1*> \brief <b> DSBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b> 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download DSBEVX + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevx.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevx.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevx.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, 22* VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, 23* IFAIL, INFO ) 24* 25* .. Scalar Arguments .. 26* CHARACTER JOBZ, RANGE, UPLO 27* INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N 28* DOUBLE PRECISION ABSTOL, VL, VU 29* .. 30* .. Array Arguments .. 31* INTEGER IFAIL( * ), IWORK( * ) 32* DOUBLE PRECISION AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ), 33* $ Z( LDZ, * ) 34* .. 35* 36* 37*> \par Purpose: 38* ============= 39*> 40*> \verbatim 41*> 42*> DSBEVX computes selected eigenvalues and, optionally, eigenvectors 43*> of a real symmetric band matrix A. Eigenvalues and eigenvectors can 44*> be selected by specifying either a range of values or a range of 45*> indices for the desired eigenvalues. 46*> \endverbatim 47* 48* Arguments: 49* ========== 50* 51*> \param[in] JOBZ 52*> \verbatim 53*> JOBZ is CHARACTER*1 54*> = 'N': Compute eigenvalues only; 55*> = 'V': Compute eigenvalues and eigenvectors. 56*> \endverbatim 57*> 58*> \param[in] RANGE 59*> \verbatim 60*> RANGE is CHARACTER*1 61*> = 'A': all eigenvalues will be found; 62*> = 'V': all eigenvalues in the half-open interval (VL,VU] 63*> will be found; 64*> = 'I': the IL-th through IU-th eigenvalues will be found. 65*> \endverbatim 66*> 67*> \param[in] UPLO 68*> \verbatim 69*> UPLO is CHARACTER*1 70*> = 'U': Upper triangle of A is stored; 71*> = 'L': Lower triangle of A is stored. 72*> \endverbatim 73*> 74*> \param[in] N 75*> \verbatim 76*> N is INTEGER 77*> The order of the matrix A. N >= 0. 78*> \endverbatim 79*> 80*> \param[in] KD 81*> \verbatim 82*> KD is INTEGER 83*> The number of superdiagonals of the matrix A if UPLO = 'U', 84*> or the number of subdiagonals if UPLO = 'L'. KD >= 0. 85*> \endverbatim 86*> 87*> \param[in,out] AB 88*> \verbatim 89*> AB is DOUBLE PRECISION array, dimension (LDAB, N) 90*> On entry, the upper or lower triangle of the symmetric band 91*> matrix A, stored in the first KD+1 rows of the array. The 92*> j-th column of A is stored in the j-th column of the array AB 93*> as follows: 94*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; 95*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). 96*> 97*> On exit, AB is overwritten by values generated during the 98*> reduction to tridiagonal form. If UPLO = 'U', the first 99*> superdiagonal and the diagonal of the tridiagonal matrix T 100*> are returned in rows KD and KD+1 of AB, and if UPLO = 'L', 101*> the diagonal and first subdiagonal of T are returned in the 102*> first two rows of AB. 103*> \endverbatim 104*> 105*> \param[in] LDAB 106*> \verbatim 107*> LDAB is INTEGER 108*> The leading dimension of the array AB. LDAB >= KD + 1. 109*> \endverbatim 110*> 111*> \param[out] Q 112*> \verbatim 113*> Q is DOUBLE PRECISION array, dimension (LDQ, N) 114*> If JOBZ = 'V', the N-by-N orthogonal matrix used in the 115*> reduction to tridiagonal form. 116*> If JOBZ = 'N', the array Q is not referenced. 117*> \endverbatim 118*> 119*> \param[in] LDQ 120*> \verbatim 121*> LDQ is INTEGER 122*> The leading dimension of the array Q. If JOBZ = 'V', then 123*> LDQ >= max(1,N). 124*> \endverbatim 125*> 126*> \param[in] VL 127*> \verbatim 128*> VL is DOUBLE PRECISION 129*> \endverbatim 130*> 131*> \param[in] VU 132*> \verbatim 133*> VU is DOUBLE PRECISION 134*> If RANGE='V', the lower and upper bounds of the interval to 135*> be searched for eigenvalues. VL < VU. 136*> Not referenced if RANGE = 'A' or 'I'. 137*> \endverbatim 138*> 139*> \param[in] IL 140*> \verbatim 141*> IL is INTEGER 142*> \endverbatim 143*> 144*> \param[in] IU 145*> \verbatim 146*> IU is INTEGER 147*> If RANGE='I', the indices (in ascending order) of the 148*> smallest and largest eigenvalues to be returned. 149*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. 150*> Not referenced if RANGE = 'A' or 'V'. 151*> \endverbatim 152*> 153*> \param[in] ABSTOL 154*> \verbatim 155*> ABSTOL is DOUBLE PRECISION 156*> The absolute error tolerance for the eigenvalues. 157*> An approximate eigenvalue is accepted as converged 158*> when it is determined to lie in an interval [a,b] 159*> of width less than or equal to 160*> 161*> ABSTOL + EPS * max( |a|,|b| ) , 162*> 163*> where EPS is the machine precision. If ABSTOL is less than 164*> or equal to zero, then EPS*|T| will be used in its place, 165*> where |T| is the 1-norm of the tridiagonal matrix obtained 166*> by reducing AB to tridiagonal form. 167*> 168*> Eigenvalues will be computed most accurately when ABSTOL is 169*> set to twice the underflow threshold 2*DLAMCH('S'), not zero. 170*> If this routine returns with INFO>0, indicating that some 171*> eigenvectors did not converge, try setting ABSTOL to 172*> 2*DLAMCH('S'). 173*> 174*> See "Computing Small Singular Values of Bidiagonal Matrices 175*> with Guaranteed High Relative Accuracy," by Demmel and 176*> Kahan, LAPACK Working Note #3. 177*> \endverbatim 178*> 179*> \param[out] M 180*> \verbatim 181*> M is INTEGER 182*> The total number of eigenvalues found. 0 <= M <= N. 183*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. 184*> \endverbatim 185*> 186*> \param[out] W 187*> \verbatim 188*> W is DOUBLE PRECISION array, dimension (N) 189*> The first M elements contain the selected eigenvalues in 190*> ascending order. 191*> \endverbatim 192*> 193*> \param[out] Z 194*> \verbatim 195*> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M)) 196*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z 197*> contain the orthonormal eigenvectors of the matrix A 198*> corresponding to the selected eigenvalues, with the i-th 199*> column of Z holding the eigenvector associated with W(i). 200*> If an eigenvector fails to converge, then that column of Z 201*> contains the latest approximation to the eigenvector, and the 202*> index of the eigenvector is returned in IFAIL. 203*> If JOBZ = 'N', then Z is not referenced. 204*> Note: the user must ensure that at least max(1,M) columns are 205*> supplied in the array Z; if RANGE = 'V', the exact value of M 206*> is not known in advance and an upper bound must be used. 207*> \endverbatim 208*> 209*> \param[in] LDZ 210*> \verbatim 211*> LDZ is INTEGER 212*> The leading dimension of the array Z. LDZ >= 1, and if 213*> JOBZ = 'V', LDZ >= max(1,N). 214*> \endverbatim 215*> 216*> \param[out] WORK 217*> \verbatim 218*> WORK is DOUBLE PRECISION array, dimension (7*N) 219*> \endverbatim 220*> 221*> \param[out] IWORK 222*> \verbatim 223*> IWORK is INTEGER array, dimension (5*N) 224*> \endverbatim 225*> 226*> \param[out] IFAIL 227*> \verbatim 228*> IFAIL is INTEGER array, dimension (N) 229*> If JOBZ = 'V', then if INFO = 0, the first M elements of 230*> IFAIL are zero. If INFO > 0, then IFAIL contains the 231*> indices of the eigenvectors that failed to converge. 232*> If JOBZ = 'N', then IFAIL is not referenced. 233*> \endverbatim 234*> 235*> \param[out] INFO 236*> \verbatim 237*> INFO is INTEGER 238*> = 0: successful exit. 239*> < 0: if INFO = -i, the i-th argument had an illegal value. 240*> > 0: if INFO = i, then i eigenvectors failed to converge. 241*> Their indices are stored in array IFAIL. 242*> \endverbatim 243* 244* Authors: 245* ======== 246* 247*> \author Univ. of Tennessee 248*> \author Univ. of California Berkeley 249*> \author Univ. of Colorado Denver 250*> \author NAG Ltd. 251* 252*> \date November 2011 253* 254*> \ingroup doubleOTHEReigen 255* 256* ===================================================================== 257 SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, 258 $ VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, 259 $ IFAIL, INFO ) 260* 261* -- LAPACK driver routine (version 3.4.0) -- 262* -- LAPACK is a software package provided by Univ. of Tennessee, -- 263* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 264* November 2011 265* 266* .. Scalar Arguments .. 267 CHARACTER JOBZ, RANGE, UPLO 268 INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N 269 DOUBLE PRECISION ABSTOL, VL, VU 270* .. 271* .. Array Arguments .. 272 INTEGER IFAIL( * ), IWORK( * ) 273 DOUBLE PRECISION AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ), 274 $ Z( LDZ, * ) 275* .. 276* 277* ===================================================================== 278* 279* .. Parameters .. 280 DOUBLE PRECISION ZERO, ONE 281 PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) 282* .. 283* .. Local Scalars .. 284 LOGICAL ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ 285 CHARACTER ORDER 286 INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL, 287 $ INDISP, INDIWO, INDWRK, ISCALE, ITMP1, J, JJ, 288 $ NSPLIT 289 DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, 290 $ SIGMA, SMLNUM, TMP1, VLL, VUU 291* .. 292* .. External Functions .. 293 LOGICAL LSAME 294 DOUBLE PRECISION DLAMCH, DLANSB 295 EXTERNAL LSAME, DLAMCH, DLANSB 296* .. 297* .. External Subroutines .. 298 EXTERNAL DCOPY, DGEMV, DLACPY, DLASCL, DSBTRD, DSCAL, 299 $ DSTEBZ, DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA 300* .. 301* .. Intrinsic Functions .. 302 INTRINSIC MAX, MIN, SQRT 303* .. 304* .. Executable Statements .. 305* 306* Test the input parameters. 307* 308 WANTZ = LSAME( JOBZ, 'V' ) 309 ALLEIG = LSAME( RANGE, 'A' ) 310 VALEIG = LSAME( RANGE, 'V' ) 311 INDEIG = LSAME( RANGE, 'I' ) 312 LOWER = LSAME( UPLO, 'L' ) 313* 314 INFO = 0 315 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN 316 INFO = -1 317 ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN 318 INFO = -2 319 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN 320 INFO = -3 321 ELSE IF( N.LT.0 ) THEN 322 INFO = -4 323 ELSE IF( KD.LT.0 ) THEN 324 INFO = -5 325 ELSE IF( LDAB.LT.KD+1 ) THEN 326 INFO = -7 327 ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN 328 INFO = -9 329 ELSE 330 IF( VALEIG ) THEN 331 IF( N.GT.0 .AND. VU.LE.VL ) 332 $ INFO = -11 333 ELSE IF( INDEIG ) THEN 334 IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN 335 INFO = -12 336 ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN 337 INFO = -13 338 END IF 339 END IF 340 END IF 341 IF( INFO.EQ.0 ) THEN 342 IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) 343 $ INFO = -18 344 END IF 345* 346 IF( INFO.NE.0 ) THEN 347 CALL XERBLA( 'DSBEVX', -INFO ) 348 RETURN 349 END IF 350* 351* Quick return if possible 352* 353 M = 0 354 IF( N.EQ.0 ) 355 $ RETURN 356* 357 IF( N.EQ.1 ) THEN 358 M = 1 359 IF( LOWER ) THEN 360 TMP1 = AB( 1, 1 ) 361 ELSE 362 TMP1 = AB( KD+1, 1 ) 363 END IF 364 IF( VALEIG ) THEN 365 IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) ) 366 $ M = 0 367 END IF 368 IF( M.EQ.1 ) THEN 369 W( 1 ) = TMP1 370 IF( WANTZ ) 371 $ Z( 1, 1 ) = ONE 372 END IF 373 RETURN 374 END IF 375* 376* Get machine constants. 377* 378 SAFMIN = DLAMCH( 'Safe minimum' ) 379 EPS = DLAMCH( 'Precision' ) 380 SMLNUM = SAFMIN / EPS 381 BIGNUM = ONE / SMLNUM 382 RMIN = SQRT( SMLNUM ) 383 RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) ) 384* 385* Scale matrix to allowable range, if necessary. 386* 387 ISCALE = 0 388 ABSTLL = ABSTOL 389 IF( VALEIG ) THEN 390 VLL = VL 391 VUU = VU 392 ELSE 393 VLL = ZERO 394 VUU = ZERO 395 END IF 396 ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK ) 397 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN 398 ISCALE = 1 399 SIGMA = RMIN / ANRM 400 ELSE IF( ANRM.GT.RMAX ) THEN 401 ISCALE = 1 402 SIGMA = RMAX / ANRM 403 END IF 404 IF( ISCALE.EQ.1 ) THEN 405 IF( LOWER ) THEN 406 CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO ) 407 ELSE 408 CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO ) 409 END IF 410 IF( ABSTOL.GT.0 ) 411 $ ABSTLL = ABSTOL*SIGMA 412 IF( VALEIG ) THEN 413 VLL = VL*SIGMA 414 VUU = VU*SIGMA 415 END IF 416 END IF 417* 418* Call DSBTRD to reduce symmetric band matrix to tridiagonal form. 419* 420 INDD = 1 421 INDE = INDD + N 422 INDWRK = INDE + N 423 CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, WORK( INDD ), 424 $ WORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO ) 425* 426* If all eigenvalues are desired and ABSTOL is less than or equal 427* to zero, then call DSTERF or SSTEQR. If this fails for some 428* eigenvalue, then try DSTEBZ. 429* 430 TEST = .FALSE. 431 IF (INDEIG) THEN 432 IF (IL.EQ.1 .AND. IU.EQ.N) THEN 433 TEST = .TRUE. 434 END IF 435 END IF 436 IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN 437 CALL DCOPY( N, WORK( INDD ), 1, W, 1 ) 438 INDEE = INDWRK + 2*N 439 IF( .NOT.WANTZ ) THEN 440 CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 ) 441 CALL DSTERF( N, W, WORK( INDEE ), INFO ) 442 ELSE 443 CALL DLACPY( 'A', N, N, Q, LDQ, Z, LDZ ) 444 CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 ) 445 CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ, 446 $ WORK( INDWRK ), INFO ) 447 IF( INFO.EQ.0 ) THEN 448 DO 10 I = 1, N 449 IFAIL( I ) = 0 450 10 CONTINUE 451 END IF 452 END IF 453 IF( INFO.EQ.0 ) THEN 454 M = N 455 GO TO 30 456 END IF 457 INFO = 0 458 END IF 459* 460* Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. 461* 462 IF( WANTZ ) THEN 463 ORDER = 'B' 464 ELSE 465 ORDER = 'E' 466 END IF 467 INDIBL = 1 468 INDISP = INDIBL + N 469 INDIWO = INDISP + N 470 CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL, 471 $ WORK( INDD ), WORK( INDE ), M, NSPLIT, W, 472 $ IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ), 473 $ IWORK( INDIWO ), INFO ) 474* 475 IF( WANTZ ) THEN 476 CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W, 477 $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ, 478 $ WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO ) 479* 480* Apply orthogonal matrix used in reduction to tridiagonal 481* form to eigenvectors returned by DSTEIN. 482* 483 DO 20 J = 1, M 484 CALL DCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 ) 485 CALL DGEMV( 'N', N, N, ONE, Q, LDQ, WORK, 1, ZERO, 486 $ Z( 1, J ), 1 ) 487 20 CONTINUE 488 END IF 489* 490* If matrix was scaled, then rescale eigenvalues appropriately. 491* 492 30 CONTINUE 493 IF( ISCALE.EQ.1 ) THEN 494 IF( INFO.EQ.0 ) THEN 495 IMAX = M 496 ELSE 497 IMAX = INFO - 1 498 END IF 499 CALL DSCAL( IMAX, ONE / SIGMA, W, 1 ) 500 END IF 501* 502* If eigenvalues are not in order, then sort them, along with 503* eigenvectors. 504* 505 IF( WANTZ ) THEN 506 DO 50 J = 1, M - 1 507 I = 0 508 TMP1 = W( J ) 509 DO 40 JJ = J + 1, M 510 IF( W( JJ ).LT.TMP1 ) THEN 511 I = JJ 512 TMP1 = W( JJ ) 513 END IF 514 40 CONTINUE 515* 516 IF( I.NE.0 ) THEN 517 ITMP1 = IWORK( INDIBL+I-1 ) 518 W( I ) = W( J ) 519 IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 ) 520 W( J ) = TMP1 521 IWORK( INDIBL+J-1 ) = ITMP1 522 CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 ) 523 IF( INFO.NE.0 ) THEN 524 ITMP1 = IFAIL( I ) 525 IFAIL( I ) = IFAIL( J ) 526 IFAIL( J ) = ITMP1 527 END IF 528 END IF 529 50 CONTINUE 530 END IF 531* 532 RETURN 533* 534* End of DSBEVX 535* 536 END 537