1*> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DGEEVX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeevx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeevx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeevx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
22*                          VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
23*                          RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
27*       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
28*       DOUBLE PRECISION   ABNRM
29*       ..
30*       .. Array Arguments ..
31*       INTEGER            IWORK( * )
32*       DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
33*      $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
34*      $                   WI( * ), WORK( * ), WR( * )
35*       ..
36*
37*
38*> \par Purpose:
39*  =============
40*>
41*> \verbatim
42*>
43*> DGEEVX computes for an N-by-N real nonsymmetric matrix A, the
44*> eigenvalues and, optionally, the left and/or right eigenvectors.
45*>
46*> Optionally also, it computes a balancing transformation to improve
47*> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
48*> SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
49*> (RCONDE), and reciprocal condition numbers for the right
50*> eigenvectors (RCONDV).
51*>
52*> The right eigenvector v(j) of A satisfies
53*>                  A * v(j) = lambda(j) * v(j)
54*> where lambda(j) is its eigenvalue.
55*> The left eigenvector u(j) of A satisfies
56*>               u(j)**H * A = lambda(j) * u(j)**H
57*> where u(j)**H denotes the conjugate-transpose of u(j).
58*>
59*> The computed eigenvectors are normalized to have Euclidean norm
60*> equal to 1 and largest component real.
61*>
62*> Balancing a matrix means permuting the rows and columns to make it
63*> more nearly upper triangular, and applying a diagonal similarity
64*> transformation D * A * D**(-1), where D is a diagonal matrix, to
65*> make its rows and columns closer in norm and the condition numbers
66*> of its eigenvalues and eigenvectors smaller.  The computed
67*> reciprocal condition numbers correspond to the balanced matrix.
68*> Permuting rows and columns will not change the condition numbers
69*> (in exact arithmetic) but diagonal scaling will.  For further
70*> explanation of balancing, see section 4.10.2 of the LAPACK
71*> Users' Guide.
72*> \endverbatim
73*
74*  Arguments:
75*  ==========
76*
77*> \param[in] BALANC
78*> \verbatim
79*>          BALANC is CHARACTER*1
80*>          Indicates how the input matrix should be diagonally scaled
81*>          and/or permuted to improve the conditioning of its
82*>          eigenvalues.
83*>          = 'N': Do not diagonally scale or permute;
84*>          = 'P': Perform permutations to make the matrix more nearly
85*>                 upper triangular. Do not diagonally scale;
86*>          = 'S': Diagonally scale the matrix, i.e. replace A by
87*>                 D*A*D**(-1), where D is a diagonal matrix chosen
88*>                 to make the rows and columns of A more equal in
89*>                 norm. Do not permute;
90*>          = 'B': Both diagonally scale and permute A.
91*>
92*>          Computed reciprocal condition numbers will be for the matrix
93*>          after balancing and/or permuting. Permuting does not change
94*>          condition numbers (in exact arithmetic), but balancing does.
95*> \endverbatim
96*>
97*> \param[in] JOBVL
98*> \verbatim
99*>          JOBVL is CHARACTER*1
100*>          = 'N': left eigenvectors of A are not computed;
101*>          = 'V': left eigenvectors of A are computed.
102*>          If SENSE = 'E' or 'B', JOBVL must = 'V'.
103*> \endverbatim
104*>
105*> \param[in] JOBVR
106*> \verbatim
107*>          JOBVR is CHARACTER*1
108*>          = 'N': right eigenvectors of A are not computed;
109*>          = 'V': right eigenvectors of A are computed.
110*>          If SENSE = 'E' or 'B', JOBVR must = 'V'.
111*> \endverbatim
112*>
113*> \param[in] SENSE
114*> \verbatim
115*>          SENSE is CHARACTER*1
116*>          Determines which reciprocal condition numbers are computed.
117*>          = 'N': None are computed;
118*>          = 'E': Computed for eigenvalues only;
119*>          = 'V': Computed for right eigenvectors only;
120*>          = 'B': Computed for eigenvalues and right eigenvectors.
121*>
122*>          If SENSE = 'E' or 'B', both left and right eigenvectors
123*>          must also be computed (JOBVL = 'V' and JOBVR = 'V').
124*> \endverbatim
125*>
126*> \param[in] N
127*> \verbatim
128*>          N is INTEGER
129*>          The order of the matrix A. N >= 0.
130*> \endverbatim
131*>
132*> \param[in,out] A
133*> \verbatim
134*>          A is DOUBLE PRECISION array, dimension (LDA,N)
135*>          On entry, the N-by-N matrix A.
136*>          On exit, A has been overwritten.  If JOBVL = 'V' or
137*>          JOBVR = 'V', A contains the real Schur form of the balanced
138*>          version of the input matrix A.
139*> \endverbatim
140*>
141*> \param[in] LDA
142*> \verbatim
143*>          LDA is INTEGER
144*>          The leading dimension of the array A.  LDA >= max(1,N).
145*> \endverbatim
146*>
147*> \param[out] WR
148*> \verbatim
149*>          WR is DOUBLE PRECISION array, dimension (N)
150*> \endverbatim
151*>
152*> \param[out] WI
153*> \verbatim
154*>          WI is DOUBLE PRECISION array, dimension (N)
155*>          WR and WI contain the real and imaginary parts,
156*>          respectively, of the computed eigenvalues.  Complex
157*>          conjugate pairs of eigenvalues will appear consecutively
158*>          with the eigenvalue having the positive imaginary part
159*>          first.
160*> \endverbatim
161*>
162*> \param[out] VL
163*> \verbatim
164*>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
165*>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
166*>          after another in the columns of VL, in the same order
167*>          as their eigenvalues.
168*>          If JOBVL = 'N', VL is not referenced.
169*>          If the j-th eigenvalue is real, then u(j) = VL(:,j),
170*>          the j-th column of VL.
171*>          If the j-th and (j+1)-st eigenvalues form a complex
172*>          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
173*>          u(j+1) = VL(:,j) - i*VL(:,j+1).
174*> \endverbatim
175*>
176*> \param[in] LDVL
177*> \verbatim
178*>          LDVL is INTEGER
179*>          The leading dimension of the array VL.  LDVL >= 1; if
180*>          JOBVL = 'V', LDVL >= N.
181*> \endverbatim
182*>
183*> \param[out] VR
184*> \verbatim
185*>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
186*>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
187*>          after another in the columns of VR, in the same order
188*>          as their eigenvalues.
189*>          If JOBVR = 'N', VR is not referenced.
190*>          If the j-th eigenvalue is real, then v(j) = VR(:,j),
191*>          the j-th column of VR.
192*>          If the j-th and (j+1)-st eigenvalues form a complex
193*>          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
194*>          v(j+1) = VR(:,j) - i*VR(:,j+1).
195*> \endverbatim
196*>
197*> \param[in] LDVR
198*> \verbatim
199*>          LDVR is INTEGER
200*>          The leading dimension of the array VR.  LDVR >= 1, and if
201*>          JOBVR = 'V', LDVR >= N.
202*> \endverbatim
203*>
204*> \param[out] ILO
205*> \verbatim
206*>          ILO is INTEGER
207*> \endverbatim
208*>
209*> \param[out] IHI
210*> \verbatim
211*>          IHI is INTEGER
212*>          ILO and IHI are integer values determined when A was
213*>          balanced.  The balanced A(i,j) = 0 if I > J and
214*>          J = 1,...,ILO-1 or I = IHI+1,...,N.
215*> \endverbatim
216*>
217*> \param[out] SCALE
218*> \verbatim
219*>          SCALE is DOUBLE PRECISION array, dimension (N)
220*>          Details of the permutations and scaling factors applied
221*>          when balancing A.  If P(j) is the index of the row and column
222*>          interchanged with row and column j, and D(j) is the scaling
223*>          factor applied to row and column j, then
224*>          SCALE(J) = P(J),    for J = 1,...,ILO-1
225*>                   = D(J),    for J = ILO,...,IHI
226*>                   = P(J)     for J = IHI+1,...,N.
227*>          The order in which the interchanges are made is N to IHI+1,
228*>          then 1 to ILO-1.
229*> \endverbatim
230*>
231*> \param[out] ABNRM
232*> \verbatim
233*>          ABNRM is DOUBLE PRECISION
234*>          The one-norm of the balanced matrix (the maximum
235*>          of the sum of absolute values of elements of any column).
236*> \endverbatim
237*>
238*> \param[out] RCONDE
239*> \verbatim
240*>          RCONDE is DOUBLE PRECISION array, dimension (N)
241*>          RCONDE(j) is the reciprocal condition number of the j-th
242*>          eigenvalue.
243*> \endverbatim
244*>
245*> \param[out] RCONDV
246*> \verbatim
247*>          RCONDV is DOUBLE PRECISION array, dimension (N)
248*>          RCONDV(j) is the reciprocal condition number of the j-th
249*>          right eigenvector.
250*> \endverbatim
251*>
252*> \param[out] WORK
253*> \verbatim
254*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
255*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
256*> \endverbatim
257*>
258*> \param[in] LWORK
259*> \verbatim
260*>          LWORK is INTEGER
261*>          The dimension of the array WORK.   If SENSE = 'N' or 'E',
262*>          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
263*>          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
264*>          For good performance, LWORK must generally be larger.
265*>
266*>          If LWORK = -1, then a workspace query is assumed; the routine
267*>          only calculates the optimal size of the WORK array, returns
268*>          this value as the first entry of the WORK array, and no error
269*>          message related to LWORK is issued by XERBLA.
270*> \endverbatim
271*>
272*> \param[out] IWORK
273*> \verbatim
274*>          IWORK is INTEGER array, dimension (2*N-2)
275*>          If SENSE = 'N' or 'E', not referenced.
276*> \endverbatim
277*>
278*> \param[out] INFO
279*> \verbatim
280*>          INFO is INTEGER
281*>          = 0:  successful exit
282*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
283*>          > 0:  if INFO = i, the QR algorithm failed to compute all the
284*>                eigenvalues, and no eigenvectors or condition numbers
285*>                have been computed; elements 1:ILO-1 and i+1:N of WR
286*>                and WI contain eigenvalues which have converged.
287*> \endverbatim
288*
289*  Authors:
290*  ========
291*
292*> \author Univ. of Tennessee
293*> \author Univ. of California Berkeley
294*> \author Univ. of Colorado Denver
295*> \author NAG Ltd.
296*
297*> \date September 2012
298*
299*> \ingroup doubleGEeigen
300*
301*  =====================================================================
302      SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
303     $                   VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
304     $                   RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
305*
306*  -- LAPACK driver routine (version 3.4.2) --
307*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
308*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
309*     September 2012
310*
311*     .. Scalar Arguments ..
312      CHARACTER          BALANC, JOBVL, JOBVR, SENSE
313      INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
314      DOUBLE PRECISION   ABNRM
315*     ..
316*     .. Array Arguments ..
317      INTEGER            IWORK( * )
318      DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
319     $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
320     $                   WI( * ), WORK( * ), WR( * )
321*     ..
322*
323*  =====================================================================
324*
325*     .. Parameters ..
326      DOUBLE PRECISION   ZERO, ONE
327      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
328*     ..
329*     .. Local Scalars ..
330      LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
331     $                   WNTSNN, WNTSNV
332      CHARACTER          JOB, SIDE
333      INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
334     $                   MINWRK, NOUT
335      DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
336     $                   SN
337*     ..
338*     .. Local Arrays ..
339      LOGICAL            SELECT( 1 )
340      DOUBLE PRECISION   DUM( 1 )
341*     ..
342*     .. External Subroutines ..
343      EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
344     $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC,
345     $                   DTRSNA, XERBLA
346*     ..
347*     .. External Functions ..
348      LOGICAL            LSAME
349      INTEGER            IDAMAX, ILAENV
350      DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
351      EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
352     $                   DNRM2
353*     ..
354*     .. Intrinsic Functions ..
355      INTRINSIC          MAX, SQRT
356*     ..
357*     .. Executable Statements ..
358*
359*     Test the input arguments
360*
361      INFO = 0
362      LQUERY = ( LWORK.EQ.-1 )
363      WANTVL = LSAME( JOBVL, 'V' )
364      WANTVR = LSAME( JOBVR, 'V' )
365      WNTSNN = LSAME( SENSE, 'N' )
366      WNTSNE = LSAME( SENSE, 'E' )
367      WNTSNV = LSAME( SENSE, 'V' )
368      WNTSNB = LSAME( SENSE, 'B' )
369      IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
370     $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
371     $     THEN
372         INFO = -1
373      ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
374         INFO = -2
375      ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
376         INFO = -3
377      ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
378     $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
379     $         WANTVR ) ) ) THEN
380         INFO = -4
381      ELSE IF( N.LT.0 ) THEN
382         INFO = -5
383      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
384         INFO = -7
385      ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
386         INFO = -11
387      ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
388         INFO = -13
389      END IF
390*
391*     Compute workspace
392*      (Note: Comments in the code beginning "Workspace:" describe the
393*       minimal amount of workspace needed at that point in the code,
394*       as well as the preferred amount for good performance.
395*       NB refers to the optimal block size for the immediately
396*       following subroutine, as returned by ILAENV.
397*       HSWORK refers to the workspace preferred by DHSEQR, as
398*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
399*       the worst case.)
400*
401      IF( INFO.EQ.0 ) THEN
402         IF( N.EQ.0 ) THEN
403            MINWRK = 1
404            MAXWRK = 1
405         ELSE
406            MAXWRK = N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
407*
408            IF( WANTVL ) THEN
409               CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
410     $                WORK, -1, INFO )
411            ELSE IF( WANTVR ) THEN
412               CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
413     $                WORK, -1, INFO )
414            ELSE
415               IF( WNTSNN ) THEN
416                  CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR,
417     $                LDVR, WORK, -1, INFO )
418               ELSE
419                  CALL DHSEQR( 'S', 'N', N, 1, N, A, LDA, WR, WI, VR,
420     $                LDVR, WORK, -1, INFO )
421               END IF
422            END IF
423            HSWORK = WORK( 1 )
424*
425            IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
426               MINWRK = 2*N
427               IF( .NOT.WNTSNN )
428     $            MINWRK = MAX( MINWRK, N*N+6*N )
429               MAXWRK = MAX( MAXWRK, HSWORK )
430               IF( .NOT.WNTSNN )
431     $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
432            ELSE
433               MINWRK = 3*N
434               IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
435     $            MINWRK = MAX( MINWRK, N*N + 6*N )
436               MAXWRK = MAX( MAXWRK, HSWORK )
437               MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'DORGHR',
438     $                       ' ', N, 1, N, -1 ) )
439               IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
440     $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
441               MAXWRK = MAX( MAXWRK, 3*N )
442            END IF
443            MAXWRK = MAX( MAXWRK, MINWRK )
444         END IF
445         WORK( 1 ) = MAXWRK
446*
447         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
448            INFO = -21
449         END IF
450      END IF
451*
452      IF( INFO.NE.0 ) THEN
453         CALL XERBLA( 'DGEEVX', -INFO )
454         RETURN
455      ELSE IF( LQUERY ) THEN
456         RETURN
457      END IF
458*
459*     Quick return if possible
460*
461      IF( N.EQ.0 )
462     $   RETURN
463*
464*     Get machine constants
465*
466      EPS = DLAMCH( 'P' )
467      SMLNUM = DLAMCH( 'S' )
468      BIGNUM = ONE / SMLNUM
469      CALL DLABAD( SMLNUM, BIGNUM )
470      SMLNUM = SQRT( SMLNUM ) / EPS
471      BIGNUM = ONE / SMLNUM
472*
473*     Scale A if max element outside range [SMLNUM,BIGNUM]
474*
475      ICOND = 0
476      ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
477      SCALEA = .FALSE.
478      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
479         SCALEA = .TRUE.
480         CSCALE = SMLNUM
481      ELSE IF( ANRM.GT.BIGNUM ) THEN
482         SCALEA = .TRUE.
483         CSCALE = BIGNUM
484      END IF
485      IF( SCALEA )
486     $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
487*
488*     Balance the matrix and compute ABNRM
489*
490      CALL DGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
491      ABNRM = DLANGE( '1', N, N, A, LDA, DUM )
492      IF( SCALEA ) THEN
493         DUM( 1 ) = ABNRM
494         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
495         ABNRM = DUM( 1 )
496      END IF
497*
498*     Reduce to upper Hessenberg form
499*     (Workspace: need 2*N, prefer N+N*NB)
500*
501      ITAU = 1
502      IWRK = ITAU + N
503      CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
504     $             LWORK-IWRK+1, IERR )
505*
506      IF( WANTVL ) THEN
507*
508*        Want left eigenvectors
509*        Copy Householder vectors to VL
510*
511         SIDE = 'L'
512         CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
513*
514*        Generate orthogonal matrix in VL
515*        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
516*
517         CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
518     $                LWORK-IWRK+1, IERR )
519*
520*        Perform QR iteration, accumulating Schur vectors in VL
521*        (Workspace: need 1, prefer HSWORK (see comments) )
522*
523         IWRK = ITAU
524         CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
525     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
526*
527         IF( WANTVR ) THEN
528*
529*           Want left and right eigenvectors
530*           Copy Schur vectors to VR
531*
532            SIDE = 'B'
533            CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
534         END IF
535*
536      ELSE IF( WANTVR ) THEN
537*
538*        Want right eigenvectors
539*        Copy Householder vectors to VR
540*
541         SIDE = 'R'
542         CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
543*
544*        Generate orthogonal matrix in VR
545*        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
546*
547         CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
548     $                LWORK-IWRK+1, IERR )
549*
550*        Perform QR iteration, accumulating Schur vectors in VR
551*        (Workspace: need 1, prefer HSWORK (see comments) )
552*
553         IWRK = ITAU
554         CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
555     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
556*
557      ELSE
558*
559*        Compute eigenvalues only
560*        If condition numbers desired, compute Schur form
561*
562         IF( WNTSNN ) THEN
563            JOB = 'E'
564         ELSE
565            JOB = 'S'
566         END IF
567*
568*        (Workspace: need 1, prefer HSWORK (see comments) )
569*
570         IWRK = ITAU
571         CALL DHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
572     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
573      END IF
574*
575*     If INFO > 0 from DHSEQR, then quit
576*
577      IF( INFO.GT.0 )
578     $   GO TO 50
579*
580      IF( WANTVL .OR. WANTVR ) THEN
581*
582*        Compute left and/or right eigenvectors
583*        (Workspace: need 3*N)
584*
585         CALL DTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
586     $                N, NOUT, WORK( IWRK ), IERR )
587      END IF
588*
589*     Compute condition numbers if desired
590*     (Workspace: need N*N+6*N unless SENSE = 'E')
591*
592      IF( .NOT.WNTSNN ) THEN
593         CALL DTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
594     $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK,
595     $                ICOND )
596      END IF
597*
598      IF( WANTVL ) THEN
599*
600*        Undo balancing of left eigenvectors
601*
602         CALL DGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
603     $                IERR )
604*
605*        Normalize left eigenvectors and make largest component real
606*
607         DO 20 I = 1, N
608            IF( WI( I ).EQ.ZERO ) THEN
609               SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
610               CALL DSCAL( N, SCL, VL( 1, I ), 1 )
611            ELSE IF( WI( I ).GT.ZERO ) THEN
612               SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
613     $               DNRM2( N, VL( 1, I+1 ), 1 ) )
614               CALL DSCAL( N, SCL, VL( 1, I ), 1 )
615               CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
616               DO 10 K = 1, N
617                  WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2
618   10          CONTINUE
619               K = IDAMAX( N, WORK, 1 )
620               CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
621               CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
622               VL( K, I+1 ) = ZERO
623            END IF
624   20    CONTINUE
625      END IF
626*
627      IF( WANTVR ) THEN
628*
629*        Undo balancing of right eigenvectors
630*
631         CALL DGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
632     $                IERR )
633*
634*        Normalize right eigenvectors and make largest component real
635*
636         DO 40 I = 1, N
637            IF( WI( I ).EQ.ZERO ) THEN
638               SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
639               CALL DSCAL( N, SCL, VR( 1, I ), 1 )
640            ELSE IF( WI( I ).GT.ZERO ) THEN
641               SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
642     $               DNRM2( N, VR( 1, I+1 ), 1 ) )
643               CALL DSCAL( N, SCL, VR( 1, I ), 1 )
644               CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
645               DO 30 K = 1, N
646                  WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2
647   30          CONTINUE
648               K = IDAMAX( N, WORK, 1 )
649               CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
650               CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
651               VR( K, I+1 ) = ZERO
652            END IF
653   40    CONTINUE
654      END IF
655*
656*     Undo scaling if necessary
657*
658   50 CONTINUE
659      IF( SCALEA ) THEN
660         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
661     $                MAX( N-INFO, 1 ), IERR )
662         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
663     $                MAX( N-INFO, 1 ), IERR )
664         IF( INFO.EQ.0 ) THEN
665            IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
666     $         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
667     $                      IERR )
668         ELSE
669            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
670     $                   IERR )
671            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
672     $                   IERR )
673         END IF
674      END IF
675*
676      WORK( 1 ) = MAXWRK
677      RETURN
678*
679*     End of DGEEVX
680*
681      END
682