1*> \brief \b ZTGSJA
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZTGSJA + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsja.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsja.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsja.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
22*                          LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
23*                          Q, LDQ, WORK, NCYCLE, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          JOBQ, JOBU, JOBV
27*       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
28*      $                   NCYCLE, P
29*       DOUBLE PRECISION   TOLA, TOLB
30*       ..
31*       .. Array Arguments ..
32*       DOUBLE PRECISION   ALPHA( * ), BETA( * )
33*       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
34*      $                   U( LDU, * ), V( LDV, * ), WORK( * )
35*       ..
36*
37*
38*> \par Purpose:
39*  =============
40*>
41*> \verbatim
42*>
43*> ZTGSJA computes the generalized singular value decomposition (GSVD)
44*> of two complex upper triangular (or trapezoidal) matrices A and B.
45*>
46*> On entry, it is assumed that matrices A and B have the following
47*> forms, which may be obtained by the preprocessing subroutine ZGGSVP
48*> from a general M-by-N matrix A and P-by-N matrix B:
49*>
50*>              N-K-L  K    L
51*>    A =    K ( 0    A12  A13 ) if M-K-L >= 0;
52*>           L ( 0     0   A23 )
53*>       M-K-L ( 0     0    0  )
54*>
55*>            N-K-L  K    L
56*>    A =  K ( 0    A12  A13 ) if M-K-L < 0;
57*>       M-K ( 0     0   A23 )
58*>
59*>            N-K-L  K    L
60*>    B =  L ( 0     0   B13 )
61*>       P-L ( 0     0    0  )
62*>
63*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
64*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
65*> otherwise A23 is (M-K)-by-L upper trapezoidal.
66*>
67*> On exit,
68*>
69*>        U**H *A*Q = D1*( 0 R ),    V**H *B*Q = D2*( 0 R ),
70*>
71*> where U, V and Q are unitary matrices.
72*> R is a nonsingular upper triangular matrix, and D1
73*> and D2 are ``diagonal'' matrices, which are of the following
74*> structures:
75*>
76*> If M-K-L >= 0,
77*>
78*>                     K  L
79*>        D1 =     K ( I  0 )
80*>                 L ( 0  C )
81*>             M-K-L ( 0  0 )
82*>
83*>                    K  L
84*>        D2 = L   ( 0  S )
85*>             P-L ( 0  0 )
86*>
87*>                N-K-L  K    L
88*>   ( 0 R ) = K (  0   R11  R12 ) K
89*>             L (  0    0   R22 ) L
90*>
91*> where
92*>
93*>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
94*>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
95*>   C**2 + S**2 = I.
96*>
97*>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
98*>
99*> If M-K-L < 0,
100*>
101*>                K M-K K+L-M
102*>     D1 =   K ( I  0    0   )
103*>          M-K ( 0  C    0   )
104*>
105*>                  K M-K K+L-M
106*>     D2 =   M-K ( 0  S    0   )
107*>          K+L-M ( 0  0    I   )
108*>            P-L ( 0  0    0   )
109*>
110*>                N-K-L  K   M-K  K+L-M
111*> ( 0 R ) =    K ( 0    R11  R12  R13  )
112*>           M-K ( 0     0   R22  R23  )
113*>         K+L-M ( 0     0    0   R33  )
114*>
115*> where
116*> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
117*> S = diag( BETA(K+1),  ... , BETA(M) ),
118*> C**2 + S**2 = I.
119*>
120*> R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
121*>     (  0  R22 R23 )
122*> in B(M-K+1:L,N+M-K-L+1:N) on exit.
123*>
124*> The computation of the unitary transformation matrices U, V or Q
125*> is optional.  These matrices may either be formed explicitly, or they
126*> may be postmultiplied into input matrices U1, V1, or Q1.
127*> \endverbatim
128*
129*  Arguments:
130*  ==========
131*
132*> \param[in] JOBU
133*> \verbatim
134*>          JOBU is CHARACTER*1
135*>          = 'U':  U must contain a unitary matrix U1 on entry, and
136*>                  the product U1*U is returned;
137*>          = 'I':  U is initialized to the unit matrix, and the
138*>                  unitary matrix U is returned;
139*>          = 'N':  U is not computed.
140*> \endverbatim
141*>
142*> \param[in] JOBV
143*> \verbatim
144*>          JOBV is CHARACTER*1
145*>          = 'V':  V must contain a unitary matrix V1 on entry, and
146*>                  the product V1*V is returned;
147*>          = 'I':  V is initialized to the unit matrix, and the
148*>                  unitary matrix V is returned;
149*>          = 'N':  V is not computed.
150*> \endverbatim
151*>
152*> \param[in] JOBQ
153*> \verbatim
154*>          JOBQ is CHARACTER*1
155*>          = 'Q':  Q must contain a unitary matrix Q1 on entry, and
156*>                  the product Q1*Q is returned;
157*>          = 'I':  Q is initialized to the unit matrix, and the
158*>                  unitary matrix Q is returned;
159*>          = 'N':  Q is not computed.
160*> \endverbatim
161*>
162*> \param[in] M
163*> \verbatim
164*>          M is INTEGER
165*>          The number of rows of the matrix A.  M >= 0.
166*> \endverbatim
167*>
168*> \param[in] P
169*> \verbatim
170*>          P is INTEGER
171*>          The number of rows of the matrix B.  P >= 0.
172*> \endverbatim
173*>
174*> \param[in] N
175*> \verbatim
176*>          N is INTEGER
177*>          The number of columns of the matrices A and B.  N >= 0.
178*> \endverbatim
179*>
180*> \param[in] K
181*> \verbatim
182*>          K is INTEGER
183*> \endverbatim
184*>
185*> \param[in] L
186*> \verbatim
187*>          L is INTEGER
188*>
189*>          K and L specify the subblocks in the input matrices A and B:
190*>          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N)
191*>          of A and B, whose GSVD is going to be computed by ZTGSJA.
192*>          See Further Details.
193*> \endverbatim
194*>
195*> \param[in,out] A
196*> \verbatim
197*>          A is COMPLEX*16 array, dimension (LDA,N)
198*>          On entry, the M-by-N matrix A.
199*>          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
200*>          matrix R or part of R.  See Purpose for details.
201*> \endverbatim
202*>
203*> \param[in] LDA
204*> \verbatim
205*>          LDA is INTEGER
206*>          The leading dimension of the array A. LDA >= max(1,M).
207*> \endverbatim
208*>
209*> \param[in,out] B
210*> \verbatim
211*>          B is COMPLEX*16 array, dimension (LDB,N)
212*>          On entry, the P-by-N matrix B.
213*>          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
214*>          a part of R.  See Purpose for details.
215*> \endverbatim
216*>
217*> \param[in] LDB
218*> \verbatim
219*>          LDB is INTEGER
220*>          The leading dimension of the array B. LDB >= max(1,P).
221*> \endverbatim
222*>
223*> \param[in] TOLA
224*> \verbatim
225*>          TOLA is DOUBLE PRECISION
226*> \endverbatim
227*>
228*> \param[in] TOLB
229*> \verbatim
230*>          TOLB is DOUBLE PRECISION
231*>
232*>          TOLA and TOLB are the convergence criteria for the Jacobi-
233*>          Kogbetliantz iteration procedure. Generally, they are the
234*>          same as used in the preprocessing step, say
235*>              TOLA = MAX(M,N)*norm(A)*MAZHEPS,
236*>              TOLB = MAX(P,N)*norm(B)*MAZHEPS.
237*> \endverbatim
238*>
239*> \param[out] ALPHA
240*> \verbatim
241*>          ALPHA is DOUBLE PRECISION array, dimension (N)
242*> \endverbatim
243*>
244*> \param[out] BETA
245*> \verbatim
246*>          BETA is DOUBLE PRECISION array, dimension (N)
247*>
248*>          On exit, ALPHA and BETA contain the generalized singular
249*>          value pairs of A and B;
250*>            ALPHA(1:K) = 1,
251*>            BETA(1:K)  = 0,
252*>          and if M-K-L >= 0,
253*>            ALPHA(K+1:K+L) = diag(C),
254*>            BETA(K+1:K+L)  = diag(S),
255*>          or if M-K-L < 0,
256*>            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
257*>            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
258*>          Furthermore, if K+L < N,
259*>            ALPHA(K+L+1:N) = 0 and
260*>            BETA(K+L+1:N)  = 0.
261*> \endverbatim
262*>
263*> \param[in,out] U
264*> \verbatim
265*>          U is COMPLEX*16 array, dimension (LDU,M)
266*>          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
267*>          the unitary matrix returned by ZGGSVP).
268*>          On exit,
269*>          if JOBU = 'I', U contains the unitary matrix U;
270*>          if JOBU = 'U', U contains the product U1*U.
271*>          If JOBU = 'N', U is not referenced.
272*> \endverbatim
273*>
274*> \param[in] LDU
275*> \verbatim
276*>          LDU is INTEGER
277*>          The leading dimension of the array U. LDU >= max(1,M) if
278*>          JOBU = 'U'; LDU >= 1 otherwise.
279*> \endverbatim
280*>
281*> \param[in,out] V
282*> \verbatim
283*>          V is COMPLEX*16 array, dimension (LDV,P)
284*>          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
285*>          the unitary matrix returned by ZGGSVP).
286*>          On exit,
287*>          if JOBV = 'I', V contains the unitary matrix V;
288*>          if JOBV = 'V', V contains the product V1*V.
289*>          If JOBV = 'N', V is not referenced.
290*> \endverbatim
291*>
292*> \param[in] LDV
293*> \verbatim
294*>          LDV is INTEGER
295*>          The leading dimension of the array V. LDV >= max(1,P) if
296*>          JOBV = 'V'; LDV >= 1 otherwise.
297*> \endverbatim
298*>
299*> \param[in,out] Q
300*> \verbatim
301*>          Q is COMPLEX*16 array, dimension (LDQ,N)
302*>          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
303*>          the unitary matrix returned by ZGGSVP).
304*>          On exit,
305*>          if JOBQ = 'I', Q contains the unitary matrix Q;
306*>          if JOBQ = 'Q', Q contains the product Q1*Q.
307*>          If JOBQ = 'N', Q is not referenced.
308*> \endverbatim
309*>
310*> \param[in] LDQ
311*> \verbatim
312*>          LDQ is INTEGER
313*>          The leading dimension of the array Q. LDQ >= max(1,N) if
314*>          JOBQ = 'Q'; LDQ >= 1 otherwise.
315*> \endverbatim
316*>
317*> \param[out] WORK
318*> \verbatim
319*>          WORK is COMPLEX*16 array, dimension (2*N)
320*> \endverbatim
321*>
322*> \param[out] NCYCLE
323*> \verbatim
324*>          NCYCLE is INTEGER
325*>          The number of cycles required for convergence.
326*> \endverbatim
327*>
328*> \param[out] INFO
329*> \verbatim
330*>          INFO is INTEGER
331*>          = 0:  successful exit
332*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
333*>          = 1:  the procedure does not converge after MAXIT cycles.
334*> \endverbatim
335*
336*> \par Internal Parameters:
337*  =========================
338*>
339*> \verbatim
340*>  MAXIT   INTEGER
341*>          MAXIT specifies the total loops that the iterative procedure
342*>          may take. If after MAXIT cycles, the routine fails to
343*>          converge, we return INFO = 1.
344*> \endverbatim
345*
346*  Authors:
347*  ========
348*
349*> \author Univ. of Tennessee
350*> \author Univ. of California Berkeley
351*> \author Univ. of Colorado Denver
352*> \author NAG Ltd.
353*
354*> \date November 2011
355*
356*> \ingroup complex16OTHERcomputational
357*
358*> \par Further Details:
359*  =====================
360*>
361*> \verbatim
362*>
363*>  ZTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
364*>  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
365*>  matrix B13 to the form:
366*>
367*>           U1**H *A13*Q1 = C1*R1; V1**H *B13*Q1 = S1*R1,
368*>
369*>  where U1, V1 and Q1 are unitary matrix.
370*>  C1 and S1 are diagonal matrices satisfying
371*>
372*>                C1**2 + S1**2 = I,
373*>
374*>  and R1 is an L-by-L nonsingular upper triangular matrix.
375*> \endverbatim
376*>
377*  =====================================================================
378      SUBROUTINE ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
379     $                   LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
380     $                   Q, LDQ, WORK, NCYCLE, INFO )
381*
382*  -- LAPACK computational routine (version 3.4.0) --
383*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
384*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
385*     November 2011
386*
387*     .. Scalar Arguments ..
388      CHARACTER          JOBQ, JOBU, JOBV
389      INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
390     $                   NCYCLE, P
391      DOUBLE PRECISION   TOLA, TOLB
392*     ..
393*     .. Array Arguments ..
394      DOUBLE PRECISION   ALPHA( * ), BETA( * )
395      COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
396     $                   U( LDU, * ), V( LDV, * ), WORK( * )
397*     ..
398*
399*  =====================================================================
400*
401*     .. Parameters ..
402      INTEGER            MAXIT
403      PARAMETER          ( MAXIT = 40 )
404      DOUBLE PRECISION   ZERO, ONE
405      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
406      COMPLEX*16         CZERO, CONE
407      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
408     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
409*     ..
410*     .. Local Scalars ..
411*
412      LOGICAL            INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV
413      INTEGER            I, J, KCYCLE
414      DOUBLE PRECISION   A1, A3, B1, B3, CSQ, CSU, CSV, ERROR, GAMMA,
415     $                   RWK, SSMIN
416      COMPLEX*16         A2, B2, SNQ, SNU, SNV
417*     ..
418*     .. External Functions ..
419      LOGICAL            LSAME
420      EXTERNAL           LSAME
421*     ..
422*     .. External Subroutines ..
423      EXTERNAL           DLARTG, XERBLA, ZCOPY, ZDSCAL, ZLAGS2, ZLAPLL,
424     $                   ZLASET, ZROT
425*     ..
426*     .. Intrinsic Functions ..
427      INTRINSIC          ABS, DBLE, DCONJG, MAX, MIN
428*     ..
429*     .. Executable Statements ..
430*
431*     Decode and test the input parameters
432*
433      INITU = LSAME( JOBU, 'I' )
434      WANTU = INITU .OR. LSAME( JOBU, 'U' )
435*
436      INITV = LSAME( JOBV, 'I' )
437      WANTV = INITV .OR. LSAME( JOBV, 'V' )
438*
439      INITQ = LSAME( JOBQ, 'I' )
440      WANTQ = INITQ .OR. LSAME( JOBQ, 'Q' )
441*
442      INFO = 0
443      IF( .NOT.( INITU .OR. WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
444         INFO = -1
445      ELSE IF( .NOT.( INITV .OR. WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
446         INFO = -2
447      ELSE IF( .NOT.( INITQ .OR. WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
448         INFO = -3
449      ELSE IF( M.LT.0 ) THEN
450         INFO = -4
451      ELSE IF( P.LT.0 ) THEN
452         INFO = -5
453      ELSE IF( N.LT.0 ) THEN
454         INFO = -6
455      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
456         INFO = -10
457      ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
458         INFO = -12
459      ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
460         INFO = -18
461      ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
462         INFO = -20
463      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
464         INFO = -22
465      END IF
466      IF( INFO.NE.0 ) THEN
467         CALL XERBLA( 'ZTGSJA', -INFO )
468         RETURN
469      END IF
470*
471*     Initialize U, V and Q, if necessary
472*
473      IF( INITU )
474     $   CALL ZLASET( 'Full', M, M, CZERO, CONE, U, LDU )
475      IF( INITV )
476     $   CALL ZLASET( 'Full', P, P, CZERO, CONE, V, LDV )
477      IF( INITQ )
478     $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
479*
480*     Loop until convergence
481*
482      UPPER = .FALSE.
483      DO 40 KCYCLE = 1, MAXIT
484*
485         UPPER = .NOT.UPPER
486*
487         DO 20 I = 1, L - 1
488            DO 10 J = I + 1, L
489*
490               A1 = ZERO
491               A2 = CZERO
492               A3 = ZERO
493               IF( K+I.LE.M )
494     $            A1 = DBLE( A( K+I, N-L+I ) )
495               IF( K+J.LE.M )
496     $            A3 = DBLE( A( K+J, N-L+J ) )
497*
498               B1 = DBLE( B( I, N-L+I ) )
499               B3 = DBLE( B( J, N-L+J ) )
500*
501               IF( UPPER ) THEN
502                  IF( K+I.LE.M )
503     $               A2 = A( K+I, N-L+J )
504                  B2 = B( I, N-L+J )
505               ELSE
506                  IF( K+J.LE.M )
507     $               A2 = A( K+J, N-L+I )
508                  B2 = B( J, N-L+I )
509               END IF
510*
511               CALL ZLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
512     $                      CSV, SNV, CSQ, SNQ )
513*
514*              Update (K+I)-th and (K+J)-th rows of matrix A: U**H *A
515*
516               IF( K+J.LE.M )
517     $            CALL ZROT( L, A( K+J, N-L+1 ), LDA, A( K+I, N-L+1 ),
518     $                       LDA, CSU, DCONJG( SNU ) )
519*
520*              Update I-th and J-th rows of matrix B: V**H *B
521*
522               CALL ZROT( L, B( J, N-L+1 ), LDB, B( I, N-L+1 ), LDB,
523     $                    CSV, DCONJG( SNV ) )
524*
525*              Update (N-L+I)-th and (N-L+J)-th columns of matrices
526*              A and B: A*Q and B*Q
527*
528               CALL ZROT( MIN( K+L, M ), A( 1, N-L+J ), 1,
529     $                    A( 1, N-L+I ), 1, CSQ, SNQ )
530*
531               CALL ZROT( L, B( 1, N-L+J ), 1, B( 1, N-L+I ), 1, CSQ,
532     $                    SNQ )
533*
534               IF( UPPER ) THEN
535                  IF( K+I.LE.M )
536     $               A( K+I, N-L+J ) = CZERO
537                  B( I, N-L+J ) = CZERO
538               ELSE
539                  IF( K+J.LE.M )
540     $               A( K+J, N-L+I ) = CZERO
541                  B( J, N-L+I ) = CZERO
542               END IF
543*
544*              Ensure that the diagonal elements of A and B are real.
545*
546               IF( K+I.LE.M )
547     $            A( K+I, N-L+I ) = DBLE( A( K+I, N-L+I ) )
548               IF( K+J.LE.M )
549     $            A( K+J, N-L+J ) = DBLE( A( K+J, N-L+J ) )
550               B( I, N-L+I ) = DBLE( B( I, N-L+I ) )
551               B( J, N-L+J ) = DBLE( B( J, N-L+J ) )
552*
553*              Update unitary matrices U, V, Q, if desired.
554*
555               IF( WANTU .AND. K+J.LE.M )
556     $            CALL ZROT( M, U( 1, K+J ), 1, U( 1, K+I ), 1, CSU,
557     $                       SNU )
558*
559               IF( WANTV )
560     $            CALL ZROT( P, V( 1, J ), 1, V( 1, I ), 1, CSV, SNV )
561*
562               IF( WANTQ )
563     $            CALL ZROT( N, Q( 1, N-L+J ), 1, Q( 1, N-L+I ), 1, CSQ,
564     $                       SNQ )
565*
566   10       CONTINUE
567   20    CONTINUE
568*
569         IF( .NOT.UPPER ) THEN
570*
571*           The matrices A13 and B13 were lower triangular at the start
572*           of the cycle, and are now upper triangular.
573*
574*           Convergence test: test the parallelism of the corresponding
575*           rows of A and B.
576*
577            ERROR = ZERO
578            DO 30 I = 1, MIN( L, M-K )
579               CALL ZCOPY( L-I+1, A( K+I, N-L+I ), LDA, WORK, 1 )
580               CALL ZCOPY( L-I+1, B( I, N-L+I ), LDB, WORK( L+1 ), 1 )
581               CALL ZLAPLL( L-I+1, WORK, 1, WORK( L+1 ), 1, SSMIN )
582               ERROR = MAX( ERROR, SSMIN )
583   30       CONTINUE
584*
585            IF( ABS( ERROR ).LE.MIN( TOLA, TOLB ) )
586     $         GO TO 50
587         END IF
588*
589*        End of cycle loop
590*
591   40 CONTINUE
592*
593*     The algorithm has not converged after MAXIT cycles.
594*
595      INFO = 1
596      GO TO 100
597*
598   50 CONTINUE
599*
600*     If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged.
601*     Compute the generalized singular value pairs (ALPHA, BETA), and
602*     set the triangular matrix R to array A.
603*
604      DO 60 I = 1, K
605         ALPHA( I ) = ONE
606         BETA( I ) = ZERO
607   60 CONTINUE
608*
609      DO 70 I = 1, MIN( L, M-K )
610*
611         A1 = DBLE( A( K+I, N-L+I ) )
612         B1 = DBLE( B( I, N-L+I ) )
613*
614         IF( A1.NE.ZERO ) THEN
615            GAMMA = B1 / A1
616*
617            IF( GAMMA.LT.ZERO ) THEN
618               CALL ZDSCAL( L-I+1, -ONE, B( I, N-L+I ), LDB )
619               IF( WANTV )
620     $            CALL ZDSCAL( P, -ONE, V( 1, I ), 1 )
621            END IF
622*
623            CALL DLARTG( ABS( GAMMA ), ONE, BETA( K+I ), ALPHA( K+I ),
624     $                   RWK )
625*
626            IF( ALPHA( K+I ).GE.BETA( K+I ) ) THEN
627               CALL ZDSCAL( L-I+1, ONE / ALPHA( K+I ), A( K+I, N-L+I ),
628     $                      LDA )
629            ELSE
630               CALL ZDSCAL( L-I+1, ONE / BETA( K+I ), B( I, N-L+I ),
631     $                      LDB )
632               CALL ZCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
633     $                     LDA )
634            END IF
635*
636         ELSE
637*
638            ALPHA( K+I ) = ZERO
639            BETA( K+I ) = ONE
640            CALL ZCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
641     $                  LDA )
642         END IF
643   70 CONTINUE
644*
645*     Post-assignment
646*
647      DO 80 I = M + 1, K + L
648         ALPHA( I ) = ZERO
649         BETA( I ) = ONE
650   80 CONTINUE
651*
652      IF( K+L.LT.N ) THEN
653         DO 90 I = K + L + 1, N
654            ALPHA( I ) = ZERO
655            BETA( I ) = ZERO
656   90    CONTINUE
657      END IF
658*
659  100 CONTINUE
660      NCYCLE = KCYCLE
661*
662      RETURN
663*
664*     End of ZTGSJA
665*
666      END
667