1 /* Define control flow data structures for the CFG.
2    Copyright (C) 1987-2021 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
22 
23 #include <profile-count.h>
24 
25 /* Control flow edge information.  */
class(user)26 class GTY((user)) edge_def {
27 public:
28   /* The two blocks at the ends of the edge.  */
29   basic_block src;
30   basic_block dest;
31 
32   /* Instructions queued on the edge.  */
33   union edge_def_insns {
34     gimple_seq g;
35     rtx_insn *r;
36   } insns;
37 
38   /* Auxiliary info specific to a pass.  */
39   PTR aux;
40 
41   /* Location of any goto implicit in the edge.  */
42   location_t goto_locus;
43 
44   /* The index number corresponding to this edge in the edge vector
45      dest->preds.  */
46   unsigned int dest_idx;
47 
48   int flags;			/* see cfg-flags.def */
49   profile_probability probability;
50 
51   /* Return count of edge E.  */
52   inline profile_count count () const;
53 };
54 
55 /* Masks for edge.flags.  */
56 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
57 enum cfg_edge_flags {
58 #include "cfg-flags.def"
59   LAST_CFG_EDGE_FLAG		/* this is only used for EDGE_ALL_FLAGS */
60 };
61 #undef DEF_EDGE_FLAG
62 
63 /* Bit mask for all edge flags.  */
64 #define EDGE_ALL_FLAGS		((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
65 
66 /* The following four flags all indicate something special about an edge.
67    Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
68    control flow transfers.  */
69 #define EDGE_COMPLEX \
70   (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
71 
72 struct GTY(()) rtl_bb_info {
73   /* The first insn of the block is embedded into bb->il.x.  */
74   /* The last insn of the block.  */
75   rtx_insn *end_;
76 
77   /* In CFGlayout mode points to insn notes/jumptables to be placed just before
78      and after the block.   */
79   rtx_insn *header_;
80   rtx_insn *footer_;
81 };
82 
83 struct GTY(()) gimple_bb_info {
84   /* Sequence of statements in this block.  */
85   gimple_seq seq;
86 
87   /* PHI nodes for this block.  */
88   gimple_seq phi_nodes;
89 };
90 
91 /* A basic block is a sequence of instructions with only one entry and
92    only one exit.  If any one of the instructions are executed, they
93    will all be executed, and in sequence from first to last.
94 
95    There may be COND_EXEC instructions in the basic block.  The
96    COND_EXEC *instructions* will be executed -- but if the condition
97    is false the conditionally executed *expressions* will of course
98    not be executed.  We don't consider the conditionally executed
99    expression (which might have side-effects) to be in a separate
100    basic block because the program counter will always be at the same
101    location after the COND_EXEC instruction, regardless of whether the
102    condition is true or not.
103 
104    Basic blocks need not start with a label nor end with a jump insn.
105    For example, a previous basic block may just "conditionally fall"
106    into the succeeding basic block, and the last basic block need not
107    end with a jump insn.  Block 0 is a descendant of the entry block.
108 
109    A basic block beginning with two labels cannot have notes between
110    the labels.
111 
112    Data for jump tables are stored in jump_insns that occur in no
113    basic block even though these insns can follow or precede insns in
114    basic blocks.  */
115 
116 /* Basic block information indexed by block number.  */
117 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
118   /* The edges into and out of the block.  */
119   vec<edge, va_gc> *preds;
120   vec<edge, va_gc> *succs;
121 
122   /* Auxiliary info specific to a pass.  */
123   PTR GTY ((skip (""))) aux;
124 
125   /* Innermost loop containing the block.  */
126   class loop *loop_father;
127 
128   /* The dominance and postdominance information node.  */
129   struct et_node * GTY ((skip (""))) dom[2];
130 
131   /* Previous and next blocks in the chain.  */
132   basic_block prev_bb;
133   basic_block next_bb;
134 
135   union basic_block_il_dependent {
136       struct gimple_bb_info GTY ((tag ("0"))) gimple;
137       struct {
138         rtx_insn *head_;
139         struct rtl_bb_info * rtl;
140       } GTY ((tag ("1"))) x;
141     } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
142 
143   /* Various flags.  See cfg-flags.def.  */
144   int flags;
145 
146   /* The index of this block.  */
147   int index;
148 
149   /* Expected number of executions: calculated in profile.c.  */
150   profile_count count;
151 
152   /* The discriminator for this block.  The discriminator distinguishes
153      among several basic blocks that share a common locus, allowing for
154      more accurate sample-based profiling.  */
155   int discriminator;
156 };
157 
158 /* This ensures that struct gimple_bb_info is smaller than
159    struct rtl_bb_info, so that inlining the former into basic_block_def
160    is the better choice.  */
161 typedef int __assert_gimple_bb_smaller_rtl_bb
162               [(int) sizeof (struct rtl_bb_info)
163                - (int) sizeof (struct gimple_bb_info)];
164 
165 
166 #define BB_FREQ_MAX 10000
167 
168 /* Masks for basic_block.flags.  */
169 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
170 enum cfg_bb_flags
171 {
172 #include "cfg-flags.def"
173   LAST_CFG_BB_FLAG		/* this is only used for BB_ALL_FLAGS */
174 };
175 #undef DEF_BASIC_BLOCK_FLAG
176 
177 /* Bit mask for all basic block flags.  */
178 #define BB_ALL_FLAGS		((LAST_CFG_BB_FLAG - 1) * 2 - 1)
179 
180 /* Bit mask for all basic block flags that must be preserved.  These are
181    the bit masks that are *not* cleared by clear_bb_flags.  */
182 #define BB_FLAGS_TO_PRESERVE					\
183   (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET	\
184    | BB_HOT_PARTITION | BB_COLD_PARTITION)
185 
186 /* Dummy bitmask for convenience in the hot/cold partitioning code.  */
187 #define BB_UNPARTITIONED	0
188 
189 /* Partitions, to be used when partitioning hot and cold basic blocks into
190    separate sections.  */
191 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
192 #define BB_SET_PARTITION(bb, part) do {					\
193   basic_block bb_ = (bb);						\
194   bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))	\
195 		| (part));						\
196 } while (0)
197 
198 #define BB_COPY_PARTITION(dstbb, srcbb) \
199   BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
200 
201 /* Defines for accessing the fields of the CFG structure for function FN.  */
202 #define ENTRY_BLOCK_PTR_FOR_FN(FN)	     ((FN)->cfg->x_entry_block_ptr)
203 #define EXIT_BLOCK_PTR_FOR_FN(FN)	     ((FN)->cfg->x_exit_block_ptr)
204 #define basic_block_info_for_fn(FN)	     ((FN)->cfg->x_basic_block_info)
205 #define n_basic_blocks_for_fn(FN)	     ((FN)->cfg->x_n_basic_blocks)
206 #define n_edges_for_fn(FN)		     ((FN)->cfg->x_n_edges)
207 #define last_basic_block_for_fn(FN)	     ((FN)->cfg->x_last_basic_block)
208 #define label_to_block_map_for_fn(FN)	     ((FN)->cfg->x_label_to_block_map)
209 #define profile_status_for_fn(FN)	     ((FN)->cfg->x_profile_status)
210 
211 #define BASIC_BLOCK_FOR_FN(FN,N) \
212   ((*basic_block_info_for_fn (FN))[(N)])
213 #define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
214   ((*basic_block_info_for_fn (FN))[(N)] = (BB))
215 
216 /* For iterating over basic blocks.  */
217 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
218   for (BB = FROM; BB != TO; BB = BB->DIR)
219 
220 #define FOR_EACH_BB_FN(BB, FN) \
221   FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
222 
223 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
224   FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
225 
226 /* For iterating over insns in basic block.  */
227 #define FOR_BB_INSNS(BB, INSN)			\
228   for ((INSN) = BB_HEAD (BB);			\
229        (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
230        (INSN) = NEXT_INSN (INSN))
231 
232 /* For iterating over insns in basic block when we might remove the
233    current insn.  */
234 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR)			\
235   for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL;	\
236        (INSN) && (INSN) != NEXT_INSN (BB_END (BB));	\
237        (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
238 
239 #define FOR_BB_INSNS_REVERSE(BB, INSN)		\
240   for ((INSN) = BB_END (BB);			\
241        (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
242        (INSN) = PREV_INSN (INSN))
243 
244 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR)	\
245   for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL;	\
246        (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));	\
247        (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
248 
249 /* Cycles through _all_ basic blocks, even the fake ones (entry and
250    exit block).  */
251 
252 #define FOR_ALL_BB_FN(BB, FN) \
253   for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
254 
255 
256 /* Stuff for recording basic block info.  */
257 
258 /* For now, these will be functions (so that they can include checked casts
259    to rtx_insn.   Once the underlying fields are converted from rtx
260    to rtx_insn, these can be converted back to macros.  */
261 
262 #define BB_HEAD(B)      (B)->il.x.head_
263 #define BB_END(B)       (B)->il.x.rtl->end_
264 #define BB_HEADER(B)    (B)->il.x.rtl->header_
265 #define BB_FOOTER(B)    (B)->il.x.rtl->footer_
266 
267 /* Special block numbers [markers] for entry and exit.
268    Neither of them is supposed to hold actual statements.  */
269 #define ENTRY_BLOCK (0)
270 #define EXIT_BLOCK (1)
271 
272 /* The two blocks that are always in the cfg.  */
273 #define NUM_FIXED_BLOCKS (2)
274 
275 /* This is the value which indicates no edge is present.  */
276 #define EDGE_INDEX_NO_EDGE	-1
277 
278 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
279    if there is no edge between the 2 basic blocks.  */
280 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
281 
282 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
283    block which is either the pred or succ end of the indexed edge.  */
284 #define INDEX_EDGE_PRED_BB(el, index)	((el)->index_to_edge[(index)]->src)
285 #define INDEX_EDGE_SUCC_BB(el, index)	((el)->index_to_edge[(index)]->dest)
286 
287 /* INDEX_EDGE returns a pointer to the edge.  */
288 #define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
289 
290 /* Number of edges in the compressed edge list.  */
291 #define NUM_EDGES(el)			((el)->num_edges)
292 
293 /* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
294 #define FALLTHRU_EDGE(bb)		(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
295 					 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
296 
297 /* BB is assumed to contain conditional jump.  Return the branch edge.  */
298 #define BRANCH_EDGE(bb)			(EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
299 					 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
300 
301 /* Return expected execution frequency of the edge E.  */
302 #define EDGE_FREQUENCY(e)		e->count ().to_frequency (cfun)
303 
304 /* Compute a scale factor (or probability) suitable for scaling of
305    gcov_type values via apply_probability() and apply_scale().  */
306 #define GCOV_COMPUTE_SCALE(num,den) \
307   ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
308 
309 /* Return nonzero if edge is critical.  */
310 #define EDGE_CRITICAL_P(e)		(EDGE_COUNT ((e)->src->succs) >= 2 \
311 					 && EDGE_COUNT ((e)->dest->preds) >= 2)
312 
313 #define EDGE_COUNT(ev)			vec_safe_length (ev)
314 #define EDGE_I(ev,i)			(*ev)[(i)]
315 #define EDGE_PRED(bb,i)			(*(bb)->preds)[(i)]
316 #define EDGE_SUCC(bb,i)			(*(bb)->succs)[(i)]
317 
318 /* Returns true if BB has precisely one successor.  */
319 
320 static inline bool
single_succ_p(const_basic_block bb)321 single_succ_p (const_basic_block bb)
322 {
323   return EDGE_COUNT (bb->succs) == 1;
324 }
325 
326 /* Returns true if BB has precisely one predecessor.  */
327 
328 static inline bool
single_pred_p(const_basic_block bb)329 single_pred_p (const_basic_block bb)
330 {
331   return EDGE_COUNT (bb->preds) == 1;
332 }
333 
334 /* Returns the single successor edge of basic block BB.  Aborts if
335    BB does not have exactly one successor.  */
336 
337 static inline edge
single_succ_edge(const_basic_block bb)338 single_succ_edge (const_basic_block bb)
339 {
340   gcc_checking_assert (single_succ_p (bb));
341   return EDGE_SUCC (bb, 0);
342 }
343 
344 /* Returns the single predecessor edge of basic block BB.  Aborts
345    if BB does not have exactly one predecessor.  */
346 
347 static inline edge
single_pred_edge(const_basic_block bb)348 single_pred_edge (const_basic_block bb)
349 {
350   gcc_checking_assert (single_pred_p (bb));
351   return EDGE_PRED (bb, 0);
352 }
353 
354 /* Returns the single successor block of basic block BB.  Aborts
355    if BB does not have exactly one successor.  */
356 
357 static inline basic_block
single_succ(const_basic_block bb)358 single_succ (const_basic_block bb)
359 {
360   return single_succ_edge (bb)->dest;
361 }
362 
363 /* Returns the single predecessor block of basic block BB.  Aborts
364    if BB does not have exactly one predecessor.*/
365 
366 static inline basic_block
single_pred(const_basic_block bb)367 single_pred (const_basic_block bb)
368 {
369   return single_pred_edge (bb)->src;
370 }
371 
372 /* Iterator object for edges.  */
373 
374 struct edge_iterator {
375   unsigned index;
376   vec<edge, va_gc> **container;
377 };
378 
379 static inline vec<edge, va_gc> *
ei_container(edge_iterator i)380 ei_container (edge_iterator i)
381 {
382   gcc_checking_assert (i.container);
383   return *i.container;
384 }
385 
386 #define ei_start(iter) ei_start_1 (&(iter))
387 #define ei_last(iter) ei_last_1 (&(iter))
388 
389 /* Return an iterator pointing to the start of an edge vector.  */
390 static inline edge_iterator
ei_start_1(vec<edge,va_gc> ** ev)391 ei_start_1 (vec<edge, va_gc> **ev)
392 {
393   edge_iterator i;
394 
395   i.index = 0;
396   i.container = ev;
397 
398   return i;
399 }
400 
401 /* Return an iterator pointing to the last element of an edge
402    vector.  */
403 static inline edge_iterator
ei_last_1(vec<edge,va_gc> ** ev)404 ei_last_1 (vec<edge, va_gc> **ev)
405 {
406   edge_iterator i;
407 
408   i.index = EDGE_COUNT (*ev) - 1;
409   i.container = ev;
410 
411   return i;
412 }
413 
414 /* Is the iterator `i' at the end of the sequence?  */
415 static inline bool
ei_end_p(edge_iterator i)416 ei_end_p (edge_iterator i)
417 {
418   return (i.index == EDGE_COUNT (ei_container (i)));
419 }
420 
421 /* Is the iterator `i' at one position before the end of the
422    sequence?  */
423 static inline bool
ei_one_before_end_p(edge_iterator i)424 ei_one_before_end_p (edge_iterator i)
425 {
426   return (i.index + 1 == EDGE_COUNT (ei_container (i)));
427 }
428 
429 /* Advance the iterator to the next element.  */
430 static inline void
ei_next(edge_iterator * i)431 ei_next (edge_iterator *i)
432 {
433   gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
434   i->index++;
435 }
436 
437 /* Move the iterator to the previous element.  */
438 static inline void
ei_prev(edge_iterator * i)439 ei_prev (edge_iterator *i)
440 {
441   gcc_checking_assert (i->index > 0);
442   i->index--;
443 }
444 
445 /* Return the edge pointed to by the iterator `i'.  */
446 static inline edge
ei_edge(edge_iterator i)447 ei_edge (edge_iterator i)
448 {
449   return EDGE_I (ei_container (i), i.index);
450 }
451 
452 /* Return an edge pointed to by the iterator.  Do it safely so that
453    NULL is returned when the iterator is pointing at the end of the
454    sequence.  */
455 static inline edge
ei_safe_edge(edge_iterator i)456 ei_safe_edge (edge_iterator i)
457 {
458   return !ei_end_p (i) ? ei_edge (i) : NULL;
459 }
460 
461 /* Return 1 if we should continue to iterate.  Return 0 otherwise.
462    *Edge P is set to the next edge if we are to continue to iterate
463    and NULL otherwise.  */
464 
465 static inline bool
ei_cond(edge_iterator ei,edge * p)466 ei_cond (edge_iterator ei, edge *p)
467 {
468   if (!ei_end_p (ei))
469     {
470       *p = ei_edge (ei);
471       return 1;
472     }
473   else
474     {
475       *p = NULL;
476       return 0;
477     }
478 }
479 
480 /* This macro serves as a convenient way to iterate each edge in a
481    vector of predecessor or successor edges.  It must not be used when
482    an element might be removed during the traversal, otherwise
483    elements will be missed.  Instead, use a for-loop like that shown
484    in the following pseudo-code:
485 
486    FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
487      {
488 	IF (e != taken_edge)
489 	  remove_edge (e);
490 	ELSE
491 	  ei_next (&ei);
492      }
493 */
494 
495 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)	\
496   for ((ITER) = ei_start ((EDGE_VEC));		\
497        ei_cond ((ITER), &(EDGE));		\
498        ei_next (&(ITER)))
499 
500 #define CLEANUP_EXPENSIVE	1	/* Do relatively expensive optimizations
501 					   except for edge forwarding */
502 #define CLEANUP_CROSSJUMP	2	/* Do crossjumping.  */
503 #define CLEANUP_POST_REGSTACK	4	/* We run after reg-stack and need
504 					   to care REG_DEAD notes.  */
505 #define CLEANUP_THREADING	8	/* Do jump threading.  */
506 #define CLEANUP_NO_INSN_DEL	16	/* Do not try to delete trivially dead
507 					   insns.  */
508 #define CLEANUP_CFGLAYOUT	32	/* Do cleanup in cfglayout mode.  */
509 #define CLEANUP_CFG_CHANGED	64      /* The caller changed the CFG.  */
510 #define CLEANUP_NO_PARTITIONING	128     /* Do not try to fix partitions.  */
511 #define CLEANUP_FORCE_FAST_DCE	0x100	/* Force run_fast_dce to be called
512 					   at least once.  */
513 
514 /* Return true if BB is in a transaction.  */
515 
516 static inline bool
bb_in_transaction(basic_block bb)517 bb_in_transaction (basic_block bb)
518 {
519   return bb->flags & BB_IN_TRANSACTION;
520 }
521 
522 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH.  */
523 static inline bool
bb_has_eh_pred(basic_block bb)524 bb_has_eh_pred (basic_block bb)
525 {
526   edge e;
527   edge_iterator ei;
528 
529   FOR_EACH_EDGE (e, ei, bb->preds)
530     {
531       if (e->flags & EDGE_EH)
532 	return true;
533     }
534   return false;
535 }
536 
537 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL.  */
538 static inline bool
bb_has_abnormal_pred(basic_block bb)539 bb_has_abnormal_pred (basic_block bb)
540 {
541   edge e;
542   edge_iterator ei;
543 
544   FOR_EACH_EDGE (e, ei, bb->preds)
545     {
546       if (e->flags & EDGE_ABNORMAL)
547 	return true;
548     }
549   return false;
550 }
551 
552 /* Return the fallthru edge in EDGES if it exists, NULL otherwise.  */
553 static inline edge
find_fallthru_edge(vec<edge,va_gc> * edges)554 find_fallthru_edge (vec<edge, va_gc> *edges)
555 {
556   edge e;
557   edge_iterator ei;
558 
559   FOR_EACH_EDGE (e, ei, edges)
560     if (e->flags & EDGE_FALLTHRU)
561       break;
562 
563   return e;
564 }
565 
566 /* Check tha probability is sane.  */
567 
568 static inline void
check_probability(int prob)569 check_probability (int prob)
570 {
571   gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
572 }
573 
574 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
575    Used to combine BB probabilities.  */
576 
577 static inline int
combine_probabilities(int prob1,int prob2)578 combine_probabilities (int prob1, int prob2)
579 {
580   check_probability (prob1);
581   check_probability (prob2);
582   return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
583 }
584 
585 /* Apply scale factor SCALE on frequency or count FREQ. Use this
586    interface when potentially scaling up, so that SCALE is not
587    constrained to be < REG_BR_PROB_BASE.  */
588 
589 static inline gcov_type
apply_scale(gcov_type freq,gcov_type scale)590 apply_scale (gcov_type freq, gcov_type scale)
591 {
592   return RDIV (freq * scale, REG_BR_PROB_BASE);
593 }
594 
595 /* Apply probability PROB on frequency or count FREQ.  */
596 
597 static inline gcov_type
apply_probability(gcov_type freq,int prob)598 apply_probability (gcov_type freq, int prob)
599 {
600   check_probability (prob);
601   return apply_scale (freq, prob);
602 }
603 
604 /* Return inverse probability for PROB.  */
605 
606 static inline int
inverse_probability(int prob1)607 inverse_probability (int prob1)
608 {
609   check_probability (prob1);
610   return REG_BR_PROB_BASE - prob1;
611 }
612 
613 /* Return true if BB has at least one abnormal outgoing edge.  */
614 
615 static inline bool
has_abnormal_or_eh_outgoing_edge_p(basic_block bb)616 has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
617 {
618   edge e;
619   edge_iterator ei;
620 
621   FOR_EACH_EDGE (e, ei, bb->succs)
622     if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
623       return true;
624 
625   return false;
626 }
627 
628 /* Return true when one of the predecessor edges of BB is marked with
629    EDGE_ABNORMAL_CALL or EDGE_EH.  */
630 
631 static inline bool
has_abnormal_call_or_eh_pred_edge_p(basic_block bb)632 has_abnormal_call_or_eh_pred_edge_p (basic_block bb)
633 {
634   edge e;
635   edge_iterator ei;
636 
637   FOR_EACH_EDGE (e, ei, bb->preds)
638     if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
639       return true;
640 
641   return false;
642 }
643 
644 /* Return count of edge E.  */
count()645 inline profile_count edge_def::count () const
646 {
647   return src->count.apply_probability (probability);
648 }
649 
650 #endif /* GCC_BASIC_BLOCK_H */
651