1*> \brief \b DLATPS solves a triangular system of equations with the matrix held in packed storage.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DLATPS + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatps.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatps.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatps.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
22*                          CNORM, INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          DIAG, NORMIN, TRANS, UPLO
26*       INTEGER            INFO, N
27*       DOUBLE PRECISION   SCALE
28*       ..
29*       .. Array Arguments ..
30*       DOUBLE PRECISION   AP( * ), CNORM( * ), X( * )
31*       ..
32*
33*
34*> \par Purpose:
35*  =============
36*>
37*> \verbatim
38*>
39*> DLATPS solves one of the triangular systems
40*>
41*>    A *x = s*b  or  A**T*x = s*b
42*>
43*> with scaling to prevent overflow, where A is an upper or lower
44*> triangular matrix stored in packed form.  Here A**T denotes the
45*> transpose of A, x and b are n-element vectors, and s is a scaling
46*> factor, usually less than or equal to 1, chosen so that the
47*> components of x will be less than the overflow threshold.  If the
48*> unscaled problem will not cause overflow, the Level 2 BLAS routine
49*> DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
50*> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
51*> \endverbatim
52*
53*  Arguments:
54*  ==========
55*
56*> \param[in] UPLO
57*> \verbatim
58*>          UPLO is CHARACTER*1
59*>          Specifies whether the matrix A is upper or lower triangular.
60*>          = 'U':  Upper triangular
61*>          = 'L':  Lower triangular
62*> \endverbatim
63*>
64*> \param[in] TRANS
65*> \verbatim
66*>          TRANS is CHARACTER*1
67*>          Specifies the operation applied to A.
68*>          = 'N':  Solve A * x = s*b  (No transpose)
69*>          = 'T':  Solve A**T* x = s*b  (Transpose)
70*>          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose)
71*> \endverbatim
72*>
73*> \param[in] DIAG
74*> \verbatim
75*>          DIAG is CHARACTER*1
76*>          Specifies whether or not the matrix A is unit triangular.
77*>          = 'N':  Non-unit triangular
78*>          = 'U':  Unit triangular
79*> \endverbatim
80*>
81*> \param[in] NORMIN
82*> \verbatim
83*>          NORMIN is CHARACTER*1
84*>          Specifies whether CNORM has been set or not.
85*>          = 'Y':  CNORM contains the column norms on entry
86*>          = 'N':  CNORM is not set on entry.  On exit, the norms will
87*>                  be computed and stored in CNORM.
88*> \endverbatim
89*>
90*> \param[in] N
91*> \verbatim
92*>          N is INTEGER
93*>          The order of the matrix A.  N >= 0.
94*> \endverbatim
95*>
96*> \param[in] AP
97*> \verbatim
98*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
99*>          The upper or lower triangular matrix A, packed columnwise in
100*>          a linear array.  The j-th column of A is stored in the array
101*>          AP as follows:
102*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
103*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
104*> \endverbatim
105*>
106*> \param[in,out] X
107*> \verbatim
108*>          X is DOUBLE PRECISION array, dimension (N)
109*>          On entry, the right hand side b of the triangular system.
110*>          On exit, X is overwritten by the solution vector x.
111*> \endverbatim
112*>
113*> \param[out] SCALE
114*> \verbatim
115*>          SCALE is DOUBLE PRECISION
116*>          The scaling factor s for the triangular system
117*>             A * x = s*b  or  A**T* x = s*b.
118*>          If SCALE = 0, the matrix A is singular or badly scaled, and
119*>          the vector x is an exact or approximate solution to A*x = 0.
120*> \endverbatim
121*>
122*> \param[in,out] CNORM
123*> \verbatim
124*>          CNORM is DOUBLE PRECISION array, dimension (N)
125*>
126*>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
127*>          contains the norm of the off-diagonal part of the j-th column
128*>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
129*>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
130*>          must be greater than or equal to the 1-norm.
131*>
132*>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
133*>          returns the 1-norm of the offdiagonal part of the j-th column
134*>          of A.
135*> \endverbatim
136*>
137*> \param[out] INFO
138*> \verbatim
139*>          INFO is INTEGER
140*>          = 0:  successful exit
141*>          < 0:  if INFO = -k, the k-th argument had an illegal value
142*> \endverbatim
143*
144*  Authors:
145*  ========
146*
147*> \author Univ. of Tennessee
148*> \author Univ. of California Berkeley
149*> \author Univ. of Colorado Denver
150*> \author NAG Ltd.
151*
152*> \date September 2012
153*
154*> \ingroup doubleOTHERauxiliary
155*
156*> \par Further Details:
157*  =====================
158*>
159*> \verbatim
160*>
161*>  A rough bound on x is computed; if that is less than overflow, DTPSV
162*>  is called, otherwise, specific code is used which checks for possible
163*>  overflow or divide-by-zero at every operation.
164*>
165*>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
166*>  if A is lower triangular is
167*>
168*>       x[1:n] := b[1:n]
169*>       for j = 1, ..., n
170*>            x(j) := x(j) / A(j,j)
171*>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
172*>       end
173*>
174*>  Define bounds on the components of x after j iterations of the loop:
175*>     M(j) = bound on x[1:j]
176*>     G(j) = bound on x[j+1:n]
177*>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
178*>
179*>  Then for iteration j+1 we have
180*>     M(j+1) <= G(j) / | A(j+1,j+1) |
181*>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
182*>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
183*>
184*>  where CNORM(j+1) is greater than or equal to the infinity-norm of
185*>  column j+1 of A, not counting the diagonal.  Hence
186*>
187*>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
188*>                  1<=i<=j
189*>  and
190*>
191*>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
192*>                                   1<=i< j
193*>
194*>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
195*>  reciprocal of the largest M(j), j=1,..,n, is larger than
196*>  max(underflow, 1/overflow).
197*>
198*>  The bound on x(j) is also used to determine when a step in the
199*>  columnwise method can be performed without fear of overflow.  If
200*>  the computed bound is greater than a large constant, x is scaled to
201*>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
202*>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
203*>
204*>  Similarly, a row-wise scheme is used to solve A**T*x = b.  The basic
205*>  algorithm for A upper triangular is
206*>
207*>       for j = 1, ..., n
208*>            x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
209*>       end
210*>
211*>  We simultaneously compute two bounds
212*>       G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
213*>       M(j) = bound on x(i), 1<=i<=j
214*>
215*>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
216*>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
217*>  Then the bound on x(j) is
218*>
219*>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
220*>
221*>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
222*>                      1<=i<=j
223*>
224*>  and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
225*>  than max(underflow, 1/overflow).
226*> \endverbatim
227*>
228*  =====================================================================
229      SUBROUTINE DLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
230     $                   CNORM, INFO )
231*
232*  -- LAPACK auxiliary routine (version 3.4.2) --
233*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
234*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
235*     September 2012
236*
237*     .. Scalar Arguments ..
238      CHARACTER          DIAG, NORMIN, TRANS, UPLO
239      INTEGER            INFO, N
240      DOUBLE PRECISION   SCALE
241*     ..
242*     .. Array Arguments ..
243      DOUBLE PRECISION   AP( * ), CNORM( * ), X( * )
244*     ..
245*
246*  =====================================================================
247*
248*     .. Parameters ..
249      DOUBLE PRECISION   ZERO, HALF, ONE
250      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
251*     ..
252*     .. Local Scalars ..
253      LOGICAL            NOTRAN, NOUNIT, UPPER
254      INTEGER            I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
255      DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
256     $                   TMAX, TSCAL, USCAL, XBND, XJ, XMAX
257*     ..
258*     .. External Functions ..
259      LOGICAL            LSAME
260      INTEGER            IDAMAX
261      DOUBLE PRECISION   DASUM, DDOT, DLAMCH
262      EXTERNAL           LSAME, IDAMAX, DASUM, DDOT, DLAMCH
263*     ..
264*     .. External Subroutines ..
265      EXTERNAL           DAXPY, DSCAL, DTPSV, XERBLA
266*     ..
267*     .. Intrinsic Functions ..
268      INTRINSIC          ABS, MAX, MIN
269*     ..
270*     .. Executable Statements ..
271*
272      INFO = 0
273      UPPER = LSAME( UPLO, 'U' )
274      NOTRAN = LSAME( TRANS, 'N' )
275      NOUNIT = LSAME( DIAG, 'N' )
276*
277*     Test the input parameters.
278*
279      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
280         INFO = -1
281      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
282     $         LSAME( TRANS, 'C' ) ) THEN
283         INFO = -2
284      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
285         INFO = -3
286      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
287     $         LSAME( NORMIN, 'N' ) ) THEN
288         INFO = -4
289      ELSE IF( N.LT.0 ) THEN
290         INFO = -5
291      END IF
292      IF( INFO.NE.0 ) THEN
293         CALL XERBLA( 'DLATPS', -INFO )
294         RETURN
295      END IF
296*
297*     Quick return if possible
298*
299      IF( N.EQ.0 )
300     $   RETURN
301*
302*     Determine machine dependent parameters to control overflow.
303*
304      SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
305      BIGNUM = ONE / SMLNUM
306      SCALE = ONE
307*
308      IF( LSAME( NORMIN, 'N' ) ) THEN
309*
310*        Compute the 1-norm of each column, not including the diagonal.
311*
312         IF( UPPER ) THEN
313*
314*           A is upper triangular.
315*
316            IP = 1
317            DO 10 J = 1, N
318               CNORM( J ) = DASUM( J-1, AP( IP ), 1 )
319               IP = IP + J
320   10       CONTINUE
321         ELSE
322*
323*           A is lower triangular.
324*
325            IP = 1
326            DO 20 J = 1, N - 1
327               CNORM( J ) = DASUM( N-J, AP( IP+1 ), 1 )
328               IP = IP + N - J + 1
329   20       CONTINUE
330            CNORM( N ) = ZERO
331         END IF
332      END IF
333*
334*     Scale the column norms by TSCAL if the maximum element in CNORM is
335*     greater than BIGNUM.
336*
337      IMAX = IDAMAX( N, CNORM, 1 )
338      TMAX = CNORM( IMAX )
339      IF( TMAX.LE.BIGNUM ) THEN
340         TSCAL = ONE
341      ELSE
342         TSCAL = ONE / ( SMLNUM*TMAX )
343         CALL DSCAL( N, TSCAL, CNORM, 1 )
344      END IF
345*
346*     Compute a bound on the computed solution vector to see if the
347*     Level 2 BLAS routine DTPSV can be used.
348*
349      J = IDAMAX( N, X, 1 )
350      XMAX = ABS( X( J ) )
351      XBND = XMAX
352      IF( NOTRAN ) THEN
353*
354*        Compute the growth in A * x = b.
355*
356         IF( UPPER ) THEN
357            JFIRST = N
358            JLAST = 1
359            JINC = -1
360         ELSE
361            JFIRST = 1
362            JLAST = N
363            JINC = 1
364         END IF
365*
366         IF( TSCAL.NE.ONE ) THEN
367            GROW = ZERO
368            GO TO 50
369         END IF
370*
371         IF( NOUNIT ) THEN
372*
373*           A is non-unit triangular.
374*
375*           Compute GROW = 1/G(j) and XBND = 1/M(j).
376*           Initially, G(0) = max{x(i), i=1,...,n}.
377*
378            GROW = ONE / MAX( XBND, SMLNUM )
379            XBND = GROW
380            IP = JFIRST*( JFIRST+1 ) / 2
381            JLEN = N
382            DO 30 J = JFIRST, JLAST, JINC
383*
384*              Exit the loop if the growth factor is too small.
385*
386               IF( GROW.LE.SMLNUM )
387     $            GO TO 50
388*
389*              M(j) = G(j-1) / abs(A(j,j))
390*
391               TJJ = ABS( AP( IP ) )
392               XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
393               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
394*
395*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
396*
397                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
398               ELSE
399*
400*                 G(j) could overflow, set GROW to 0.
401*
402                  GROW = ZERO
403               END IF
404               IP = IP + JINC*JLEN
405               JLEN = JLEN - 1
406   30       CONTINUE
407            GROW = XBND
408         ELSE
409*
410*           A is unit triangular.
411*
412*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
413*
414            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
415            DO 40 J = JFIRST, JLAST, JINC
416*
417*              Exit the loop if the growth factor is too small.
418*
419               IF( GROW.LE.SMLNUM )
420     $            GO TO 50
421*
422*              G(j) = G(j-1)*( 1 + CNORM(j) )
423*
424               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
425   40       CONTINUE
426         END IF
427   50    CONTINUE
428*
429      ELSE
430*
431*        Compute the growth in A**T * x = b.
432*
433         IF( UPPER ) THEN
434            JFIRST = 1
435            JLAST = N
436            JINC = 1
437         ELSE
438            JFIRST = N
439            JLAST = 1
440            JINC = -1
441         END IF
442*
443         IF( TSCAL.NE.ONE ) THEN
444            GROW = ZERO
445            GO TO 80
446         END IF
447*
448         IF( NOUNIT ) THEN
449*
450*           A is non-unit triangular.
451*
452*           Compute GROW = 1/G(j) and XBND = 1/M(j).
453*           Initially, M(0) = max{x(i), i=1,...,n}.
454*
455            GROW = ONE / MAX( XBND, SMLNUM )
456            XBND = GROW
457            IP = JFIRST*( JFIRST+1 ) / 2
458            JLEN = 1
459            DO 60 J = JFIRST, JLAST, JINC
460*
461*              Exit the loop if the growth factor is too small.
462*
463               IF( GROW.LE.SMLNUM )
464     $            GO TO 80
465*
466*              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
467*
468               XJ = ONE + CNORM( J )
469               GROW = MIN( GROW, XBND / XJ )
470*
471*              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
472*
473               TJJ = ABS( AP( IP ) )
474               IF( XJ.GT.TJJ )
475     $            XBND = XBND*( TJJ / XJ )
476               JLEN = JLEN + 1
477               IP = IP + JINC*JLEN
478   60       CONTINUE
479            GROW = MIN( GROW, XBND )
480         ELSE
481*
482*           A is unit triangular.
483*
484*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
485*
486            GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
487            DO 70 J = JFIRST, JLAST, JINC
488*
489*              Exit the loop if the growth factor is too small.
490*
491               IF( GROW.LE.SMLNUM )
492     $            GO TO 80
493*
494*              G(j) = ( 1 + CNORM(j) )*G(j-1)
495*
496               XJ = ONE + CNORM( J )
497               GROW = GROW / XJ
498   70       CONTINUE
499         END IF
500   80    CONTINUE
501      END IF
502*
503      IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
504*
505*        Use the Level 2 BLAS solve if the reciprocal of the bound on
506*        elements of X is not too small.
507*
508         CALL DTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
509      ELSE
510*
511*        Use a Level 1 BLAS solve, scaling intermediate results.
512*
513         IF( XMAX.GT.BIGNUM ) THEN
514*
515*           Scale X so that its components are less than or equal to
516*           BIGNUM in absolute value.
517*
518            SCALE = BIGNUM / XMAX
519            CALL DSCAL( N, SCALE, X, 1 )
520            XMAX = BIGNUM
521         END IF
522*
523         IF( NOTRAN ) THEN
524*
525*           Solve A * x = b
526*
527            IP = JFIRST*( JFIRST+1 ) / 2
528            DO 110 J = JFIRST, JLAST, JINC
529*
530*              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
531*
532               XJ = ABS( X( J ) )
533               IF( NOUNIT ) THEN
534                  TJJS = AP( IP )*TSCAL
535               ELSE
536                  TJJS = TSCAL
537                  IF( TSCAL.EQ.ONE )
538     $               GO TO 100
539               END IF
540               TJJ = ABS( TJJS )
541               IF( TJJ.GT.SMLNUM ) THEN
542*
543*                    abs(A(j,j)) > SMLNUM:
544*
545                  IF( TJJ.LT.ONE ) THEN
546                     IF( XJ.GT.TJJ*BIGNUM ) THEN
547*
548*                          Scale x by 1/b(j).
549*
550                        REC = ONE / XJ
551                        CALL DSCAL( N, REC, X, 1 )
552                        SCALE = SCALE*REC
553                        XMAX = XMAX*REC
554                     END IF
555                  END IF
556                  X( J ) = X( J ) / TJJS
557                  XJ = ABS( X( J ) )
558               ELSE IF( TJJ.GT.ZERO ) THEN
559*
560*                    0 < abs(A(j,j)) <= SMLNUM:
561*
562                  IF( XJ.GT.TJJ*BIGNUM ) THEN
563*
564*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
565*                       to avoid overflow when dividing by A(j,j).
566*
567                     REC = ( TJJ*BIGNUM ) / XJ
568                     IF( CNORM( J ).GT.ONE ) THEN
569*
570*                          Scale by 1/CNORM(j) to avoid overflow when
571*                          multiplying x(j) times column j.
572*
573                        REC = REC / CNORM( J )
574                     END IF
575                     CALL DSCAL( N, REC, X, 1 )
576                     SCALE = SCALE*REC
577                     XMAX = XMAX*REC
578                  END IF
579                  X( J ) = X( J ) / TJJS
580                  XJ = ABS( X( J ) )
581               ELSE
582*
583*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
584*                    scale = 0, and compute a solution to A*x = 0.
585*
586                  DO 90 I = 1, N
587                     X( I ) = ZERO
588   90             CONTINUE
589                  X( J ) = ONE
590                  XJ = ONE
591                  SCALE = ZERO
592                  XMAX = ZERO
593               END IF
594  100          CONTINUE
595*
596*              Scale x if necessary to avoid overflow when adding a
597*              multiple of column j of A.
598*
599               IF( XJ.GT.ONE ) THEN
600                  REC = ONE / XJ
601                  IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
602*
603*                    Scale x by 1/(2*abs(x(j))).
604*
605                     REC = REC*HALF
606                     CALL DSCAL( N, REC, X, 1 )
607                     SCALE = SCALE*REC
608                  END IF
609               ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
610*
611*                 Scale x by 1/2.
612*
613                  CALL DSCAL( N, HALF, X, 1 )
614                  SCALE = SCALE*HALF
615               END IF
616*
617               IF( UPPER ) THEN
618                  IF( J.GT.1 ) THEN
619*
620*                    Compute the update
621*                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
622*
623                     CALL DAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
624     $                           1 )
625                     I = IDAMAX( J-1, X, 1 )
626                     XMAX = ABS( X( I ) )
627                  END IF
628                  IP = IP - J
629               ELSE
630                  IF( J.LT.N ) THEN
631*
632*                    Compute the update
633*                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
634*
635                     CALL DAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
636     $                           X( J+1 ), 1 )
637                     I = J + IDAMAX( N-J, X( J+1 ), 1 )
638                     XMAX = ABS( X( I ) )
639                  END IF
640                  IP = IP + N - J + 1
641               END IF
642  110       CONTINUE
643*
644         ELSE
645*
646*           Solve A**T * x = b
647*
648            IP = JFIRST*( JFIRST+1 ) / 2
649            JLEN = 1
650            DO 160 J = JFIRST, JLAST, JINC
651*
652*              Compute x(j) = b(j) - sum A(k,j)*x(k).
653*                                    k<>j
654*
655               XJ = ABS( X( J ) )
656               USCAL = TSCAL
657               REC = ONE / MAX( XMAX, ONE )
658               IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
659*
660*                 If x(j) could overflow, scale x by 1/(2*XMAX).
661*
662                  REC = REC*HALF
663                  IF( NOUNIT ) THEN
664                     TJJS = AP( IP )*TSCAL
665                  ELSE
666                     TJJS = TSCAL
667                  END IF
668                  TJJ = ABS( TJJS )
669                  IF( TJJ.GT.ONE ) THEN
670*
671*                       Divide by A(j,j) when scaling x if A(j,j) > 1.
672*
673                     REC = MIN( ONE, REC*TJJ )
674                     USCAL = USCAL / TJJS
675                  END IF
676                  IF( REC.LT.ONE ) THEN
677                     CALL DSCAL( N, REC, X, 1 )
678                     SCALE = SCALE*REC
679                     XMAX = XMAX*REC
680                  END IF
681               END IF
682*
683               SUMJ = ZERO
684               IF( USCAL.EQ.ONE ) THEN
685*
686*                 If the scaling needed for A in the dot product is 1,
687*                 call DDOT to perform the dot product.
688*
689                  IF( UPPER ) THEN
690                     SUMJ = DDOT( J-1, AP( IP-J+1 ), 1, X, 1 )
691                  ELSE IF( J.LT.N ) THEN
692                     SUMJ = DDOT( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
693                  END IF
694               ELSE
695*
696*                 Otherwise, use in-line code for the dot product.
697*
698                  IF( UPPER ) THEN
699                     DO 120 I = 1, J - 1
700                        SUMJ = SUMJ + ( AP( IP-J+I )*USCAL )*X( I )
701  120                CONTINUE
702                  ELSE IF( J.LT.N ) THEN
703                     DO 130 I = 1, N - J
704                        SUMJ = SUMJ + ( AP( IP+I )*USCAL )*X( J+I )
705  130                CONTINUE
706                  END IF
707               END IF
708*
709               IF( USCAL.EQ.TSCAL ) THEN
710*
711*                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
712*                 was not used to scale the dotproduct.
713*
714                  X( J ) = X( J ) - SUMJ
715                  XJ = ABS( X( J ) )
716                  IF( NOUNIT ) THEN
717*
718*                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
719*
720                     TJJS = AP( IP )*TSCAL
721                  ELSE
722                     TJJS = TSCAL
723                     IF( TSCAL.EQ.ONE )
724     $                  GO TO 150
725                  END IF
726                  TJJ = ABS( TJJS )
727                  IF( TJJ.GT.SMLNUM ) THEN
728*
729*                       abs(A(j,j)) > SMLNUM:
730*
731                     IF( TJJ.LT.ONE ) THEN
732                        IF( XJ.GT.TJJ*BIGNUM ) THEN
733*
734*                             Scale X by 1/abs(x(j)).
735*
736                           REC = ONE / XJ
737                           CALL DSCAL( N, REC, X, 1 )
738                           SCALE = SCALE*REC
739                           XMAX = XMAX*REC
740                        END IF
741                     END IF
742                     X( J ) = X( J ) / TJJS
743                  ELSE IF( TJJ.GT.ZERO ) THEN
744*
745*                       0 < abs(A(j,j)) <= SMLNUM:
746*
747                     IF( XJ.GT.TJJ*BIGNUM ) THEN
748*
749*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
750*
751                        REC = ( TJJ*BIGNUM ) / XJ
752                        CALL DSCAL( N, REC, X, 1 )
753                        SCALE = SCALE*REC
754                        XMAX = XMAX*REC
755                     END IF
756                     X( J ) = X( J ) / TJJS
757                  ELSE
758*
759*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
760*                       scale = 0, and compute a solution to A**T*x = 0.
761*
762                     DO 140 I = 1, N
763                        X( I ) = ZERO
764  140                CONTINUE
765                     X( J ) = ONE
766                     SCALE = ZERO
767                     XMAX = ZERO
768                  END IF
769  150             CONTINUE
770               ELSE
771*
772*                 Compute x(j) := x(j) / A(j,j)  - sumj if the dot
773*                 product has already been divided by 1/A(j,j).
774*
775                  X( J ) = X( J ) / TJJS - SUMJ
776               END IF
777               XMAX = MAX( XMAX, ABS( X( J ) ) )
778               JLEN = JLEN + 1
779               IP = IP + JINC*JLEN
780  160       CONTINUE
781         END IF
782         SCALE = SCALE / TSCAL
783      END IF
784*
785*     Scale the column norms by 1/TSCAL for return.
786*
787      IF( TSCAL.NE.ONE ) THEN
788         CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
789      END IF
790*
791      RETURN
792*
793*     End of DLATPS
794*
795      END
796