1*> \brief \b CUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm). 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CUNGL2 + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungl2.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungl2.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungl2.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CUNGL2( M, N, K, A, LDA, TAU, WORK, INFO ) 22* 23* .. Scalar Arguments .. 24* INTEGER INFO, K, LDA, M, N 25* .. 26* .. Array Arguments .. 27* COMPLEX A( LDA, * ), TAU( * ), WORK( * ) 28* .. 29* 30* 31*> \par Purpose: 32* ============= 33*> 34*> \verbatim 35*> 36*> CUNGL2 generates an m-by-n complex matrix Q with orthonormal rows, 37*> which is defined as the first m rows of a product of k elementary 38*> reflectors of order n 39*> 40*> Q = H(k)**H . . . H(2)**H H(1)**H 41*> 42*> as returned by CGELQF. 43*> \endverbatim 44* 45* Arguments: 46* ========== 47* 48*> \param[in] M 49*> \verbatim 50*> M is INTEGER 51*> The number of rows of the matrix Q. M >= 0. 52*> \endverbatim 53*> 54*> \param[in] N 55*> \verbatim 56*> N is INTEGER 57*> The number of columns of the matrix Q. N >= M. 58*> \endverbatim 59*> 60*> \param[in] K 61*> \verbatim 62*> K is INTEGER 63*> The number of elementary reflectors whose product defines the 64*> matrix Q. M >= K >= 0. 65*> \endverbatim 66*> 67*> \param[in,out] A 68*> \verbatim 69*> A is COMPLEX array, dimension (LDA,N) 70*> On entry, the i-th row must contain the vector which defines 71*> the elementary reflector H(i), for i = 1,2,...,k, as returned 72*> by CGELQF in the first k rows of its array argument A. 73*> On exit, the m by n matrix Q. 74*> \endverbatim 75*> 76*> \param[in] LDA 77*> \verbatim 78*> LDA is INTEGER 79*> The first dimension of the array A. LDA >= max(1,M). 80*> \endverbatim 81*> 82*> \param[in] TAU 83*> \verbatim 84*> TAU is COMPLEX array, dimension (K) 85*> TAU(i) must contain the scalar factor of the elementary 86*> reflector H(i), as returned by CGELQF. 87*> \endverbatim 88*> 89*> \param[out] WORK 90*> \verbatim 91*> WORK is COMPLEX array, dimension (M) 92*> \endverbatim 93*> 94*> \param[out] INFO 95*> \verbatim 96*> INFO is INTEGER 97*> = 0: successful exit 98*> < 0: if INFO = -i, the i-th argument has an illegal value 99*> \endverbatim 100* 101* Authors: 102* ======== 103* 104*> \author Univ. of Tennessee 105*> \author Univ. of California Berkeley 106*> \author Univ. of Colorado Denver 107*> \author NAG Ltd. 108* 109*> \date September 2012 110* 111*> \ingroup complexOTHERcomputational 112* 113* ===================================================================== 114 SUBROUTINE CUNGL2( M, N, K, A, LDA, TAU, WORK, INFO ) 115* 116* -- LAPACK computational routine (version 3.4.2) -- 117* -- LAPACK is a software package provided by Univ. of Tennessee, -- 118* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 119* September 2012 120* 121* .. Scalar Arguments .. 122 INTEGER INFO, K, LDA, M, N 123* .. 124* .. Array Arguments .. 125 COMPLEX A( LDA, * ), TAU( * ), WORK( * ) 126* .. 127* 128* ===================================================================== 129* 130* .. Parameters .. 131 COMPLEX ONE, ZERO 132 PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ), 133 $ ZERO = ( 0.0E+0, 0.0E+0 ) ) 134* .. 135* .. Local Scalars .. 136 INTEGER I, J, L 137* .. 138* .. External Subroutines .. 139 EXTERNAL CLACGV, CLARF, CSCAL, XERBLA 140* .. 141* .. Intrinsic Functions .. 142 INTRINSIC CONJG, MAX 143* .. 144* .. Executable Statements .. 145* 146* Test the input arguments 147* 148 INFO = 0 149 IF( M.LT.0 ) THEN 150 INFO = -1 151 ELSE IF( N.LT.M ) THEN 152 INFO = -2 153 ELSE IF( K.LT.0 .OR. K.GT.M ) THEN 154 INFO = -3 155 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 156 INFO = -5 157 END IF 158 IF( INFO.NE.0 ) THEN 159 CALL XERBLA( 'CUNGL2', -INFO ) 160 RETURN 161 END IF 162* 163* Quick return if possible 164* 165 IF( M.LE.0 ) 166 $ RETURN 167* 168 IF( K.LT.M ) THEN 169* 170* Initialise rows k+1:m to rows of the unit matrix 171* 172 DO 20 J = 1, N 173 DO 10 L = K + 1, M 174 A( L, J ) = ZERO 175 10 CONTINUE 176 IF( J.GT.K .AND. J.LE.M ) 177 $ A( J, J ) = ONE 178 20 CONTINUE 179 END IF 180* 181 DO 40 I = K, 1, -1 182* 183* Apply H(i)**H to A(i:m,i:n) from the right 184* 185 IF( I.LT.N ) THEN 186 CALL CLACGV( N-I, A( I, I+1 ), LDA ) 187 IF( I.LT.M ) THEN 188 A( I, I ) = ONE 189 CALL CLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, 190 $ CONJG( TAU( I ) ), A( I+1, I ), LDA, WORK ) 191 END IF 192 CALL CSCAL( N-I, -TAU( I ), A( I, I+1 ), LDA ) 193 CALL CLACGV( N-I, A( I, I+1 ), LDA ) 194 END IF 195 A( I, I ) = ONE - CONJG( TAU( I ) ) 196* 197* Set A(i,1:i-1,i) to zero 198* 199 DO 30 L = 1, I - 1 200 A( I, L ) = ZERO 201 30 CONTINUE 202 40 CONTINUE 203 RETURN 204* 205* End of CUNGL2 206* 207 END 208