1*> \brief \b SPFTRF 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SPFTRF + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spftrf.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spftrf.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spftrf.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SPFTRF( TRANSR, UPLO, N, A, INFO ) 22* 23* .. Scalar Arguments .. 24* CHARACTER TRANSR, UPLO 25* INTEGER N, INFO 26* .. 27* .. Array Arguments .. 28* REAL A( 0: * ) 29* 30* 31*> \par Purpose: 32* ============= 33*> 34*> \verbatim 35*> 36*> SPFTRF computes the Cholesky factorization of a real symmetric 37*> positive definite matrix A. 38*> 39*> The factorization has the form 40*> A = U**T * U, if UPLO = 'U', or 41*> A = L * L**T, if UPLO = 'L', 42*> where U is an upper triangular matrix and L is lower triangular. 43*> 44*> This is the block version of the algorithm, calling Level 3 BLAS. 45*> \endverbatim 46* 47* Arguments: 48* ========== 49* 50*> \param[in] TRANSR 51*> \verbatim 52*> TRANSR is CHARACTER*1 53*> = 'N': The Normal TRANSR of RFP A is stored; 54*> = 'T': The Transpose TRANSR of RFP A is stored. 55*> \endverbatim 56*> 57*> \param[in] UPLO 58*> \verbatim 59*> UPLO is CHARACTER*1 60*> = 'U': Upper triangle of RFP A is stored; 61*> = 'L': Lower triangle of RFP A is stored. 62*> \endverbatim 63*> 64*> \param[in] N 65*> \verbatim 66*> N is INTEGER 67*> The order of the matrix A. N >= 0. 68*> \endverbatim 69*> 70*> \param[in,out] A 71*> \verbatim 72*> A is REAL array, dimension ( N*(N+1)/2 ); 73*> On entry, the symmetric matrix A in RFP format. RFP format is 74*> described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' 75*> then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is 76*> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is 77*> the transpose of RFP A as defined when 78*> TRANSR = 'N'. The contents of RFP A are defined by UPLO as 79*> follows: If UPLO = 'U' the RFP A contains the NT elements of 80*> upper packed A. If UPLO = 'L' the RFP A contains the elements 81*> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = 82*> 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N 83*> is odd. See the Note below for more details. 84*> 85*> On exit, if INFO = 0, the factor U or L from the Cholesky 86*> factorization RFP A = U**T*U or RFP A = L*L**T. 87*> \endverbatim 88*> 89*> \param[out] INFO 90*> \verbatim 91*> INFO is INTEGER 92*> = 0: successful exit 93*> < 0: if INFO = -i, the i-th argument had an illegal value 94*> > 0: if INFO = i, the leading minor of order i is not 95*> positive definite, and the factorization could not be 96*> completed. 97*> \endverbatim 98* 99* Authors: 100* ======== 101* 102*> \author Univ. of Tennessee 103*> \author Univ. of California Berkeley 104*> \author Univ. of Colorado Denver 105*> \author NAG Ltd. 106* 107*> \date November 2011 108* 109*> \ingroup realOTHERcomputational 110* 111*> \par Further Details: 112* ===================== 113*> 114*> \verbatim 115*> 116*> We first consider Rectangular Full Packed (RFP) Format when N is 117*> even. We give an example where N = 6. 118*> 119*> AP is Upper AP is Lower 120*> 121*> 00 01 02 03 04 05 00 122*> 11 12 13 14 15 10 11 123*> 22 23 24 25 20 21 22 124*> 33 34 35 30 31 32 33 125*> 44 45 40 41 42 43 44 126*> 55 50 51 52 53 54 55 127*> 128*> 129*> Let TRANSR = 'N'. RFP holds AP as follows: 130*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last 131*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of 132*> the transpose of the first three columns of AP upper. 133*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first 134*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of 135*> the transpose of the last three columns of AP lower. 136*> This covers the case N even and TRANSR = 'N'. 137*> 138*> RFP A RFP A 139*> 140*> 03 04 05 33 43 53 141*> 13 14 15 00 44 54 142*> 23 24 25 10 11 55 143*> 33 34 35 20 21 22 144*> 00 44 45 30 31 32 145*> 01 11 55 40 41 42 146*> 02 12 22 50 51 52 147*> 148*> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the 149*> transpose of RFP A above. One therefore gets: 150*> 151*> 152*> RFP A RFP A 153*> 154*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 155*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 156*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 157*> 158*> 159*> We then consider Rectangular Full Packed (RFP) Format when N is 160*> odd. We give an example where N = 5. 161*> 162*> AP is Upper AP is Lower 163*> 164*> 00 01 02 03 04 00 165*> 11 12 13 14 10 11 166*> 22 23 24 20 21 22 167*> 33 34 30 31 32 33 168*> 44 40 41 42 43 44 169*> 170*> 171*> Let TRANSR = 'N'. RFP holds AP as follows: 172*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last 173*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of 174*> the transpose of the first two columns of AP upper. 175*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first 176*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of 177*> the transpose of the last two columns of AP lower. 178*> This covers the case N odd and TRANSR = 'N'. 179*> 180*> RFP A RFP A 181*> 182*> 02 03 04 00 33 43 183*> 12 13 14 10 11 44 184*> 22 23 24 20 21 22 185*> 00 33 34 30 31 32 186*> 01 11 44 40 41 42 187*> 188*> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the 189*> transpose of RFP A above. One therefore gets: 190*> 191*> RFP A RFP A 192*> 193*> 02 12 22 00 01 00 10 20 30 40 50 194*> 03 13 23 33 11 33 11 21 31 41 51 195*> 04 14 24 34 44 43 44 22 32 42 52 196*> \endverbatim 197*> 198* ===================================================================== 199 SUBROUTINE SPFTRF( TRANSR, UPLO, N, A, INFO ) 200* 201* -- LAPACK computational routine (version 3.4.0) -- 202* -- LAPACK is a software package provided by Univ. of Tennessee, -- 203* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 204* November 2011 205* 206* .. Scalar Arguments .. 207 CHARACTER TRANSR, UPLO 208 INTEGER N, INFO 209* .. 210* .. Array Arguments .. 211 REAL A( 0: * ) 212* 213* ===================================================================== 214* 215* .. Parameters .. 216 REAL ONE 217 PARAMETER ( ONE = 1.0E+0 ) 218* .. 219* .. Local Scalars .. 220 LOGICAL LOWER, NISODD, NORMALTRANSR 221 INTEGER N1, N2, K 222* .. 223* .. External Functions .. 224 LOGICAL LSAME 225 EXTERNAL LSAME 226* .. 227* .. External Subroutines .. 228 EXTERNAL XERBLA, SSYRK, SPOTRF, STRSM 229* .. 230* .. Intrinsic Functions .. 231 INTRINSIC MOD 232* .. 233* .. Executable Statements .. 234* 235* Test the input parameters. 236* 237 INFO = 0 238 NORMALTRANSR = LSAME( TRANSR, 'N' ) 239 LOWER = LSAME( UPLO, 'L' ) 240 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN 241 INFO = -1 242 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN 243 INFO = -2 244 ELSE IF( N.LT.0 ) THEN 245 INFO = -3 246 END IF 247 IF( INFO.NE.0 ) THEN 248 CALL XERBLA( 'SPFTRF', -INFO ) 249 RETURN 250 END IF 251* 252* Quick return if possible 253* 254 IF( N.EQ.0 ) 255 $ RETURN 256* 257* If N is odd, set NISODD = .TRUE. 258* If N is even, set K = N/2 and NISODD = .FALSE. 259* 260 IF( MOD( N, 2 ).EQ.0 ) THEN 261 K = N / 2 262 NISODD = .FALSE. 263 ELSE 264 NISODD = .TRUE. 265 END IF 266* 267* Set N1 and N2 depending on LOWER 268* 269 IF( LOWER ) THEN 270 N2 = N / 2 271 N1 = N - N2 272 ELSE 273 N1 = N / 2 274 N2 = N - N1 275 END IF 276* 277* start execution: there are eight cases 278* 279 IF( NISODD ) THEN 280* 281* N is odd 282* 283 IF( NORMALTRANSR ) THEN 284* 285* N is odd and TRANSR = 'N' 286* 287 IF( LOWER ) THEN 288* 289* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) 290* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) 291* T1 -> a(0), T2 -> a(n), S -> a(n1) 292* 293 CALL SPOTRF( 'L', N1, A( 0 ), N, INFO ) 294 IF( INFO.GT.0 ) 295 $ RETURN 296 CALL STRSM( 'R', 'L', 'T', 'N', N2, N1, ONE, A( 0 ), N, 297 $ A( N1 ), N ) 298 CALL SSYRK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE, 299 $ A( N ), N ) 300 CALL SPOTRF( 'U', N2, A( N ), N, INFO ) 301 IF( INFO.GT.0 ) 302 $ INFO = INFO + N1 303* 304 ELSE 305* 306* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) 307* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) 308* T1 -> a(n2), T2 -> a(n1), S -> a(0) 309* 310 CALL SPOTRF( 'L', N1, A( N2 ), N, INFO ) 311 IF( INFO.GT.0 ) 312 $ RETURN 313 CALL STRSM( 'L', 'L', 'N', 'N', N1, N2, ONE, A( N2 ), N, 314 $ A( 0 ), N ) 315 CALL SSYRK( 'U', 'T', N2, N1, -ONE, A( 0 ), N, ONE, 316 $ A( N1 ), N ) 317 CALL SPOTRF( 'U', N2, A( N1 ), N, INFO ) 318 IF( INFO.GT.0 ) 319 $ INFO = INFO + N1 320* 321 END IF 322* 323 ELSE 324* 325* N is odd and TRANSR = 'T' 326* 327 IF( LOWER ) THEN 328* 329* SRPA for LOWER, TRANSPOSE and N is odd 330* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) 331* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 332* 333 CALL SPOTRF( 'U', N1, A( 0 ), N1, INFO ) 334 IF( INFO.GT.0 ) 335 $ RETURN 336 CALL STRSM( 'L', 'U', 'T', 'N', N1, N2, ONE, A( 0 ), N1, 337 $ A( N1*N1 ), N1 ) 338 CALL SSYRK( 'L', 'T', N2, N1, -ONE, A( N1*N1 ), N1, ONE, 339 $ A( 1 ), N1 ) 340 CALL SPOTRF( 'L', N2, A( 1 ), N1, INFO ) 341 IF( INFO.GT.0 ) 342 $ INFO = INFO + N1 343* 344 ELSE 345* 346* SRPA for UPPER, TRANSPOSE and N is odd 347* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) 348* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 349* 350 CALL SPOTRF( 'U', N1, A( N2*N2 ), N2, INFO ) 351 IF( INFO.GT.0 ) 352 $ RETURN 353 CALL STRSM( 'R', 'U', 'N', 'N', N2, N1, ONE, A( N2*N2 ), 354 $ N2, A( 0 ), N2 ) 355 CALL SSYRK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE, 356 $ A( N1*N2 ), N2 ) 357 CALL SPOTRF( 'L', N2, A( N1*N2 ), N2, INFO ) 358 IF( INFO.GT.0 ) 359 $ INFO = INFO + N1 360* 361 END IF 362* 363 END IF 364* 365 ELSE 366* 367* N is even 368* 369 IF( NORMALTRANSR ) THEN 370* 371* N is even and TRANSR = 'N' 372* 373 IF( LOWER ) THEN 374* 375* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) 376* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) 377* T1 -> a(1), T2 -> a(0), S -> a(k+1) 378* 379 CALL SPOTRF( 'L', K, A( 1 ), N+1, INFO ) 380 IF( INFO.GT.0 ) 381 $ RETURN 382 CALL STRSM( 'R', 'L', 'T', 'N', K, K, ONE, A( 1 ), N+1, 383 $ A( K+1 ), N+1 ) 384 CALL SSYRK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE, 385 $ A( 0 ), N+1 ) 386 CALL SPOTRF( 'U', K, A( 0 ), N+1, INFO ) 387 IF( INFO.GT.0 ) 388 $ INFO = INFO + K 389* 390 ELSE 391* 392* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) 393* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) 394* T1 -> a(k+1), T2 -> a(k), S -> a(0) 395* 396 CALL SPOTRF( 'L', K, A( K+1 ), N+1, INFO ) 397 IF( INFO.GT.0 ) 398 $ RETURN 399 CALL STRSM( 'L', 'L', 'N', 'N', K, K, ONE, A( K+1 ), 400 $ N+1, A( 0 ), N+1 ) 401 CALL SSYRK( 'U', 'T', K, K, -ONE, A( 0 ), N+1, ONE, 402 $ A( K ), N+1 ) 403 CALL SPOTRF( 'U', K, A( K ), N+1, INFO ) 404 IF( INFO.GT.0 ) 405 $ INFO = INFO + K 406* 407 END IF 408* 409 ELSE 410* 411* N is even and TRANSR = 'T' 412* 413 IF( LOWER ) THEN 414* 415* SRPA for LOWER, TRANSPOSE and N is even (see paper) 416* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) 417* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k 418* 419 CALL SPOTRF( 'U', K, A( 0+K ), K, INFO ) 420 IF( INFO.GT.0 ) 421 $ RETURN 422 CALL STRSM( 'L', 'U', 'T', 'N', K, K, ONE, A( K ), N1, 423 $ A( K*( K+1 ) ), K ) 424 CALL SSYRK( 'L', 'T', K, K, -ONE, A( K*( K+1 ) ), K, ONE, 425 $ A( 0 ), K ) 426 CALL SPOTRF( 'L', K, A( 0 ), K, INFO ) 427 IF( INFO.GT.0 ) 428 $ INFO = INFO + K 429* 430 ELSE 431* 432* SRPA for UPPER, TRANSPOSE and N is even (see paper) 433* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) 434* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k 435* 436 CALL SPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO ) 437 IF( INFO.GT.0 ) 438 $ RETURN 439 CALL STRSM( 'R', 'U', 'N', 'N', K, K, ONE, 440 $ A( K*( K+1 ) ), K, A( 0 ), K ) 441 CALL SSYRK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE, 442 $ A( K*K ), K ) 443 CALL SPOTRF( 'L', K, A( K*K ), K, INFO ) 444 IF( INFO.GT.0 ) 445 $ INFO = INFO + K 446* 447 END IF 448* 449 END IF 450* 451 END IF 452* 453 RETURN 454* 455* End of SPFTRF 456* 457 END 458