1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--        G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S           --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--                     Copyright (C) 2002-2020, AdaCore                     --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
17--                                                                          --
18-- As a special exception under Section 7 of GPL version 3, you are granted --
19-- additional permissions described in the GCC Runtime Library Exception,   --
20-- version 3.1, as published by the Free Software Foundation.               --
21--                                                                          --
22-- You should have received a copy of the GNU General Public License and    --
23-- a copy of the GCC Runtime Library Exception along with this program;     --
24-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
25-- <http://www.gnu.org/licenses/>.                                          --
26--                                                                          --
27-- GNAT was originally developed  by the GNAT team at  New York University. --
28-- Extensive contributions were provided by Ada Core Technologies Inc.      --
29--                                                                          --
30------------------------------------------------------------------------------
31
32with Ada.IO_Exceptions;       use Ada.IO_Exceptions;
33with Ada.Characters.Handling; use Ada.Characters.Handling;
34with Ada.Directories;
35
36with GNAT.Heap_Sort_G;
37with GNAT.OS_Lib;      use GNAT.OS_Lib;
38with GNAT.Table;
39
40package body GNAT.Perfect_Hash_Generators is
41
42   --  We are using the algorithm of J. Czech as described in Zbigniew J.
43   --  Czech, George Havas, and Bohdan S. Majewski ``An Optimal Algorithm for
44   --  Generating Minimal Perfect Hash Functions'', Information Processing
45   --  Letters, 43(1992) pp.257-264, Oct.1992
46
47   --  This minimal perfect hash function generator is based on random graphs
48   --  and produces a hash function of the form:
49
50   --             h (w) = (g (f1 (w)) + g (f2 (w))) mod m
51
52   --  where f1 and f2 are functions that map strings into integers, and g is
53   --  a function that maps integers into [0, m-1]. h can be order preserving.
54   --  For instance, let W = {w_0, ..., w_i, ..., w_m-1}, h can be defined
55   --  such that h (w_i) = i.
56
57   --  This algorithm defines two possible constructions of f1 and f2. Method
58   --  b) stores the hash function in less memory space at the expense of
59   --  greater CPU time.
60
61   --  a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
62
63   --     size (Tk) = max (for w in W) (length (w)) * size (used char set)
64
65   --  b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
66
67   --     size (Tk) = max (for w in W) (length (w)) but the table lookups are
68   --     replaced by multiplications.
69
70   --  where Tk values are randomly generated. n is defined later on but the
71   --  algorithm recommends to use a value a little bit greater than 2m. Note
72   --  that for large values of m, the main memory space requirements comes
73   --  from the memory space for storing function g (>= 2m entries).
74
75   --  Random graphs are frequently used to solve difficult problems that do
76   --  not have polynomial solutions. This algorithm is based on a weighted
77   --  undirected graph. It comprises two steps: mapping and assignment.
78
79   --  In the mapping step, a graph G = (V, E) is constructed, where = {0, 1,
80   --  ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In order for the
81   --  assignment step to be successful, G has to be acyclic. To have a high
82   --  probability of generating an acyclic graph, n >= 2m. If it is not
83   --  acyclic, Tk have to be regenerated.
84
85   --  In the assignment step, the algorithm builds function g. As G is
86   --  acyclic, there is a vertex v1 with only one neighbor v2. Let w_i be
87   --  the word such that v1 = f1 (w_i) and v2 = f2 (w_i). Let g (v1) = 0 by
88   --  construction and g (v2) = (i - g (v1)) mod n (or h (i) - g (v1) mod n).
89   --  If word w_j is such that v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j -
90   --  g (v2)) mod (or to be general, (h (j) - g (v2)) mod n). If w_i has no
91   --  neighbor, then another vertex is selected. The algorithm traverses G to
92   --  assign values to all the vertices. It cannot assign a value to an
93   --  already assigned vertex as G is acyclic.
94
95   subtype Word_Id   is Integer;
96   subtype Key_Id    is Integer;
97   subtype Vertex_Id is Integer;
98   subtype Edge_Id   is Integer;
99   subtype Table_Id  is Integer;
100
101   No_Vertex : constant Vertex_Id := -1;
102   No_Edge   : constant Edge_Id   := -1;
103   No_Table  : constant Table_Id  := -1;
104
105   type Word_Type is new String_Access;
106   procedure Free_Word (W : in out Word_Type) renames Free;
107   function New_Word (S : String) return Word_Type;
108
109   procedure Resize_Word (W : in out Word_Type; Len : Natural);
110   --  Resize string W to have a length Len
111
112   type Key_Type is record
113      Edge : Edge_Id;
114   end record;
115   --  A key corresponds to an edge in the algorithm graph
116
117   type Vertex_Type is record
118      First : Edge_Id;
119      Last  : Edge_Id;
120   end record;
121   --  A vertex can be involved in several edges. First and Last are the bounds
122   --  of an array of edges stored in a global edge table.
123
124   type Edge_Type is record
125      X   : Vertex_Id;
126      Y   : Vertex_Id;
127      Key : Key_Id;
128   end record;
129   --  An edge is a peer of vertices. In the algorithm, a key is associated to
130   --  an edge.
131
132   package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32);
133   package IT is new GNAT.Table (Integer, Integer, 0, 32, 32);
134   --  The two main tables. WT is used to store the words in their initial
135   --  version and in their reduced version (that is words reduced to their
136   --  significant characters). As an instance of GNAT.Table, WT does not
137   --  initialize string pointers to null. This initialization has to be done
138   --  manually when the table is allocated. IT is used to store several
139   --  tables of components containing only integers.
140
141   function Image (Int : Integer; W : Natural := 0) return String;
142   function Image (Str : String;  W : Natural := 0) return String;
143   --  Return a string which includes string Str or integer Int preceded by
144   --  leading spaces if required by width W.
145
146   function Trim_Trailing_Nuls (Str : String) return String;
147   --  Return Str with trailing NUL characters removed
148
149   Output : File_Descriptor renames GNAT.OS_Lib.Standout;
150   --  Shortcuts
151
152   EOL : constant Character := ASCII.LF;
153
154   Max  : constant := 78;
155   Last : Natural  := 0;
156   Line : String (1 .. Max);
157   --  Use this line to provide buffered IO
158
159   procedure Add (C : Character);
160   procedure Add (S : String);
161   --  Add a character or a string in Line and update Last
162
163   procedure Put
164     (F  : File_Descriptor;
165      S  : String;
166      F1 : Natural;
167      L1 : Natural;
168      C1 : Natural;
169      F2 : Natural;
170      L2 : Natural;
171      C2 : Natural);
172   --  Write string S into file F as a element of an array of one or two
173   --  dimensions. Fk (resp. Lk and Ck) indicates the first (resp last and
174   --  current) index in the k-th dimension. If F1 = L1 the array is considered
175   --  as a one dimension array. This dimension is described by F2 and L2. This
176   --  routine takes care of all the parenthesis, spaces and commas needed to
177   --  format correctly the array. Moreover, the array is well indented and is
178   --  wrapped to fit in a 80 col line. When the line is full, the routine
179   --  writes it into file F. When the array is completed, the routine adds
180   --  semi-colon and writes the line into file F.
181
182   procedure New_Line (File : File_Descriptor);
183   --  Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib
184
185   procedure Put (File : File_Descriptor; Str : String);
186   --  Simulate Ada.Text_IO.Put with GNAT.OS_Lib
187
188   procedure Put_Used_Char_Set (File : File_Descriptor; Title : String);
189   --  Output a title and a used character set
190
191   procedure Put_Int_Vector
192     (File   : File_Descriptor;
193      Title  : String;
194      Vector : Integer;
195      Length : Natural);
196   --  Output a title and a vector
197
198   procedure Put_Int_Matrix
199     (File  : File_Descriptor;
200      Title : String;
201      Table : Table_Id;
202      Len_1 : Natural;
203      Len_2 : Natural);
204   --  Output a title and a matrix. When the matrix has only one non-empty
205   --  dimension (Len_2 = 0), output a vector.
206
207   procedure Put_Edges (File : File_Descriptor; Title : String);
208   --  Output a title and an edge table
209
210   procedure Put_Initial_Keys (File : File_Descriptor; Title : String);
211   --  Output a title and a key table
212
213   procedure Put_Reduced_Keys (File : File_Descriptor; Title : String);
214   --  Output a title and a key table
215
216   procedure Put_Vertex_Table (File : File_Descriptor; Title : String);
217   --  Output a title and a vertex table
218
219   function Ada_File_Base_Name (Pkg_Name : String) return String;
220   --  Return the base file name (i.e. without .ads/.adb extension) for an
221   --  Ada source file containing the named package, using the standard GNAT
222   --  file-naming convention. For example, if Pkg_Name is "Parent.Child", we
223   --  return "parent-child".
224
225   ----------------------------------
226   -- Character Position Selection --
227   ----------------------------------
228
229   --  We reduce the maximum key size by selecting representative positions
230   --  in these keys. We build a matrix with one word per line. We fill the
231   --  remaining space of a line with ASCII.NUL. The heuristic selects the
232   --  position that induces the minimum number of collisions. If there are
233   --  collisions, select another position on the reduced key set responsible
234   --  of the collisions. Apply the heuristic until there is no more collision.
235
236   procedure Apply_Position_Selection;
237   --  Apply Position selection and build the reduced key table
238
239   procedure Parse_Position_Selection (Argument : String);
240   --  Parse Argument and compute the position set. Argument is list of
241   --  substrings separated by commas. Each substring represents a position
242   --  or a range of positions (like x-y).
243
244   procedure Select_Character_Set;
245   --  Define an optimized used character set like Character'Pos in order not
246   --  to allocate tables of 256 entries.
247
248   procedure Select_Char_Position;
249   --  Find a min char position set in order to reduce the max key length. The
250   --  heuristic selects the position that induces the minimum number of
251   --  collisions. If there are collisions, select another position on the
252   --  reduced key set responsible of the collisions. Apply the heuristic until
253   --  there is no collision.
254
255   -----------------------------
256   -- Random Graph Generation --
257   -----------------------------
258
259   procedure Random (Seed : in out Natural);
260   --  Simulate Ada.Discrete_Numerics.Random
261
262   procedure Generate_Mapping_Table
263     (Tab  : Table_Id;
264      L1   : Natural;
265      L2   : Natural;
266      Seed : in out Natural);
267   --  Random generation of the tables below. T is already allocated
268
269   procedure Generate_Mapping_Tables
270     (Opt  : Optimization;
271      Seed : in out Natural);
272   --  Generate the mapping tables T1 and T2. They are used to define fk (w) =
273   --  sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. Keys, NK and Chars
274   --  are used to compute the matrix size.
275
276   ---------------------------
277   -- Algorithm Computation --
278   ---------------------------
279
280   procedure Compute_Edges_And_Vertices (Opt : Optimization);
281   --  Compute the edge and vertex tables. These are empty when a self loop is
282   --  detected (f1 (w) = f2 (w)). The edge table is sorted by X value and then
283   --  Y value. Keys is the key table and NK the number of keys. Chars is the
284   --  set of characters really used in Keys. NV is the number of vertices
285   --  recommended by the algorithm. T1 and T2 are the mapping tables needed to
286   --  compute f1 (w) and f2 (w).
287
288   function Acyclic return Boolean;
289   --  Return True when the graph is acyclic. Vertices is the current vertex
290   --  table and Edges the current edge table.
291
292   procedure Assign_Values_To_Vertices;
293   --  Execute the assignment step of the algorithm. Keys is the current key
294   --  table. Vertices and Edges represent the random graph. G is the result of
295   --  the assignment step such that:
296   --    h (w) = (g (f1 (w)) + g (f2 (w))) mod m
297
298   function Sum
299     (Word  : Word_Type;
300      Table : Table_Id;
301      Opt   : Optimization) return Natural;
302   --  For an optimization of CPU_Time return
303   --    fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
304   --  For an optimization of Memory_Space return
305   --    fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
306   --  Here NV = n
307
308   -------------------------------
309   -- Internal Table Management --
310   -------------------------------
311
312   function Allocate (N : Natural; S : Natural := 1) return Table_Id;
313   --  Allocate N * S ints from IT table
314
315   ----------
316   -- Keys --
317   ----------
318
319   Keys : Table_Id := No_Table;
320   NK   : Natural  := 0;
321   --  NK : Number of Keys
322
323   function Initial (K : Key_Id) return Word_Id;
324   pragma Inline (Initial);
325
326   function Reduced (K : Key_Id) return Word_Id;
327   pragma Inline (Reduced);
328
329   function  Get_Key (N : Key_Id) return Key_Type;
330   procedure Set_Key (N : Key_Id; Item : Key_Type);
331   --  Get or Set Nth element of Keys table
332
333   ------------------
334   -- Char_Pos_Set --
335   ------------------
336
337   Char_Pos_Set     : Table_Id := No_Table;
338   Char_Pos_Set_Len : Natural;
339   --  Character Selected Position Set
340
341   function  Get_Char_Pos (P : Natural) return Natural;
342   procedure Set_Char_Pos (P : Natural; Item : Natural);
343   --  Get or Set the string position of the Pth selected character
344
345   -------------------
346   -- Used_Char_Set --
347   -------------------
348
349   Used_Char_Set     : Table_Id := No_Table;
350   Used_Char_Set_Len : Natural;
351   --  Used Character Set : Define a new character mapping. When all the
352   --  characters are not present in the keys, in order to reduce the size
353   --  of some tables, we redefine the character mapping.
354
355   function  Get_Used_Char (C : Character) return Natural;
356   procedure Set_Used_Char (C : Character; Item : Natural);
357
358   ------------
359   -- Tables --
360   ------------
361
362   T1     : Table_Id := No_Table;
363   T2     : Table_Id := No_Table;
364   T1_Len : Natural;
365   T2_Len : Natural;
366   --  T1  : Values table to compute F1
367   --  T2  : Values table to compute F2
368
369   function  Get_Table (T : Integer; X, Y : Natural) return Natural;
370   procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural);
371
372   -----------
373   -- Graph --
374   -----------
375
376   G     : Table_Id := No_Table;
377   G_Len : Natural;
378   --  Values table to compute G
379
380   NT : Natural := Default_Tries;
381   --  Number of tries running the algorithm before raising an error
382
383   function  Get_Graph (N : Natural) return Integer;
384   procedure Set_Graph (N : Natural; Item : Integer);
385   --  Get or Set Nth element of graph
386
387   -----------
388   -- Edges --
389   -----------
390
391   Edge_Size : constant := 3;
392   Edges     : Table_Id := No_Table;
393   Edges_Len : Natural;
394   --  Edges  : Edge table of the random graph G
395
396   function  Get_Edges (F : Natural) return Edge_Type;
397   procedure Set_Edges (F : Natural; Item : Edge_Type);
398
399   --------------
400   -- Vertices --
401   --------------
402
403   Vertex_Size : constant := 2;
404
405   Vertices : Table_Id := No_Table;
406   --  Vertex table of the random graph G
407
408   NV : Natural;
409   --  Number of Vertices
410
411   function  Get_Vertices (F : Natural) return Vertex_Type;
412   procedure Set_Vertices (F : Natural; Item : Vertex_Type);
413   --  Comments needed ???
414
415   K2V : Float;
416   --  Ratio between Keys and Vertices (parameter of Czech's algorithm)
417
418   Opt : Optimization;
419   --  Optimization mode (memory vs CPU)
420
421   Max_Key_Len : Natural := 0;
422   Min_Key_Len : Natural := 0;
423   --  Maximum and minimum of all the word length
424
425   S : Natural;
426   --  Seed
427
428   function Type_Size (L : Natural) return Natural;
429   --  Given the last L of an unsigned integer type T, return its size
430
431   -------------
432   -- Acyclic --
433   -------------
434
435   function Acyclic return Boolean is
436      Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex);
437
438      function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean;
439      --  Propagate Mark from X to Y. X is already marked. Mark Y and propagate
440      --  it to the edges of Y except the one representing the same key. Return
441      --  False when Y is marked with Mark.
442
443      --------------
444      -- Traverse --
445      --------------
446
447      function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean is
448         E : constant Edge_Type := Get_Edges (Edge);
449         K : constant Key_Id    := E.Key;
450         Y : constant Vertex_Id := E.Y;
451         M : constant Vertex_Id := Marks (E.Y);
452         V : Vertex_Type;
453
454      begin
455         if M = Mark then
456            return False;
457
458         elsif M = No_Vertex then
459            Marks (Y) := Mark;
460            V := Get_Vertices (Y);
461
462            for J in V.First .. V.Last loop
463
464               --  Do not propagate to the edge representing the same key
465
466               if Get_Edges (J).Key /= K
467                 and then not Traverse (J, Mark)
468               then
469                  return False;
470               end if;
471            end loop;
472         end if;
473
474         return True;
475      end Traverse;
476
477      Edge  : Edge_Type;
478
479   --  Start of processing for Acyclic
480
481   begin
482      --  Edges valid range is
483
484      for J in 1 .. Edges_Len - 1 loop
485
486         Edge := Get_Edges (J);
487
488         --  Mark X of E when it has not been already done
489
490         if Marks (Edge.X) = No_Vertex then
491            Marks (Edge.X) := Edge.X;
492         end if;
493
494         --  Traverse E when this has not already been done
495
496         if Marks (Edge.Y) = No_Vertex
497           and then not Traverse (J, Edge.X)
498         then
499            return False;
500         end if;
501      end loop;
502
503      return True;
504   end Acyclic;
505
506   ------------------------
507   -- Ada_File_Base_Name --
508   ------------------------
509
510   function Ada_File_Base_Name (Pkg_Name : String) return String is
511   begin
512      --  Convert to lower case, then replace '.' with '-'
513
514      return Result : String := To_Lower (Pkg_Name) do
515         for J in Result'Range loop
516            if Result (J) = '.' then
517               Result (J) := '-';
518            end if;
519         end loop;
520      end return;
521   end Ada_File_Base_Name;
522
523   ---------
524   -- Add --
525   ---------
526
527   procedure Add (C : Character) is
528      pragma Assert (C /= ASCII.NUL);
529   begin
530      Line (Last + 1) := C;
531      Last := Last + 1;
532   end Add;
533
534   ---------
535   -- Add --
536   ---------
537
538   procedure Add (S : String) is
539      Len : constant Natural := S'Length;
540   begin
541      for J in S'Range loop
542         pragma Assert (S (J) /= ASCII.NUL);
543         null;
544      end loop;
545
546      Line (Last + 1 .. Last + Len) := S;
547      Last := Last + Len;
548   end Add;
549
550   --------------
551   -- Allocate --
552   --------------
553
554   function Allocate (N : Natural; S : Natural := 1) return Table_Id is
555      L : constant Integer := IT.Last;
556   begin
557      IT.Set_Last (L + N * S);
558
559      --  Initialize, so debugging printouts don't trip over uninitialized
560      --  components.
561
562      for J in L + 1 .. IT.Last loop
563         IT.Table (J) := -1;
564      end loop;
565
566      return L + 1;
567   end Allocate;
568
569   ------------------------------
570   -- Apply_Position_Selection --
571   ------------------------------
572
573   procedure Apply_Position_Selection is
574   begin
575      for J in 0 .. NK - 1 loop
576         declare
577            IW : constant String := WT.Table (Initial (J)).all;
578            RW : String (1 .. IW'Length) := (others => ASCII.NUL);
579            N  : Natural := IW'First - 1;
580
581         begin
582            --  Select the characters of Word included in the position
583            --  selection.
584
585            for C in 0 .. Char_Pos_Set_Len - 1 loop
586               exit when IW (Get_Char_Pos (C)) = ASCII.NUL;
587               N := N + 1;
588               RW (N) := IW (Get_Char_Pos (C));
589            end loop;
590
591            --  Build the new table with the reduced word. Be careful
592            --  to deallocate the old version to avoid memory leaks.
593
594            Free_Word (WT.Table (Reduced (J)));
595            WT.Table (Reduced (J)) := New_Word (RW);
596            Set_Key (J, (Edge => No_Edge));
597         end;
598      end loop;
599   end Apply_Position_Selection;
600
601   -------------------------------
602   -- Assign_Values_To_Vertices --
603   -------------------------------
604
605   procedure Assign_Values_To_Vertices is
606      X : Vertex_Id;
607
608      procedure Assign (X : Vertex_Id);
609      --  Execute assignment on X's neighbors except the vertex that we are
610      --  coming from which is already assigned.
611
612      ------------
613      -- Assign --
614      ------------
615
616      procedure Assign (X : Vertex_Id) is
617         E : Edge_Type;
618         V : constant Vertex_Type := Get_Vertices (X);
619
620      begin
621         for J in V.First .. V.Last loop
622            E := Get_Edges (J);
623
624            if Get_Graph (E.Y) = -1 then
625               pragma Assert (NK /= 0);
626               Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK);
627               Assign (E.Y);
628            end if;
629         end loop;
630      end Assign;
631
632   --  Start of processing for Assign_Values_To_Vertices
633
634   begin
635      --  Value -1 denotes an uninitialized value as it is supposed to
636      --  be in the range 0 .. NK.
637
638      if G = No_Table then
639         G_Len := NV;
640         G := Allocate (G_Len, 1);
641      end if;
642
643      for J in 0 .. G_Len - 1 loop
644         Set_Graph (J, -1);
645      end loop;
646
647      for K in 0 .. NK - 1 loop
648         X := Get_Edges (Get_Key (K).Edge).X;
649
650         if Get_Graph (X) = -1 then
651            Set_Graph (X, 0);
652            Assign (X);
653         end if;
654      end loop;
655
656      for J in 0 .. G_Len - 1 loop
657         if Get_Graph (J) = -1 then
658            Set_Graph (J, 0);
659         end if;
660      end loop;
661
662      if Verbose then
663         Put_Int_Vector (Output, "Assign Values To Vertices", G, G_Len);
664      end if;
665   end Assign_Values_To_Vertices;
666
667   -------------
668   -- Compute --
669   -------------
670
671   procedure Compute (Position : String := Default_Position) is
672      Success : Boolean := False;
673
674   begin
675      if NK = 0 then
676         raise Program_Error with "keywords set cannot be empty";
677      end if;
678
679      if Verbose then
680         Put_Initial_Keys (Output, "Initial Key Table");
681      end if;
682
683      if Position'Length /= 0 then
684         Parse_Position_Selection (Position);
685      else
686         Select_Char_Position;
687      end if;
688
689      if Verbose then
690         Put_Int_Vector
691           (Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len);
692      end if;
693
694      Apply_Position_Selection;
695
696      if Verbose then
697         Put_Reduced_Keys (Output, "Reduced Keys Table");
698      end if;
699
700      Select_Character_Set;
701
702      if Verbose then
703         Put_Used_Char_Set (Output, "Character Position Table");
704      end if;
705
706      --  Perform Czech's algorithm
707
708      for J in 1 .. NT loop
709         Generate_Mapping_Tables (Opt, S);
710         Compute_Edges_And_Vertices (Opt);
711
712         --  When graph is not empty (no self-loop from previous operation) and
713         --  not acyclic.
714
715         if 0 < Edges_Len and then Acyclic then
716            Success := True;
717            exit;
718         end if;
719      end loop;
720
721      if not Success then
722         raise Too_Many_Tries;
723      end if;
724
725      Assign_Values_To_Vertices;
726   end Compute;
727
728   --------------------------------
729   -- Compute_Edges_And_Vertices --
730   --------------------------------
731
732   procedure Compute_Edges_And_Vertices (Opt : Optimization) is
733      X           : Natural;
734      Y           : Natural;
735      Key         : Key_Type;
736      Edge        : Edge_Type;
737      Vertex      : Vertex_Type;
738      Not_Acyclic : Boolean := False;
739
740      procedure Move (From : Natural; To : Natural);
741      function Lt (L, R : Natural) return Boolean;
742      --  Subprograms needed for GNAT.Heap_Sort_G
743
744      --------
745      -- Lt --
746      --------
747
748      function Lt (L, R : Natural) return Boolean is
749         EL : constant Edge_Type := Get_Edges (L);
750         ER : constant Edge_Type := Get_Edges (R);
751      begin
752         return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y);
753      end Lt;
754
755      ----------
756      -- Move --
757      ----------
758
759      procedure Move (From : Natural; To : Natural) is
760      begin
761         Set_Edges (To, Get_Edges (From));
762      end Move;
763
764      package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
765
766   --  Start of processing for Compute_Edges_And_Vertices
767
768   begin
769      --  We store edges from 1 to 2 * NK and leave zero alone in order to use
770      --  GNAT.Heap_Sort_G.
771
772      Edges_Len := 2 * NK + 1;
773
774      if Edges = No_Table then
775         Edges := Allocate (Edges_Len, Edge_Size);
776      end if;
777
778      if Vertices = No_Table then
779         Vertices := Allocate (NV, Vertex_Size);
780      end if;
781
782      for J in 0 .. NV - 1 loop
783         Set_Vertices (J, (No_Vertex, No_Vertex - 1));
784      end loop;
785
786      --  For each w, X = f1 (w) and Y = f2 (w)
787
788      for J in 0 .. NK - 1 loop
789         Key := Get_Key (J);
790         Key.Edge := No_Edge;
791         Set_Key (J, Key);
792
793         X := Sum (WT.Table (Reduced (J)), T1, Opt);
794         Y := Sum (WT.Table (Reduced (J)), T2, Opt);
795
796         --  Discard T1 and T2 as soon as we discover a self loop
797
798         if X = Y then
799            Not_Acyclic := True;
800            exit;
801         end if;
802
803         --  We store (X, Y) and (Y, X) to ease assignment step
804
805         Set_Edges (2 * J + 1, (X, Y, J));
806         Set_Edges (2 * J + 2, (Y, X, J));
807      end loop;
808
809      --  Return an empty graph when self loop detected
810
811      if Not_Acyclic then
812         Edges_Len := 0;
813
814      else
815         if Verbose then
816            Put_Edges      (Output, "Unsorted Edge Table");
817            Put_Int_Matrix (Output, "Function Table 1", T1,
818                            T1_Len, T2_Len);
819            Put_Int_Matrix (Output, "Function Table 2", T2,
820                            T1_Len, T2_Len);
821         end if;
822
823         --  Enforce consistency between edges and keys. Construct Vertices and
824         --  compute the list of neighbors of a vertex First .. Last as Edges
825         --  is sorted by X and then Y. To compute the neighbor list, sort the
826         --  edges.
827
828         Sorting.Sort (Edges_Len - 1);
829
830         if Verbose then
831            Put_Edges      (Output, "Sorted Edge Table");
832            Put_Int_Matrix (Output, "Function Table 1", T1,
833                            T1_Len, T2_Len);
834            Put_Int_Matrix (Output, "Function Table 2", T2,
835                            T1_Len, T2_Len);
836         end if;
837
838         --  Edges valid range is 1 .. 2 * NK
839
840         for E in 1 .. Edges_Len - 1 loop
841            Edge := Get_Edges (E);
842            Key  := Get_Key (Edge.Key);
843
844            if Key.Edge = No_Edge then
845               Key.Edge := E;
846               Set_Key (Edge.Key, Key);
847            end if;
848
849            Vertex := Get_Vertices (Edge.X);
850
851            if Vertex.First = No_Edge then
852               Vertex.First := E;
853            end if;
854
855            Vertex.Last := E;
856            Set_Vertices (Edge.X, Vertex);
857         end loop;
858
859         if Verbose then
860            Put_Reduced_Keys (Output, "Key Table");
861            Put_Edges        (Output, "Edge Table");
862            Put_Vertex_Table (Output, "Vertex Table");
863         end if;
864      end if;
865   end Compute_Edges_And_Vertices;
866
867   ------------
868   -- Define --
869   ------------
870
871   procedure Define
872     (Name      : Table_Name;
873      Item_Size : out Natural;
874      Length_1  : out Natural;
875      Length_2  : out Natural)
876   is
877   begin
878      case Name is
879         when Character_Position =>
880            Item_Size := 8;
881            Length_1  := Char_Pos_Set_Len;
882            Length_2  := 0;
883
884         when Used_Character_Set =>
885            Item_Size := 8;
886            Length_1  := 256;
887            Length_2  := 0;
888
889         when Function_Table_1
890            | Function_Table_2
891         =>
892            Item_Size := Type_Size (NV);
893            Length_1  := T1_Len;
894            Length_2  := T2_Len;
895
896         when Graph_Table =>
897            Item_Size := Type_Size (NK);
898            Length_1  := NV;
899            Length_2  := 0;
900      end case;
901   end Define;
902
903   --------------
904   -- Finalize --
905   --------------
906
907   procedure Finalize is
908   begin
909      if Verbose then
910         Put (Output, "Finalize");
911         New_Line (Output);
912      end if;
913
914      --  Deallocate all the WT components (both initial and reduced ones) to
915      --  avoid memory leaks.
916
917      for W in 0 .. WT.Last loop
918
919         --  Note: WT.Table (NK) is a temporary variable, do not free it since
920         --  this would cause a double free.
921
922         if W /= NK then
923            Free_Word (WT.Table (W));
924         end if;
925      end loop;
926
927      WT.Release;
928      IT.Release;
929
930      --  Reset all variables for next usage
931
932      Keys := No_Table;
933
934      Char_Pos_Set     := No_Table;
935      Char_Pos_Set_Len := 0;
936
937      Used_Char_Set     := No_Table;
938      Used_Char_Set_Len := 0;
939
940      T1 := No_Table;
941      T2 := No_Table;
942
943      T1_Len := 0;
944      T2_Len := 0;
945
946      G     := No_Table;
947      G_Len := 0;
948
949      Edges     := No_Table;
950      Edges_Len := 0;
951
952      Vertices := No_Table;
953      NV       := 0;
954
955      NK := 0;
956      Max_Key_Len := 0;
957      Min_Key_Len := 0;
958   end Finalize;
959
960   ----------------------------
961   -- Generate_Mapping_Table --
962   ----------------------------
963
964   procedure Generate_Mapping_Table
965     (Tab  : Integer;
966      L1   : Natural;
967      L2   : Natural;
968      Seed : in out Natural)
969   is
970   begin
971      for J in 0 .. L1 - 1 loop
972         for K in 0 .. L2 - 1 loop
973            Random (Seed);
974            Set_Table (Tab, J, K, Seed mod NV);
975         end loop;
976      end loop;
977   end Generate_Mapping_Table;
978
979   -----------------------------
980   -- Generate_Mapping_Tables --
981   -----------------------------
982
983   procedure Generate_Mapping_Tables
984     (Opt  : Optimization;
985      Seed : in out Natural)
986   is
987   begin
988      --  If T1 and T2 are already allocated no need to do it twice. Reuse them
989      --  as their size has not changed.
990
991      if T1 = No_Table and then T2 = No_Table then
992         declare
993            Used_Char_Last : Natural := 0;
994            Used_Char      : Natural;
995
996         begin
997            if Opt = CPU_Time then
998               for P in reverse Character'Range loop
999                  Used_Char := Get_Used_Char (P);
1000                  if Used_Char /= 0 then
1001                     Used_Char_Last := Used_Char;
1002                     exit;
1003                  end if;
1004               end loop;
1005            end if;
1006
1007            T1_Len := Char_Pos_Set_Len;
1008            T2_Len := Used_Char_Last + 1;
1009            T1 := Allocate (T1_Len * T2_Len);
1010            T2 := Allocate (T1_Len * T2_Len);
1011         end;
1012      end if;
1013
1014      Generate_Mapping_Table (T1, T1_Len, T2_Len, Seed);
1015      Generate_Mapping_Table (T2, T1_Len, T2_Len, Seed);
1016
1017      if Verbose then
1018         Put_Used_Char_Set (Output, "Used Character Set");
1019         Put_Int_Matrix (Output, "Function Table 1", T1,
1020                        T1_Len, T2_Len);
1021         Put_Int_Matrix (Output, "Function Table 2", T2,
1022                        T1_Len, T2_Len);
1023      end if;
1024   end Generate_Mapping_Tables;
1025
1026   ------------------
1027   -- Get_Char_Pos --
1028   ------------------
1029
1030   function Get_Char_Pos (P : Natural) return Natural is
1031      N : constant Natural := Char_Pos_Set + P;
1032   begin
1033      return IT.Table (N);
1034   end Get_Char_Pos;
1035
1036   ---------------
1037   -- Get_Edges --
1038   ---------------
1039
1040   function Get_Edges (F : Natural) return Edge_Type is
1041      N : constant Natural := Edges + (F * Edge_Size);
1042      E : Edge_Type;
1043   begin
1044      E.X   := IT.Table (N);
1045      E.Y   := IT.Table (N + 1);
1046      E.Key := IT.Table (N + 2);
1047      return E;
1048   end Get_Edges;
1049
1050   ---------------
1051   -- Get_Graph --
1052   ---------------
1053
1054   function Get_Graph (N : Natural) return Integer is
1055   begin
1056      return IT.Table (G + N);
1057   end Get_Graph;
1058
1059   -------------
1060   -- Get_Key --
1061   -------------
1062
1063   function Get_Key (N : Key_Id) return Key_Type is
1064      K : Key_Type;
1065   begin
1066      K.Edge := IT.Table (Keys + N);
1067      return K;
1068   end Get_Key;
1069
1070   ---------------
1071   -- Get_Table --
1072   ---------------
1073
1074   function Get_Table (T : Integer; X, Y : Natural) return Natural is
1075      N : constant Natural := T + (Y * T1_Len) + X;
1076   begin
1077      return IT.Table (N);
1078   end Get_Table;
1079
1080   -------------------
1081   -- Get_Used_Char --
1082   -------------------
1083
1084   function Get_Used_Char (C : Character) return Natural is
1085      N : constant Natural := Used_Char_Set + Character'Pos (C);
1086   begin
1087      return IT.Table (N);
1088   end Get_Used_Char;
1089
1090   ------------------
1091   -- Get_Vertices --
1092   ------------------
1093
1094   function Get_Vertices (F : Natural) return Vertex_Type is
1095      N : constant Natural := Vertices + (F * Vertex_Size);
1096      V : Vertex_Type;
1097   begin
1098      V.First := IT.Table (N);
1099      V.Last  := IT.Table (N + 1);
1100      return V;
1101   end Get_Vertices;
1102
1103   -----------
1104   -- Image --
1105   -----------
1106
1107   function Image (Int : Integer; W : Natural := 0) return String is
1108      B : String (1 .. 32);
1109      L : Natural := 0;
1110
1111      procedure Img (V : Natural);
1112      --  Compute image of V into B, starting at B (L), incrementing L
1113
1114      ---------
1115      -- Img --
1116      ---------
1117
1118      procedure Img (V : Natural) is
1119      begin
1120         if V > 9 then
1121            Img (V / 10);
1122         end if;
1123
1124         L := L + 1;
1125         B (L) := Character'Val ((V mod 10) + Character'Pos ('0'));
1126      end Img;
1127
1128   --  Start of processing for Image
1129
1130   begin
1131      if Int < 0 then
1132         L := L + 1;
1133         B (L) := '-';
1134         Img (-Int);
1135      else
1136         Img (Int);
1137      end if;
1138
1139      return Image (B (1 .. L), W);
1140   end Image;
1141
1142   -----------
1143   -- Image --
1144   -----------
1145
1146   function Image (Str : String; W : Natural := 0) return String is
1147      Len : constant Natural := Str'Length;
1148      Max : Natural := Len;
1149
1150   begin
1151      if Max < W then
1152         Max := W;
1153      end if;
1154
1155      declare
1156         Buf : String (1 .. Max) := (1 .. Max => ' ');
1157
1158      begin
1159         for J in 0 .. Len - 1 loop
1160            Buf (Max - Len + 1 + J) := Str (Str'First + J);
1161         end loop;
1162
1163         return Buf;
1164      end;
1165   end Image;
1166
1167   -------------
1168   -- Initial --
1169   -------------
1170
1171   function Initial (K : Key_Id) return Word_Id is
1172   begin
1173      return K;
1174   end Initial;
1175
1176   ----------------
1177   -- Initialize --
1178   ----------------
1179
1180   procedure Initialize
1181     (Seed   : Natural;
1182      K_To_V : Float        := Default_K_To_V;
1183      Optim  : Optimization := Memory_Space;
1184      Tries  : Positive     := Default_Tries)
1185   is
1186   begin
1187      if Verbose then
1188         Put (Output, "Initialize");
1189         New_Line (Output);
1190      end if;
1191
1192      --  Deallocate the part of the table concerning the reduced words.
1193      --  Initial words are already present in the table. We may have reduced
1194      --  words already there because a previous computation failed. We are
1195      --  currently retrying and the reduced words have to be deallocated.
1196
1197      for W in Reduced (0) .. WT.Last loop
1198         Free_Word (WT.Table (W));
1199      end loop;
1200
1201      IT.Init;
1202
1203      --  Initialize of computation variables
1204
1205      Keys := No_Table;
1206
1207      Char_Pos_Set     := No_Table;
1208      Char_Pos_Set_Len := 0;
1209
1210      Used_Char_Set     := No_Table;
1211      Used_Char_Set_Len := 0;
1212
1213      T1 := No_Table;
1214      T2 := No_Table;
1215
1216      T1_Len := 0;
1217      T2_Len := 0;
1218
1219      G     := No_Table;
1220      G_Len := 0;
1221
1222      Edges     := No_Table;
1223      Edges_Len := 0;
1224
1225      Vertices := No_Table;
1226      NV       := 0;
1227
1228      S    := Seed;
1229      K2V  := K_To_V;
1230      Opt  := Optim;
1231      NT   := Tries;
1232
1233      if K2V <= 2.0 then
1234         raise Program_Error with "K to V ratio cannot be lower than 2.0";
1235      end if;
1236
1237      --  Do not accept a value of K2V too close to 2.0 such that once
1238      --  rounded up, NV = 2 * NK because the algorithm would not converge.
1239
1240      NV := Natural (Float (NK) * K2V);
1241      if NV <= 2 * NK then
1242         NV := 2 * NK + 1;
1243      end if;
1244
1245      Keys := Allocate (NK);
1246
1247      --  Resize initial words to have all of them at the same size
1248      --  (so the size of the largest one).
1249
1250      for K in 0 .. NK - 1 loop
1251         Resize_Word (WT.Table (Initial (K)), Max_Key_Len);
1252      end loop;
1253
1254      --  Allocated the table to store the reduced words. As WT is a
1255      --  GNAT.Table (using C memory management), pointers have to be
1256      --  explicitly initialized to null.
1257
1258      WT.Set_Last (Reduced (NK - 1));
1259
1260      --  Note: Reduced (0) = NK + 1
1261
1262      WT.Table (NK) := null;
1263
1264      for W in 0 .. NK - 1 loop
1265         WT.Table (Reduced (W)) := null;
1266      end loop;
1267   end Initialize;
1268
1269   ------------
1270   -- Insert --
1271   ------------
1272
1273   procedure Insert (Value : String) is
1274      Len  : constant Natural := Value'Length;
1275
1276   begin
1277      if Verbose then
1278         Put (Output, "Inserting """ & Value & """");
1279         New_Line (Output);
1280      end if;
1281
1282      for J in Value'Range loop
1283         pragma Assert (Value (J) /= ASCII.NUL);
1284         null;
1285      end loop;
1286
1287      WT.Set_Last (NK);
1288      WT.Table (NK) := New_Word (Value);
1289      NK := NK + 1;
1290
1291      if Max_Key_Len < Len then
1292         Max_Key_Len := Len;
1293      end if;
1294
1295      if Min_Key_Len = 0 or else Len < Min_Key_Len then
1296         Min_Key_Len := Len;
1297      end if;
1298   end Insert;
1299
1300   --------------
1301   -- New_Line --
1302   --------------
1303
1304   procedure New_Line (File : File_Descriptor) is
1305   begin
1306      if Write (File, EOL'Address, 1) /= 1 then
1307         raise Program_Error;
1308      end if;
1309   end New_Line;
1310
1311   --------------
1312   -- New_Word --
1313   --------------
1314
1315   function New_Word (S : String) return Word_Type is
1316   begin
1317      return new String'(S);
1318   end New_Word;
1319
1320   ------------------------------
1321   -- Parse_Position_Selection --
1322   ------------------------------
1323
1324   procedure Parse_Position_Selection (Argument : String) is
1325      N : Natural          := Argument'First;
1326      L : constant Natural := Argument'Last;
1327      M : constant Natural := Max_Key_Len;
1328
1329      T : array (1 .. M) of Boolean := (others => False);
1330
1331      function Parse_Index return Natural;
1332      --  Parse argument starting at index N to find an index
1333
1334      -----------------
1335      -- Parse_Index --
1336      -----------------
1337
1338      function Parse_Index return Natural is
1339         C : Character := Argument (N);
1340         V : Natural   := 0;
1341
1342      begin
1343         if C = '$' then
1344            N := N + 1;
1345            return M;
1346         end if;
1347
1348         if C not in '0' .. '9' then
1349            raise Program_Error with "cannot read position argument";
1350         end if;
1351
1352         while C in '0' .. '9' loop
1353            V := V * 10 + (Character'Pos (C) - Character'Pos ('0'));
1354            N := N + 1;
1355            exit when L < N;
1356            C := Argument (N);
1357         end loop;
1358
1359         return V;
1360      end Parse_Index;
1361
1362   --  Start of processing for Parse_Position_Selection
1363
1364   begin
1365      --  Empty specification means all the positions
1366
1367      if L < N then
1368         Char_Pos_Set_Len := M;
1369         Char_Pos_Set := Allocate (Char_Pos_Set_Len);
1370
1371         for C in 0 .. Char_Pos_Set_Len - 1 loop
1372            Set_Char_Pos (C, C + 1);
1373         end loop;
1374
1375      else
1376         loop
1377            declare
1378               First, Last : Natural;
1379
1380            begin
1381               First := Parse_Index;
1382               Last  := First;
1383
1384               --  Detect a range
1385
1386               if N <= L and then Argument (N) = '-' then
1387                  N := N + 1;
1388                  Last := Parse_Index;
1389               end if;
1390
1391               --  Include the positions in the selection
1392
1393               for J in First .. Last loop
1394                  T (J) := True;
1395               end loop;
1396            end;
1397
1398            exit when L < N;
1399
1400            if Argument (N) /= ',' then
1401               raise Program_Error with "cannot read position argument";
1402            end if;
1403
1404            N := N + 1;
1405         end loop;
1406
1407         --  Compute position selection length
1408
1409         N := 0;
1410         for J in T'Range loop
1411            if T (J) then
1412               N := N + 1;
1413            end if;
1414         end loop;
1415
1416         --  Fill position selection
1417
1418         Char_Pos_Set_Len := N;
1419         Char_Pos_Set := Allocate (Char_Pos_Set_Len);
1420
1421         N := 0;
1422         for J in T'Range loop
1423            if T (J) then
1424               Set_Char_Pos (N, J);
1425               N := N + 1;
1426            end if;
1427         end loop;
1428      end if;
1429   end Parse_Position_Selection;
1430
1431   -------------
1432   -- Produce --
1433   -------------
1434
1435   procedure Produce
1436     (Pkg_Name   : String  := Default_Pkg_Name;
1437      Use_Stdout : Boolean := False)
1438   is
1439      File : File_Descriptor := Standout;
1440
1441      Status : Boolean;
1442      --  For call to Close
1443
1444      function Array_Img (N, T, R1 : String; R2 : String := "") return String;
1445      --  Return string "N : constant array (R1[, R2]) of T;"
1446
1447      function Range_Img (F, L : Natural; T : String := "") return String;
1448      --  Return string "[T range ]F .. L"
1449
1450      function Type_Img (L : Natural) return String;
1451      --  Return the larger unsigned type T such that T'Last < L
1452
1453      ---------------
1454      -- Array_Img --
1455      ---------------
1456
1457      function Array_Img
1458        (N, T, R1 : String;
1459         R2       : String := "") return String
1460      is
1461      begin
1462         Last := 0;
1463         Add ("   ");
1464         Add (N);
1465         Add (" : constant array (");
1466         Add (R1);
1467
1468         if R2 /= "" then
1469            Add (", ");
1470            Add (R2);
1471         end if;
1472
1473         Add (") of ");
1474         Add (T);
1475         Add (" :=");
1476         return Line (1 .. Last);
1477      end Array_Img;
1478
1479      ---------------
1480      -- Range_Img --
1481      ---------------
1482
1483      function Range_Img (F, L : Natural; T : String := "") return String is
1484         FI  : constant String  := Image (F);
1485         FL  : constant Natural := FI'Length;
1486         LI  : constant String  := Image (L);
1487         LL  : constant Natural := LI'Length;
1488         TL  : constant Natural := T'Length;
1489         RI  : String (1 .. TL + 7 + FL + 4 + LL);
1490         Len : Natural := 0;
1491
1492      begin
1493         if TL /= 0 then
1494            RI (Len + 1 .. Len + TL) := T;
1495            Len := Len + TL;
1496            RI (Len + 1 .. Len + 7) := " range ";
1497            Len := Len + 7;
1498         end if;
1499
1500         RI (Len + 1 .. Len + FL) := FI;
1501         Len := Len + FL;
1502         RI (Len + 1 .. Len + 4) := " .. ";
1503         Len := Len + 4;
1504         RI (Len + 1 .. Len + LL) := LI;
1505         Len := Len + LL;
1506         return RI (1 .. Len);
1507      end Range_Img;
1508
1509      --------------
1510      -- Type_Img --
1511      --------------
1512
1513      function Type_Img (L : Natural) return String is
1514         S : constant String := Image (Type_Size (L));
1515         U : String  := "Unsigned_  ";
1516         N : Natural := 9;
1517
1518      begin
1519         for J in S'Range loop
1520            N := N + 1;
1521            U (N) := S (J);
1522         end loop;
1523
1524         return U (1 .. N);
1525      end Type_Img;
1526
1527      F : Natural;
1528      L : Natural;
1529      P : Natural;
1530
1531      FName : String := Ada_File_Base_Name (Pkg_Name) & ".ads";
1532      --  Initially, the name of the spec file, then modified to be the name of
1533      --  the body file. Not used if Use_Stdout is True.
1534
1535   --  Start of processing for Produce
1536
1537   begin
1538
1539      if Verbose and then not Use_Stdout then
1540         Put (Output,
1541              "Producing " & Ada.Directories.Current_Directory & "/" & FName);
1542         New_Line (Output);
1543      end if;
1544
1545      if not Use_Stdout then
1546         File := Create_File (FName, Binary);
1547
1548         if File = Invalid_FD then
1549            raise Program_Error with "cannot create: " & FName;
1550         end if;
1551      end if;
1552
1553      Put      (File, "package ");
1554      Put      (File, Pkg_Name);
1555      Put      (File, " is");
1556      New_Line (File);
1557      Put      (File, "   function Hash (S : String) return Natural;");
1558      New_Line (File);
1559      Put      (File, "end ");
1560      Put      (File, Pkg_Name);
1561      Put      (File, ";");
1562      New_Line (File);
1563
1564      if not Use_Stdout then
1565         Close (File, Status);
1566
1567         if not Status then
1568            raise Device_Error;
1569         end if;
1570      end if;
1571
1572      if not Use_Stdout then
1573
1574         --  Set to body file name
1575
1576         FName (FName'Last) := 'b';
1577
1578         File := Create_File (FName, Binary);
1579
1580         if File = Invalid_FD then
1581            raise Program_Error with "cannot create: " & FName;
1582         end if;
1583      end if;
1584
1585      Put      (File, "with Interfaces; use Interfaces;");
1586      New_Line (File);
1587      New_Line (File);
1588      Put      (File, "package body ");
1589      Put      (File, Pkg_Name);
1590      Put      (File, " is");
1591      New_Line (File);
1592      New_Line (File);
1593
1594      if Opt = CPU_Time then
1595         Put      (File, Array_Img ("C", Type_Img (256), "Character"));
1596         New_Line (File);
1597
1598         F := Character'Pos (Character'First);
1599         L := Character'Pos (Character'Last);
1600
1601         for J in Character'Range loop
1602            P := Get_Used_Char (J);
1603            Put (File, Image (P), 1, 0, 1, F, L, Character'Pos (J));
1604         end loop;
1605
1606         New_Line (File);
1607      end if;
1608
1609      F := 0;
1610      L := Char_Pos_Set_Len - 1;
1611
1612      Put      (File, Array_Img ("P", "Natural", Range_Img (F, L)));
1613      New_Line (File);
1614
1615      for J in F .. L loop
1616         Put (File, Image (Get_Char_Pos (J)), 1, 0, 1, F, L, J);
1617      end loop;
1618
1619      New_Line (File);
1620
1621      case Opt is
1622         when CPU_Time =>
1623            Put_Int_Matrix
1624              (File,
1625               Array_Img ("T1", Type_Img (NV),
1626                          Range_Img (0, T1_Len - 1),
1627                          Range_Img (0, T2_Len - 1, Type_Img (256))),
1628               T1, T1_Len, T2_Len);
1629
1630         when Memory_Space =>
1631            Put_Int_Matrix
1632              (File,
1633               Array_Img ("T1", Type_Img (NV),
1634                          Range_Img (0, T1_Len - 1)),
1635               T1, T1_Len, 0);
1636      end case;
1637
1638      New_Line (File);
1639
1640      case Opt is
1641         when CPU_Time =>
1642            Put_Int_Matrix
1643              (File,
1644               Array_Img ("T2", Type_Img (NV),
1645                          Range_Img (0, T1_Len - 1),
1646                          Range_Img (0, T2_Len - 1, Type_Img (256))),
1647               T2, T1_Len, T2_Len);
1648
1649         when Memory_Space =>
1650            Put_Int_Matrix
1651              (File,
1652               Array_Img ("T2", Type_Img (NV),
1653                          Range_Img (0, T1_Len - 1)),
1654               T2, T1_Len, 0);
1655      end case;
1656
1657      New_Line (File);
1658
1659      Put_Int_Vector
1660        (File,
1661         Array_Img ("G", Type_Img (NK),
1662                    Range_Img (0, G_Len - 1)),
1663         G, G_Len);
1664      New_Line (File);
1665
1666      Put      (File, "   function Hash (S : String) return Natural is");
1667      New_Line (File);
1668      Put      (File, "      F : constant Natural := S'First - 1;");
1669      New_Line (File);
1670      Put      (File, "      L : constant Natural := S'Length;");
1671      New_Line (File);
1672      Put      (File, "      F1, F2 : Natural := 0;");
1673      New_Line (File);
1674
1675      Put (File, "      J : ");
1676
1677      case Opt is
1678         when CPU_Time =>
1679            Put (File, Type_Img (256));
1680
1681         when Memory_Space =>
1682            Put (File, "Natural");
1683      end case;
1684
1685      Put (File, ";");
1686      New_Line (File);
1687
1688      Put      (File, "   begin");
1689      New_Line (File);
1690      Put      (File, "      for K in P'Range loop");
1691      New_Line (File);
1692      Put      (File, "         exit when L < P (K);");
1693      New_Line (File);
1694      Put      (File, "         J  := ");
1695
1696      case Opt is
1697         when CPU_Time =>
1698            Put (File, "C");
1699
1700         when Memory_Space =>
1701            Put (File, "Character'Pos");
1702      end case;
1703
1704      Put      (File, " (S (P (K) + F));");
1705      New_Line (File);
1706
1707      Put (File, "         F1 := (F1 + Natural (T1 (K");
1708
1709      if Opt = CPU_Time then
1710         Put (File, ", J");
1711      end if;
1712
1713      Put (File, "))");
1714
1715      if Opt = Memory_Space then
1716         Put (File, " * J");
1717      end if;
1718
1719      Put      (File, ") mod ");
1720      Put      (File, Image (NV));
1721      Put      (File, ";");
1722      New_Line (File);
1723
1724      Put (File, "         F2 := (F2 + Natural (T2 (K");
1725
1726      if Opt = CPU_Time then
1727         Put (File, ", J");
1728      end if;
1729
1730      Put (File, "))");
1731
1732      if Opt = Memory_Space then
1733         Put (File, " * J");
1734      end if;
1735
1736      Put      (File, ") mod ");
1737      Put      (File, Image (NV));
1738      Put      (File, ";");
1739      New_Line (File);
1740
1741      Put      (File, "      end loop;");
1742      New_Line (File);
1743
1744      Put      (File,
1745                "      return (Natural (G (F1)) + Natural (G (F2))) mod ");
1746
1747      Put      (File, Image (NK));
1748      Put      (File, ";");
1749      New_Line (File);
1750      Put      (File, "   end Hash;");
1751      New_Line (File);
1752      New_Line (File);
1753      Put      (File, "end ");
1754      Put      (File, Pkg_Name);
1755      Put      (File, ";");
1756      New_Line (File);
1757
1758      if not Use_Stdout then
1759         Close (File, Status);
1760
1761         if not Status then
1762            raise Device_Error;
1763         end if;
1764      end if;
1765   end Produce;
1766
1767   ---------
1768   -- Put --
1769   ---------
1770
1771   procedure Put (File : File_Descriptor; Str : String) is
1772      Len : constant Natural := Str'Length;
1773   begin
1774      for J in Str'Range loop
1775         pragma Assert (Str (J) /= ASCII.NUL);
1776         null;
1777      end loop;
1778
1779      if Write (File, Str'Address, Len) /= Len then
1780         raise Program_Error;
1781      end if;
1782   end Put;
1783
1784   ---------
1785   -- Put --
1786   ---------
1787
1788   procedure Put
1789     (F  : File_Descriptor;
1790      S  : String;
1791      F1 : Natural;
1792      L1 : Natural;
1793      C1 : Natural;
1794      F2 : Natural;
1795      L2 : Natural;
1796      C2 : Natural)
1797   is
1798      Len : constant Natural := S'Length;
1799
1800      procedure Flush;
1801      --  Write current line, followed by LF
1802
1803      -----------
1804      -- Flush --
1805      -----------
1806
1807      procedure Flush is
1808      begin
1809         Put (F, Line (1 .. Last));
1810         New_Line (F);
1811         Last := 0;
1812      end Flush;
1813
1814   --  Start of processing for Put
1815
1816   begin
1817      if C1 = F1 and then C2 = F2 then
1818         Last := 0;
1819      end if;
1820
1821      if Last + Len + 3 >= Max then
1822         Flush;
1823      end if;
1824
1825      if Last = 0 then
1826         Add ("     ");
1827
1828         if F1 <= L1 then
1829            if C1 = F1 and then C2 = F2 then
1830               Add ('(');
1831
1832               if F1 = L1 then
1833                  Add ("0 .. 0 => ");
1834               end if;
1835
1836            else
1837               Add (' ');
1838            end if;
1839         end if;
1840      end if;
1841
1842      if C2 = F2 then
1843         Add ('(');
1844
1845         if F2 = L2 then
1846            Add ("0 .. 0 => ");
1847         end if;
1848
1849      else
1850         Add (' ');
1851      end if;
1852
1853      Add (S);
1854
1855      if C2 = L2 then
1856         Add (')');
1857
1858         if F1 > L1 then
1859            Add (';');
1860            Flush;
1861
1862         elsif C1 /= L1 then
1863            Add (',');
1864            Flush;
1865
1866         else
1867            Add (')');
1868            Add (';');
1869            Flush;
1870         end if;
1871
1872      else
1873         Add (',');
1874      end if;
1875   end Put;
1876
1877   ---------------
1878   -- Put_Edges --
1879   ---------------
1880
1881   procedure Put_Edges (File  : File_Descriptor; Title : String) is
1882      E  : Edge_Type;
1883      F1 : constant Natural := 1;
1884      L1 : constant Natural := Edges_Len - 1;
1885      M  : constant Natural := Max / 5;
1886
1887   begin
1888      Put (File, Title);
1889      New_Line (File);
1890
1891      --  Edges valid range is 1 .. Edge_Len - 1
1892
1893      for J in F1 .. L1 loop
1894         E := Get_Edges (J);
1895         Put (File, Image (J, M),     F1, L1, J, 1, 4, 1);
1896         Put (File, Image (E.X, M),   F1, L1, J, 1, 4, 2);
1897         Put (File, Image (E.Y, M),   F1, L1, J, 1, 4, 3);
1898         Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4);
1899      end loop;
1900   end Put_Edges;
1901
1902   ----------------------
1903   -- Put_Initial_Keys --
1904   ----------------------
1905
1906   procedure Put_Initial_Keys (File : File_Descriptor; Title : String) is
1907      F1 : constant Natural := 0;
1908      L1 : constant Natural := NK - 1;
1909      M  : constant Natural := Max / 5;
1910      K  : Key_Type;
1911
1912   begin
1913      Put (File, Title);
1914      New_Line (File);
1915
1916      for J in F1 .. L1 loop
1917         K := Get_Key (J);
1918         Put (File, Image (J, M),           F1, L1, J, 1, 3, 1);
1919         Put (File, Image (K.Edge, M),      F1, L1, J, 1, 3, 2);
1920         Put (File, Trim_Trailing_Nuls (WT.Table (Initial (J)).all),
1921                    F1, L1, J, 1, 3, 3);
1922      end loop;
1923   end Put_Initial_Keys;
1924
1925   --------------------
1926   -- Put_Int_Matrix --
1927   --------------------
1928
1929   procedure Put_Int_Matrix
1930     (File   : File_Descriptor;
1931      Title  : String;
1932      Table  : Integer;
1933      Len_1  : Natural;
1934      Len_2  : Natural)
1935   is
1936      F1 : constant Integer := 0;
1937      L1 : constant Integer := Len_1 - 1;
1938      F2 : constant Integer := 0;
1939      L2 : constant Integer := Len_2 - 1;
1940      Ix : Natural;
1941
1942   begin
1943      Put (File, Title);
1944      New_Line (File);
1945
1946      if Len_2 = 0 then
1947         for J in F1 .. L1 loop
1948            Ix := IT.Table (Table + J);
1949            Put (File, Image (Ix), 1, 0, 1, F1, L1, J);
1950         end loop;
1951
1952      else
1953         for J in F1 .. L1 loop
1954            for K in F2 .. L2 loop
1955               Ix := IT.Table (Table + J + K * Len_1);
1956               Put (File, Image (Ix), F1, L1, J, F2, L2, K);
1957            end loop;
1958         end loop;
1959      end if;
1960   end Put_Int_Matrix;
1961
1962   --------------------
1963   -- Put_Int_Vector --
1964   --------------------
1965
1966   procedure Put_Int_Vector
1967     (File   : File_Descriptor;
1968      Title  : String;
1969      Vector : Integer;
1970      Length : Natural)
1971   is
1972      F2 : constant Natural := 0;
1973      L2 : constant Natural := Length - 1;
1974
1975   begin
1976      Put (File, Title);
1977      New_Line (File);
1978
1979      for J in F2 .. L2 loop
1980         Put (File, Image (IT.Table (Vector + J)), 1, 0, 1, F2, L2, J);
1981      end loop;
1982   end Put_Int_Vector;
1983
1984   ----------------------
1985   -- Put_Reduced_Keys --
1986   ----------------------
1987
1988   procedure Put_Reduced_Keys (File : File_Descriptor; Title : String) is
1989      F1 : constant Natural := 0;
1990      L1 : constant Natural := NK - 1;
1991      M  : constant Natural := Max / 5;
1992      K  : Key_Type;
1993
1994   begin
1995      Put (File, Title);
1996      New_Line (File);
1997
1998      for J in F1 .. L1 loop
1999         K := Get_Key (J);
2000         Put (File, Image (J, M),           F1, L1, J, 1, 3, 1);
2001         Put (File, Image (K.Edge, M),      F1, L1, J, 1, 3, 2);
2002         Put (File, Trim_Trailing_Nuls (WT.Table (Reduced (J)).all),
2003                    F1, L1, J, 1, 3, 3);
2004      end loop;
2005   end Put_Reduced_Keys;
2006
2007   -----------------------
2008   -- Put_Used_Char_Set --
2009   -----------------------
2010
2011   procedure Put_Used_Char_Set (File : File_Descriptor; Title : String) is
2012      F : constant Natural := Character'Pos (Character'First);
2013      L : constant Natural := Character'Pos (Character'Last);
2014
2015   begin
2016      Put (File, Title);
2017      New_Line (File);
2018
2019      for J in Character'Range loop
2020         Put
2021           (File, Image (Get_Used_Char (J)), 1, 0, 1, F, L, Character'Pos (J));
2022      end loop;
2023   end Put_Used_Char_Set;
2024
2025   ----------------------
2026   -- Put_Vertex_Table --
2027   ----------------------
2028
2029   procedure Put_Vertex_Table (File : File_Descriptor; Title : String) is
2030      F1 : constant Natural := 0;
2031      L1 : constant Natural := NV - 1;
2032      M  : constant Natural := Max / 4;
2033      V  : Vertex_Type;
2034
2035   begin
2036      Put (File, Title);
2037      New_Line (File);
2038
2039      for J in F1 .. L1 loop
2040         V := Get_Vertices (J);
2041         Put (File, Image (J, M),       F1, L1, J, 1, 3, 1);
2042         Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2);
2043         Put (File, Image (V.Last, M),  F1, L1, J, 1, 3, 3);
2044      end loop;
2045   end Put_Vertex_Table;
2046
2047   ------------
2048   -- Random --
2049   ------------
2050
2051   procedure Random (Seed : in out Natural) is
2052
2053      --  Park & Miller Standard Minimal using Schrage's algorithm to avoid
2054      --  overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1)
2055
2056      R : Natural;
2057      Q : Natural;
2058      X : Integer;
2059
2060   begin
2061      R := Seed mod 127773;
2062      Q := Seed / 127773;
2063      X := 16807 * R - 2836 * Q;
2064
2065      Seed := (if X < 0 then X + 2147483647 else X);
2066   end Random;
2067
2068   -------------
2069   -- Reduced --
2070   -------------
2071
2072   function Reduced (K : Key_Id) return Word_Id is
2073   begin
2074      return K + NK + 1;
2075   end Reduced;
2076
2077   -----------------
2078   -- Resize_Word --
2079   -----------------
2080
2081   procedure Resize_Word (W : in out Word_Type; Len : Natural) is
2082      S1 : constant String := W.all;
2083      S2 : String (1 .. Len) := (others => ASCII.NUL);
2084      L  : constant Natural := S1'Length;
2085   begin
2086      if L /= Len then
2087         Free_Word (W);
2088         S2 (1 .. L) := S1;
2089         W := New_Word (S2);
2090      end if;
2091   end Resize_Word;
2092
2093   --------------------------
2094   -- Select_Char_Position --
2095   --------------------------
2096
2097   procedure Select_Char_Position is
2098
2099      type Vertex_Table_Type is array (Natural range <>) of Vertex_Type;
2100
2101      procedure Build_Identical_Keys_Sets
2102        (Table : in out Vertex_Table_Type;
2103         Last  : in out Natural;
2104         Pos   : Natural);
2105      --  Build a list of keys subsets that are identical with the current
2106      --  position selection plus Pos. Once this routine is called, reduced
2107      --  words are sorted by subsets and each item (First, Last) in Sets
2108      --  defines the range of identical keys.
2109      --  Need comment saying exactly what Last is ???
2110
2111      function Count_Different_Keys
2112        (Table : Vertex_Table_Type;
2113         Last  : Natural;
2114         Pos   : Natural) return Natural;
2115      --  For each subset in Sets, count the number of different keys if we add
2116      --  Pos to the current position selection.
2117
2118      Sel_Position : IT.Table_Type (1 .. Max_Key_Len);
2119      Last_Sel_Pos : Natural := 0;
2120      Max_Sel_Pos  : Natural := 0;
2121
2122      -------------------------------
2123      -- Build_Identical_Keys_Sets --
2124      -------------------------------
2125
2126      procedure Build_Identical_Keys_Sets
2127        (Table : in out Vertex_Table_Type;
2128         Last  : in out Natural;
2129         Pos   : Natural)
2130      is
2131         S : constant Vertex_Table_Type := Table (Table'First .. Last);
2132         C : constant Natural           := Pos;
2133         --  Shortcuts (why are these not renames ???)
2134
2135         F : Integer;
2136         L : Integer;
2137         --  First and last words of a subset
2138
2139         Offset : Natural;
2140         --  GNAT.Heap_Sort assumes that the first array index is 1. Offset
2141         --  defines the translation to operate.
2142
2143         function Lt (L, R : Natural) return Boolean;
2144         procedure Move (From : Natural; To : Natural);
2145         --  Subprograms needed by GNAT.Heap_Sort_G
2146
2147         --------
2148         -- Lt --
2149         --------
2150
2151         function Lt (L, R : Natural) return Boolean is
2152            C     : constant Natural := Pos;
2153            Left  : Natural;
2154            Right : Natural;
2155
2156         begin
2157            if L = 0 then
2158               Left  := NK;
2159               Right := Offset + R;
2160            elsif R = 0 then
2161               Left  := Offset + L;
2162               Right := NK;
2163            else
2164               Left  := Offset + L;
2165               Right := Offset + R;
2166            end if;
2167
2168            return WT.Table (Left)(C) < WT.Table (Right)(C);
2169         end Lt;
2170
2171         ----------
2172         -- Move --
2173         ----------
2174
2175         procedure Move (From : Natural; To : Natural) is
2176            Target, Source : Natural;
2177
2178         begin
2179            if From = 0 then
2180               Source := NK;
2181               Target := Offset + To;
2182            elsif To = 0 then
2183               Source := Offset + From;
2184               Target := NK;
2185            else
2186               Source := Offset + From;
2187               Target := Offset + To;
2188            end if;
2189
2190            WT.Table (Target) := WT.Table (Source);
2191            WT.Table (Source) := null;
2192         end Move;
2193
2194         package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
2195
2196      --  Start of processing for Build_Identical_Key_Sets
2197
2198      begin
2199         Last := 0;
2200
2201         --  For each subset in S, extract the new subsets we have by adding C
2202         --  in the position selection.
2203
2204         for J in S'Range loop
2205            pragma Annotate (CodePeer, Modified, S (J));
2206
2207            if S (J).First = S (J).Last then
2208               F := S (J).First;
2209               L := S (J).Last;
2210               Last := Last + 1;
2211               Table (Last) := (F, L);
2212
2213            else
2214               Offset := Reduced (S (J).First) - 1;
2215               Sorting.Sort (S (J).Last - S (J).First + 1);
2216
2217               F := S (J).First;
2218               L := F;
2219               for N in S (J).First .. S (J).Last loop
2220
2221                  --  For the last item, close the last subset
2222
2223                  if N = S (J).Last then
2224                     Last := Last + 1;
2225                     Table (Last) := (F, N);
2226
2227                  --  Two contiguous words are identical when they have the
2228                  --  same Cth character.
2229
2230                  elsif WT.Table (Reduced (N))(C) =
2231                        WT.Table (Reduced (N + 1))(C)
2232                  then
2233                     L := N + 1;
2234
2235                  --  Find a new subset of identical keys. Store the current
2236                  --  one and create a new subset.
2237
2238                  else
2239                     Last := Last + 1;
2240                     Table (Last) := (F, L);
2241                     F := N + 1;
2242                     L := F;
2243                  end if;
2244               end loop;
2245            end if;
2246         end loop;
2247      end Build_Identical_Keys_Sets;
2248
2249      --------------------------
2250      -- Count_Different_Keys --
2251      --------------------------
2252
2253      function Count_Different_Keys
2254        (Table : Vertex_Table_Type;
2255         Last  : Natural;
2256         Pos   : Natural) return Natural
2257      is
2258         N : array (Character) of Natural;
2259         C : Character;
2260         T : Natural := 0;
2261
2262      begin
2263         --  For each subset, count the number of words that are still
2264         --  different when we include Pos in the position selection. Only
2265         --  focus on this position as the other positions already produce
2266         --  identical keys.
2267
2268         for S in 1 .. Last loop
2269
2270            --  Count the occurrences of the different characters
2271
2272            N := (others => 0);
2273            for K in Table (S).First .. Table (S).Last loop
2274               C := WT.Table (Reduced (K))(Pos);
2275               N (C) := N (C) + 1;
2276            end loop;
2277
2278            --  Update the number of different keys. Each character used
2279            --  denotes a different key.
2280
2281            for J in N'Range loop
2282               if N (J) > 0 then
2283                  T := T + 1;
2284               end if;
2285            end loop;
2286         end loop;
2287
2288         return T;
2289      end Count_Different_Keys;
2290
2291   --  Start of processing for Select_Char_Position
2292
2293   begin
2294      --  Initialize the reduced words set
2295
2296      for K in 0 .. NK - 1 loop
2297         WT.Table (Reduced (K)) := New_Word (WT.Table (Initial (K)).all);
2298      end loop;
2299
2300      declare
2301         Differences          : Natural;
2302         Max_Differences      : Natural := 0;
2303         Old_Differences      : Natural;
2304         Max_Diff_Sel_Pos     : Natural := 0; -- init to kill warning
2305         Max_Diff_Sel_Pos_Idx : Natural := 0; -- init to kill warning
2306         Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK);
2307         Same_Keys_Sets_Last  : Natural := 1;
2308
2309      begin
2310         for C in Sel_Position'Range loop
2311            Sel_Position (C) := C;
2312         end loop;
2313
2314         Same_Keys_Sets_Table (1) := (0, NK - 1);
2315
2316         loop
2317            --  Preserve maximum number of different keys and check later on
2318            --  that this value is strictly incrementing. Otherwise, it means
2319            --  that two keys are strictly identical.
2320
2321            Old_Differences := Max_Differences;
2322
2323            --  The first position should not exceed the minimum key length.
2324            --  Otherwise, we may end up with an empty word once reduced.
2325
2326            Max_Sel_Pos :=
2327              (if Last_Sel_Pos = 0 then Min_Key_Len else Max_Key_Len);
2328
2329            --  Find which position increases more the number of differences
2330
2331            for J in Last_Sel_Pos + 1 .. Max_Sel_Pos loop
2332               Differences := Count_Different_Keys
2333                 (Same_Keys_Sets_Table,
2334                  Same_Keys_Sets_Last,
2335                  Sel_Position (J));
2336
2337               if Verbose then
2338                  Put (Output,
2339                       "Selecting position" & Sel_Position (J)'Img &
2340                         " results in" & Differences'Img &
2341                         " differences");
2342                  New_Line (Output);
2343               end if;
2344
2345               if Differences > Max_Differences then
2346                  Max_Differences      := Differences;
2347                  Max_Diff_Sel_Pos     := Sel_Position (J);
2348                  Max_Diff_Sel_Pos_Idx := J;
2349               end if;
2350            end loop;
2351
2352            if Old_Differences = Max_Differences then
2353               raise Program_Error with "some keys are identical";
2354            end if;
2355
2356            --  Insert selected position and sort Sel_Position table
2357
2358            Last_Sel_Pos := Last_Sel_Pos + 1;
2359            Sel_Position (Last_Sel_Pos + 1 .. Max_Diff_Sel_Pos_Idx) :=
2360              Sel_Position (Last_Sel_Pos .. Max_Diff_Sel_Pos_Idx - 1);
2361            Sel_Position (Last_Sel_Pos) := Max_Diff_Sel_Pos;
2362
2363            for P in 1 .. Last_Sel_Pos - 1 loop
2364               if Max_Diff_Sel_Pos < Sel_Position (P) then
2365                  pragma Annotate
2366                    (CodePeer, False_Positive,
2367                     "test always false", "false positive?");
2368
2369                  Sel_Position (P + 1 .. Last_Sel_Pos) :=
2370                    Sel_Position (P .. Last_Sel_Pos - 1);
2371                  Sel_Position (P) := Max_Diff_Sel_Pos;
2372                  exit;
2373               end if;
2374            end loop;
2375
2376            exit when Max_Differences = NK;
2377
2378            Build_Identical_Keys_Sets
2379              (Same_Keys_Sets_Table,
2380               Same_Keys_Sets_Last,
2381               Max_Diff_Sel_Pos);
2382
2383            if Verbose then
2384               Put (Output,
2385                    "Selecting position" & Max_Diff_Sel_Pos'Img &
2386                      " results in" & Max_Differences'Img &
2387                      " differences");
2388               New_Line (Output);
2389               Put (Output, "--");
2390               New_Line (Output);
2391               for J in 1 .. Same_Keys_Sets_Last loop
2392                  for K in
2393                    Same_Keys_Sets_Table (J).First ..
2394                    Same_Keys_Sets_Table (J).Last
2395                  loop
2396                     Put (Output,
2397                          Trim_Trailing_Nuls (WT.Table (Reduced (K)).all));
2398                     New_Line (Output);
2399                  end loop;
2400                  Put (Output, "--");
2401                  New_Line (Output);
2402               end loop;
2403            end if;
2404         end loop;
2405      end;
2406
2407      Char_Pos_Set_Len := Last_Sel_Pos;
2408      Char_Pos_Set := Allocate (Char_Pos_Set_Len);
2409
2410      for C in 1 .. Last_Sel_Pos loop
2411         Set_Char_Pos (C - 1, Sel_Position (C));
2412      end loop;
2413   end Select_Char_Position;
2414
2415   --------------------------
2416   -- Select_Character_Set --
2417   --------------------------
2418
2419   procedure Select_Character_Set is
2420      Last : Natural := 0;
2421      Used : array (Character) of Boolean := (others => False);
2422      Char : Character;
2423
2424   begin
2425      for J in 0 .. NK - 1 loop
2426         for K in 0 .. Char_Pos_Set_Len - 1 loop
2427            Char := WT.Table (Initial (J))(Get_Char_Pos (K));
2428            exit when Char = ASCII.NUL;
2429            Used (Char) := True;
2430         end loop;
2431      end loop;
2432
2433      Used_Char_Set_Len := 256;
2434      Used_Char_Set := Allocate (Used_Char_Set_Len);
2435
2436      for J in Used'Range loop
2437         if Used (J) then
2438            Set_Used_Char (J, Last);
2439            Last := Last + 1;
2440         else
2441            Set_Used_Char (J, 0);
2442         end if;
2443      end loop;
2444   end Select_Character_Set;
2445
2446   ------------------
2447   -- Set_Char_Pos --
2448   ------------------
2449
2450   procedure Set_Char_Pos (P : Natural; Item : Natural) is
2451      N : constant Natural := Char_Pos_Set + P;
2452   begin
2453      IT.Table (N) := Item;
2454   end Set_Char_Pos;
2455
2456   ---------------
2457   -- Set_Edges --
2458   ---------------
2459
2460   procedure Set_Edges (F : Natural; Item : Edge_Type) is
2461      N : constant Natural := Edges + (F * Edge_Size);
2462   begin
2463      IT.Table (N)     := Item.X;
2464      IT.Table (N + 1) := Item.Y;
2465      IT.Table (N + 2) := Item.Key;
2466   end Set_Edges;
2467
2468   ---------------
2469   -- Set_Graph --
2470   ---------------
2471
2472   procedure Set_Graph (N : Natural; Item : Integer) is
2473   begin
2474      IT.Table (G + N) := Item;
2475   end Set_Graph;
2476
2477   -------------
2478   -- Set_Key --
2479   -------------
2480
2481   procedure Set_Key (N : Key_Id; Item : Key_Type) is
2482   begin
2483      IT.Table (Keys + N) := Item.Edge;
2484   end Set_Key;
2485
2486   ---------------
2487   -- Set_Table --
2488   ---------------
2489
2490   procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural) is
2491      N : constant Natural := T + ((Y * T1_Len) + X);
2492   begin
2493      IT.Table (N) := Item;
2494   end Set_Table;
2495
2496   -------------------
2497   -- Set_Used_Char --
2498   -------------------
2499
2500   procedure Set_Used_Char (C : Character; Item : Natural) is
2501      N : constant Natural := Used_Char_Set + Character'Pos (C);
2502   begin
2503      IT.Table (N) := Item;
2504   end Set_Used_Char;
2505
2506   ------------------
2507   -- Set_Vertices --
2508   ------------------
2509
2510   procedure Set_Vertices (F : Natural; Item : Vertex_Type) is
2511      N : constant Natural := Vertices + (F * Vertex_Size);
2512   begin
2513      IT.Table (N)     := Item.First;
2514      IT.Table (N + 1) := Item.Last;
2515   end Set_Vertices;
2516
2517   ---------
2518   -- Sum --
2519   ---------
2520
2521   function Sum
2522     (Word  : Word_Type;
2523      Table : Table_Id;
2524      Opt   : Optimization) return Natural
2525   is
2526      S : Natural := 0;
2527      R : Natural;
2528
2529   begin
2530      case Opt is
2531         when CPU_Time =>
2532            for J in 0 .. T1_Len - 1 loop
2533               exit when Word (J + 1) = ASCII.NUL;
2534               R := Get_Table (Table, J, Get_Used_Char (Word (J + 1)));
2535               pragma Assert (NV /= 0);
2536               S := (S + R) mod NV;
2537            end loop;
2538
2539         when Memory_Space =>
2540            for J in 0 .. T1_Len - 1 loop
2541               exit when Word (J + 1) = ASCII.NUL;
2542               R := Get_Table (Table, J, 0);
2543               pragma Assert (NV /= 0);
2544               S := (S + R * Character'Pos (Word (J + 1))) mod NV;
2545            end loop;
2546      end case;
2547
2548      return S;
2549   end Sum;
2550
2551   ------------------------
2552   -- Trim_Trailing_Nuls --
2553   ------------------------
2554
2555   function Trim_Trailing_Nuls (Str : String) return String is
2556   begin
2557      for J in reverse Str'Range loop
2558         if Str (J) /= ASCII.NUL then
2559            return Str (Str'First .. J);
2560         end if;
2561      end loop;
2562
2563      return Str;
2564   end Trim_Trailing_Nuls;
2565
2566   ---------------
2567   -- Type_Size --
2568   ---------------
2569
2570   function Type_Size (L : Natural) return Natural is
2571   begin
2572      if L <= 2 ** 8 then
2573         return 8;
2574      elsif L <= 2 ** 16 then
2575         return 16;
2576      else
2577         return 32;
2578      end if;
2579   end Type_Size;
2580
2581   -----------
2582   -- Value --
2583   -----------
2584
2585   function Value
2586     (Name : Table_Name;
2587      J    : Natural;
2588      K    : Natural := 0) return Natural
2589   is
2590   begin
2591      case Name is
2592         when Character_Position =>
2593            return Get_Char_Pos (J);
2594
2595         when Used_Character_Set =>
2596            return Get_Used_Char (Character'Val (J));
2597
2598         when Function_Table_1 =>
2599            return Get_Table (T1, J, K);
2600
2601         when Function_Table_2 =>
2602            return Get_Table (T2, J, K);
2603
2604         when Graph_Table =>
2605            return Get_Graph (J);
2606      end case;
2607   end Value;
2608
2609end GNAT.Perfect_Hash_Generators;
2610