            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
401               INFO = -14
402            END IF
403         END IF
404      END IF
405*
406      IF( INFO.NE.0 ) THEN
407         CALL XERBLA( 'CPOSVX', -INFO )
408         RETURN
409      END IF
410*
411      IF( EQUIL ) THEN
412*
413*        Compute row and column scalings to equilibrate the matrix A.
414*
415         CALL CPOEQU( N, A, LDA, S, SCOND, AMAX, INFEQU )
416         IF( INFEQU.EQ.0 ) THEN
417*
418*           Equilibrate the matrix.
419*
420            CALL CLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
421            RCEQU = LSAME( EQUED, 'Y' )
422         END IF
423      END IF
424*
425*     Scale the right hand side.
426*
427      IF( RCEQU ) THEN
428         DO 30 J = 1, NRHS
429            DO 20 I = 1, N
430               B( I, J ) = S( I )*B( I, J )
431   20       CONTINUE
432   30    CONTINUE
433      END IF
434*
435      IF( NOFACT .OR. EQUIL ) THEN
436*
437*        Compute the Cholesky factorization A = U**H *U or A = L*L**H.
438*
439         CALL CLACPY( UPLO, N, N, A, LDA, AF, LDAF )
440         CALL CPOTRF( UPLO, N, AF, LDAF, INFO )
441*
442*        Return if INFO is non-zero.
443*
444         IF( INFO.GT.0 )THEN
445            RCOND = ZERO
446            RETURN
447         END IF
448      END IF
449*
450*     Compute the norm of the matrix A.
451*
452      ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
453*
454*     Compute the reciprocal of the condition number of A.
455*
456      CALL CPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO )
457*
458*     Compute the solution matrix X.
459*
460      CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
461      CALL CPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
462*
463*     Use iterative refinement to improve the computed solution and
464*     compute error bounds and backward error estimates for it.
465*
466      CALL CPORFS( UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX,
467     $             FERR, BERR, WORK, RWORK, INFO )
468*
469*     Transform the solution matrix X to a solution of the original
470*     system.
471*
472      IF( RCEQU ) THEN
473         DO 50 J = 1, NRHS
474            DO 40 I = 1, N
475               X( I, J ) = S( I )*X( I, J )
476   40       CONTINUE
477   50    CONTINUE
478         DO 60 J = 1, NRHS
479            FERR( J ) = FERR( J ) / SCOND
480   60    CONTINUE
481      END IF
482*
483*     Set INFO = N+1 if the matrix is singular to working precision.
484*
485      IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
486     $   INFO = N + 1
487*
488      RETURN
489*
490*     End of CPOSVX
491*
492      END
493