1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT RUN-TIME COMPONENTS                         --
4--                                                                          --
5--                ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS                 --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2020, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32--  This body is specifically for using an Ada interface to C math.h to get
33--  the computation engine. Many special cases are handled locally to avoid
34--  unnecessary calls or to meet Annex G strict mode requirements.
35
36--  Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan, sinh,
37--  cosh, tanh from C library via math.h
38
39with Ada.Numerics.Aux_Generic_Float;
40
41package body Ada.Numerics.Generic_Elementary_Functions with
42  SPARK_Mode => Off
43is
44
45   package Aux is new Ada.Numerics.Aux_Generic_Float (Float_Type);
46
47   Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
48   Log_Two  : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
49
50   Half_Log_Two : constant := Log_Two / 2;
51
52   subtype T is Float_Type'Base;
53
54   Two_Pi  : constant T := 2.0 * Pi;
55   Half_Pi : constant T := Pi / 2.0;
56
57   Half_Log_Epsilon    : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
58   Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
59   Sqrt_Epsilon        : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
60
61   -----------------------
62   -- Local Subprograms --
63   -----------------------
64
65   function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
66   --  Cody/Waite routine, supposedly more precise than the library version.
67   --  Currently only needed for Sinh/Cosh on X86 with the largest FP type.
68
69   function Local_Atan
70     (Y : Float_Type'Base;
71      X : Float_Type'Base := 1.0) return Float_Type'Base;
72   --  Common code for arc tangent after cycle reduction
73
74   ----------
75   -- "**" --
76   ----------
77
78   function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
79      A_Right  : Float_Type'Base;
80      Int_Part : Integer;
81      Result   : Float_Type'Base;
82      R1       : Float_Type'Base;
83      Rest     : Float_Type'Base;
84
85   begin
86      if Left = 0.0
87        and then Right = 0.0
88      then
89         raise Argument_Error;
90
91      elsif Left < 0.0 then
92         raise Argument_Error;
93
94      elsif Right = 0.0 then
95         return 1.0;
96
97      elsif Left = 0.0 then
98         if Right < 0.0 then
99            raise Constraint_Error;
100         else
101            return 0.0;
102         end if;
103
104      elsif Left = 1.0 then
105         return 1.0;
106
107      elsif Right = 1.0 then
108         return Left;
109
110      else
111         begin
112            if Right = 2.0 then
113               return Left * Left;
114
115            elsif Right = 0.5 then
116               return Sqrt (Left);
117
118            else
119               A_Right := abs (Right);
120
121               --  If exponent is larger than one, compute integer exponen-
122               --  tiation if possible, and evaluate fractional part with more
123               --  precision. The relative error is now proportional to the
124               --  fractional part of the exponent only.
125
126               if A_Right > 1.0
127                 and then A_Right < Float_Type'Base (Integer'Last)
128               then
129                  Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
130                  Result := Left ** Int_Part;
131                  Rest := A_Right - Float_Type'Base (Int_Part);
132
133                  --  Compute with two leading bits of the mantissa using
134                  --  square roots. Bound  to be better than logarithms, and
135                  --  easily extended to greater precision.
136
137                  if Rest >= 0.5 then
138                     R1 := Sqrt (Left);
139                     Result := Result * R1;
140                     Rest := Rest - 0.5;
141
142                     if Rest >= 0.25 then
143                        Result := Result * Sqrt (R1);
144                        Rest := Rest - 0.25;
145                     end if;
146
147                  elsif Rest >= 0.25 then
148                     Result := Result * Sqrt (Sqrt (Left));
149                     Rest := Rest - 0.25;
150                  end if;
151
152                  Result := Result * Aux.Pow (Left, Rest);
153
154                  if Right >= 0.0 then
155                     return Result;
156                  else
157                     return (1.0 / Result);
158                  end if;
159               else
160                  return Aux.Pow (Left, Right);
161               end if;
162            end if;
163
164         exception
165            when others =>
166               raise Constraint_Error;
167         end;
168      end if;
169   end "**";
170
171   ------------
172   -- Arccos --
173   ------------
174
175   --  Natural cycle
176
177   function Arccos (X : Float_Type'Base) return Float_Type'Base is
178      Temp : Float_Type'Base;
179
180   begin
181      if abs X > 1.0 then
182         raise Argument_Error;
183
184      elsif abs X < Sqrt_Epsilon then
185         return Pi / 2.0 - X;
186
187      elsif X = 1.0 then
188         return 0.0;
189
190      elsif X = -1.0 then
191         return Pi;
192      end if;
193
194      Temp := Aux.Acos (X);
195
196      if Temp < 0.0 then
197         Temp := Pi + Temp;
198      end if;
199
200      return Temp;
201   end Arccos;
202
203   --  Arbitrary cycle
204
205   function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
206      Temp : Float_Type'Base;
207
208   begin
209      if Cycle <= 0.0 then
210         raise Argument_Error;
211
212      elsif abs X > 1.0 then
213         raise Argument_Error;
214
215      elsif abs X < Sqrt_Epsilon then
216         return Cycle / 4.0;
217
218      elsif X = 1.0 then
219         return 0.0;
220
221      elsif X = -1.0 then
222         return Cycle / 2.0;
223      end if;
224
225      Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
226
227      if Temp < 0.0 then
228         Temp := Cycle / 2.0 + Temp;
229      end if;
230
231      return Temp;
232   end Arccos;
233
234   -------------
235   -- Arccosh --
236   -------------
237
238   function Arccosh (X : Float_Type'Base) return Float_Type'Base is
239   begin
240      --  Return positive branch of Log (X - Sqrt (X * X - 1.0)), or the proper
241      --  approximation for X close to 1 or >> 1.
242
243      if X < 1.0 then
244         raise Argument_Error;
245
246      elsif X < 1.0 + Sqrt_Epsilon then
247         return Sqrt (2.0 * (X - 1.0));
248
249      elsif X > 1.0 / Sqrt_Epsilon then
250         return Log (X) + Log_Two;
251
252      else
253         return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
254      end if;
255   end Arccosh;
256
257   ------------
258   -- Arccot --
259   ------------
260
261   --  Natural cycle
262
263   function Arccot
264     (X    : Float_Type'Base;
265      Y    : Float_Type'Base := 1.0)
266      return Float_Type'Base
267   is
268   begin
269      --  Just reverse arguments
270
271      return Arctan (Y, X);
272   end Arccot;
273
274   --  Arbitrary cycle
275
276   function Arccot
277     (X     : Float_Type'Base;
278      Y     : Float_Type'Base := 1.0;
279      Cycle : Float_Type'Base)
280      return  Float_Type'Base
281   is
282   begin
283      --  Just reverse arguments
284
285      return Arctan (Y, X, Cycle);
286   end Arccot;
287
288   -------------
289   -- Arccoth --
290   -------------
291
292   function Arccoth (X : Float_Type'Base) return Float_Type'Base is
293   begin
294      if abs X > 2.0 then
295         return Arctanh (1.0 / X);
296
297      elsif abs X = 1.0 then
298         raise Constraint_Error;
299
300      elsif abs X < 1.0 then
301         raise Argument_Error;
302
303      else
304         --  1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the other
305         --  has error 0 or Epsilon.
306
307         return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
308      end if;
309   end Arccoth;
310
311   ------------
312   -- Arcsin --
313   ------------
314
315   --  Natural cycle
316
317   function Arcsin (X : Float_Type'Base) return Float_Type'Base is
318   begin
319      if abs X > 1.0 then
320         raise Argument_Error;
321
322      elsif abs X < Sqrt_Epsilon then
323         return X;
324
325      elsif X = 1.0 then
326         return Pi / 2.0;
327
328      elsif X = -1.0 then
329         return -(Pi / 2.0);
330      end if;
331
332      return Aux.Asin (X);
333   end Arcsin;
334
335   --  Arbitrary cycle
336
337   function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
338   begin
339      if Cycle <= 0.0 then
340         raise Argument_Error;
341
342      elsif abs X > 1.0 then
343         raise Argument_Error;
344
345      elsif X = 0.0 then
346         return X;
347
348      elsif X = 1.0 then
349         return Cycle / 4.0;
350
351      elsif X = -1.0 then
352         return -(Cycle / 4.0);
353      end if;
354
355      return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
356   end Arcsin;
357
358   -------------
359   -- Arcsinh --
360   -------------
361
362   function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
363   begin
364      if abs X < Sqrt_Epsilon then
365         return X;
366
367      elsif X > 1.0 / Sqrt_Epsilon then
368         return Log (X) + Log_Two;
369
370      elsif X < -(1.0 / Sqrt_Epsilon) then
371         return -(Log (-X) + Log_Two);
372
373      elsif X < 0.0 then
374         return -Log (abs X + Sqrt (X * X + 1.0));
375
376      else
377         return Log (X + Sqrt (X * X + 1.0));
378      end if;
379   end Arcsinh;
380
381   ------------
382   -- Arctan --
383   ------------
384
385   --  Natural cycle
386
387   function Arctan
388     (Y    : Float_Type'Base;
389      X    : Float_Type'Base := 1.0)
390      return Float_Type'Base
391   is
392   begin
393      if X = 0.0 and then Y = 0.0 then
394         raise Argument_Error;
395
396      elsif Y = 0.0 then
397         if X > 0.0 then
398            return 0.0;
399         else -- X < 0.0
400            return Pi * Float_Type'Copy_Sign (1.0, Y);
401         end if;
402
403      elsif X = 0.0 then
404         return Float_Type'Copy_Sign (Half_Pi, Y);
405
406      else
407         return Local_Atan (Y, X);
408      end if;
409   end Arctan;
410
411   --  Arbitrary cycle
412
413   function Arctan
414     (Y     : Float_Type'Base;
415      X     : Float_Type'Base := 1.0;
416      Cycle : Float_Type'Base)
417      return  Float_Type'Base
418   is
419   begin
420      if Cycle <= 0.0 then
421         raise Argument_Error;
422
423      elsif X = 0.0 and then Y = 0.0 then
424         raise Argument_Error;
425
426      elsif Y = 0.0 then
427         if X > 0.0 then
428            return 0.0;
429         else -- X < 0.0
430            return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
431         end if;
432
433      elsif X = 0.0 then
434         return Float_Type'Copy_Sign (Cycle / 4.0, Y);
435
436      else
437         return Local_Atan (Y, X) *  Cycle / Two_Pi;
438      end if;
439   end Arctan;
440
441   -------------
442   -- Arctanh --
443   -------------
444
445   function Arctanh (X : Float_Type'Base) return Float_Type'Base is
446      A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
447
448      Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
449
450   begin
451      --  The naive formula:
452
453      --     Arctanh (X) := (1/2) * Log  (1 + X) / (1 - X)
454
455      --   is not well-behaved numerically when X < 0.5 and when X is close
456      --   to one. The following is accurate but probably not optimal.
457
458      if abs X = 1.0 then
459         raise Constraint_Error;
460
461      elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
462
463         if abs X >= 1.0 then
464            raise Argument_Error;
465         else
466
467            --  The one case that overflows if put through the method below:
468            --  abs X = 1.0 - Epsilon.  In this case (1/2) log (2/Epsilon) is
469            --  accurate. This simplifies to:
470
471            return Float_Type'Copy_Sign (
472               Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
473         end if;
474
475      --  elsif abs X <= 0.5 then
476      --  why is above line commented out ???
477
478      else
479         --  Use several piecewise linear approximations. A is close to X,
480         --  chosen so 1.0 + A, 1.0 - A, and X - A are exact. The two scalings
481         --  remove the low-order bits of X.
482
483         A := Float_Type'Base'Scaling (
484             Float_Type'Base (Long_Long_Integer
485               (Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
486
487         B := X - A;                --  This is exact; abs B <= 2**(-Mantissa).
488         A_Plus_1 := 1.0 + A;       --  This is exact.
489         A_From_1 := 1.0 - A;       --  Ditto.
490         D := A_Plus_1 * A_From_1;  --  1 - A*A.
491
492         --  use one term of the series expansion:
493
494         --    f (x + e) = f(x) + e * f'(x) + ..
495
496         --  The derivative of Arctanh at A is 1/(1-A*A). Next term is
497         --  A*(B/D)**2 (if a quadratic approximation is ever needed).
498
499         return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
500      end if;
501   end Arctanh;
502
503   ---------
504   -- Cos --
505   ---------
506
507   --  Natural cycle
508
509   function Cos (X : Float_Type'Base) return Float_Type'Base is
510   begin
511      if abs X < Sqrt_Epsilon then
512         return 1.0;
513      end if;
514
515      return Aux.Cos (X);
516   end Cos;
517
518   --  Arbitrary cycle
519
520   function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
521   begin
522      --  Just reuse the code for Sin. The potential small loss of speed is
523      --  negligible with proper (front-end) inlining.
524
525      return -Sin (abs X - Cycle * 0.25, Cycle);
526   end Cos;
527
528   ----------
529   -- Cosh --
530   ----------
531
532   function Cosh (X : Float_Type'Base) return Float_Type'Base is
533      Lnv      : constant Float_Type'Base := 8#0.542714#;
534      V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
535      Y        : constant Float_Type'Base := abs X;
536      Z        : Float_Type'Base;
537
538   begin
539      if Y < Sqrt_Epsilon then
540         return 1.0;
541
542      elsif Y > Log_Inverse_Epsilon then
543         Z := Exp_Strict (Y - Lnv);
544         return (Z + V2minus1 * Z);
545
546      else
547         Z := Exp_Strict (Y);
548         return 0.5 * (Z + 1.0 / Z);
549      end if;
550
551   end Cosh;
552
553   ---------
554   -- Cot --
555   ---------
556
557   --  Natural cycle
558
559   function Cot (X : Float_Type'Base) return Float_Type'Base is
560   begin
561      if X = 0.0 then
562         raise Constraint_Error;
563
564      elsif abs X < Sqrt_Epsilon then
565         return 1.0 / X;
566      end if;
567
568      return 1.0 / Aux.Tan (X);
569   end Cot;
570
571   --  Arbitrary cycle
572
573   function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
574      T : Float_Type'Base;
575
576   begin
577      if Cycle <= 0.0 then
578         raise Argument_Error;
579      end if;
580
581      T := Float_Type'Base'Remainder (X, Cycle);
582
583      if T = 0.0 or else abs T = 0.5 * Cycle then
584         raise Constraint_Error;
585
586      elsif abs T < Sqrt_Epsilon then
587         return 1.0 / T;
588
589      elsif abs T = 0.25 * Cycle then
590         return 0.0;
591
592      else
593         T := T / Cycle * Two_Pi;
594         return Cos (T) / Sin (T);
595      end if;
596   end Cot;
597
598   ----------
599   -- Coth --
600   ----------
601
602   function Coth (X : Float_Type'Base) return Float_Type'Base is
603   begin
604      if X = 0.0 then
605         raise Constraint_Error;
606
607      elsif X < Half_Log_Epsilon then
608         return -1.0;
609
610      elsif X > -Half_Log_Epsilon then
611         return 1.0;
612
613      elsif abs X < Sqrt_Epsilon then
614         return 1.0 / X;
615      end if;
616
617      return 1.0 / Aux.Tanh (X);
618   end Coth;
619
620   ---------
621   -- Exp --
622   ---------
623
624   function Exp (X : Float_Type'Base) return Float_Type'Base is
625      Result : Float_Type'Base;
626
627   begin
628      if X = 0.0 then
629         return 1.0;
630      end if;
631
632      Result := Aux.Exp (X);
633
634      --  Deal with case of Exp returning IEEE infinity. If Machine_Overflows
635      --  is False, then we can just leave it as an infinity (and indeed we
636      --  prefer to do so). But if Machine_Overflows is True, then we have
637      --  to raise a Constraint_Error exception as required by the RM.
638
639      if Float_Type'Machine_Overflows and then not Result'Valid then
640         raise Constraint_Error;
641      end if;
642
643      return Result;
644   end Exp;
645
646   ----------------
647   -- Exp_Strict --
648   ----------------
649
650   function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
651      G : Float_Type'Base;
652      Z : Float_Type'Base;
653
654      P0 : constant := 0.25000_00000_00000_00000;
655      P1 : constant := 0.75753_18015_94227_76666E-2;
656      P2 : constant := 0.31555_19276_56846_46356E-4;
657
658      Q0 : constant := 0.5;
659      Q1 : constant := 0.56817_30269_85512_21787E-1;
660      Q2 : constant := 0.63121_89437_43985_02557E-3;
661      Q3 : constant := 0.75104_02839_98700_46114E-6;
662
663      C1 : constant := 8#0.543#;
664      C2 : constant := -2.1219_44400_54690_58277E-4;
665      Le : constant := 1.4426_95040_88896_34074;
666
667      XN : Float_Type'Base;
668      P, Q, R : Float_Type'Base;
669
670   begin
671      if X = 0.0 then
672         return 1.0;
673      end if;
674
675      XN := Float_Type'Base'Rounding (X * Le);
676      G := (X - XN * C1) - XN * C2;
677      Z := G * G;
678      P := G * ((P2 * Z + P1) * Z + P0);
679      Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
680
681      pragma Assert (Q /= P);
682      R := 0.5 + P / (Q - P);
683
684      R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
685
686      --  Deal with case of Exp returning IEEE infinity. If Machine_Overflows
687      --  is False, then we can just leave it as an infinity (and indeed we
688      --  prefer to do so). But if Machine_Overflows is True, then we have to
689      --  raise a Constraint_Error exception as required by the RM.
690
691      if Float_Type'Machine_Overflows and then not R'Valid then
692         raise Constraint_Error;
693      else
694         return R;
695      end if;
696
697   end Exp_Strict;
698
699   ----------------
700   -- Local_Atan --
701   ----------------
702
703   function Local_Atan
704     (Y : Float_Type'Base;
705      X : Float_Type'Base := 1.0) return Float_Type'Base
706   is
707      Z        : Float_Type'Base;
708      Raw_Atan : Float_Type'Base;
709
710   begin
711      Z := (if abs Y > abs X then abs (X / Y) else abs (Y / X));
712
713      Raw_Atan :=
714        (if Z < Sqrt_Epsilon then Z
715         elsif Z = 1.0 then Pi / 4.0
716         else Aux.Atan (Z));
717
718      if abs Y > abs X then
719         Raw_Atan := Half_Pi - Raw_Atan;
720      end if;
721
722      if X > 0.0 then
723         return Float_Type'Copy_Sign (Raw_Atan, Y);
724      else
725         return Float_Type'Copy_Sign (Pi - Raw_Atan, Y);
726      end if;
727   end Local_Atan;
728
729   ---------
730   -- Log --
731   ---------
732
733   --  Natural base
734
735   function Log (X : Float_Type'Base) return Float_Type'Base is
736   begin
737      if X < 0.0 then
738         raise Argument_Error;
739
740      elsif X = 0.0 then
741         raise Constraint_Error;
742
743      elsif X = 1.0 then
744         return 0.0;
745      end if;
746
747      return Aux.Log (X);
748   end Log;
749
750   --  Arbitrary base
751
752   function Log (X, Base : Float_Type'Base) return Float_Type'Base is
753   begin
754      if X < 0.0 then
755         raise Argument_Error;
756
757      elsif Base <= 0.0 or else Base = 1.0 then
758         raise Argument_Error;
759
760      elsif X = 0.0 then
761         raise Constraint_Error;
762
763      elsif X = 1.0 then
764         return 0.0;
765      end if;
766
767      return Aux.Log (X) / Aux.Log (Base);
768   end Log;
769
770   ---------
771   -- Sin --
772   ---------
773
774   --  Natural cycle
775
776   function Sin (X : Float_Type'Base) return Float_Type'Base is
777   begin
778      if abs X < Sqrt_Epsilon then
779         return X;
780      end if;
781
782      return Aux.Sin (X);
783   end Sin;
784
785   --  Arbitrary cycle
786
787   function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
788      T : Float_Type'Base;
789
790   begin
791      if Cycle <= 0.0 then
792         raise Argument_Error;
793
794      --  If X is zero, return it as the result, preserving the argument sign.
795      --  Is this test really needed on any machine ???
796
797      elsif X = 0.0 then
798         return X;
799      end if;
800
801      T := Float_Type'Base'Remainder (X, Cycle);
802
803      --  The following two reductions reduce the argument to the interval
804      --  [-0.25 * Cycle, 0.25 * Cycle]. This reduction is exact and is needed
805      --  to prevent inaccuracy that may result if the sine function uses a
806      --  different (more accurate) value of Pi in its reduction than is used
807      --  in the multiplication with Two_Pi.
808
809      if abs T > 0.25 * Cycle then
810         T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
811      end if;
812
813      --  Could test for 12.0 * abs T = Cycle, and return an exact value in
814      --  those cases. It is not clear this is worth the extra test though.
815
816      return Aux.Sin (T / Cycle * Two_Pi);
817   end Sin;
818
819   ----------
820   -- Sinh --
821   ----------
822
823   function Sinh (X : Float_Type'Base) return Float_Type'Base is
824      Lnv      : constant Float_Type'Base := 8#0.542714#;
825      V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
826      Y        : constant Float_Type'Base := abs X;
827      F        : constant Float_Type'Base := Y * Y;
828      Z        : Float_Type'Base;
829
830      Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
831
832   begin
833      if Y < Sqrt_Epsilon then
834         return X;
835
836      elsif Y > Log_Inverse_Epsilon then
837         Z := Exp_Strict (Y - Lnv);
838         Z := Z + V2minus1 * Z;
839
840      elsif Y < 1.0 then
841
842         if Float_Digits_1_6 then
843
844            --  Use expansion provided by Cody and Waite, p. 226. Note that
845            --  leading term of the polynomial in Q is exactly 1.0.
846
847            declare
848               P0 : constant := -0.71379_3159E+1;
849               P1 : constant := -0.19033_3399E+0;
850               Q0 : constant := -0.42827_7109E+2;
851
852            begin
853               Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
854            end;
855
856         else
857            declare
858               P0 : constant := -0.35181_28343_01771_17881E+6;
859               P1 : constant := -0.11563_52119_68517_68270E+5;
860               P2 : constant := -0.16375_79820_26307_51372E+3;
861               P3 : constant := -0.78966_12741_73570_99479E+0;
862               Q0 : constant := -0.21108_77005_81062_71242E+7;
863               Q1 : constant :=  0.36162_72310_94218_36460E+5;
864               Q2 : constant := -0.27773_52311_96507_01667E+3;
865
866            begin
867               Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
868                              / (((F + Q2) * F + Q1) * F + Q0);
869            end;
870         end if;
871
872      else
873         Z := Exp_Strict (Y);
874         Z := 0.5 * (Z - 1.0 / Z);
875      end if;
876
877      if X > 0.0 then
878         return Z;
879      else
880         return -Z;
881      end if;
882   end Sinh;
883
884   ----------
885   -- Sqrt --
886   ----------
887
888   function Sqrt (X : Float_Type'Base) return Float_Type'Base is
889   begin
890      if X < 0.0 then
891         raise Argument_Error;
892
893      --  Special case Sqrt (0.0) to preserve possible minus sign per IEEE
894
895      elsif X = 0.0 then
896         return X;
897      end if;
898
899      return Aux.Sqrt (X);
900   end Sqrt;
901
902   ---------
903   -- Tan --
904   ---------
905
906   --  Natural cycle
907
908   function Tan (X : Float_Type'Base) return Float_Type'Base is
909   begin
910      if abs X < Sqrt_Epsilon then
911         return X;
912      end if;
913
914      --  Note: if X is exactly pi/2, then we should raise an exception, since
915      --  the result would overflow. But for all floating-point formats we deal
916      --  with, it is impossible for X to be exactly pi/2, and the result is
917      --  always in range.
918
919      return Aux.Tan (X);
920   end Tan;
921
922   --  Arbitrary cycle
923
924   function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
925      T : Float_Type'Base;
926
927   begin
928      if Cycle <= 0.0 then
929         raise Argument_Error;
930
931      elsif X = 0.0 then
932         return X;
933      end if;
934
935      T := Float_Type'Base'Remainder (X, Cycle);
936
937      if abs T = 0.25 * Cycle then
938         raise Constraint_Error;
939
940      elsif abs T = 0.5 * Cycle then
941         return 0.0;
942
943      else
944         T := T / Cycle * Two_Pi;
945         return Sin (T) / Cos (T);
946      end if;
947
948   end Tan;
949
950   ----------
951   -- Tanh --
952   ----------
953
954   function Tanh (X : Float_Type'Base) return Float_Type'Base is
955      P0 : constant Float_Type'Base := -0.16134_11902_39962_28053E+4;
956      P1 : constant Float_Type'Base := -0.99225_92967_22360_83313E+2;
957      P2 : constant Float_Type'Base := -0.96437_49277_72254_69787E+0;
958
959      Q0 : constant Float_Type'Base :=  0.48402_35707_19886_88686E+4;
960      Q1 : constant Float_Type'Base :=  0.22337_72071_89623_12926E+4;
961      Q2 : constant Float_Type'Base :=  0.11274_47438_05349_49335E+3;
962      Q3 : constant Float_Type'Base :=  0.10000_00000_00000_00000E+1;
963
964      Half_Ln3 : constant Float_Type'Base := 0.54930_61443_34054_84570;
965
966      P, Q, R : Float_Type'Base;
967      Y : constant Float_Type'Base := abs X;
968      G : constant Float_Type'Base := Y * Y;
969
970      Float_Type_Digits_15_Or_More : constant Boolean :=
971        Float_Type'Digits > 14;
972
973   begin
974      if X < Half_Log_Epsilon then
975         return -1.0;
976
977      elsif X > -Half_Log_Epsilon then
978         return 1.0;
979
980      elsif Y < Sqrt_Epsilon then
981         return X;
982
983      elsif Y < Half_Ln3
984        and then Float_Type_Digits_15_Or_More
985      then
986         P := (P2 * G + P1) * G + P0;
987         Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
988         R := G * (P / Q);
989         return X + X * R;
990
991      else
992         return Aux.Tanh (X);
993      end if;
994   end Tanh;
995
996end Ada.Numerics.Generic_Elementary_Functions;
997