1*> \brief <b> DGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DGGESX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggesx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggesx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggesx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
22*                          B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
23*                          VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
24*                          LIWORK, BWORK, INFO )
25*
26*       .. Scalar Arguments ..
27*       CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
28*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
29*      $                   SDIM
30*       ..
31*       .. Array Arguments ..
32*       LOGICAL            BWORK( * )
33*       INTEGER            IWORK( * )
34*       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
35*      $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
36*      $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
37*      $                   WORK( * )
38*       ..
39*       .. Function Arguments ..
40*       LOGICAL            SELCTG
41*       EXTERNAL           SELCTG
42*       ..
43*
44*
45*> \par Purpose:
46*  =============
47*>
48*> \verbatim
49*>
50*> DGGESX computes for a pair of N-by-N real nonsymmetric matrices
51*> (A,B), the generalized eigenvalues, the real Schur form (S,T), and,
52*> optionally, the left and/or right matrices of Schur vectors (VSL and
53*> VSR).  This gives the generalized Schur factorization
54*>
55*>      (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T )
56*>
57*> Optionally, it also orders the eigenvalues so that a selected cluster
58*> of eigenvalues appears in the leading diagonal blocks of the upper
59*> quasi-triangular matrix S and the upper triangular matrix T; computes
60*> a reciprocal condition number for the average of the selected
61*> eigenvalues (RCONDE); and computes a reciprocal condition number for
62*> the right and left deflating subspaces corresponding to the selected
63*> eigenvalues (RCONDV). The leading columns of VSL and VSR then form
64*> an orthonormal basis for the corresponding left and right eigenspaces
65*> (deflating subspaces).
66*>
67*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
68*> or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
69*> usually represented as the pair (alpha,beta), as there is a
70*> reasonable interpretation for beta=0 or for both being zero.
71*>
72*> A pair of matrices (S,T) is in generalized real Schur form if T is
73*> upper triangular with non-negative diagonal and S is block upper
74*> triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond
75*> to real generalized eigenvalues, while 2-by-2 blocks of S will be
76*> "standardized" by making the corresponding elements of T have the
77*> form:
78*>         [  a  0  ]
79*>         [  0  b  ]
80*>
81*> and the pair of corresponding 2-by-2 blocks in S and T will have a
82*> complex conjugate pair of generalized eigenvalues.
83*>
84*> \endverbatim
85*
86*  Arguments:
87*  ==========
88*
89*> \param[in] JOBVSL
90*> \verbatim
91*>          JOBVSL is CHARACTER*1
92*>          = 'N':  do not compute the left Schur vectors;
93*>          = 'V':  compute the left Schur vectors.
94*> \endverbatim
95*>
96*> \param[in] JOBVSR
97*> \verbatim
98*>          JOBVSR is CHARACTER*1
99*>          = 'N':  do not compute the right Schur vectors;
100*>          = 'V':  compute the right Schur vectors.
101*> \endverbatim
102*>
103*> \param[in] SORT
104*> \verbatim
105*>          SORT is CHARACTER*1
106*>          Specifies whether or not to order the eigenvalues on the
107*>          diagonal of the generalized Schur form.
108*>          = 'N':  Eigenvalues are not ordered;
109*>          = 'S':  Eigenvalues are ordered (see SELCTG).
110*> \endverbatim
111*>
112*> \param[in] SELCTG
113*> \verbatim
114*>          SELCTG is procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments
115*>          SELCTG must be declared EXTERNAL in the calling subroutine.
116*>          If SORT = 'N', SELCTG is not referenced.
117*>          If SORT = 'S', SELCTG is used to select eigenvalues to sort
118*>          to the top left of the Schur form.
119*>          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if
120*>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either
121*>          one of a complex conjugate pair of eigenvalues is selected,
122*>          then both complex eigenvalues are selected.
123*>          Note that a selected complex eigenvalue may no longer satisfy
124*>          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering,
125*>          since ordering may change the value of complex eigenvalues
126*>          (especially if the eigenvalue is ill-conditioned), in this
127*>          case INFO is set to N+3.
128*> \endverbatim
129*>
130*> \param[in] SENSE
131*> \verbatim
132*>          SENSE is CHARACTER*1
133*>          Determines which reciprocal condition numbers are computed.
134*>          = 'N' : None are computed;
135*>          = 'E' : Computed for average of selected eigenvalues only;
136*>          = 'V' : Computed for selected deflating subspaces only;
137*>          = 'B' : Computed for both.
138*>          If SENSE = 'E', 'V', or 'B', SORT must equal 'S'.
139*> \endverbatim
140*>
141*> \param[in] N
142*> \verbatim
143*>          N is INTEGER
144*>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
145*> \endverbatim
146*>
147*> \param[in,out] A
148*> \verbatim
149*>          A is DOUBLE PRECISION array, dimension (LDA, N)
150*>          On entry, the first of the pair of matrices.
151*>          On exit, A has been overwritten by its generalized Schur
152*>          form S.
153*> \endverbatim
154*>
155*> \param[in] LDA
156*> \verbatim
157*>          LDA is INTEGER
158*>          The leading dimension of A.  LDA >= max(1,N).
159*> \endverbatim
160*>
161*> \param[in,out] B
162*> \verbatim
163*>          B is DOUBLE PRECISION array, dimension (LDB, N)
164*>          On entry, the second of the pair of matrices.
165*>          On exit, B has been overwritten by its generalized Schur
166*>          form T.
167*> \endverbatim
168*>
169*> \param[in] LDB
170*> \verbatim
171*>          LDB is INTEGER
172*>          The leading dimension of B.  LDB >= max(1,N).
173*> \endverbatim
174*>
175*> \param[out] SDIM
176*> \verbatim
177*>          SDIM is INTEGER
178*>          If SORT = 'N', SDIM = 0.
179*>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
180*>          for which SELCTG is true.  (Complex conjugate pairs for which
181*>          SELCTG is true for either eigenvalue count as 2.)
182*> \endverbatim
183*>
184*> \param[out] ALPHAR
185*> \verbatim
186*>          ALPHAR is DOUBLE PRECISION array, dimension (N)
187*> \endverbatim
188*>
189*> \param[out] ALPHAI
190*> \verbatim
191*>          ALPHAI is DOUBLE PRECISION array, dimension (N)
192*> \endverbatim
193*>
194*> \param[out] BETA
195*> \verbatim
196*>          BETA is DOUBLE PRECISION array, dimension (N)
197*>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
198*>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
199*>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
200*>          form (S,T) that would result if the 2-by-2 diagonal blocks of
201*>          the real Schur form of (A,B) were further reduced to
202*>          triangular form using 2-by-2 complex unitary transformations.
203*>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
204*>          positive, then the j-th and (j+1)-st eigenvalues are a
205*>          complex conjugate pair, with ALPHAI(j+1) negative.
206*>
207*>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
208*>          may easily over- or underflow, and BETA(j) may even be zero.
209*>          Thus, the user should avoid naively computing the ratio.
210*>          However, ALPHAR and ALPHAI will be always less than and
211*>          usually comparable with norm(A) in magnitude, and BETA always
212*>          less than and usually comparable with norm(B).
213*> \endverbatim
214*>
215*> \param[out] VSL
216*> \verbatim
217*>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
218*>          If JOBVSL = 'V', VSL will contain the left Schur vectors.
219*>          Not referenced if JOBVSL = 'N'.
220*> \endverbatim
221*>
222*> \param[in] LDVSL
223*> \verbatim
224*>          LDVSL is INTEGER
225*>          The leading dimension of the matrix VSL. LDVSL >=1, and
226*>          if JOBVSL = 'V', LDVSL >= N.
227*> \endverbatim
228*>
229*> \param[out] VSR
230*> \verbatim
231*>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
232*>          If JOBVSR = 'V', VSR will contain the right Schur vectors.
233*>          Not referenced if JOBVSR = 'N'.
234*> \endverbatim
235*>
236*> \param[in] LDVSR
237*> \verbatim
238*>          LDVSR is INTEGER
239*>          The leading dimension of the matrix VSR. LDVSR >= 1, and
240*>          if JOBVSR = 'V', LDVSR >= N.
241*> \endverbatim
242*>
243*> \param[out] RCONDE
244*> \verbatim
245*>          RCONDE is DOUBLE PRECISION array, dimension ( 2 )
246*>          If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the
247*>          reciprocal condition numbers for the average of the selected
248*>          eigenvalues.
249*>          Not referenced if SENSE = 'N' or 'V'.
250*> \endverbatim
251*>
252*> \param[out] RCONDV
253*> \verbatim
254*>          RCONDV is DOUBLE PRECISION array, dimension ( 2 )
255*>          If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the
256*>          reciprocal condition numbers for the selected deflating
257*>          subspaces.
258*>          Not referenced if SENSE = 'N' or 'E'.
259*> \endverbatim
260*>
261*> \param[out] WORK
262*> \verbatim
263*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
264*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
265*> \endverbatim
266*>
267*> \param[in] LWORK
268*> \verbatim
269*>          LWORK is INTEGER
270*>          The dimension of the array WORK.
271*>          If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B',
272*>          LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else
273*>          LWORK >= max( 8*N, 6*N+16 ).
274*>          Note that 2*SDIM*(N-SDIM) <= N*N/2.
275*>          Note also that an error is only returned if
276*>          LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B'
277*>          this may not be large enough.
278*>
279*>          If LWORK = -1, then a workspace query is assumed; the routine
280*>          only calculates the bound on the optimal size of the WORK
281*>          array and the minimum size of the IWORK array, returns these
282*>          values as the first entries of the WORK and IWORK arrays, and
283*>          no error message related to LWORK or LIWORK is issued by
284*>          XERBLA.
285*> \endverbatim
286*>
287*> \param[out] IWORK
288*> \verbatim
289*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
290*>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
291*> \endverbatim
292*>
293*> \param[in] LIWORK
294*> \verbatim
295*>          LIWORK is INTEGER
296*>          The dimension of the array IWORK.
297*>          If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise
298*>          LIWORK >= N+6.
299*>
300*>          If LIWORK = -1, then a workspace query is assumed; the
301*>          routine only calculates the bound on the optimal size of the
302*>          WORK array and the minimum size of the IWORK array, returns
303*>          these values as the first entries of the WORK and IWORK
304*>          arrays, and no error message related to LWORK or LIWORK is
305*>          issued by XERBLA.
306*> \endverbatim
307*>
308*> \param[out] BWORK
309*> \verbatim
310*>          BWORK is LOGICAL array, dimension (N)
311*>          Not referenced if SORT = 'N'.
312*> \endverbatim
313*>
314*> \param[out] INFO
315*> \verbatim
316*>          INFO is INTEGER
317*>          = 0:  successful exit
318*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
319*>          = 1,...,N:
320*>                The QZ iteration failed.  (A,B) are not in Schur
321*>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
322*>                be correct for j=INFO+1,...,N.
323*>          > N:  =N+1: other than QZ iteration failed in DHGEQZ
324*>                =N+2: after reordering, roundoff changed values of
325*>                      some complex eigenvalues so that leading
326*>                      eigenvalues in the Generalized Schur form no
327*>                      longer satisfy SELCTG=.TRUE.  This could also
328*>                      be caused due to scaling.
329*>                =N+3: reordering failed in DTGSEN.
330*> \endverbatim
331*
332*  Authors:
333*  ========
334*
335*> \author Univ. of Tennessee
336*> \author Univ. of California Berkeley
337*> \author Univ. of Colorado Denver
338*> \author NAG Ltd.
339*
340*> \date November 2011
341*
342*> \ingroup doubleGEeigen
343*
344*> \par Further Details:
345*  =====================
346*>
347*> \verbatim
348*>
349*>  An approximate (asymptotic) bound on the average absolute error of
350*>  the selected eigenvalues is
351*>
352*>       EPS * norm((A, B)) / RCONDE( 1 ).
353*>
354*>  An approximate (asymptotic) bound on the maximum angular error in
355*>  the computed deflating subspaces is
356*>
357*>       EPS * norm((A, B)) / RCONDV( 2 ).
358*>
359*>  See LAPACK User's Guide, section 4.11 for more information.
360*> \endverbatim
361*>
362*  =====================================================================
363      SUBROUTINE DGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA,
364     $                   B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL,
365     $                   VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK,
366     $                   LIWORK, BWORK, INFO )
367*
368*  -- LAPACK driver routine (version 3.4.0) --
369*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
370*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
371*     November 2011
372*
373*     .. Scalar Arguments ..
374      CHARACTER          JOBVSL, JOBVSR, SENSE, SORT
375      INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N,
376     $                   SDIM
377*     ..
378*     .. Array Arguments ..
379      LOGICAL            BWORK( * )
380      INTEGER            IWORK( * )
381      DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
382     $                   B( LDB, * ), BETA( * ), RCONDE( 2 ),
383     $                   RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ),
384     $                   WORK( * )
385*     ..
386*     .. Function Arguments ..
387      LOGICAL            SELCTG
388      EXTERNAL           SELCTG
389*     ..
390*
391*  =====================================================================
392*
393*     .. Parameters ..
394      DOUBLE PRECISION   ZERO, ONE
395      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
396*     ..
397*     .. Local Scalars ..
398      LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
399     $                   LQUERY, LST2SL, WANTSB, WANTSE, WANTSN, WANTST,
400     $                   WANTSV
401      INTEGER            I, ICOLS, IERR, IHI, IJOB, IJOBVL, IJOBVR,
402     $                   ILEFT, ILO, IP, IRIGHT, IROWS, ITAU, IWRK,
403     $                   LIWMIN, LWRK, MAXWRK, MINWRK
404      DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PL,
405     $                   PR, SAFMAX, SAFMIN, SMLNUM
406*     ..
407*     .. Local Arrays ..
408      DOUBLE PRECISION   DIF( 2 )
409*     ..
410*     .. External Subroutines ..
411      EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
412     $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN,
413     $                   XERBLA
414*     ..
415*     .. External Functions ..
416      LOGICAL            LSAME
417      INTEGER            ILAENV
418      DOUBLE PRECISION   DLAMCH, DLANGE
419      EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
420*     ..
421*     .. Intrinsic Functions ..
422      INTRINSIC          ABS, MAX, SQRT
423*     ..
424*     .. Executable Statements ..
425*
426*     Decode the input arguments
427*
428      IF( LSAME( JOBVSL, 'N' ) ) THEN
429         IJOBVL = 1
430         ILVSL = .FALSE.
431      ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
432         IJOBVL = 2
433         ILVSL = .TRUE.
434      ELSE
435         IJOBVL = -1
436         ILVSL = .FALSE.
437      END IF
438*
439      IF( LSAME( JOBVSR, 'N' ) ) THEN
440         IJOBVR = 1
441         ILVSR = .FALSE.
442      ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
443         IJOBVR = 2
444         ILVSR = .TRUE.
445      ELSE
446         IJOBVR = -1
447         ILVSR = .FALSE.
448      END IF
449*
450      WANTST = LSAME( SORT, 'S' )
451      WANTSN = LSAME( SENSE, 'N' )
452      WANTSE = LSAME( SENSE, 'E' )
453      WANTSV = LSAME( SENSE, 'V' )
454      WANTSB = LSAME( SENSE, 'B' )
455      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
456      IF( WANTSN ) THEN
457         IJOB = 0
458      ELSE IF( WANTSE ) THEN
459         IJOB = 1
460      ELSE IF( WANTSV ) THEN
461         IJOB = 2
462      ELSE IF( WANTSB ) THEN
463         IJOB = 4
464      END IF
465*
466*     Test the input arguments
467*
468      INFO = 0
469      IF( IJOBVL.LE.0 ) THEN
470         INFO = -1
471      ELSE IF( IJOBVR.LE.0 ) THEN
472         INFO = -2
473      ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
474         INFO = -3
475      ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
476     $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
477         INFO = -5
478      ELSE IF( N.LT.0 ) THEN
479         INFO = -6
480      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
481         INFO = -8
482      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
483         INFO = -10
484      ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
485         INFO = -16
486      ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
487         INFO = -18
488      END IF
489*
490*     Compute workspace
491*      (Note: Comments in the code beginning "Workspace:" describe the
492*       minimal amount of workspace needed at that point in the code,
493*       as well as the preferred amount for good performance.
494*       NB refers to the optimal block size for the immediately
495*       following subroutine, as returned by ILAENV.)
496*
497      IF( INFO.EQ.0 ) THEN
498         IF( N.GT.0) THEN
499            MINWRK = MAX( 8*N, 6*N + 16 )
500            MAXWRK = MINWRK - N +
501     $               N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 )
502            MAXWRK = MAX( MAXWRK, MINWRK - N +
503     $               N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, -1 ) )
504            IF( ILVSL ) THEN
505               MAXWRK = MAX( MAXWRK, MINWRK - N +
506     $                  N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, -1 ) )
507            END IF
508            LWRK = MAXWRK
509            IF( IJOB.GE.1 )
510     $         LWRK = MAX( LWRK, N*N/2 )
511         ELSE
512            MINWRK = 1
513            MAXWRK = 1
514            LWRK   = 1
515         END IF
516         WORK( 1 ) = LWRK
517         IF( WANTSN .OR. N.EQ.0 ) THEN
518            LIWMIN = 1
519         ELSE
520            LIWMIN = N + 6
521         END IF
522         IWORK( 1 ) = LIWMIN
523*
524         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
525            INFO = -22
526         ELSE IF( LIWORK.LT.LIWMIN  .AND. .NOT.LQUERY ) THEN
527            INFO = -24
528         END IF
529      END IF
530*
531      IF( INFO.NE.0 ) THEN
532         CALL XERBLA( 'DGGESX', -INFO )
533         RETURN
534      ELSE IF (LQUERY) THEN
535         RETURN
536      END IF
537*
538*     Quick return if possible
539*
540      IF( N.EQ.0 ) THEN
541         SDIM = 0
542         RETURN
543      END IF
544*
545*     Get machine constants
546*
547      EPS = DLAMCH( 'P' )
548      SAFMIN = DLAMCH( 'S' )
549      SAFMAX = ONE / SAFMIN
550      CALL DLABAD( SAFMIN, SAFMAX )
551      SMLNUM = SQRT( SAFMIN ) / EPS
552      BIGNUM = ONE / SMLNUM
553*
554*     Scale A if max element outside range [SMLNUM,BIGNUM]
555*
556      ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
557      ILASCL = .FALSE.
558      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
559         ANRMTO = SMLNUM
560         ILASCL = .TRUE.
561      ELSE IF( ANRM.GT.BIGNUM ) THEN
562         ANRMTO = BIGNUM
563         ILASCL = .TRUE.
564      END IF
565      IF( ILASCL )
566     $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
567*
568*     Scale B if max element outside range [SMLNUM,BIGNUM]
569*
570      BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
571      ILBSCL = .FALSE.
572      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
573         BNRMTO = SMLNUM
574         ILBSCL = .TRUE.
575      ELSE IF( BNRM.GT.BIGNUM ) THEN
576         BNRMTO = BIGNUM
577         ILBSCL = .TRUE.
578      END IF
579      IF( ILBSCL )
580     $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
581*
582*     Permute the matrix to make it more nearly triangular
583*     (Workspace: need 6*N + 2*N for permutation parameters)
584*
585      ILEFT = 1
586      IRIGHT = N + 1
587      IWRK = IRIGHT + N
588      CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
589     $             WORK( IRIGHT ), WORK( IWRK ), IERR )
590*
591*     Reduce B to triangular form (QR decomposition of B)
592*     (Workspace: need N, prefer N*NB)
593*
594      IROWS = IHI + 1 - ILO
595      ICOLS = N + 1 - ILO
596      ITAU = IWRK
597      IWRK = ITAU + IROWS
598      CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
599     $             WORK( IWRK ), LWORK+1-IWRK, IERR )
600*
601*     Apply the orthogonal transformation to matrix A
602*     (Workspace: need N, prefer N*NB)
603*
604      CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
605     $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
606     $             LWORK+1-IWRK, IERR )
607*
608*     Initialize VSL
609*     (Workspace: need N, prefer N*NB)
610*
611      IF( ILVSL ) THEN
612         CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
613         IF( IROWS.GT.1 ) THEN
614            CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
615     $                   VSL( ILO+1, ILO ), LDVSL )
616         END IF
617         CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
618     $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
619      END IF
620*
621*     Initialize VSR
622*
623      IF( ILVSR )
624     $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
625*
626*     Reduce to generalized Hessenberg form
627*     (Workspace: none needed)
628*
629      CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
630     $             LDVSL, VSR, LDVSR, IERR )
631*
632      SDIM = 0
633*
634*     Perform QZ algorithm, computing Schur vectors if desired
635*     (Workspace: need N)
636*
637      IWRK = ITAU
638      CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
639     $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
640     $             WORK( IWRK ), LWORK+1-IWRK, IERR )
641      IF( IERR.NE.0 ) THEN
642         IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
643            INFO = IERR
644         ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
645            INFO = IERR - N
646         ELSE
647            INFO = N + 1
648         END IF
649         GO TO 60
650      END IF
651*
652*     Sort eigenvalues ALPHA/BETA and compute the reciprocal of
653*     condition number(s)
654*     (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) )
655*                 otherwise, need 8*(N+1) )
656*
657      IF( WANTST ) THEN
658*
659*        Undo scaling on eigenvalues before SELCTGing
660*
661         IF( ILASCL ) THEN
662            CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N,
663     $                   IERR )
664            CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N,
665     $                   IERR )
666         END IF
667         IF( ILBSCL )
668     $      CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
669*
670*        Select eigenvalues
671*
672         DO 10 I = 1, N
673            BWORK( I ) = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
674   10    CONTINUE
675*
676*        Reorder eigenvalues, transform Generalized Schur vectors, and
677*        compute reciprocal condition numbers
678*
679         CALL DTGSEN( IJOB, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB,
680     $                ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
681     $                SDIM, PL, PR, DIF, WORK( IWRK ), LWORK-IWRK+1,
682     $                IWORK, LIWORK, IERR )
683*
684         IF( IJOB.GE.1 )
685     $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
686         IF( IERR.EQ.-22 ) THEN
687*
688*            not enough real workspace
689*
690            INFO = -22
691         ELSE
692            IF( IJOB.EQ.1 .OR. IJOB.EQ.4 ) THEN
693               RCONDE( 1 ) = PL
694               RCONDE( 2 ) = PR
695            END IF
696            IF( IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
697               RCONDV( 1 ) = DIF( 1 )
698               RCONDV( 2 ) = DIF( 2 )
699            END IF
700            IF( IERR.EQ.1 )
701     $         INFO = N + 3
702         END IF
703*
704      END IF
705*
706*     Apply permutation to VSL and VSR
707*     (Workspace: none needed)
708*
709      IF( ILVSL )
710     $   CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
711     $                WORK( IRIGHT ), N, VSL, LDVSL, IERR )
712*
713      IF( ILVSR )
714     $   CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
715     $                WORK( IRIGHT ), N, VSR, LDVSR, IERR )
716*
717*     Check if unscaling would cause over/underflow, if so, rescale
718*     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of
719*     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I)
720*
721      IF( ILASCL ) THEN
722         DO 20 I = 1, N
723            IF( ALPHAI( I ).NE.ZERO ) THEN
724               IF( ( ALPHAR( I ) / SAFMAX ).GT.( ANRMTO / ANRM ) .OR.
725     $             ( SAFMIN / ALPHAR( I ) ).GT.( ANRM / ANRMTO ) ) THEN
726                  WORK( 1 ) = ABS( A( I, I ) / ALPHAR( I ) )
727                  BETA( I ) = BETA( I )*WORK( 1 )
728                  ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
729                  ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
730               ELSE IF( ( ALPHAI( I ) / SAFMAX ).GT.
731     $                  ( ANRMTO / ANRM ) .OR.
732     $                  ( SAFMIN / ALPHAI( I ) ).GT.( ANRM / ANRMTO ) )
733     $                   THEN
734                  WORK( 1 ) = ABS( A( I, I+1 ) / ALPHAI( I ) )
735                  BETA( I ) = BETA( I )*WORK( 1 )
736                  ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
737                  ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
738               END IF
739            END IF
740   20    CONTINUE
741      END IF
742*
743      IF( ILBSCL ) THEN
744         DO 30 I = 1, N
745            IF( ALPHAI( I ).NE.ZERO ) THEN
746               IF( ( BETA( I ) / SAFMAX ).GT.( BNRMTO / BNRM ) .OR.
747     $             ( SAFMIN / BETA( I ) ).GT.( BNRM / BNRMTO ) ) THEN
748                  WORK( 1 ) = ABS( B( I, I ) / BETA( I ) )
749                  BETA( I ) = BETA( I )*WORK( 1 )
750                  ALPHAR( I ) = ALPHAR( I )*WORK( 1 )
751                  ALPHAI( I ) = ALPHAI( I )*WORK( 1 )
752               END IF
753            END IF
754   30    CONTINUE
755      END IF
756*
757*     Undo scaling
758*
759      IF( ILASCL ) THEN
760         CALL DLASCL( 'H', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
761         CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
762         CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
763      END IF
764*
765      IF( ILBSCL ) THEN
766         CALL DLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
767         CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
768      END IF
769*
770      IF( WANTST ) THEN
771*
772*        Check if reordering is correct
773*
774         LASTSL = .TRUE.
775         LST2SL = .TRUE.
776         SDIM = 0
777         IP = 0
778         DO 50 I = 1, N
779            CURSL = SELCTG( ALPHAR( I ), ALPHAI( I ), BETA( I ) )
780            IF( ALPHAI( I ).EQ.ZERO ) THEN
781               IF( CURSL )
782     $            SDIM = SDIM + 1
783               IP = 0
784               IF( CURSL .AND. .NOT.LASTSL )
785     $            INFO = N + 2
786            ELSE
787               IF( IP.EQ.1 ) THEN
788*
789*                 Last eigenvalue of conjugate pair
790*
791                  CURSL = CURSL .OR. LASTSL
792                  LASTSL = CURSL
793                  IF( CURSL )
794     $               SDIM = SDIM + 2
795                  IP = -1
796                  IF( CURSL .AND. .NOT.LST2SL )
797     $               INFO = N + 2
798               ELSE
799*
800*                 First eigenvalue of conjugate pair
801*
802                  IP = 1
803               END IF
804            END IF
805            LST2SL = LASTSL
806            LASTSL = CURSL
807   50    CONTINUE
808*
809      END IF
810*
811   60 CONTINUE
812*
813      WORK( 1 ) = MAXWRK
814      IWORK( 1 ) = LIWMIN
815*
816      RETURN
817*
818*     End of DGGESX
819*
820      END
821