1*> \brief \b DGTRFS 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download DGTRFS + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtrfs.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtrfs.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtrfs.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, 22* IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, 23* INFO ) 24* 25* .. Scalar Arguments .. 26* CHARACTER TRANS 27* INTEGER INFO, LDB, LDX, N, NRHS 28* .. 29* .. Array Arguments .. 30* INTEGER IPIV( * ), IWORK( * ) 31* DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ), 32* $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ), 33* $ FERR( * ), WORK( * ), X( LDX, * ) 34* .. 35* 36* 37*> \par Purpose: 38* ============= 39*> 40*> \verbatim 41*> 42*> DGTRFS improves the computed solution to a system of linear 43*> equations when the coefficient matrix is tridiagonal, and provides 44*> error bounds and backward error estimates for the solution. 45*> \endverbatim 46* 47* Arguments: 48* ========== 49* 50*> \param[in] TRANS 51*> \verbatim 52*> TRANS is CHARACTER*1 53*> Specifies the form of the system of equations: 54*> = 'N': A * X = B (No transpose) 55*> = 'T': A**T * X = B (Transpose) 56*> = 'C': A**H * X = B (Conjugate transpose = Transpose) 57*> \endverbatim 58*> 59*> \param[in] N 60*> \verbatim 61*> N is INTEGER 62*> The order of the matrix A. N >= 0. 63*> \endverbatim 64*> 65*> \param[in] NRHS 66*> \verbatim 67*> NRHS is INTEGER 68*> The number of right hand sides, i.e., the number of columns 69*> of the matrix B. NRHS >= 0. 70*> \endverbatim 71*> 72*> \param[in] DL 73*> \verbatim 74*> DL is DOUBLE PRECISION array, dimension (N-1) 75*> The (n-1) subdiagonal elements of A. 76*> \endverbatim 77*> 78*> \param[in] D 79*> \verbatim 80*> D is DOUBLE PRECISION array, dimension (N) 81*> The diagonal elements of A. 82*> \endverbatim 83*> 84*> \param[in] DU 85*> \verbatim 86*> DU is DOUBLE PRECISION array, dimension (N-1) 87*> The (n-1) superdiagonal elements of A. 88*> \endverbatim 89*> 90*> \param[in] DLF 91*> \verbatim 92*> DLF is DOUBLE PRECISION array, dimension (N-1) 93*> The (n-1) multipliers that define the matrix L from the 94*> LU factorization of A as computed by DGTTRF. 95*> \endverbatim 96*> 97*> \param[in] DF 98*> \verbatim 99*> DF is DOUBLE PRECISION array, dimension (N) 100*> The n diagonal elements of the upper triangular matrix U from 101*> the LU factorization of A. 102*> \endverbatim 103*> 104*> \param[in] DUF 105*> \verbatim 106*> DUF is DOUBLE PRECISION array, dimension (N-1) 107*> The (n-1) elements of the first superdiagonal of U. 108*> \endverbatim 109*> 110*> \param[in] DU2 111*> \verbatim 112*> DU2 is DOUBLE PRECISION array, dimension (N-2) 113*> The (n-2) elements of the second superdiagonal of U. 114*> \endverbatim 115*> 116*> \param[in] IPIV 117*> \verbatim 118*> IPIV is INTEGER array, dimension (N) 119*> The pivot indices; for 1 <= i <= n, row i of the matrix was 120*> interchanged with row IPIV(i). IPIV(i) will always be either 121*> i or i+1; IPIV(i) = i indicates a row interchange was not 122*> required. 123*> \endverbatim 124*> 125*> \param[in] B 126*> \verbatim 127*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) 128*> The right hand side matrix B. 129*> \endverbatim 130*> 131*> \param[in] LDB 132*> \verbatim 133*> LDB is INTEGER 134*> The leading dimension of the array B. LDB >= max(1,N). 135*> \endverbatim 136*> 137*> \param[in,out] X 138*> \verbatim 139*> X is DOUBLE PRECISION array, dimension (LDX,NRHS) 140*> On entry, the solution matrix X, as computed by DGTTRS. 141*> On exit, the improved solution matrix X. 142*> \endverbatim 143*> 144*> \param[in] LDX 145*> \verbatim 146*> LDX is INTEGER 147*> The leading dimension of the array X. LDX >= max(1,N). 148*> \endverbatim 149*> 150*> \param[out] FERR 151*> \verbatim 152*> FERR is DOUBLE PRECISION array, dimension (NRHS) 153*> The estimated forward error bound for each solution vector 154*> X(j) (the j-th column of the solution matrix X). 155*> If XTRUE is the true solution corresponding to X(j), FERR(j) 156*> is an estimated upper bound for the magnitude of the largest 157*> element in (X(j) - XTRUE) divided by the magnitude of the 158*> largest element in X(j). The estimate is as reliable as 159*> the estimate for RCOND, and is almost always a slight 160*> overestimate of the true error. 161*> \endverbatim 162*> 163*> \param[out] BERR 164*> \verbatim 165*> BERR is DOUBLE PRECISION array, dimension (NRHS) 166*> The componentwise relative backward error of each solution 167*> vector X(j) (i.e., the smallest relative change in 168*> any element of A or B that makes X(j) an exact solution). 169*> \endverbatim 170*> 171*> \param[out] WORK 172*> \verbatim 173*> WORK is DOUBLE PRECISION array, dimension (3*N) 174*> \endverbatim 175*> 176*> \param[out] IWORK 177*> \verbatim 178*> IWORK is INTEGER array, dimension (N) 179*> \endverbatim 180*> 181*> \param[out] INFO 182*> \verbatim 183*> INFO is INTEGER 184*> = 0: successful exit 185*> < 0: if INFO = -i, the i-th argument had an illegal value 186*> \endverbatim 187* 188*> \par Internal Parameters: 189* ========================= 190*> 191*> \verbatim 192*> ITMAX is the maximum number of steps of iterative refinement. 193*> \endverbatim 194* 195* Authors: 196* ======== 197* 198*> \author Univ. of Tennessee 199*> \author Univ. of California Berkeley 200*> \author Univ. of Colorado Denver 201*> \author NAG Ltd. 202* 203*> \date September 2012 204* 205*> \ingroup doubleGTcomputational 206* 207* ===================================================================== 208 SUBROUTINE DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, 209 $ IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, 210 $ INFO ) 211* 212* -- LAPACK computational routine (version 3.4.2) -- 213* -- LAPACK is a software package provided by Univ. of Tennessee, -- 214* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 215* September 2012 216* 217* .. Scalar Arguments .. 218 CHARACTER TRANS 219 INTEGER INFO, LDB, LDX, N, NRHS 220* .. 221* .. Array Arguments .. 222 INTEGER IPIV( * ), IWORK( * ) 223 DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), DF( * ), 224 $ DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ), 225 $ FERR( * ), WORK( * ), X( LDX, * ) 226* .. 227* 228* ===================================================================== 229* 230* .. Parameters .. 231 INTEGER ITMAX 232 PARAMETER ( ITMAX = 5 ) 233 DOUBLE PRECISION ZERO, ONE 234 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 235 DOUBLE PRECISION TWO 236 PARAMETER ( TWO = 2.0D+0 ) 237 DOUBLE PRECISION THREE 238 PARAMETER ( THREE = 3.0D+0 ) 239* .. 240* .. Local Scalars .. 241 LOGICAL NOTRAN 242 CHARACTER TRANSN, TRANST 243 INTEGER COUNT, I, J, KASE, NZ 244 DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN 245* .. 246* .. Local Arrays .. 247 INTEGER ISAVE( 3 ) 248* .. 249* .. External Subroutines .. 250 EXTERNAL DAXPY, DCOPY, DGTTRS, DLACN2, DLAGTM, XERBLA 251* .. 252* .. Intrinsic Functions .. 253 INTRINSIC ABS, MAX 254* .. 255* .. External Functions .. 256 LOGICAL LSAME 257 DOUBLE PRECISION DLAMCH 258 EXTERNAL LSAME, DLAMCH 259* .. 260* .. Executable Statements .. 261* 262* Test the input parameters. 263* 264 INFO = 0 265 NOTRAN = LSAME( TRANS, 'N' ) 266 IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. 267 $ LSAME( TRANS, 'C' ) ) THEN 268 INFO = -1 269 ELSE IF( N.LT.0 ) THEN 270 INFO = -2 271 ELSE IF( NRHS.LT.0 ) THEN 272 INFO = -3 273 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN 274 INFO = -13 275 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN 276 INFO = -15 277 END IF 278 IF( INFO.NE.0 ) THEN 279 CALL XERBLA( 'DGTRFS', -INFO ) 280 RETURN 281 END IF 282* 283* Quick return if possible 284* 285 IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN 286 DO 10 J = 1, NRHS 287 FERR( J ) = ZERO 288 BERR( J ) = ZERO 289 10 CONTINUE 290 RETURN 291 END IF 292* 293 IF( NOTRAN ) THEN 294 TRANSN = 'N' 295 TRANST = 'T' 296 ELSE 297 TRANSN = 'T' 298 TRANST = 'N' 299 END IF 300* 301* NZ = maximum number of nonzero elements in each row of A, plus 1 302* 303 NZ = 4 304 EPS = DLAMCH( 'Epsilon' ) 305 SAFMIN = DLAMCH( 'Safe minimum' ) 306 SAFE1 = NZ*SAFMIN 307 SAFE2 = SAFE1 / EPS 308* 309* Do for each right hand side 310* 311 DO 110 J = 1, NRHS 312* 313 COUNT = 1 314 LSTRES = THREE 315 20 CONTINUE 316* 317* Loop until stopping criterion is satisfied. 318* 319* Compute residual R = B - op(A) * X, 320* where op(A) = A, A**T, or A**H, depending on TRANS. 321* 322 CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 ) 323 CALL DLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE, 324 $ WORK( N+1 ), N ) 325* 326* Compute abs(op(A))*abs(x) + abs(b) for use in the backward 327* error bound. 328* 329 IF( NOTRAN ) THEN 330 IF( N.EQ.1 ) THEN 331 WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) 332 ELSE 333 WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) + 334 $ ABS( DU( 1 )*X( 2, J ) ) 335 DO 30 I = 2, N - 1 336 WORK( I ) = ABS( B( I, J ) ) + 337 $ ABS( DL( I-1 )*X( I-1, J ) ) + 338 $ ABS( D( I )*X( I, J ) ) + 339 $ ABS( DU( I )*X( I+1, J ) ) 340 30 CONTINUE 341 WORK( N ) = ABS( B( N, J ) ) + 342 $ ABS( DL( N-1 )*X( N-1, J ) ) + 343 $ ABS( D( N )*X( N, J ) ) 344 END IF 345 ELSE 346 IF( N.EQ.1 ) THEN 347 WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) 348 ELSE 349 WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) + 350 $ ABS( DL( 1 )*X( 2, J ) ) 351 DO 40 I = 2, N - 1 352 WORK( I ) = ABS( B( I, J ) ) + 353 $ ABS( DU( I-1 )*X( I-1, J ) ) + 354 $ ABS( D( I )*X( I, J ) ) + 355 $ ABS( DL( I )*X( I+1, J ) ) 356 40 CONTINUE 357 WORK( N ) = ABS( B( N, J ) ) + 358 $ ABS( DU( N-1 )*X( N-1, J ) ) + 359 $ ABS( D( N )*X( N, J ) ) 360 END IF 361 END IF 362* 363* Compute componentwise relative backward error from formula 364* 365* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) 366* 367* where abs(Z) is the componentwise absolute value of the matrix 368* or vector Z. If the i-th component of the denominator is less 369* than SAFE2, then SAFE1 is added to the i-th components of the 370* numerator and denominator before dividing. 371* 372 S = ZERO 373 DO 50 I = 1, N 374 IF( WORK( I ).GT.SAFE2 ) THEN 375 S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) ) 376 ELSE 377 S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) / 378 $ ( WORK( I )+SAFE1 ) ) 379 END IF 380 50 CONTINUE 381 BERR( J ) = S 382* 383* Test stopping criterion. Continue iterating if 384* 1) The residual BERR(J) is larger than machine epsilon, and 385* 2) BERR(J) decreased by at least a factor of 2 during the 386* last iteration, and 387* 3) At most ITMAX iterations tried. 388* 389 IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND. 390 $ COUNT.LE.ITMAX ) THEN 391* 392* Update solution and try again. 393* 394 CALL DGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV, 395 $ WORK( N+1 ), N, INFO ) 396 CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 ) 397 LSTRES = BERR( J ) 398 COUNT = COUNT + 1 399 GO TO 20 400 END IF 401* 402* Bound error from formula 403* 404* norm(X - XTRUE) / norm(X) .le. FERR = 405* norm( abs(inv(op(A)))* 406* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) 407* 408* where 409* norm(Z) is the magnitude of the largest component of Z 410* inv(op(A)) is the inverse of op(A) 411* abs(Z) is the componentwise absolute value of the matrix or 412* vector Z 413* NZ is the maximum number of nonzeros in any row of A, plus 1 414* EPS is machine epsilon 415* 416* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) 417* is incremented by SAFE1 if the i-th component of 418* abs(op(A))*abs(X) + abs(B) is less than SAFE2. 419* 420* Use DLACN2 to estimate the infinity-norm of the matrix 421* inv(op(A)) * diag(W), 422* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) 423* 424 DO 60 I = 1, N 425 IF( WORK( I ).GT.SAFE2 ) THEN 426 WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) 427 ELSE 428 WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1 429 END IF 430 60 CONTINUE 431* 432 KASE = 0 433 70 CONTINUE 434 CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ), 435 $ KASE, ISAVE ) 436 IF( KASE.NE.0 ) THEN 437 IF( KASE.EQ.1 ) THEN 438* 439* Multiply by diag(W)*inv(op(A)**T). 440* 441 CALL DGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV, 442 $ WORK( N+1 ), N, INFO ) 443 DO 80 I = 1, N 444 WORK( N+I ) = WORK( I )*WORK( N+I ) 445 80 CONTINUE 446 ELSE 447* 448* Multiply by inv(op(A))*diag(W). 449* 450 DO 90 I = 1, N 451 WORK( N+I ) = WORK( I )*WORK( N+I ) 452 90 CONTINUE 453 CALL DGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV, 454 $ WORK( N+1 ), N, INFO ) 455 END IF 456 GO TO 70 457 END IF 458* 459* Normalize error. 460* 461 LSTRES = ZERO 462 DO 100 I = 1, N 463 LSTRES = MAX( LSTRES, ABS( X( I, J ) ) ) 464 100 CONTINUE 465 IF( LSTRES.NE.ZERO ) 466 $ FERR( J ) = FERR( J ) / LSTRES 467* 468 110 CONTINUE 469* 470 RETURN 471* 472* End of DGTRFS 473* 474 END 475