1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15	"syscall"
16	"unsafe"
17)
18
19/*
20 * Wrapped
21 */
22
23func Access(path string, mode uint32) (err error) {
24	return Faccessat(AT_FDCWD, path, mode, 0)
25}
26
27func Chmod(path string, mode uint32) (err error) {
28	return Fchmodat(AT_FDCWD, path, mode, 0)
29}
30
31func Chown(path string, uid int, gid int) (err error) {
32	return Fchownat(AT_FDCWD, path, uid, gid, 0)
33}
34
35func Creat(path string, mode uint32) (fd int, err error) {
36	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
37}
38
39//sys	fchmodat(dirfd int, path string, mode uint32) (err error)
40
41func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
42	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
43	// and check the flags. Otherwise the mode would be applied to the symlink
44	// destination which is not what the user expects.
45	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
46		return EINVAL
47	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
48		return EOPNOTSUPP
49	}
50	return fchmodat(dirfd, path, mode)
51}
52
53//sys	ioctl(fd int, req uint, arg uintptr) (err error)
54
55// ioctl itself should not be exposed directly, but additional get/set
56// functions for specific types are permissible.
57
58// IoctlSetInt performs an ioctl operation which sets an integer value
59// on fd, using the specified request number.
60func IoctlSetInt(fd int, req uint, value int) error {
61	return ioctl(fd, req, uintptr(value))
62}
63
64func ioctlSetWinsize(fd int, req uint, value *Winsize) error {
65	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
66}
67
68func ioctlSetTermios(fd int, req uint, value *Termios) error {
69	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
70}
71
72// IoctlGetInt performs an ioctl operation which gets an integer value
73// from fd, using the specified request number.
74func IoctlGetInt(fd int, req uint) (int, error) {
75	var value int
76	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
77	return value, err
78}
79
80func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
81	var value Winsize
82	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
83	return &value, err
84}
85
86func IoctlGetTermios(fd int, req uint) (*Termios, error) {
87	var value Termios
88	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
89	return &value, err
90}
91
92//sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
93
94func Link(oldpath string, newpath string) (err error) {
95	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
96}
97
98func Mkdir(path string, mode uint32) (err error) {
99	return Mkdirat(AT_FDCWD, path, mode)
100}
101
102func Mknod(path string, mode uint32, dev int) (err error) {
103	return Mknodat(AT_FDCWD, path, mode, dev)
104}
105
106func Open(path string, mode int, perm uint32) (fd int, err error) {
107	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
108}
109
110//sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
111
112func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
113	return openat(dirfd, path, flags|O_LARGEFILE, mode)
114}
115
116//sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
117
118func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
119	if len(fds) == 0 {
120		return ppoll(nil, 0, timeout, sigmask)
121	}
122	return ppoll(&fds[0], len(fds), timeout, sigmask)
123}
124
125//sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
126
127func Readlink(path string, buf []byte) (n int, err error) {
128	return Readlinkat(AT_FDCWD, path, buf)
129}
130
131func Rename(oldpath string, newpath string) (err error) {
132	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
133}
134
135func Rmdir(path string) error {
136	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
137}
138
139//sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
140
141func Symlink(oldpath string, newpath string) (err error) {
142	return Symlinkat(oldpath, AT_FDCWD, newpath)
143}
144
145func Unlink(path string) error {
146	return Unlinkat(AT_FDCWD, path, 0)
147}
148
149//sys	Unlinkat(dirfd int, path string, flags int) (err error)
150
151func Utimes(path string, tv []Timeval) error {
152	if tv == nil {
153		err := utimensat(AT_FDCWD, path, nil, 0)
154		if err != ENOSYS {
155			return err
156		}
157		return utimes(path, nil)
158	}
159	if len(tv) != 2 {
160		return EINVAL
161	}
162	var ts [2]Timespec
163	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
164	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
165	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
166	if err != ENOSYS {
167		return err
168	}
169	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
170}
171
172//sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
173
174func UtimesNano(path string, ts []Timespec) error {
175	if ts == nil {
176		err := utimensat(AT_FDCWD, path, nil, 0)
177		if err != ENOSYS {
178			return err
179		}
180		return utimes(path, nil)
181	}
182	if len(ts) != 2 {
183		return EINVAL
184	}
185	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
186	if err != ENOSYS {
187		return err
188	}
189	// If the utimensat syscall isn't available (utimensat was added to Linux
190	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
191	var tv [2]Timeval
192	for i := 0; i < 2; i++ {
193		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
194	}
195	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
196}
197
198func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
199	if ts == nil {
200		return utimensat(dirfd, path, nil, flags)
201	}
202	if len(ts) != 2 {
203		return EINVAL
204	}
205	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
206}
207
208func Futimesat(dirfd int, path string, tv []Timeval) error {
209	if tv == nil {
210		return futimesat(dirfd, path, nil)
211	}
212	if len(tv) != 2 {
213		return EINVAL
214	}
215	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
216}
217
218func Futimes(fd int, tv []Timeval) (err error) {
219	// Believe it or not, this is the best we can do on Linux
220	// (and is what glibc does).
221	return Utimes("/proc/self/fd/"+itoa(fd), tv)
222}
223
224const ImplementsGetwd = true
225
226//sys	Getcwd(buf []byte) (n int, err error)
227
228func Getwd() (wd string, err error) {
229	var buf [PathMax]byte
230	n, err := Getcwd(buf[0:])
231	if err != nil {
232		return "", err
233	}
234	// Getcwd returns the number of bytes written to buf, including the NUL.
235	if n < 1 || n > len(buf) || buf[n-1] != 0 {
236		return "", EINVAL
237	}
238	return string(buf[0 : n-1]), nil
239}
240
241func Getgroups() (gids []int, err error) {
242	n, err := getgroups(0, nil)
243	if err != nil {
244		return nil, err
245	}
246	if n == 0 {
247		return nil, nil
248	}
249
250	// Sanity check group count. Max is 1<<16 on Linux.
251	if n < 0 || n > 1<<20 {
252		return nil, EINVAL
253	}
254
255	a := make([]_Gid_t, n)
256	n, err = getgroups(n, &a[0])
257	if err != nil {
258		return nil, err
259	}
260	gids = make([]int, n)
261	for i, v := range a[0:n] {
262		gids[i] = int(v)
263	}
264	return
265}
266
267func Setgroups(gids []int) (err error) {
268	if len(gids) == 0 {
269		return setgroups(0, nil)
270	}
271
272	a := make([]_Gid_t, len(gids))
273	for i, v := range gids {
274		a[i] = _Gid_t(v)
275	}
276	return setgroups(len(a), &a[0])
277}
278
279type WaitStatus uint32
280
281// Wait status is 7 bits at bottom, either 0 (exited),
282// 0x7F (stopped), or a signal number that caused an exit.
283// The 0x80 bit is whether there was a core dump.
284// An extra number (exit code, signal causing a stop)
285// is in the high bits. At least that's the idea.
286// There are various irregularities. For example, the
287// "continued" status is 0xFFFF, distinguishing itself
288// from stopped via the core dump bit.
289
290const (
291	mask    = 0x7F
292	core    = 0x80
293	exited  = 0x00
294	stopped = 0x7F
295	shift   = 8
296)
297
298func (w WaitStatus) Exited() bool { return w&mask == exited }
299
300func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
301
302func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
303
304func (w WaitStatus) Continued() bool { return w == 0xFFFF }
305
306func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
307
308func (w WaitStatus) ExitStatus() int {
309	if !w.Exited() {
310		return -1
311	}
312	return int(w>>shift) & 0xFF
313}
314
315func (w WaitStatus) Signal() syscall.Signal {
316	if !w.Signaled() {
317		return -1
318	}
319	return syscall.Signal(w & mask)
320}
321
322func (w WaitStatus) StopSignal() syscall.Signal {
323	if !w.Stopped() {
324		return -1
325	}
326	return syscall.Signal(w>>shift) & 0xFF
327}
328
329func (w WaitStatus) TrapCause() int {
330	if w.StopSignal() != SIGTRAP {
331		return -1
332	}
333	return int(w>>shift) >> 8
334}
335
336//sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
337
338func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
339	var status _C_int
340	wpid, err = wait4(pid, &status, options, rusage)
341	if wstatus != nil {
342		*wstatus = WaitStatus(status)
343	}
344	return
345}
346
347func Mkfifo(path string, mode uint32) error {
348	return Mknod(path, mode|S_IFIFO, 0)
349}
350
351func Mkfifoat(dirfd int, path string, mode uint32) error {
352	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
353}
354
355func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
356	if sa.Port < 0 || sa.Port > 0xFFFF {
357		return nil, 0, EINVAL
358	}
359	sa.raw.Family = AF_INET
360	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
361	p[0] = byte(sa.Port >> 8)
362	p[1] = byte(sa.Port)
363	for i := 0; i < len(sa.Addr); i++ {
364		sa.raw.Addr[i] = sa.Addr[i]
365	}
366	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
367}
368
369func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
370	if sa.Port < 0 || sa.Port > 0xFFFF {
371		return nil, 0, EINVAL
372	}
373	sa.raw.Family = AF_INET6
374	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
375	p[0] = byte(sa.Port >> 8)
376	p[1] = byte(sa.Port)
377	sa.raw.Scope_id = sa.ZoneId
378	for i := 0; i < len(sa.Addr); i++ {
379		sa.raw.Addr[i] = sa.Addr[i]
380	}
381	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
382}
383
384func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
385	name := sa.Name
386	n := len(name)
387	if n >= len(sa.raw.Path) {
388		return nil, 0, EINVAL
389	}
390	sa.raw.Family = AF_UNIX
391	for i := 0; i < n; i++ {
392		sa.raw.Path[i] = int8(name[i])
393	}
394	// length is family (uint16), name, NUL.
395	sl := _Socklen(2)
396	if n > 0 {
397		sl += _Socklen(n) + 1
398	}
399	if sa.raw.Path[0] == '@' {
400		sa.raw.Path[0] = 0
401		// Don't count trailing NUL for abstract address.
402		sl--
403	}
404
405	return unsafe.Pointer(&sa.raw), sl, nil
406}
407
408// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
409type SockaddrLinklayer struct {
410	Protocol uint16
411	Ifindex  int
412	Hatype   uint16
413	Pkttype  uint8
414	Halen    uint8
415	Addr     [8]byte
416	raw      RawSockaddrLinklayer
417}
418
419func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
420	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
421		return nil, 0, EINVAL
422	}
423	sa.raw.Family = AF_PACKET
424	sa.raw.Protocol = sa.Protocol
425	sa.raw.Ifindex = int32(sa.Ifindex)
426	sa.raw.Hatype = sa.Hatype
427	sa.raw.Pkttype = sa.Pkttype
428	sa.raw.Halen = sa.Halen
429	for i := 0; i < len(sa.Addr); i++ {
430		sa.raw.Addr[i] = sa.Addr[i]
431	}
432	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
433}
434
435// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
436type SockaddrNetlink struct {
437	Family uint16
438	Pad    uint16
439	Pid    uint32
440	Groups uint32
441	raw    RawSockaddrNetlink
442}
443
444func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
445	sa.raw.Family = AF_NETLINK
446	sa.raw.Pad = sa.Pad
447	sa.raw.Pid = sa.Pid
448	sa.raw.Groups = sa.Groups
449	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
450}
451
452// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
453// using the HCI protocol.
454type SockaddrHCI struct {
455	Dev     uint16
456	Channel uint16
457	raw     RawSockaddrHCI
458}
459
460func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
461	sa.raw.Family = AF_BLUETOOTH
462	sa.raw.Dev = sa.Dev
463	sa.raw.Channel = sa.Channel
464	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
465}
466
467// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
468// using the L2CAP protocol.
469type SockaddrL2 struct {
470	PSM      uint16
471	CID      uint16
472	Addr     [6]uint8
473	AddrType uint8
474	raw      RawSockaddrL2
475}
476
477func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
478	sa.raw.Family = AF_BLUETOOTH
479	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
480	psm[0] = byte(sa.PSM)
481	psm[1] = byte(sa.PSM >> 8)
482	for i := 0; i < len(sa.Addr); i++ {
483		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
484	}
485	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
486	cid[0] = byte(sa.CID)
487	cid[1] = byte(sa.CID >> 8)
488	sa.raw.Bdaddr_type = sa.AddrType
489	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
490}
491
492// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
493// using the RFCOMM protocol.
494//
495// Server example:
496//
497//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
498//      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
499//      	Channel: 1,
500//      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
501//      })
502//      _ = Listen(fd, 1)
503//      nfd, sa, _ := Accept(fd)
504//      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
505//      Read(nfd, buf)
506//
507// Client example:
508//
509//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
510//      _ = Connect(fd, &SockaddrRFCOMM{
511//      	Channel: 1,
512//      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
513//      })
514//      Write(fd, []byte(`hello`))
515type SockaddrRFCOMM struct {
516	// Addr represents a bluetooth address, byte ordering is little-endian.
517	Addr [6]uint8
518
519	// Channel is a designated bluetooth channel, only 1-30 are available for use.
520	// Since Linux 2.6.7 and further zero value is the first available channel.
521	Channel uint8
522
523	raw RawSockaddrRFCOMM
524}
525
526func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
527	sa.raw.Family = AF_BLUETOOTH
528	sa.raw.Channel = sa.Channel
529	sa.raw.Bdaddr = sa.Addr
530	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
531}
532
533// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
534// The RxID and TxID fields are used for transport protocol addressing in
535// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
536// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
537//
538// The SockaddrCAN struct must be bound to the socket file descriptor
539// using Bind before the CAN socket can be used.
540//
541//      // Read one raw CAN frame
542//      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
543//      addr := &SockaddrCAN{Ifindex: index}
544//      Bind(fd, addr)
545//      frame := make([]byte, 16)
546//      Read(fd, frame)
547//
548// The full SocketCAN documentation can be found in the linux kernel
549// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
550type SockaddrCAN struct {
551	Ifindex int
552	RxID    uint32
553	TxID    uint32
554	raw     RawSockaddrCAN
555}
556
557func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
558	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
559		return nil, 0, EINVAL
560	}
561	sa.raw.Family = AF_CAN
562	sa.raw.Ifindex = int32(sa.Ifindex)
563	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
564	for i := 0; i < 4; i++ {
565		sa.raw.Addr[i] = rx[i]
566	}
567	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
568	for i := 0; i < 4; i++ {
569		sa.raw.Addr[i+4] = tx[i]
570	}
571	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
572}
573
574// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
575// SockaddrALG enables userspace access to the Linux kernel's cryptography
576// subsystem. The Type and Name fields specify which type of hash or cipher
577// should be used with a given socket.
578//
579// To create a file descriptor that provides access to a hash or cipher, both
580// Bind and Accept must be used. Once the setup process is complete, input
581// data can be written to the socket, processed by the kernel, and then read
582// back as hash output or ciphertext.
583//
584// Here is an example of using an AF_ALG socket with SHA1 hashing.
585// The initial socket setup process is as follows:
586//
587//      // Open a socket to perform SHA1 hashing.
588//      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
589//      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
590//      unix.Bind(fd, addr)
591//      // Note: unix.Accept does not work at this time; must invoke accept()
592//      // manually using unix.Syscall.
593//      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
594//
595// Once a file descriptor has been returned from Accept, it may be used to
596// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
597// may be re-used repeatedly with subsequent Write and Read operations.
598//
599// When hashing a small byte slice or string, a single Write and Read may
600// be used:
601//
602//      // Assume hashfd is already configured using the setup process.
603//      hash := os.NewFile(hashfd, "sha1")
604//      // Hash an input string and read the results. Each Write discards
605//      // previous hash state. Read always reads the current state.
606//      b := make([]byte, 20)
607//      for i := 0; i < 2; i++ {
608//          io.WriteString(hash, "Hello, world.")
609//          hash.Read(b)
610//          fmt.Println(hex.EncodeToString(b))
611//      }
612//      // Output:
613//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
614//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
615//
616// For hashing larger byte slices, or byte streams such as those read from
617// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
618// the hash digest instead of creating a new one for a given chunk and finalizing it.
619//
620//      // Assume hashfd and addr are already configured using the setup process.
621//      hash := os.NewFile(hashfd, "sha1")
622//      // Hash the contents of a file.
623//      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
624//      b := make([]byte, 4096)
625//      for {
626//          n, err := f.Read(b)
627//          if err == io.EOF {
628//              break
629//          }
630//          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
631//      }
632//      hash.Read(b)
633//      fmt.Println(hex.EncodeToString(b))
634//      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
635//
636// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
637type SockaddrALG struct {
638	Type    string
639	Name    string
640	Feature uint32
641	Mask    uint32
642	raw     RawSockaddrALG
643}
644
645func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
646	// Leave room for NUL byte terminator.
647	if len(sa.Type) > 13 {
648		return nil, 0, EINVAL
649	}
650	if len(sa.Name) > 63 {
651		return nil, 0, EINVAL
652	}
653
654	sa.raw.Family = AF_ALG
655	sa.raw.Feat = sa.Feature
656	sa.raw.Mask = sa.Mask
657
658	typ, err := ByteSliceFromString(sa.Type)
659	if err != nil {
660		return nil, 0, err
661	}
662	name, err := ByteSliceFromString(sa.Name)
663	if err != nil {
664		return nil, 0, err
665	}
666
667	copy(sa.raw.Type[:], typ)
668	copy(sa.raw.Name[:], name)
669
670	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
671}
672
673// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
674// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
675// bidirectional communication between a hypervisor and its guest virtual
676// machines.
677type SockaddrVM struct {
678	// CID and Port specify a context ID and port address for a VM socket.
679	// Guests have a unique CID, and hosts may have a well-known CID of:
680	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
681	//  - VMADDR_CID_HOST: refers to other processes on the host.
682	CID  uint32
683	Port uint32
684	raw  RawSockaddrVM
685}
686
687func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
688	sa.raw.Family = AF_VSOCK
689	sa.raw.Port = sa.Port
690	sa.raw.Cid = sa.CID
691
692	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
693}
694
695func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
696	switch rsa.Addr.Family {
697	case AF_NETLINK:
698		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
699		sa := new(SockaddrNetlink)
700		sa.Family = pp.Family
701		sa.Pad = pp.Pad
702		sa.Pid = pp.Pid
703		sa.Groups = pp.Groups
704		return sa, nil
705
706	case AF_PACKET:
707		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
708		sa := new(SockaddrLinklayer)
709		sa.Protocol = pp.Protocol
710		sa.Ifindex = int(pp.Ifindex)
711		sa.Hatype = pp.Hatype
712		sa.Pkttype = pp.Pkttype
713		sa.Halen = pp.Halen
714		for i := 0; i < len(sa.Addr); i++ {
715			sa.Addr[i] = pp.Addr[i]
716		}
717		return sa, nil
718
719	case AF_UNIX:
720		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
721		sa := new(SockaddrUnix)
722		if pp.Path[0] == 0 {
723			// "Abstract" Unix domain socket.
724			// Rewrite leading NUL as @ for textual display.
725			// (This is the standard convention.)
726			// Not friendly to overwrite in place,
727			// but the callers below don't care.
728			pp.Path[0] = '@'
729		}
730
731		// Assume path ends at NUL.
732		// This is not technically the Linux semantics for
733		// abstract Unix domain sockets--they are supposed
734		// to be uninterpreted fixed-size binary blobs--but
735		// everyone uses this convention.
736		n := 0
737		for n < len(pp.Path) && pp.Path[n] != 0 {
738			n++
739		}
740		bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
741		sa.Name = string(bytes)
742		return sa, nil
743
744	case AF_INET:
745		pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
746		sa := new(SockaddrInet4)
747		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
748		sa.Port = int(p[0])<<8 + int(p[1])
749		for i := 0; i < len(sa.Addr); i++ {
750			sa.Addr[i] = pp.Addr[i]
751		}
752		return sa, nil
753
754	case AF_INET6:
755		pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
756		sa := new(SockaddrInet6)
757		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
758		sa.Port = int(p[0])<<8 + int(p[1])
759		sa.ZoneId = pp.Scope_id
760		for i := 0; i < len(sa.Addr); i++ {
761			sa.Addr[i] = pp.Addr[i]
762		}
763		return sa, nil
764
765	case AF_VSOCK:
766		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
767		sa := &SockaddrVM{
768			CID:  pp.Cid,
769			Port: pp.Port,
770		}
771		return sa, nil
772	case AF_BLUETOOTH:
773		proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
774		if err != nil {
775			return nil, err
776		}
777		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
778		switch proto {
779		case BTPROTO_L2CAP:
780			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
781			sa := &SockaddrL2{
782				PSM:      pp.Psm,
783				CID:      pp.Cid,
784				Addr:     pp.Bdaddr,
785				AddrType: pp.Bdaddr_type,
786			}
787			return sa, nil
788		case BTPROTO_RFCOMM:
789			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
790			sa := &SockaddrRFCOMM{
791				Channel: pp.Channel,
792				Addr:    pp.Bdaddr,
793			}
794			return sa, nil
795		}
796	}
797	return nil, EAFNOSUPPORT
798}
799
800func Accept(fd int) (nfd int, sa Sockaddr, err error) {
801	var rsa RawSockaddrAny
802	var len _Socklen = SizeofSockaddrAny
803	nfd, err = accept(fd, &rsa, &len)
804	if err != nil {
805		return
806	}
807	sa, err = anyToSockaddr(fd, &rsa)
808	if err != nil {
809		Close(nfd)
810		nfd = 0
811	}
812	return
813}
814
815func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
816	var rsa RawSockaddrAny
817	var len _Socklen = SizeofSockaddrAny
818	nfd, err = accept4(fd, &rsa, &len, flags)
819	if err != nil {
820		return
821	}
822	if len > SizeofSockaddrAny {
823		panic("RawSockaddrAny too small")
824	}
825	sa, err = anyToSockaddr(fd, &rsa)
826	if err != nil {
827		Close(nfd)
828		nfd = 0
829	}
830	return
831}
832
833func Getsockname(fd int) (sa Sockaddr, err error) {
834	var rsa RawSockaddrAny
835	var len _Socklen = SizeofSockaddrAny
836	if err = getsockname(fd, &rsa, &len); err != nil {
837		return
838	}
839	return anyToSockaddr(fd, &rsa)
840}
841
842func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
843	var value IPMreqn
844	vallen := _Socklen(SizeofIPMreqn)
845	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
846	return &value, err
847}
848
849func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
850	var value Ucred
851	vallen := _Socklen(SizeofUcred)
852	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
853	return &value, err
854}
855
856func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
857	var value TCPInfo
858	vallen := _Socklen(SizeofTCPInfo)
859	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
860	return &value, err
861}
862
863// GetsockoptString returns the string value of the socket option opt for the
864// socket associated with fd at the given socket level.
865func GetsockoptString(fd, level, opt int) (string, error) {
866	buf := make([]byte, 256)
867	vallen := _Socklen(len(buf))
868	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
869	if err != nil {
870		if err == ERANGE {
871			buf = make([]byte, vallen)
872			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
873		}
874		if err != nil {
875			return "", err
876		}
877	}
878	return string(buf[:vallen-1]), nil
879}
880
881func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
882	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
883}
884
885// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
886
887// KeyctlInt calls keyctl commands in which each argument is an int.
888// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
889// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
890// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
891// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
892//sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
893
894// KeyctlBuffer calls keyctl commands in which the third and fourth
895// arguments are a buffer and its length, respectively.
896// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
897//sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
898
899// KeyctlString calls keyctl commands which return a string.
900// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
901func KeyctlString(cmd int, id int) (string, error) {
902	// We must loop as the string data may change in between the syscalls.
903	// We could allocate a large buffer here to reduce the chance that the
904	// syscall needs to be called twice; however, this is unnecessary as
905	// the performance loss is negligible.
906	var buffer []byte
907	for {
908		// Try to fill the buffer with data
909		length, err := KeyctlBuffer(cmd, id, buffer, 0)
910		if err != nil {
911			return "", err
912		}
913
914		// Check if the data was written
915		if length <= len(buffer) {
916			// Exclude the null terminator
917			return string(buffer[:length-1]), nil
918		}
919
920		// Make a bigger buffer if needed
921		buffer = make([]byte, length)
922	}
923}
924
925// Keyctl commands with special signatures.
926
927// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
928// See the full documentation at:
929// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
930func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
931	createInt := 0
932	if create {
933		createInt = 1
934	}
935	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
936}
937
938// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
939// key handle permission mask as described in the "keyctl setperm" section of
940// http://man7.org/linux/man-pages/man1/keyctl.1.html.
941// See the full documentation at:
942// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
943func KeyctlSetperm(id int, perm uint32) error {
944	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
945	return err
946}
947
948//sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
949
950// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
951// See the full documentation at:
952// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
953func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
954	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
955}
956
957//sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
958
959// KeyctlSearch implements the KEYCTL_SEARCH command.
960// See the full documentation at:
961// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
962func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
963	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
964}
965
966//sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
967
968// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
969// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
970// of Iovec (each of which represents a buffer) instead of a single buffer.
971// See the full documentation at:
972// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
973func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
974	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
975}
976
977//sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
978
979// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
980// computes a Diffie-Hellman shared secret based on the provide params. The
981// secret is written to the provided buffer and the returned size is the number
982// of bytes written (returning an error if there is insufficient space in the
983// buffer). If a nil buffer is passed in, this function returns the minimum
984// buffer length needed to store the appropriate data. Note that this differs
985// from KEYCTL_READ's behavior which always returns the requested payload size.
986// See the full documentation at:
987// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
988func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
989	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
990}
991
992func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
993	var msg Msghdr
994	var rsa RawSockaddrAny
995	msg.Name = (*byte)(unsafe.Pointer(&rsa))
996	msg.Namelen = uint32(SizeofSockaddrAny)
997	var iov Iovec
998	if len(p) > 0 {
999		iov.Base = &p[0]
1000		iov.SetLen(len(p))
1001	}
1002	var dummy byte
1003	if len(oob) > 0 {
1004		if len(p) == 0 {
1005			var sockType int
1006			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1007			if err != nil {
1008				return
1009			}
1010			// receive at least one normal byte
1011			if sockType != SOCK_DGRAM {
1012				iov.Base = &dummy
1013				iov.SetLen(1)
1014			}
1015		}
1016		msg.Control = &oob[0]
1017		msg.SetControllen(len(oob))
1018	}
1019	msg.Iov = &iov
1020	msg.Iovlen = 1
1021	if n, err = recvmsg(fd, &msg, flags); err != nil {
1022		return
1023	}
1024	oobn = int(msg.Controllen)
1025	recvflags = int(msg.Flags)
1026	// source address is only specified if the socket is unconnected
1027	if rsa.Addr.Family != AF_UNSPEC {
1028		from, err = anyToSockaddr(fd, &rsa)
1029	}
1030	return
1031}
1032
1033func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1034	_, err = SendmsgN(fd, p, oob, to, flags)
1035	return
1036}
1037
1038func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1039	var ptr unsafe.Pointer
1040	var salen _Socklen
1041	if to != nil {
1042		var err error
1043		ptr, salen, err = to.sockaddr()
1044		if err != nil {
1045			return 0, err
1046		}
1047	}
1048	var msg Msghdr
1049	msg.Name = (*byte)(ptr)
1050	msg.Namelen = uint32(salen)
1051	var iov Iovec
1052	if len(p) > 0 {
1053		iov.Base = &p[0]
1054		iov.SetLen(len(p))
1055	}
1056	var dummy byte
1057	if len(oob) > 0 {
1058		if len(p) == 0 {
1059			var sockType int
1060			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1061			if err != nil {
1062				return 0, err
1063			}
1064			// send at least one normal byte
1065			if sockType != SOCK_DGRAM {
1066				iov.Base = &dummy
1067				iov.SetLen(1)
1068			}
1069		}
1070		msg.Control = &oob[0]
1071		msg.SetControllen(len(oob))
1072	}
1073	msg.Iov = &iov
1074	msg.Iovlen = 1
1075	if n, err = sendmsg(fd, &msg, flags); err != nil {
1076		return 0, err
1077	}
1078	if len(oob) > 0 && len(p) == 0 {
1079		n = 0
1080	}
1081	return n, nil
1082}
1083
1084// BindToDevice binds the socket associated with fd to device.
1085func BindToDevice(fd int, device string) (err error) {
1086	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1087}
1088
1089//sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1090
1091func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1092	// The peek requests are machine-size oriented, so we wrap it
1093	// to retrieve arbitrary-length data.
1094
1095	// The ptrace syscall differs from glibc's ptrace.
1096	// Peeks returns the word in *data, not as the return value.
1097
1098	var buf [sizeofPtr]byte
1099
1100	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1101	// access (PEEKUSER warns that it might), but if we don't
1102	// align our reads, we might straddle an unmapped page
1103	// boundary and not get the bytes leading up to the page
1104	// boundary.
1105	n := 0
1106	if addr%sizeofPtr != 0 {
1107		err = ptrace(req, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1108		if err != nil {
1109			return 0, err
1110		}
1111		n += copy(out, buf[addr%sizeofPtr:])
1112		out = out[n:]
1113	}
1114
1115	// Remainder.
1116	for len(out) > 0 {
1117		// We use an internal buffer to guarantee alignment.
1118		// It's not documented if this is necessary, but we're paranoid.
1119		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1120		if err != nil {
1121			return n, err
1122		}
1123		copied := copy(out, buf[0:])
1124		n += copied
1125		out = out[copied:]
1126	}
1127
1128	return n, nil
1129}
1130
1131func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1132	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1133}
1134
1135func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1136	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1137}
1138
1139func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1140	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1141}
1142
1143func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1144	// As for ptracePeek, we need to align our accesses to deal
1145	// with the possibility of straddling an invalid page.
1146
1147	// Leading edge.
1148	n := 0
1149	if addr%sizeofPtr != 0 {
1150		var buf [sizeofPtr]byte
1151		err = ptrace(peekReq, pid, addr-addr%sizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1152		if err != nil {
1153			return 0, err
1154		}
1155		n += copy(buf[addr%sizeofPtr:], data)
1156		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1157		err = ptrace(pokeReq, pid, addr-addr%sizeofPtr, word)
1158		if err != nil {
1159			return 0, err
1160		}
1161		data = data[n:]
1162	}
1163
1164	// Interior.
1165	for len(data) > sizeofPtr {
1166		word := *((*uintptr)(unsafe.Pointer(&data[0])))
1167		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1168		if err != nil {
1169			return n, err
1170		}
1171		n += sizeofPtr
1172		data = data[sizeofPtr:]
1173	}
1174
1175	// Trailing edge.
1176	if len(data) > 0 {
1177		var buf [sizeofPtr]byte
1178		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1179		if err != nil {
1180			return n, err
1181		}
1182		copy(buf[0:], data)
1183		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1184		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1185		if err != nil {
1186			return n, err
1187		}
1188		n += len(data)
1189	}
1190
1191	return n, nil
1192}
1193
1194func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1195	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1196}
1197
1198func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1199	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1200}
1201
1202func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1203	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1204}
1205
1206func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1207	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1208}
1209
1210func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1211	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1212}
1213
1214func PtraceSetOptions(pid int, options int) (err error) {
1215	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1216}
1217
1218func PtraceGetEventMsg(pid int) (msg uint, err error) {
1219	var data _C_long
1220	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1221	msg = uint(data)
1222	return
1223}
1224
1225func PtraceCont(pid int, signal int) (err error) {
1226	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1227}
1228
1229func PtraceSyscall(pid int, signal int) (err error) {
1230	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1231}
1232
1233func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1234
1235func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1236
1237func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1238
1239//sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1240
1241func Reboot(cmd int) (err error) {
1242	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1243}
1244
1245func ReadDirent(fd int, buf []byte) (n int, err error) {
1246	return Getdents(fd, buf)
1247}
1248
1249//sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1250
1251func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1252	// Certain file systems get rather angry and EINVAL if you give
1253	// them an empty string of data, rather than NULL.
1254	if data == "" {
1255		return mount(source, target, fstype, flags, nil)
1256	}
1257	datap, err := BytePtrFromString(data)
1258	if err != nil {
1259		return err
1260	}
1261	return mount(source, target, fstype, flags, datap)
1262}
1263
1264// Sendto
1265// Recvfrom
1266// Socketpair
1267
1268/*
1269 * Direct access
1270 */
1271//sys	Acct(path string) (err error)
1272//sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1273//sys	Adjtimex(buf *Timex) (state int, err error)
1274//sys	Chdir(path string) (err error)
1275//sys	Chroot(path string) (err error)
1276//sys	ClockGettime(clockid int32, time *Timespec) (err error)
1277//sys	Close(fd int) (err error)
1278//sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1279//sys	Dup(oldfd int) (fd int, err error)
1280//sys	Dup3(oldfd int, newfd int, flags int) (err error)
1281//sysnb	EpollCreate1(flag int) (fd int, err error)
1282//sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1283//sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1284//sys	Exit(code int) = SYS_EXIT_GROUP
1285//sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1286//sys	Fchdir(fd int) (err error)
1287//sys	Fchmod(fd int, mode uint32) (err error)
1288//sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1289//sys	fcntl(fd int, cmd int, arg int) (val int, err error)
1290//sys	Fdatasync(fd int) (err error)
1291//sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1292//sys	Flistxattr(fd int, dest []byte) (sz int, err error)
1293//sys	Flock(fd int, how int) (err error)
1294//sys	Fremovexattr(fd int, attr string) (err error)
1295//sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1296//sys	Fsync(fd int) (err error)
1297//sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1298//sysnb	Getpgid(pid int) (pgid int, err error)
1299
1300func Getpgrp() (pid int) {
1301	pid, _ = Getpgid(0)
1302	return
1303}
1304
1305//sysnb	Getpid() (pid int)
1306//sysnb	Getppid() (ppid int)
1307//sys	Getpriority(which int, who int) (prio int, err error)
1308//sys	Getrandom(buf []byte, flags int) (n int, err error)
1309//sysnb	Getrusage(who int, rusage *Rusage) (err error)
1310//sysnb	Getsid(pid int) (sid int, err error)
1311//sysnb	Gettid() (tid int)
1312//sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
1313//sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1314//sysnb	InotifyInit1(flags int) (fd int, err error)
1315//sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1316//sysnb	Kill(pid int, sig syscall.Signal) (err error)
1317//sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1318//sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1319//sys	Listxattr(path string, dest []byte) (sz int, err error)
1320//sys	Llistxattr(path string, dest []byte) (sz int, err error)
1321//sys	Lremovexattr(path string, attr string) (err error)
1322//sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1323//sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
1324//sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1325//sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
1326//sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1327//sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1328//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1329//sys   Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1330//sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1331//sys	read(fd int, p []byte) (n int, err error)
1332//sys	Removexattr(path string, attr string) (err error)
1333//sys	Renameat(olddirfd int, oldpath string, newdirfd int, newpath string) (err error)
1334//sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1335//sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1336//sys	Setdomainname(p []byte) (err error)
1337//sys	Sethostname(p []byte) (err error)
1338//sysnb	Setpgid(pid int, pgid int) (err error)
1339//sysnb	Setsid() (pid int, err error)
1340//sysnb	Settimeofday(tv *Timeval) (err error)
1341//sys	Setns(fd int, nstype int) (err error)
1342
1343// issue 1435.
1344// On linux Setuid and Setgid only affects the current thread, not the process.
1345// This does not match what most callers expect so we must return an error
1346// here rather than letting the caller think that the call succeeded.
1347
1348func Setuid(uid int) (err error) {
1349	return EOPNOTSUPP
1350}
1351
1352func Setgid(uid int) (err error) {
1353	return EOPNOTSUPP
1354}
1355
1356//sys	Setpriority(which int, who int, prio int) (err error)
1357//sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
1358//sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1359//sys	Sync()
1360//sys	Syncfs(fd int) (err error)
1361//sysnb	Sysinfo(info *Sysinfo_t) (err error)
1362//sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1363//sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1364//sysnb	Times(tms *Tms) (ticks uintptr, err error)
1365//sysnb	Umask(mask int) (oldmask int)
1366//sysnb	Uname(buf *Utsname) (err error)
1367//sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1368//sys	Unshare(flags int) (err error)
1369//sys	write(fd int, p []byte) (n int, err error)
1370//sys	exitThread(code int) (err error) = SYS_EXIT
1371//sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1372//sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1373
1374// mmap varies by architecture; see syscall_linux_*.go.
1375//sys	munmap(addr uintptr, length uintptr) (err error)
1376
1377var mapper = &mmapper{
1378	active: make(map[*byte][]byte),
1379	mmap:   mmap,
1380	munmap: munmap,
1381}
1382
1383func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
1384	return mapper.Mmap(fd, offset, length, prot, flags)
1385}
1386
1387func Munmap(b []byte) (err error) {
1388	return mapper.Munmap(b)
1389}
1390
1391//sys	Madvise(b []byte, advice int) (err error)
1392//sys	Mprotect(b []byte, prot int) (err error)
1393//sys	Mlock(b []byte) (err error)
1394//sys	Mlockall(flags int) (err error)
1395//sys	Msync(b []byte, flags int) (err error)
1396//sys	Munlock(b []byte) (err error)
1397//sys	Munlockall() (err error)
1398
1399// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
1400// using the specified flags.
1401func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
1402	n, _, errno := Syscall6(
1403		SYS_VMSPLICE,
1404		uintptr(fd),
1405		uintptr(unsafe.Pointer(&iovs[0])),
1406		uintptr(len(iovs)),
1407		uintptr(flags),
1408		0,
1409		0,
1410	)
1411	if errno != 0 {
1412		return 0, syscall.Errno(errno)
1413	}
1414
1415	return int(n), nil
1416}
1417
1418//sys	faccessat(dirfd int, path string, mode uint32) (err error)
1419
1420func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
1421	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
1422		return EINVAL
1423	}
1424
1425	// The Linux kernel faccessat system call does not take any flags.
1426	// The glibc faccessat implements the flags itself; see
1427	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
1428	// Because people naturally expect syscall.Faccessat to act
1429	// like C faccessat, we do the same.
1430
1431	if flags == 0 {
1432		return faccessat(dirfd, path, mode)
1433	}
1434
1435	var st Stat_t
1436	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
1437		return err
1438	}
1439
1440	mode &= 7
1441	if mode == 0 {
1442		return nil
1443	}
1444
1445	var uid int
1446	if flags&AT_EACCESS != 0 {
1447		uid = Geteuid()
1448	} else {
1449		uid = Getuid()
1450	}
1451
1452	if uid == 0 {
1453		if mode&1 == 0 {
1454			// Root can read and write any file.
1455			return nil
1456		}
1457		if st.Mode&0111 != 0 {
1458			// Root can execute any file that anybody can execute.
1459			return nil
1460		}
1461		return EACCES
1462	}
1463
1464	var fmode uint32
1465	if uint32(uid) == st.Uid {
1466		fmode = (st.Mode >> 6) & 7
1467	} else {
1468		var gid int
1469		if flags&AT_EACCESS != 0 {
1470			gid = Getegid()
1471		} else {
1472			gid = Getgid()
1473		}
1474
1475		if uint32(gid) == st.Gid {
1476			fmode = (st.Mode >> 3) & 7
1477		} else {
1478			fmode = st.Mode & 7
1479		}
1480	}
1481
1482	if fmode&mode == mode {
1483		return nil
1484	}
1485
1486	return EACCES
1487}
1488
1489/*
1490 * Unimplemented
1491 */
1492// AfsSyscall
1493// Alarm
1494// ArchPrctl
1495// Brk
1496// Capget
1497// Capset
1498// ClockGetres
1499// ClockNanosleep
1500// ClockSettime
1501// Clone
1502// CreateModule
1503// DeleteModule
1504// EpollCtlOld
1505// EpollPwait
1506// EpollWaitOld
1507// Execve
1508// Fork
1509// Futex
1510// GetKernelSyms
1511// GetMempolicy
1512// GetRobustList
1513// GetThreadArea
1514// Getitimer
1515// Getpmsg
1516// IoCancel
1517// IoDestroy
1518// IoGetevents
1519// IoSetup
1520// IoSubmit
1521// IoprioGet
1522// IoprioSet
1523// KexecLoad
1524// LookupDcookie
1525// Mbind
1526// MigratePages
1527// Mincore
1528// ModifyLdt
1529// Mount
1530// MovePages
1531// MqGetsetattr
1532// MqNotify
1533// MqOpen
1534// MqTimedreceive
1535// MqTimedsend
1536// MqUnlink
1537// Mremap
1538// Msgctl
1539// Msgget
1540// Msgrcv
1541// Msgsnd
1542// Nfsservctl
1543// Personality
1544// Pselect6
1545// Ptrace
1546// Putpmsg
1547// QueryModule
1548// Quotactl
1549// Readahead
1550// Readv
1551// RemapFilePages
1552// RestartSyscall
1553// RtSigaction
1554// RtSigpending
1555// RtSigprocmask
1556// RtSigqueueinfo
1557// RtSigreturn
1558// RtSigsuspend
1559// RtSigtimedwait
1560// SchedGetPriorityMax
1561// SchedGetPriorityMin
1562// SchedGetparam
1563// SchedGetscheduler
1564// SchedRrGetInterval
1565// SchedSetparam
1566// SchedYield
1567// Security
1568// Semctl
1569// Semget
1570// Semop
1571// Semtimedop
1572// SetMempolicy
1573// SetRobustList
1574// SetThreadArea
1575// SetTidAddress
1576// Shmat
1577// Shmctl
1578// Shmdt
1579// Shmget
1580// Sigaltstack
1581// Signalfd
1582// Swapoff
1583// Swapon
1584// Sysfs
1585// TimerCreate
1586// TimerDelete
1587// TimerGetoverrun
1588// TimerGettime
1589// TimerSettime
1590// Timerfd
1591// Tkill (obsolete)
1592// Tuxcall
1593// Umount2
1594// Uselib
1595// Utimensat
1596// Vfork
1597// Vhangup
1598// Vserver
1599// Waitid
1600// _Sysctl
1601