1;; ARM 1020E & ARM 1022E Pipeline Description
2;; Copyright (C) 2005-2021 Free Software Foundation, Inc.
3;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
4;;
5;; This file is part of GCC.
6;;
7;; GCC is free software; you can redistribute it and/or modify it
8;; under the terms of the GNU General Public License as published by
9;; the Free Software Foundation; either version 3, or (at your option)
10;; any later version.
11;;
12;; GCC is distributed in the hope that it will be useful, but
13;; WITHOUT ANY WARRANTY; without even the implied warranty of
14;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15;; General Public License for more details.
16;;
17;; You should have received a copy of the GNU General Public License
18;; along with GCC; see the file COPYING3.  If not see
19;; <http://www.gnu.org/licenses/>.  */
20
21;; These descriptions are based on the information contained in the
22;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
23;; Limited.
24;;
25
26;; This automaton provides a pipeline description for the ARM
27;; 1020E core.
28;;
29;; The model given here assumes that the condition for all conditional
30;; instructions is "true", i.e., that all of the instructions are
31;; actually executed.
32
33(define_automaton "arm1020e")
34
35;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36;; Pipelines
37;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
38
39;; There are two pipelines:
40;;
41;; - An Arithmetic Logic Unit (ALU) pipeline.
42;;
43;;   The ALU pipeline has fetch, issue, decode, execute, memory, and
44;;   write stages. We only need to model the execute, memory and write
45;;   stages.
46;;
47;; - A Load-Store Unit (LSU) pipeline.
48;;
49;;   The LSU pipeline has decode, execute, memory, and write stages.
50;;   We only model the execute, memory and write stages.
51
52(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
53(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
54
55;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
56;; ALU Instructions
57;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
58
59;; ALU instructions require three cycles to execute, and use the ALU
60;; pipeline in each of the three stages.  The results are available
61;; after the execute stage has finished.
62;;
63;; If the destination register is the PC, the pipelines are stalled
64;; for several cycles.  That case is not modeled here.
65
66;; ALU operations with no shifted operand
67(define_insn_reservation "1020alu_op" 1
68 (and (eq_attr "tune" "arm10e")
69      (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
70                       alu_sreg,alus_sreg,logic_reg,logics_reg,\
71                       adc_imm,adcs_imm,adc_reg,adcs_reg,\
72                       adr,bfm,rev,\
73                       shift_imm,shift_reg,\
74                       mov_imm,mov_reg,mvn_imm,mvn_reg,\
75                       multiple"))
76 "1020a_e,1020a_m,1020a_w")
77
78;; ALU operations with a shift-by-constant operand
79(define_insn_reservation "1020alu_shift_op" 1
80 (and (eq_attr "tune" "arm10e")
81      (eq_attr "type" "alu_shift_imm_lsl_1to4,alu_shift_imm_other,alus_shift_imm,\
82                       logic_shift_imm,logics_shift_imm,\
83                       extend,mov_shift,mvn_shift"))
84 "1020a_e,1020a_m,1020a_w")
85
86;; ALU operations with a shift-by-register operand
87;; These really stall in the decoder, in order to read
88;; the shift value in a second cycle. Pretend we take two cycles in
89;; the execute stage.
90(define_insn_reservation "1020alu_shift_reg_op" 2
91 (and (eq_attr "tune" "arm10e")
92      (eq_attr "type" "alu_shift_reg,alus_shift_reg,\
93                       logic_shift_reg,logics_shift_reg,\
94                       mov_shift_reg,mvn_shift_reg"))
95 "1020a_e*2,1020a_m,1020a_w")
96
97;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
98;; Multiplication Instructions
99;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
100
101;; Multiplication instructions loop in the execute stage until the
102;; instruction has been passed through the multiplier array enough
103;; times.
104
105;; The result of the "smul" and "smulw" instructions is not available
106;; until after the memory stage.
107(define_insn_reservation "1020mult1" 2
108 (and (eq_attr "tune" "arm10e")
109      (eq_attr "type" "smulxy,smulwy"))
110 "1020a_e,1020a_m,1020a_w")
111
112;; The "smlaxy" and "smlawx" instructions require two iterations through
113;; the execute stage; the result is available immediately following
114;; the execute stage.
115(define_insn_reservation "1020mult2" 2
116 (and (eq_attr "tune" "arm10e")
117      (eq_attr "type" "smlaxy,smlalxy,smlawx"))
118 "1020a_e*2,1020a_m,1020a_w")
119
120;; The "smlalxy", "mul", and "mla" instructions require two iterations
121;; through the execute stage; the result is not available until after
122;; the memory stage.
123(define_insn_reservation "1020mult3" 3
124 (and (eq_attr "tune" "arm10e")
125      (eq_attr "type" "smlalxy,mul,mla"))
126 "1020a_e*2,1020a_m,1020a_w")
127
128;; The "muls" and "mlas" instructions loop in the execute stage for
129;; four iterations in order to set the flags.  The value result is
130;; available after three iterations.
131(define_insn_reservation "1020mult4" 3
132 (and (eq_attr "tune" "arm10e")
133      (eq_attr "type" "muls,mlas"))
134 "1020a_e*4,1020a_m,1020a_w")
135
136;; Long multiply instructions that produce two registers of
137;; output (such as umull) make their results available in two cycles;
138;; the least significant word is available before the most significant
139;; word.  That fact is not modeled; instead, the instructions are
140;; described.as if the entire result was available at the end of the
141;; cycle in which both words are available.
142
143;; The "umull", "umlal", "smull", and "smlal" instructions all take
144;; three iterations through the execute cycle, and make their results
145;; available after the memory cycle.
146(define_insn_reservation "1020mult5" 4
147 (and (eq_attr "tune" "arm10e")
148      (eq_attr "type" "umull,umlal,smull,smlal"))
149 "1020a_e*3,1020a_m,1020a_w")
150
151;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
152;; the execute stage for five iterations in order to set the flags.
153;; The value result is available after four iterations.
154(define_insn_reservation "1020mult6" 4
155 (and (eq_attr "tune" "arm10e")
156      (eq_attr "type" "umulls,umlals,smulls,smlals"))
157 "1020a_e*5,1020a_m,1020a_w")
158
159;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
160;; Load/Store Instructions
161;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
162
163;; The models for load/store instructions do not accurately describe
164;; the difference between operations with a base register writeback
165;; (such as "ldm!").  These models assume that all memory references
166;; hit in dcache.
167
168;; LSU instructions require six cycles to execute.  They use the ALU
169;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
170;; three through six.
171;; Loads and stores which use a scaled register offset or scaled
172;; register pre-indexed addressing mode take three cycles EXCEPT for
173;; those that are base + offset with LSL of 0 or 2, or base - offset
174;; with LSL of zero.  The remainder take 1 cycle to execute.
175;; For 4byte loads there is a bypass from the load stage
176
177(define_insn_reservation "1020load1_op" 2
178 (and (eq_attr "tune" "arm10e")
179      (eq_attr "type" "load_byte,load_4"))
180 "1020a_e+1020l_e,1020l_m,1020l_w")
181
182(define_insn_reservation "1020store1_op" 0
183 (and (eq_attr "tune" "arm10e")
184      (eq_attr "type" "store_4"))
185 "1020a_e+1020l_e,1020l_m,1020l_w")
186
187;; A load's result can be stored by an immediately following store
188(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
189
190;; On a LDM/STM operation, the LSU pipeline iterates until all of the
191;; registers have been processed.
192;;
193;; The time it takes to load the data depends on whether or not the
194;; base address is 64-bit aligned; if it is not, an additional cycle
195;; is required.  This model assumes that the address is always 64-bit
196;; aligned.  Because the processor can load two registers per cycle,
197;; that assumption means that we use the same instruction reservations
198;; for loading 2k and 2k - 1 registers.
199;;
200;; The ALU pipeline is decoupled after the first cycle unless there is
201;; a register dependency; the dependency is cleared as soon as the LDM/STM
202;; has dealt with the corresponding register.  So for example,
203;;  stmia sp, {r0-r3}
204;;  add	r0, r0, #4
205;; will have one fewer stalls than
206;;  stmia sp, {r0-r3}
207;;  add r3, r3, #4
208;;
209;; As with ALU operations, if one of the destination registers is the
210;; PC, there are additional stalls; that is not modeled.
211
212(define_insn_reservation "1020load2_op" 2
213 (and (eq_attr "tune" "arm10e")
214      (eq_attr "type" "load_8"))
215 "1020a_e+1020l_e,1020l_m,1020l_w")
216
217(define_insn_reservation "1020store2_op" 0
218 (and (eq_attr "tune" "arm10e")
219      (eq_attr "type" "store_8"))
220 "1020a_e+1020l_e,1020l_m,1020l_w")
221
222(define_insn_reservation "1020load34_op" 3
223 (and (eq_attr "tune" "arm10e")
224      (eq_attr "type" "load_12,load_16"))
225 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
226
227(define_insn_reservation "1020store34_op" 0
228 (and (eq_attr "tune" "arm10e")
229      (eq_attr "type" "store_12,store_16"))
230 "1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
231
232;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
233;; Branch and Call Instructions
234;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
235
236;; Branch instructions are difficult to model accurately.  The ARM
237;; core can predict most branches.  If the branch is predicted
238;; correctly, and predicted early enough, the branch can be completely
239;; eliminated from the instruction stream.  Some branches can
240;; therefore appear to require zero cycles to execute.  We assume that
241;; all branches are predicted correctly, and that the latency is
242;; therefore the minimum value.
243
244(define_insn_reservation "1020branch_op" 0
245 (and (eq_attr "tune" "arm10e")
246      (eq_attr "type" "branch"))
247 "1020a_e")
248
249;; The latency for a call is not predictable.  Therefore, we model as blocking
250;; execution for a number of cycles but we can't do anything more accurate
251;; than that.
252
253(define_insn_reservation "1020call_op" 32
254 (and (eq_attr "tune" "arm10e")
255      (eq_attr "type" "call"))
256 "1020a_e*4")
257
258;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
259;; VFP
260;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
261
262(define_cpu_unit "v10_fmac" "arm1020e")
263
264(define_cpu_unit "v10_ds" "arm1020e")
265
266(define_cpu_unit "v10_fmstat" "arm1020e")
267
268(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
269
270;; fmstat is a serializing instruction.  It will stall the core until
271;; the mac and ds units have completed.
272(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
273
274(define_attr "vfp10" "yes,no"
275  (const (if_then_else (and (eq_attr "tune" "arm10e")
276			    (eq_attr "fpu" "vfp"))
277		       (const_string "yes") (const_string "no"))))
278
279;; Note, no instruction can issue to the VFP if the core is stalled in the
280;; first execute state.  We model this by using 1020a_e in the first cycle.
281(define_insn_reservation "v10_ffarith" 5
282 (and (eq_attr "vfp10" "yes")
283      (eq_attr "type" "fmov,ffariths,ffarithd,fcmps,fcmpd"))
284 "1020a_e+v10_fmac")
285
286(define_insn_reservation "v10_farith" 5
287 (and (eq_attr "vfp10" "yes")
288      (eq_attr "type" "faddd,fadds"))
289 "1020a_e+v10_fmac")
290
291(define_insn_reservation "v10_cvt" 5
292 (and (eq_attr "vfp10" "yes")
293      (eq_attr "type" "f_cvt,f_cvti2f,f_cvtf2i"))
294 "1020a_e+v10_fmac")
295
296(define_insn_reservation "v10_fmul" 6
297 (and (eq_attr "vfp10" "yes")
298      (eq_attr "type" "fmuls,fmacs,ffmas,fmuld,fmacd,ffmad"))
299 "1020a_e+v10_fmac*2")
300
301(define_insn_reservation "v10_fdivs" 18
302 (and (eq_attr "vfp10" "yes")
303      (eq_attr "type" "fdivs, fsqrts"))
304 "1020a_e+v10_ds*4")
305
306(define_insn_reservation "v10_fdivd" 32
307 (and (eq_attr "vfp10" "yes")
308      (eq_attr "type" "fdivd, fsqrtd"))
309 "1020a_e+v10_fmac+v10_ds*4")
310
311(define_insn_reservation "v10_floads" 4
312 (and (eq_attr "vfp10" "yes")
313      (eq_attr "type" "f_loads"))
314 "1020a_e+1020l_e+v10_ls1,v10_ls2")
315
316;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
317;; This gives the correct mix between single-and double loads where a flds
318;; followed by and fldd will stall for one cycle, but two back-to-back fldd
319;; insns stall for two cycles.
320(define_insn_reservation "v10_floadd" 5
321 (and (eq_attr "vfp10" "yes")
322      (eq_attr "type" "f_loadd"))
323 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
324
325;; Moves to/from arm regs also use the load/store pipeline.
326
327(define_insn_reservation "v10_c2v" 4
328 (and (eq_attr "vfp10" "yes")
329      (eq_attr "type" "f_mcr,f_mcrr"))
330 "1020a_e+1020l_e+v10_ls1,v10_ls2")
331
332(define_insn_reservation "v10_fstores" 1
333 (and (eq_attr "vfp10" "yes")
334      (eq_attr "type" "f_stores"))
335 "1020a_e+1020l_e+v10_ls1,v10_ls2")
336
337(define_insn_reservation "v10_fstored" 1
338 (and (eq_attr "vfp10" "yes")
339      (eq_attr "type" "f_stored"))
340 "1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
341
342(define_insn_reservation "v10_v2c" 1
343 (and (eq_attr "vfp10" "yes")
344      (eq_attr "type" "f_mrc,f_mrrc"))
345 "1020a_e+1020l_e,1020l_m,1020l_w")
346
347(define_insn_reservation "v10_to_cpsr" 2
348 (and (eq_attr "vfp10" "yes")
349      (eq_attr "type" "f_flag"))
350 "1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
351
352;; VFP bypasses
353
354;; There are bypasses for most operations other than store
355
356(define_bypass 3
357 "v10_c2v,v10_floads"
358 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
359
360(define_bypass 4
361 "v10_floadd"
362 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
363
364;; Arithmetic to other arithmetic saves a cycle due to forwarding
365(define_bypass 4
366 "v10_ffarith,v10_farith"
367 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
368
369(define_bypass 5
370 "v10_fmul"
371 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
372
373(define_bypass 17
374 "v10_fdivs"
375 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
376
377(define_bypass 31
378 "v10_fdivd"
379 "v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
380
381;; VFP anti-dependencies.
382
383;; There is one anti-dependence in the following case (not yet modelled):
384;; - After a store: one extra cycle for both fsts and fstd
385;; Note, back-to-back fstd instructions will overload the load/store datapath
386;; causing a two-cycle stall.
387