1*> \brief \b DBDSDC
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DBDSDC + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dbdsdc.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dbdsdc.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dbdsdc.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
22*                          WORK, IWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          COMPQ, UPLO
26*       INTEGER            INFO, LDU, LDVT, N
27*       ..
28*       .. Array Arguments ..
29*       INTEGER            IQ( * ), IWORK( * )
30*       DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
31*      $                   VT( LDVT, * ), WORK( * )
32*       ..
33*
34*
35*> \par Purpose:
36*  =============
37*>
38*> \verbatim
39*>
40*> DBDSDC computes the singular value decomposition (SVD) of a real
41*> N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT,
42*> using a divide and conquer method, where S is a diagonal matrix
43*> with non-negative diagonal elements (the singular values of B), and
44*> U and VT are orthogonal matrices of left and right singular vectors,
45*> respectively. DBDSDC can be used to compute all singular values,
46*> and optionally, singular vectors or singular vectors in compact form.
47*>
48*> This code makes very mild assumptions about floating point
49*> arithmetic. It will work on machines with a guard digit in
50*> add/subtract, or on those binary machines without guard digits
51*> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
52*> It could conceivably fail on hexadecimal or decimal machines
53*> without guard digits, but we know of none.  See DLASD3 for details.
54*>
55*> The code currently calls DLASDQ if singular values only are desired.
56*> However, it can be slightly modified to compute singular values
57*> using the divide and conquer method.
58*> \endverbatim
59*
60*  Arguments:
61*  ==========
62*
63*> \param[in] UPLO
64*> \verbatim
65*>          UPLO is CHARACTER*1
66*>          = 'U':  B is upper bidiagonal.
67*>          = 'L':  B is lower bidiagonal.
68*> \endverbatim
69*>
70*> \param[in] COMPQ
71*> \verbatim
72*>          COMPQ is CHARACTER*1
73*>          Specifies whether singular vectors are to be computed
74*>          as follows:
75*>          = 'N':  Compute singular values only;
76*>          = 'P':  Compute singular values and compute singular
77*>                  vectors in compact form;
78*>          = 'I':  Compute singular values and singular vectors.
79*> \endverbatim
80*>
81*> \param[in] N
82*> \verbatim
83*>          N is INTEGER
84*>          The order of the matrix B.  N >= 0.
85*> \endverbatim
86*>
87*> \param[in,out] D
88*> \verbatim
89*>          D is DOUBLE PRECISION array, dimension (N)
90*>          On entry, the n diagonal elements of the bidiagonal matrix B.
91*>          On exit, if INFO=0, the singular values of B.
92*> \endverbatim
93*>
94*> \param[in,out] E
95*> \verbatim
96*>          E is DOUBLE PRECISION array, dimension (N-1)
97*>          On entry, the elements of E contain the offdiagonal
98*>          elements of the bidiagonal matrix whose SVD is desired.
99*>          On exit, E has been destroyed.
100*> \endverbatim
101*>
102*> \param[out] U
103*> \verbatim
104*>          U is DOUBLE PRECISION array, dimension (LDU,N)
105*>          If  COMPQ = 'I', then:
106*>             On exit, if INFO = 0, U contains the left singular vectors
107*>             of the bidiagonal matrix.
108*>          For other values of COMPQ, U is not referenced.
109*> \endverbatim
110*>
111*> \param[in] LDU
112*> \verbatim
113*>          LDU is INTEGER
114*>          The leading dimension of the array U.  LDU >= 1.
115*>          If singular vectors are desired, then LDU >= max( 1, N ).
116*> \endverbatim
117*>
118*> \param[out] VT
119*> \verbatim
120*>          VT is DOUBLE PRECISION array, dimension (LDVT,N)
121*>          If  COMPQ = 'I', then:
122*>             On exit, if INFO = 0, VT**T contains the right singular
123*>             vectors of the bidiagonal matrix.
124*>          For other values of COMPQ, VT is not referenced.
125*> \endverbatim
126*>
127*> \param[in] LDVT
128*> \verbatim
129*>          LDVT is INTEGER
130*>          The leading dimension of the array VT.  LDVT >= 1.
131*>          If singular vectors are desired, then LDVT >= max( 1, N ).
132*> \endverbatim
133*>
134*> \param[out] Q
135*> \verbatim
136*>          Q is DOUBLE PRECISION array, dimension (LDQ)
137*>          If  COMPQ = 'P', then:
138*>             On exit, if INFO = 0, Q and IQ contain the left
139*>             and right singular vectors in a compact form,
140*>             requiring O(N log N) space instead of 2*N**2.
141*>             In particular, Q contains all the DOUBLE PRECISION data in
142*>             LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
143*>             words of memory, where SMLSIZ is returned by ILAENV and
144*>             is equal to the maximum size of the subproblems at the
145*>             bottom of the computation tree (usually about 25).
146*>          For other values of COMPQ, Q is not referenced.
147*> \endverbatim
148*>
149*> \param[out] IQ
150*> \verbatim
151*>          IQ is INTEGER array, dimension (LDIQ)
152*>          If  COMPQ = 'P', then:
153*>             On exit, if INFO = 0, Q and IQ contain the left
154*>             and right singular vectors in a compact form,
155*>             requiring O(N log N) space instead of 2*N**2.
156*>             In particular, IQ contains all INTEGER data in
157*>             LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
158*>             words of memory, where SMLSIZ is returned by ILAENV and
159*>             is equal to the maximum size of the subproblems at the
160*>             bottom of the computation tree (usually about 25).
161*>          For other values of COMPQ, IQ is not referenced.
162*> \endverbatim
163*>
164*> \param[out] WORK
165*> \verbatim
166*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
167*>          If COMPQ = 'N' then LWORK >= (4 * N).
168*>          If COMPQ = 'P' then LWORK >= (6 * N).
169*>          If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
170*> \endverbatim
171*>
172*> \param[out] IWORK
173*> \verbatim
174*>          IWORK is INTEGER array, dimension (8*N)
175*> \endverbatim
176*>
177*> \param[out] INFO
178*> \verbatim
179*>          INFO is INTEGER
180*>          = 0:  successful exit.
181*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
182*>          > 0:  The algorithm failed to compute a singular value.
183*>                The update process of divide and conquer failed.
184*> \endverbatim
185*
186*  Authors:
187*  ========
188*
189*> \author Univ. of Tennessee
190*> \author Univ. of California Berkeley
191*> \author Univ. of Colorado Denver
192*> \author NAG Ltd.
193*
194*> \date November 2011
195*
196*> \ingroup auxOTHERcomputational
197*
198*> \par Contributors:
199*  ==================
200*>
201*>     Ming Gu and Huan Ren, Computer Science Division, University of
202*>     California at Berkeley, USA
203*>
204*  =====================================================================
205      SUBROUTINE DBDSDC( UPLO, COMPQ, N, D, E, U, LDU, VT, LDVT, Q, IQ,
206     $                   WORK, IWORK, INFO )
207*
208*  -- LAPACK computational routine (version 3.4.0) --
209*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
210*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
211*     November 2011
212*
213*     .. Scalar Arguments ..
214      CHARACTER          COMPQ, UPLO
215      INTEGER            INFO, LDU, LDVT, N
216*     ..
217*     .. Array Arguments ..
218      INTEGER            IQ( * ), IWORK( * )
219      DOUBLE PRECISION   D( * ), E( * ), Q( * ), U( LDU, * ),
220     $                   VT( LDVT, * ), WORK( * )
221*     ..
222*
223*  =====================================================================
224*  Changed dimension statement in comment describing E from (N) to
225*  (N-1).  Sven, 17 Feb 05.
226*  =====================================================================
227*
228*     .. Parameters ..
229      DOUBLE PRECISION   ZERO, ONE, TWO
230      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
231*     ..
232*     .. Local Scalars ..
233      INTEGER            DIFL, DIFR, GIVCOL, GIVNUM, GIVPTR, I, IC,
234     $                   ICOMPQ, IERR, II, IS, IU, IUPLO, IVT, J, K, KK,
235     $                   MLVL, NM1, NSIZE, PERM, POLES, QSTART, SMLSIZ,
236     $                   SMLSZP, SQRE, START, WSTART, Z
237      DOUBLE PRECISION   CS, EPS, ORGNRM, P, R, SN
238*     ..
239*     .. External Functions ..
240      LOGICAL            LSAME
241      INTEGER            ILAENV
242      DOUBLE PRECISION   DLAMCH, DLANST
243      EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
244*     ..
245*     .. External Subroutines ..
246      EXTERNAL           DCOPY, DLARTG, DLASCL, DLASD0, DLASDA, DLASDQ,
247     $                   DLASET, DLASR, DSWAP, XERBLA
248*     ..
249*     .. Intrinsic Functions ..
250      INTRINSIC          ABS, DBLE, INT, LOG, SIGN
251*     ..
252*     .. Executable Statements ..
253*
254*     Test the input parameters.
255*
256      INFO = 0
257*
258      IUPLO = 0
259      IF( LSAME( UPLO, 'U' ) )
260     $   IUPLO = 1
261      IF( LSAME( UPLO, 'L' ) )
262     $   IUPLO = 2
263      IF( LSAME( COMPQ, 'N' ) ) THEN
264         ICOMPQ = 0
265      ELSE IF( LSAME( COMPQ, 'P' ) ) THEN
266         ICOMPQ = 1
267      ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
268         ICOMPQ = 2
269      ELSE
270         ICOMPQ = -1
271      END IF
272      IF( IUPLO.EQ.0 ) THEN
273         INFO = -1
274      ELSE IF( ICOMPQ.LT.0 ) THEN
275         INFO = -2
276      ELSE IF( N.LT.0 ) THEN
277         INFO = -3
278      ELSE IF( ( LDU.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDU.LT.
279     $         N ) ) ) THEN
280         INFO = -7
281      ELSE IF( ( LDVT.LT.1 ) .OR. ( ( ICOMPQ.EQ.2 ) .AND. ( LDVT.LT.
282     $         N ) ) ) THEN
283         INFO = -9
284      END IF
285      IF( INFO.NE.0 ) THEN
286         CALL XERBLA( 'DBDSDC', -INFO )
287         RETURN
288      END IF
289*
290*     Quick return if possible
291*
292      IF( N.EQ.0 )
293     $   RETURN
294      SMLSIZ = ILAENV( 9, 'DBDSDC', ' ', 0, 0, 0, 0 )
295      IF( N.EQ.1 ) THEN
296         IF( ICOMPQ.EQ.1 ) THEN
297            Q( 1 ) = SIGN( ONE, D( 1 ) )
298            Q( 1+SMLSIZ*N ) = ONE
299         ELSE IF( ICOMPQ.EQ.2 ) THEN
300            U( 1, 1 ) = SIGN( ONE, D( 1 ) )
301            VT( 1, 1 ) = ONE
302         END IF
303         D( 1 ) = ABS( D( 1 ) )
304         RETURN
305      END IF
306      NM1 = N - 1
307*
308*     If matrix lower bidiagonal, rotate to be upper bidiagonal
309*     by applying Givens rotations on the left
310*
311      WSTART = 1
312      QSTART = 3
313      IF( ICOMPQ.EQ.1 ) THEN
314         CALL DCOPY( N, D, 1, Q( 1 ), 1 )
315         CALL DCOPY( N-1, E, 1, Q( N+1 ), 1 )
316      END IF
317      IF( IUPLO.EQ.2 ) THEN
318         QSTART = 5
319         WSTART = 2*N - 1
320         DO 10 I = 1, N - 1
321            CALL DLARTG( D( I ), E( I ), CS, SN, R )
322            D( I ) = R
323            E( I ) = SN*D( I+1 )
324            D( I+1 ) = CS*D( I+1 )
325            IF( ICOMPQ.EQ.1 ) THEN
326               Q( I+2*N ) = CS
327               Q( I+3*N ) = SN
328            ELSE IF( ICOMPQ.EQ.2 ) THEN
329               WORK( I ) = CS
330               WORK( NM1+I ) = -SN
331            END IF
332   10    CONTINUE
333      END IF
334*
335*     If ICOMPQ = 0, use DLASDQ to compute the singular values.
336*
337      IF( ICOMPQ.EQ.0 ) THEN
338         CALL DLASDQ( 'U', 0, N, 0, 0, 0, D, E, VT, LDVT, U, LDU, U,
339     $                LDU, WORK( WSTART ), INFO )
340         GO TO 40
341      END IF
342*
343*     If N is smaller than the minimum divide size SMLSIZ, then solve
344*     the problem with another solver.
345*
346      IF( N.LE.SMLSIZ ) THEN
347         IF( ICOMPQ.EQ.2 ) THEN
348            CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
349            CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
350            CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, VT, LDVT, U, LDU, U,
351     $                   LDU, WORK( WSTART ), INFO )
352         ELSE IF( ICOMPQ.EQ.1 ) THEN
353            IU = 1
354            IVT = IU + N
355            CALL DLASET( 'A', N, N, ZERO, ONE, Q( IU+( QSTART-1 )*N ),
356     $                   N )
357            CALL DLASET( 'A', N, N, ZERO, ONE, Q( IVT+( QSTART-1 )*N ),
358     $                   N )
359            CALL DLASDQ( 'U', 0, N, N, N, 0, D, E,
360     $                   Q( IVT+( QSTART-1 )*N ), N,
361     $                   Q( IU+( QSTART-1 )*N ), N,
362     $                   Q( IU+( QSTART-1 )*N ), N, WORK( WSTART ),
363     $                   INFO )
364         END IF
365         GO TO 40
366      END IF
367*
368      IF( ICOMPQ.EQ.2 ) THEN
369         CALL DLASET( 'A', N, N, ZERO, ONE, U, LDU )
370         CALL DLASET( 'A', N, N, ZERO, ONE, VT, LDVT )
371      END IF
372*
373*     Scale.
374*
375      ORGNRM = DLANST( 'M', N, D, E )
376      IF( ORGNRM.EQ.ZERO )
377     $   RETURN
378      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, IERR )
379      CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, IERR )
380*
381      EPS = (0.9D+0)*DLAMCH( 'Epsilon' )
382*
383      MLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
384      SMLSZP = SMLSIZ + 1
385*
386      IF( ICOMPQ.EQ.1 ) THEN
387         IU = 1
388         IVT = 1 + SMLSIZ
389         DIFL = IVT + SMLSZP
390         DIFR = DIFL + MLVL
391         Z = DIFR + MLVL*2
392         IC = Z + MLVL
393         IS = IC + 1
394         POLES = IS + 1
395         GIVNUM = POLES + 2*MLVL
396*
397         K = 1
398         GIVPTR = 2
399         PERM = 3
400         GIVCOL = PERM + MLVL
401      END IF
402*
403      DO 20 I = 1, N
404         IF( ABS( D( I ) ).LT.EPS ) THEN
405            D( I ) = SIGN( EPS, D( I ) )
406         END IF
407   20 CONTINUE
408*
409      START = 1
410      SQRE = 0
411*
412      DO 30 I = 1, NM1
413         IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
414*
415*        Subproblem found. First determine its size and then
416*        apply divide and conquer on it.
417*
418            IF( I.LT.NM1 ) THEN
419*
420*        A subproblem with E(I) small for I < NM1.
421*
422               NSIZE = I - START + 1
423            ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
424*
425*        A subproblem with E(NM1) not too small but I = NM1.
426*
427               NSIZE = N - START + 1
428            ELSE
429*
430*        A subproblem with E(NM1) small. This implies an
431*        1-by-1 subproblem at D(N). Solve this 1-by-1 problem
432*        first.
433*
434               NSIZE = I - START + 1
435               IF( ICOMPQ.EQ.2 ) THEN
436                  U( N, N ) = SIGN( ONE, D( N ) )
437                  VT( N, N ) = ONE
438               ELSE IF( ICOMPQ.EQ.1 ) THEN
439                  Q( N+( QSTART-1 )*N ) = SIGN( ONE, D( N ) )
440                  Q( N+( SMLSIZ+QSTART-1 )*N ) = ONE
441               END IF
442               D( N ) = ABS( D( N ) )
443            END IF
444            IF( ICOMPQ.EQ.2 ) THEN
445               CALL DLASD0( NSIZE, SQRE, D( START ), E( START ),
446     $                      U( START, START ), LDU, VT( START, START ),
447     $                      LDVT, SMLSIZ, IWORK, WORK( WSTART ), INFO )
448            ELSE
449               CALL DLASDA( ICOMPQ, SMLSIZ, NSIZE, SQRE, D( START ),
450     $                      E( START ), Q( START+( IU+QSTART-2 )*N ), N,
451     $                      Q( START+( IVT+QSTART-2 )*N ),
452     $                      IQ( START+K*N ), Q( START+( DIFL+QSTART-2 )*
453     $                      N ), Q( START+( DIFR+QSTART-2 )*N ),
454     $                      Q( START+( Z+QSTART-2 )*N ),
455     $                      Q( START+( POLES+QSTART-2 )*N ),
456     $                      IQ( START+GIVPTR*N ), IQ( START+GIVCOL*N ),
457     $                      N, IQ( START+PERM*N ),
458     $                      Q( START+( GIVNUM+QSTART-2 )*N ),
459     $                      Q( START+( IC+QSTART-2 )*N ),
460     $                      Q( START+( IS+QSTART-2 )*N ),
461     $                      WORK( WSTART ), IWORK, INFO )
462            END IF
463            IF( INFO.NE.0 ) THEN
464               RETURN
465            END IF
466            START = I + 1
467         END IF
468   30 CONTINUE
469*
470*     Unscale
471*
472      CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, IERR )
473   40 CONTINUE
474*
475*     Use Selection Sort to minimize swaps of singular vectors
476*
477      DO 60 II = 2, N
478         I = II - 1
479         KK = I
480         P = D( I )
481         DO 50 J = II, N
482            IF( D( J ).GT.P ) THEN
483               KK = J
484               P = D( J )
485            END IF
486   50    CONTINUE
487         IF( KK.NE.I ) THEN
488            D( KK ) = D( I )
489            D( I ) = P
490            IF( ICOMPQ.EQ.1 ) THEN
491               IQ( I ) = KK
492            ELSE IF( ICOMPQ.EQ.2 ) THEN
493               CALL DSWAP( N, U( 1, I ), 1, U( 1, KK ), 1 )
494               CALL DSWAP( N, VT( I, 1 ), LDVT, VT( KK, 1 ), LDVT )
495            END IF
496         ELSE IF( ICOMPQ.EQ.1 ) THEN
497            IQ( I ) = I
498         END IF
499   60 CONTINUE
500*
501*     If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO
502*
503      IF( ICOMPQ.EQ.1 ) THEN
504         IF( IUPLO.EQ.1 ) THEN
505            IQ( N ) = 1
506         ELSE
507            IQ( N ) = 0
508         END IF
509      END IF
510*
511*     If B is lower bidiagonal, update U by those Givens rotations
512*     which rotated B to be upper bidiagonal
513*
514      IF( ( IUPLO.EQ.2 ) .AND. ( ICOMPQ.EQ.2 ) )
515     $   CALL DLASR( 'L', 'V', 'B', N, N, WORK( 1 ), WORK( N ), U, LDU )
516*
517      RETURN
518*
519*     End of DBDSDC
520*
521      END
522