1@c Copyright (C) 1988-2021 Free Software Foundation, Inc.
2@c This is part of the GCC manual.
3@c For copying conditions, see the file gcc.texi.
4
5@ignore
6@c man begin INCLUDE
7@include gcc-vers.texi
8@c man end
9
10@c man begin COPYRIGHT
11Copyright @copyright{} 1988-2021 Free Software Foundation, Inc.
12
13Permission is granted to copy, distribute and/or modify this document
14under the terms of the GNU Free Documentation License, Version 1.3 or
15any later version published by the Free Software Foundation; with the
16Invariant Sections being ``GNU General Public License'' and ``Funding
17Free Software'', the Front-Cover texts being (a) (see below), and with
18the Back-Cover Texts being (b) (see below).  A copy of the license is
19included in the gfdl(7) man page.
20
21(a) The FSF's Front-Cover Text is:
22
23     A GNU Manual
24
25(b) The FSF's Back-Cover Text is:
26
27     You have freedom to copy and modify this GNU Manual, like GNU
28     software.  Copies published by the Free Software Foundation raise
29     funds for GNU development.
30@c man end
31@c Set file name and title for the man page.
32@setfilename gcc
33@settitle GNU project C and C++ compiler
34@c man begin SYNOPSIS
35gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36    [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37    [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38    [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39    [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40    [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41    [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43Only the most useful options are listed here; see below for the
44remainder.  @command{g++} accepts mostly the same options as @command{gcc}.
45@c man end
46@c man begin SEEALSO
47gpl(7), gfdl(7), fsf-funding(7),
48cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50@file{ld}, @file{binutils} and @file{gdb}.
51@c man end
52@c man begin BUGS
53For instructions on reporting bugs, see
54@w{@value{BUGURL}}.
55@c man end
56@c man begin AUTHOR
57See the Info entry for @command{gcc}, or
58@w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59for contributors to GCC@.
60@c man end
61@end ignore
62
63@node Invoking GCC
64@chapter GCC Command Options
65@cindex GCC command options
66@cindex command options
67@cindex options, GCC command
68
69@c man begin DESCRIPTION
70When you invoke GCC, it normally does preprocessing, compilation,
71assembly and linking.  The ``overall options'' allow you to stop this
72process at an intermediate stage.  For example, the @option{-c} option
73says not to run the linker.  Then the output consists of object files
74output by the assembler.
75@xref{Overall Options,,Options Controlling the Kind of Output}.
76
77Other options are passed on to one or more stages of processing.  Some options
78control the preprocessor and others the compiler itself.  Yet other
79options control the assembler and linker; most of these are not
80documented here, since you rarely need to use any of them.
81
82@cindex C compilation options
83Most of the command-line options that you can use with GCC are useful
84for C programs; when an option is only useful with another language
85(usually C++), the explanation says so explicitly.  If the description
86for a particular option does not mention a source language, you can use
87that option with all supported languages.
88
89@cindex cross compiling
90@cindex specifying machine version
91@cindex specifying compiler version and target machine
92@cindex compiler version, specifying
93@cindex target machine, specifying
94The usual way to run GCC is to run the executable called @command{gcc}, or
95@command{@var{machine}-gcc} when cross-compiling, or
96@command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97When you compile C++ programs, you should invoke GCC as @command{g++}
98instead.  @xref{Invoking G++,,Compiling C++ Programs},
99for information about the differences in behavior between @command{gcc}
100and @command{g++} when compiling C++ programs.
101
102@cindex grouping options
103@cindex options, grouping
104The @command{gcc} program accepts options and file names as operands.  Many
105options have multi-letter names; therefore multiple single-letter options
106may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107-v}}.
108
109@cindex order of options
110@cindex options, order
111You can mix options and other arguments.  For the most part, the order
112you use doesn't matter.  Order does matter when you use several
113options of the same kind; for example, if you specify @option{-L} more
114than once, the directories are searched in the order specified.  Also,
115the placement of the @option{-l} option is significant.
116
117Many options have long names starting with @samp{-f} or with
118@samp{-W}---for example,
119@option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
120these have both positive and negative forms; the negative form of
121@option{-ffoo} is @option{-fno-foo}.  This manual documents
122only one of these two forms, whichever one is not the default.
123
124Some options take one or more arguments typically separated either
125by a space or by the equals sign (@samp{=}) from the option name.
126Unless documented otherwise, an argument can be either numeric or
127a string.  Numeric arguments must typically be small unsigned decimal
128or hexadecimal integers.  Hexadecimal arguments must begin with
129the @samp{0x} prefix.  Arguments to options that specify a size
130threshold of some sort may be arbitrarily large decimal or hexadecimal
131integers followed by a byte size suffix designating a multiple of bytes
132such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
133@code{MB} and @code{MiB} for megabyte and mebibyte, @code{GB} and
134@code{GiB} for gigabyte and gigibyte, and so on.  Such arguments are
135designated by @var{byte-size} in the following text.  Refer to the NIST,
136IEC, and other relevant national and international standards for the full
137listing and explanation of the binary and decimal byte size prefixes.
138
139@c man end
140
141@xref{Option Index}, for an index to GCC's options.
142
143@menu
144* Option Summary::      Brief list of all options, without explanations.
145* Overall Options::     Controlling the kind of output:
146                        an executable, object files, assembler files,
147                        or preprocessed source.
148* Invoking G++::        Compiling C++ programs.
149* C Dialect Options::   Controlling the variant of C language compiled.
150* C++ Dialect Options:: Variations on C++.
151* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
152                        and Objective-C++.
153* Diagnostic Message Formatting Options:: Controlling how diagnostics should
154                        be formatted.
155* Warning Options::     How picky should the compiler be?
156* Static Analyzer Options:: More expensive warnings.
157* Debugging Options::   Producing debuggable code.
158* Optimize Options::    How much optimization?
159* Instrumentation Options:: Enabling profiling and extra run-time error checking.
160* Preprocessor Options:: Controlling header files and macro definitions.
161                         Also, getting dependency information for Make.
162* Assembler Options::   Passing options to the assembler.
163* Link Options::        Specifying libraries and so on.
164* Directory Options::   Where to find header files and libraries.
165                        Where to find the compiler executable files.
166* Code Gen Options::    Specifying conventions for function calls, data layout
167                        and register usage.
168* Developer Options::   Printing GCC configuration info, statistics, and
169                        debugging dumps.
170* Submodel Options::    Target-specific options, such as compiling for a
171                        specific processor variant.
172* Spec Files::          How to pass switches to sub-processes.
173* Environment Variables:: Env vars that affect GCC.
174* Precompiled Headers:: Compiling a header once, and using it many times.
175* C++ Modules::		Experimental C++20 module system.
176@end menu
177
178@c man begin OPTIONS
179
180@node Option Summary
181@section Option Summary
182
183Here is a summary of all the options, grouped by type.  Explanations are
184in the following sections.
185
186@table @emph
187@item Overall Options
188@xref{Overall Options,,Options Controlling the Kind of Output}.
189@gccoptlist{-c  -S  -E  -o @var{file} @gol
190-dumpbase @var{dumpbase}  -dumpbase-ext @var{auxdropsuf} @gol
191-dumpdir @var{dumppfx}  -x @var{language}  @gol
192-v  -###  --help@r{[}=@var{class}@r{[},@dots{}@r{]]}  --target-help  --version @gol
193-pass-exit-codes  -pipe  -specs=@var{file}  -wrapper  @gol
194@@@var{file}  -ffile-prefix-map=@var{old}=@var{new}  @gol
195-fplugin=@var{file}  -fplugin-arg-@var{name}=@var{arg}  @gol
196-fdump-ada-spec@r{[}-slim@r{]}  -fada-spec-parent=@var{unit}  -fdump-go-spec=@var{file}}
197
198@item C Language Options
199@xref{C Dialect Options,,Options Controlling C Dialect}.
200@gccoptlist{-ansi  -std=@var{standard}  -fgnu89-inline @gol
201-fpermitted-flt-eval-methods=@var{standard} @gol
202-aux-info @var{filename}  -fallow-parameterless-variadic-functions @gol
203-fno-asm  -fno-builtin  -fno-builtin-@var{function}  -fgimple@gol
204-fhosted  -ffreestanding @gol
205-fopenacc  -fopenacc-dim=@var{geom} @gol
206-fopenmp  -fopenmp-simd @gol
207-fms-extensions  -fplan9-extensions  -fsso-struct=@var{endianness} @gol
208-fallow-single-precision  -fcond-mismatch  -flax-vector-conversions @gol
209-fsigned-bitfields  -fsigned-char @gol
210-funsigned-bitfields  -funsigned-char}
211
212@item C++ Language Options
213@xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
214@gccoptlist{-fabi-version=@var{n}  -fno-access-control @gol
215-faligned-new=@var{n}  -fargs-in-order=@var{n}  -fchar8_t  -fcheck-new @gol
216-fconstexpr-depth=@var{n}  -fconstexpr-cache-depth=@var{n} @gol
217-fconstexpr-loop-limit=@var{n}  -fconstexpr-ops-limit=@var{n} @gol
218-fno-elide-constructors @gol
219-fno-enforce-eh-specs @gol
220-fno-gnu-keywords @gol
221-fno-implicit-templates @gol
222-fno-implicit-inline-templates @gol
223-fno-implement-inlines  @gol
224-fmodule-header@r{[}=@var{kind}@r{]} -fmodule-only -fmodules-ts @gol
225-fmodule-implicit-inline @gol
226-fno-module-lazy @gol
227-fmodule-mapper=@var{specification} @gol
228-fmodule-version-ignore @gol
229-fms-extensions @gol
230-fnew-inheriting-ctors @gol
231-fnew-ttp-matching @gol
232-fno-nonansi-builtins  -fnothrow-opt  -fno-operator-names @gol
233-fno-optional-diags  -fpermissive @gol
234-fno-pretty-templates @gol
235-fno-rtti  -fsized-deallocation @gol
236-ftemplate-backtrace-limit=@var{n} @gol
237-ftemplate-depth=@var{n} @gol
238-fno-threadsafe-statics  -fuse-cxa-atexit @gol
239-fno-weak  -nostdinc++ @gol
240-fvisibility-inlines-hidden @gol
241-fvisibility-ms-compat @gol
242-fext-numeric-literals @gol
243-flang-info-include-translate@r{[}=@var{header}@r{]} @gol
244-flang-info-include-translate-not @gol
245-flang-info-module-cmi@r{[}=@var{module}@r{]} @gol
246-stdlib=@var{libstdc++,libc++} @gol
247-Wabi-tag  -Wcatch-value  -Wcatch-value=@var{n} @gol
248-Wno-class-conversion  -Wclass-memaccess @gol
249-Wcomma-subscript  -Wconditionally-supported @gol
250-Wno-conversion-null  -Wctad-maybe-unsupported @gol
251-Wctor-dtor-privacy  -Wno-delete-incomplete @gol
252-Wdelete-non-virtual-dtor  -Wdeprecated-copy -Wdeprecated-copy-dtor @gol
253-Wno-deprecated-enum-enum-conversion -Wno-deprecated-enum-float-conversion @gol
254-Weffc++  -Wno-exceptions -Wextra-semi  -Wno-inaccessible-base @gol
255-Wno-inherited-variadic-ctor  -Wno-init-list-lifetime @gol
256-Winvalid-imported-macros @gol
257-Wno-invalid-offsetof  -Wno-literal-suffix @gol
258-Wno-mismatched-new-delete -Wmismatched-tags @gol
259-Wmultiple-inheritance  -Wnamespaces  -Wnarrowing @gol
260-Wnoexcept  -Wnoexcept-type  -Wnon-virtual-dtor @gol
261-Wpessimizing-move  -Wno-placement-new  -Wplacement-new=@var{n} @gol
262-Wrange-loop-construct -Wredundant-move -Wredundant-tags @gol
263-Wreorder  -Wregister @gol
264-Wstrict-null-sentinel  -Wno-subobject-linkage  -Wtemplates @gol
265-Wno-non-template-friend  -Wold-style-cast @gol
266-Woverloaded-virtual  -Wno-pmf-conversions -Wsign-promo @gol
267-Wsized-deallocation  -Wsuggest-final-methods @gol
268-Wsuggest-final-types  -Wsuggest-override  @gol
269-Wno-terminate  -Wuseless-cast  -Wno-vexing-parse  @gol
270-Wvirtual-inheritance  @gol
271-Wno-virtual-move-assign  -Wvolatile  -Wzero-as-null-pointer-constant}
272
273@item Objective-C and Objective-C++ Language Options
274@xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
275Objective-C and Objective-C++ Dialects}.
276@gccoptlist{-fconstant-string-class=@var{class-name} @gol
277-fgnu-runtime  -fnext-runtime @gol
278-fno-nil-receivers @gol
279-fobjc-abi-version=@var{n} @gol
280-fobjc-call-cxx-cdtors @gol
281-fobjc-direct-dispatch @gol
282-fobjc-exceptions @gol
283-fobjc-gc @gol
284-fobjc-nilcheck @gol
285-fobjc-std=objc1 @gol
286-fno-local-ivars @gol
287-fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
288-freplace-objc-classes @gol
289-fzero-link @gol
290-gen-decls @gol
291-Wassign-intercept  -Wno-property-assign-default @gol
292-Wno-protocol -Wobjc-root-class -Wselector @gol
293-Wstrict-selector-match @gol
294-Wundeclared-selector}
295
296@item Diagnostic Message Formatting Options
297@xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
298@gccoptlist{-fmessage-length=@var{n}  @gol
299-fdiagnostics-plain-output @gol
300-fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}  @gol
301-fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
302-fdiagnostics-urls=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
303-fdiagnostics-format=@r{[}text@r{|}json@r{]}  @gol
304-fno-diagnostics-show-option  -fno-diagnostics-show-caret @gol
305-fno-diagnostics-show-labels  -fno-diagnostics-show-line-numbers @gol
306-fno-diagnostics-show-cwe  @gol
307-fdiagnostics-minimum-margin-width=@var{width} @gol
308-fdiagnostics-parseable-fixits  -fdiagnostics-generate-patch @gol
309-fdiagnostics-show-template-tree  -fno-elide-type @gol
310-fdiagnostics-path-format=@r{[}none@r{|}separate-events@r{|}inline-events@r{]} @gol
311-fdiagnostics-show-path-depths @gol
312-fno-show-column @gol
313-fdiagnostics-column-unit=@r{[}display@r{|}byte@r{]} @gol
314-fdiagnostics-column-origin=@var{origin}}
315
316@item Warning Options
317@xref{Warning Options,,Options to Request or Suppress Warnings}.
318@gccoptlist{-fsyntax-only  -fmax-errors=@var{n}  -Wpedantic @gol
319-pedantic-errors @gol
320-w  -Wextra  -Wall  -Wabi=@var{n} @gol
321-Waddress  -Wno-address-of-packed-member  -Waggregate-return @gol
322-Walloc-size-larger-than=@var{byte-size}  -Walloc-zero @gol
323-Walloca  -Walloca-larger-than=@var{byte-size} @gol
324-Wno-aggressive-loop-optimizations @gol
325-Warith-conversion @gol
326-Warray-bounds  -Warray-bounds=@var{n} @gol
327-Wno-attributes  -Wattribute-alias=@var{n} -Wno-attribute-alias @gol
328-Wno-attribute-warning  -Wbool-compare  -Wbool-operation @gol
329-Wno-builtin-declaration-mismatch @gol
330-Wno-builtin-macro-redefined  -Wc90-c99-compat  -Wc99-c11-compat @gol
331-Wc11-c2x-compat @gol
332-Wc++-compat  -Wc++11-compat  -Wc++14-compat  -Wc++17-compat  @gol
333-Wc++20-compat  @gol
334-Wcast-align  -Wcast-align=strict  -Wcast-function-type  -Wcast-qual  @gol
335-Wchar-subscripts @gol
336-Wclobbered  -Wcomment @gol
337-Wconversion  -Wno-coverage-mismatch  -Wno-cpp @gol
338-Wdangling-else  -Wdate-time @gol
339-Wno-deprecated  -Wno-deprecated-declarations  -Wno-designated-init @gol
340-Wdisabled-optimization @gol
341-Wno-discarded-array-qualifiers  -Wno-discarded-qualifiers @gol
342-Wno-div-by-zero  -Wdouble-promotion @gol
343-Wduplicated-branches  -Wduplicated-cond @gol
344-Wempty-body  -Wno-endif-labels  -Wenum-compare  -Wenum-conversion @gol
345-Werror  -Werror=*  -Wexpansion-to-defined  -Wfatal-errors @gol
346-Wfloat-conversion  -Wfloat-equal  -Wformat  -Wformat=2 @gol
347-Wno-format-contains-nul  -Wno-format-extra-args  @gol
348-Wformat-nonliteral  -Wformat-overflow=@var{n} @gol
349-Wformat-security  -Wformat-signedness  -Wformat-truncation=@var{n} @gol
350-Wformat-y2k  -Wframe-address @gol
351-Wframe-larger-than=@var{byte-size}  -Wno-free-nonheap-object @gol
352-Wno-if-not-aligned  -Wno-ignored-attributes @gol
353-Wignored-qualifiers  -Wno-incompatible-pointer-types @gol
354-Wimplicit  -Wimplicit-fallthrough  -Wimplicit-fallthrough=@var{n} @gol
355-Wno-implicit-function-declaration  -Wno-implicit-int @gol
356-Winit-self  -Winline  -Wno-int-conversion  -Wint-in-bool-context @gol
357-Wno-int-to-pointer-cast  -Wno-invalid-memory-model @gol
358-Winvalid-pch  -Wjump-misses-init  -Wlarger-than=@var{byte-size} @gol
359-Wlogical-not-parentheses  -Wlogical-op  -Wlong-long @gol
360-Wno-lto-type-mismatch -Wmain  -Wmaybe-uninitialized @gol
361-Wmemset-elt-size  -Wmemset-transposed-args @gol
362-Wmisleading-indentation  -Wmissing-attributes  -Wmissing-braces @gol
363-Wmissing-field-initializers  -Wmissing-format-attribute @gol
364-Wmissing-include-dirs  -Wmissing-noreturn  -Wno-missing-profile @gol
365-Wno-multichar  -Wmultistatement-macros  -Wnonnull  -Wnonnull-compare @gol
366-Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
367-Wnull-dereference  -Wno-odr  -Wopenmp-simd  @gol
368-Wno-overflow  -Woverlength-strings  -Wno-override-init-side-effects @gol
369-Wpacked  -Wno-packed-bitfield-compat  -Wpacked-not-aligned  -Wpadded @gol
370-Wparentheses  -Wno-pedantic-ms-format @gol
371-Wpointer-arith  -Wno-pointer-compare  -Wno-pointer-to-int-cast @gol
372-Wno-pragmas  -Wno-prio-ctor-dtor  -Wredundant-decls @gol
373-Wrestrict  -Wno-return-local-addr  -Wreturn-type @gol
374-Wno-scalar-storage-order  -Wsequence-point @gol
375-Wshadow  -Wshadow=global  -Wshadow=local  -Wshadow=compatible-local @gol
376-Wno-shadow-ivar @gol
377-Wno-shift-count-negative  -Wno-shift-count-overflow  -Wshift-negative-value @gol
378-Wno-shift-overflow  -Wshift-overflow=@var{n} @gol
379-Wsign-compare  -Wsign-conversion @gol
380-Wno-sizeof-array-argument @gol
381-Wsizeof-array-div @gol
382-Wsizeof-pointer-div  -Wsizeof-pointer-memaccess @gol
383-Wstack-protector  -Wstack-usage=@var{byte-size}  -Wstrict-aliasing @gol
384-Wstrict-aliasing=n  -Wstrict-overflow  -Wstrict-overflow=@var{n} @gol
385-Wstring-compare @gol
386-Wno-stringop-overflow -Wno-stringop-overread @gol
387-Wno-stringop-truncation @gol
388-Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
389-Wswitch  -Wno-switch-bool  -Wswitch-default  -Wswitch-enum @gol
390-Wno-switch-outside-range  -Wno-switch-unreachable  -Wsync-nand @gol
391-Wsystem-headers  -Wtautological-compare  -Wtrampolines  -Wtrigraphs @gol
392-Wtsan -Wtype-limits  -Wundef @gol
393-Wuninitialized  -Wunknown-pragmas @gol
394-Wunsuffixed-float-constants  -Wunused @gol
395-Wunused-but-set-parameter  -Wunused-but-set-variable @gol
396-Wunused-const-variable  -Wunused-const-variable=@var{n} @gol
397-Wunused-function  -Wunused-label  -Wunused-local-typedefs @gol
398-Wunused-macros @gol
399-Wunused-parameter  -Wno-unused-result @gol
400-Wunused-value  -Wunused-variable @gol
401-Wno-varargs  -Wvariadic-macros @gol
402-Wvector-operation-performance @gol
403-Wvla  -Wvla-larger-than=@var{byte-size}  -Wno-vla-larger-than @gol
404-Wvolatile-register-var  -Wwrite-strings @gol
405-Wzero-length-bounds}
406
407@item Static Analyzer Options
408@gccoptlist{
409-fanalyzer @gol
410-fanalyzer-call-summaries @gol
411-fanalyzer-checker=@var{name} @gol
412-fno-analyzer-feasibility @gol
413-fanalyzer-fine-grained @gol
414-fanalyzer-state-merge @gol
415-fanalyzer-state-purge @gol
416-fanalyzer-transitivity @gol
417-fanalyzer-verbose-edges @gol
418-fanalyzer-verbose-state-changes @gol
419-fanalyzer-verbosity=@var{level} @gol
420-fdump-analyzer @gol
421-fdump-analyzer-stderr @gol
422-fdump-analyzer-callgraph @gol
423-fdump-analyzer-exploded-graph @gol
424-fdump-analyzer-exploded-nodes @gol
425-fdump-analyzer-exploded-nodes-2 @gol
426-fdump-analyzer-exploded-nodes-3 @gol
427-fdump-analyzer-feasibility @gol
428-fdump-analyzer-json @gol
429-fdump-analyzer-state-purge @gol
430-fdump-analyzer-supergraph @gol
431-Wno-analyzer-double-fclose @gol
432-Wno-analyzer-double-free @gol
433-Wno-analyzer-exposure-through-output-file @gol
434-Wno-analyzer-file-leak @gol
435-Wno-analyzer-free-of-non-heap @gol
436-Wno-analyzer-malloc-leak @gol
437-Wno-analyzer-mismatching-deallocation @gol
438-Wno-analyzer-null-argument @gol
439-Wno-analyzer-null-dereference @gol
440-Wno-analyzer-possible-null-argument @gol
441-Wno-analyzer-possible-null-dereference @gol
442-Wno-analyzer-shift-count-negative @gol
443-Wno-analyzer-shift-count-overflow @gol
444-Wno-analyzer-stale-setjmp-buffer @gol
445-Wno-analyzer-tainted-array-index @gol
446-Wanalyzer-too-complex @gol
447-Wno-analyzer-unsafe-call-within-signal-handler @gol
448-Wno-analyzer-use-after-free @gol
449-Wno-analyzer-use-of-pointer-in-stale-stack-frame @gol
450-Wno-analyzer-use-of-uninitialized-value @gol
451-Wno-analyzer-write-to-const @gol
452-Wno-analyzer-write-to-string-literal @gol
453}
454
455@item C and Objective-C-only Warning Options
456@gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
457-Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs @gol
458-Wold-style-declaration  -Wold-style-definition @gol
459-Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion @gol
460-Wdeclaration-after-statement  -Wpointer-sign}
461
462@item Debugging Options
463@xref{Debugging Options,,Options for Debugging Your Program}.
464@gccoptlist{-g  -g@var{level}  -gdwarf  -gdwarf-@var{version} @gol
465-ggdb  -grecord-gcc-switches  -gno-record-gcc-switches @gol
466-gstabs  -gstabs+  -gstrict-dwarf  -gno-strict-dwarf @gol
467-gas-loc-support  -gno-as-loc-support @gol
468-gas-locview-support  -gno-as-locview-support @gol
469-gcolumn-info  -gno-column-info  -gdwarf32  -gdwarf64 @gol
470-gstatement-frontiers  -gno-statement-frontiers @gol
471-gvariable-location-views  -gno-variable-location-views @gol
472-ginternal-reset-location-views  -gno-internal-reset-location-views @gol
473-ginline-points  -gno-inline-points @gol
474-gvms  -gxcoff  -gxcoff+  -gz@r{[}=@var{type}@r{]} @gol
475-gsplit-dwarf  -gdescribe-dies  -gno-describe-dies @gol
476-fdebug-prefix-map=@var{old}=@var{new}  -fdebug-types-section @gol
477-fno-eliminate-unused-debug-types @gol
478-femit-struct-debug-baseonly  -femit-struct-debug-reduced @gol
479-femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
480-fno-eliminate-unused-debug-symbols  -femit-class-debug-always @gol
481-fno-merge-debug-strings  -fno-dwarf2-cfi-asm @gol
482-fvar-tracking  -fvar-tracking-assignments}
483
484@item Optimization Options
485@xref{Optimize Options,,Options that Control Optimization}.
486@gccoptlist{-faggressive-loop-optimizations @gol
487-falign-functions[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
488-falign-jumps[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
489-falign-labels[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
490-falign-loops[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
491-fno-allocation-dce -fallow-store-data-races @gol
492-fassociative-math  -fauto-profile  -fauto-profile[=@var{path}] @gol
493-fauto-inc-dec  -fbranch-probabilities @gol
494-fcaller-saves @gol
495-fcombine-stack-adjustments  -fconserve-stack @gol
496-fcompare-elim  -fcprop-registers  -fcrossjumping @gol
497-fcse-follow-jumps  -fcse-skip-blocks  -fcx-fortran-rules @gol
498-fcx-limited-range @gol
499-fdata-sections  -fdce  -fdelayed-branch @gol
500-fdelete-null-pointer-checks  -fdevirtualize  -fdevirtualize-speculatively @gol
501-fdevirtualize-at-ltrans  -fdse @gol
502-fearly-inlining  -fipa-sra  -fexpensive-optimizations  -ffat-lto-objects @gol
503-ffast-math  -ffinite-math-only  -ffloat-store  -fexcess-precision=@var{style} @gol
504-ffinite-loops @gol
505-fforward-propagate  -ffp-contract=@var{style}  -ffunction-sections @gol
506-fgcse  -fgcse-after-reload  -fgcse-las  -fgcse-lm  -fgraphite-identity @gol
507-fgcse-sm  -fhoist-adjacent-loads  -fif-conversion @gol
508-fif-conversion2  -findirect-inlining @gol
509-finline-functions  -finline-functions-called-once  -finline-limit=@var{n} @gol
510-finline-small-functions -fipa-modref -fipa-cp  -fipa-cp-clone @gol
511-fipa-bit-cp  -fipa-vrp  -fipa-pta  -fipa-profile  -fipa-pure-const @gol
512-fipa-reference  -fipa-reference-addressable @gol
513-fipa-stack-alignment  -fipa-icf  -fira-algorithm=@var{algorithm} @gol
514-flive-patching=@var{level} @gol
515-fira-region=@var{region}  -fira-hoist-pressure @gol
516-fira-loop-pressure  -fno-ira-share-save-slots @gol
517-fno-ira-share-spill-slots @gol
518-fisolate-erroneous-paths-dereference  -fisolate-erroneous-paths-attribute @gol
519-fivopts  -fkeep-inline-functions  -fkeep-static-functions @gol
520-fkeep-static-consts  -flimit-function-alignment  -flive-range-shrinkage @gol
521-floop-block  -floop-interchange  -floop-strip-mine @gol
522-floop-unroll-and-jam  -floop-nest-optimize @gol
523-floop-parallelize-all  -flra-remat  -flto  -flto-compression-level @gol
524-flto-partition=@var{alg}  -fmerge-all-constants @gol
525-fmerge-constants  -fmodulo-sched  -fmodulo-sched-allow-regmoves @gol
526-fmove-loop-invariants  -fno-branch-count-reg @gol
527-fno-defer-pop  -fno-fp-int-builtin-inexact  -fno-function-cse @gol
528-fno-guess-branch-probability  -fno-inline  -fno-math-errno  -fno-peephole @gol
529-fno-peephole2  -fno-printf-return-value  -fno-sched-interblock @gol
530-fno-sched-spec  -fno-signed-zeros @gol
531-fno-toplevel-reorder  -fno-trapping-math  -fno-zero-initialized-in-bss @gol
532-fomit-frame-pointer  -foptimize-sibling-calls @gol
533-fpartial-inlining  -fpeel-loops  -fpredictive-commoning @gol
534-fprefetch-loop-arrays @gol
535-fprofile-correction @gol
536-fprofile-use  -fprofile-use=@var{path} -fprofile-partial-training @gol
537-fprofile-values -fprofile-reorder-functions @gol
538-freciprocal-math  -free  -frename-registers  -freorder-blocks @gol
539-freorder-blocks-algorithm=@var{algorithm} @gol
540-freorder-blocks-and-partition  -freorder-functions @gol
541-frerun-cse-after-loop  -freschedule-modulo-scheduled-loops @gol
542-frounding-math  -fsave-optimization-record @gol
543-fsched2-use-superblocks  -fsched-pressure @gol
544-fsched-spec-load  -fsched-spec-load-dangerous @gol
545-fsched-stalled-insns-dep[=@var{n}]  -fsched-stalled-insns[=@var{n}] @gol
546-fsched-group-heuristic  -fsched-critical-path-heuristic @gol
547-fsched-spec-insn-heuristic  -fsched-rank-heuristic @gol
548-fsched-last-insn-heuristic  -fsched-dep-count-heuristic @gol
549-fschedule-fusion @gol
550-fschedule-insns  -fschedule-insns2  -fsection-anchors @gol
551-fselective-scheduling  -fselective-scheduling2 @gol
552-fsel-sched-pipelining  -fsel-sched-pipelining-outer-loops @gol
553-fsemantic-interposition  -fshrink-wrap  -fshrink-wrap-separate @gol
554-fsignaling-nans @gol
555-fsingle-precision-constant  -fsplit-ivs-in-unroller  -fsplit-loops@gol
556-fsplit-paths @gol
557-fsplit-wide-types  -fsplit-wide-types-early  -fssa-backprop  -fssa-phiopt @gol
558-fstdarg-opt  -fstore-merging  -fstrict-aliasing @gol
559-fthread-jumps  -ftracer  -ftree-bit-ccp @gol
560-ftree-builtin-call-dce  -ftree-ccp  -ftree-ch @gol
561-ftree-coalesce-vars  -ftree-copy-prop  -ftree-dce  -ftree-dominator-opts @gol
562-ftree-dse  -ftree-forwprop  -ftree-fre  -fcode-hoisting @gol
563-ftree-loop-if-convert  -ftree-loop-im @gol
564-ftree-phiprop  -ftree-loop-distribution  -ftree-loop-distribute-patterns @gol
565-ftree-loop-ivcanon  -ftree-loop-linear  -ftree-loop-optimize @gol
566-ftree-loop-vectorize @gol
567-ftree-parallelize-loops=@var{n}  -ftree-pre  -ftree-partial-pre  -ftree-pta @gol
568-ftree-reassoc  -ftree-scev-cprop  -ftree-sink  -ftree-slsr  -ftree-sra @gol
569-ftree-switch-conversion  -ftree-tail-merge @gol
570-ftree-ter  -ftree-vectorize  -ftree-vrp  -funconstrained-commons @gol
571-funit-at-a-time  -funroll-all-loops  -funroll-loops @gol
572-funsafe-math-optimizations  -funswitch-loops @gol
573-fipa-ra  -fvariable-expansion-in-unroller  -fvect-cost-model  -fvpt @gol
574-fweb  -fwhole-program  -fwpa  -fuse-linker-plugin -fzero-call-used-regs @gol
575--param @var{name}=@var{value}
576-O  -O0  -O1  -O2  -O3  -Os  -Ofast  -Og}
577
578@item Program Instrumentation Options
579@xref{Instrumentation Options,,Program Instrumentation Options}.
580@gccoptlist{-p  -pg  -fprofile-arcs  --coverage  -ftest-coverage @gol
581-fprofile-abs-path @gol
582-fprofile-dir=@var{path}  -fprofile-generate  -fprofile-generate=@var{path} @gol
583-fprofile-info-section  -fprofile-info-section=@var{name} @gol
584-fprofile-note=@var{path} -fprofile-prefix-path=@var{path} @gol
585-fprofile-update=@var{method} -fprofile-filter-files=@var{regex} @gol
586-fprofile-exclude-files=@var{regex} @gol
587-fprofile-reproducible=@r{[}multithreaded@r{|}parallel-runs@r{|}serial@r{]} @gol
588-fsanitize=@var{style}  -fsanitize-recover  -fsanitize-recover=@var{style} @gol
589-fasan-shadow-offset=@var{number}  -fsanitize-sections=@var{s1},@var{s2},... @gol
590-fsanitize-undefined-trap-on-error  -fbounds-check @gol
591-fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{|}check@r{]} @gol
592-fstack-protector  -fstack-protector-all  -fstack-protector-strong @gol
593-fstack-protector-explicit  -fstack-check @gol
594-fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
595-fno-stack-limit  -fsplit-stack @gol
596-fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
597-fvtv-counts  -fvtv-debug @gol
598-finstrument-functions @gol
599-finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
600-finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
601
602@item Preprocessor Options
603@xref{Preprocessor Options,,Options Controlling the Preprocessor}.
604@gccoptlist{-A@var{question}=@var{answer} @gol
605-A-@var{question}@r{[}=@var{answer}@r{]} @gol
606-C  -CC  -D@var{macro}@r{[}=@var{defn}@r{]} @gol
607-dD  -dI  -dM  -dN  -dU @gol
608-fdebug-cpp  -fdirectives-only  -fdollars-in-identifiers  @gol
609-fexec-charset=@var{charset}  -fextended-identifiers  @gol
610-finput-charset=@var{charset}  -flarge-source-files  @gol
611-fmacro-prefix-map=@var{old}=@var{new} -fmax-include-depth=@var{depth} @gol
612-fno-canonical-system-headers  -fpch-deps  -fpch-preprocess  @gol
613-fpreprocessed  -ftabstop=@var{width}  -ftrack-macro-expansion  @gol
614-fwide-exec-charset=@var{charset}  -fworking-directory @gol
615-H  -imacros @var{file}  -include @var{file} @gol
616-M  -MD  -MF  -MG  -MM  -MMD  -MP  -MQ  -MT -Mno-modules @gol
617-no-integrated-cpp  -P  -pthread  -remap @gol
618-traditional  -traditional-cpp  -trigraphs @gol
619-U@var{macro}  -undef  @gol
620-Wp,@var{option}  -Xpreprocessor @var{option}}
621
622@item Assembler Options
623@xref{Assembler Options,,Passing Options to the Assembler}.
624@gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
625
626@item Linker Options
627@xref{Link Options,,Options for Linking}.
628@gccoptlist{@var{object-file-name}  -fuse-ld=@var{linker}  -l@var{library} @gol
629-nostartfiles  -nodefaultlibs  -nolibc  -nostdlib @gol
630-e @var{entry}  --entry=@var{entry} @gol
631-pie  -pthread  -r  -rdynamic @gol
632-s  -static  -static-pie  -static-libgcc  -static-libstdc++ @gol
633-static-libasan  -static-libtsan  -static-liblsan  -static-libubsan @gol
634-shared  -shared-libgcc  -symbolic @gol
635-T @var{script}  -Wl,@var{option}  -Xlinker @var{option} @gol
636-u @var{symbol}  -z @var{keyword}}
637
638@item Directory Options
639@xref{Directory Options,,Options for Directory Search}.
640@gccoptlist{-B@var{prefix}  -I@var{dir}  -I- @gol
641-idirafter @var{dir} @gol
642-imacros @var{file}  -imultilib @var{dir} @gol
643-iplugindir=@var{dir}  -iprefix @var{file} @gol
644-iquote @var{dir}  -isysroot @var{dir}  -isystem @var{dir} @gol
645-iwithprefix @var{dir}  -iwithprefixbefore @var{dir}  @gol
646-L@var{dir}  -no-canonical-prefixes  --no-sysroot-suffix @gol
647-nostdinc  -nostdinc++  --sysroot=@var{dir}}
648
649@item Code Generation Options
650@xref{Code Gen Options,,Options for Code Generation Conventions}.
651@gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
652-ffixed-@var{reg}  -fexceptions @gol
653-fnon-call-exceptions  -fdelete-dead-exceptions  -funwind-tables @gol
654-fasynchronous-unwind-tables @gol
655-fno-gnu-unique @gol
656-finhibit-size-directive  -fcommon  -fno-ident @gol
657-fpcc-struct-return  -fpic  -fPIC  -fpie  -fPIE  -fno-plt @gol
658-fno-jump-tables -fno-bit-tests @gol
659-frecord-gcc-switches @gol
660-freg-struct-return  -fshort-enums  -fshort-wchar @gol
661-fverbose-asm  -fpack-struct[=@var{n}]  @gol
662-fleading-underscore  -ftls-model=@var{model} @gol
663-fstack-reuse=@var{reuse_level} @gol
664-ftrampolines  -ftrapv  -fwrapv @gol
665-fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
666-fstrict-volatile-bitfields  -fsync-libcalls}
667
668@item Developer Options
669@xref{Developer Options,,GCC Developer Options}.
670@gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
671-dumpfullversion  -fcallgraph-info@r{[}=su,da@r{]}
672-fchecking  -fchecking=@var{n}
673-fdbg-cnt-list @gol  -fdbg-cnt=@var{counter-value-list} @gol
674-fdisable-ipa-@var{pass_name} @gol
675-fdisable-rtl-@var{pass_name} @gol
676-fdisable-rtl-@var{pass-name}=@var{range-list} @gol
677-fdisable-tree-@var{pass_name} @gol
678-fdisable-tree-@var{pass-name}=@var{range-list} @gol
679-fdump-debug  -fdump-earlydebug @gol
680-fdump-noaddr  -fdump-unnumbered  -fdump-unnumbered-links @gol
681-fdump-final-insns@r{[}=@var{file}@r{]} @gol
682-fdump-ipa-all  -fdump-ipa-cgraph  -fdump-ipa-inline @gol
683-fdump-lang-all @gol
684-fdump-lang-@var{switch} @gol
685-fdump-lang-@var{switch}-@var{options} @gol
686-fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
687-fdump-passes @gol
688-fdump-rtl-@var{pass}  -fdump-rtl-@var{pass}=@var{filename} @gol
689-fdump-statistics @gol
690-fdump-tree-all @gol
691-fdump-tree-@var{switch} @gol
692-fdump-tree-@var{switch}-@var{options} @gol
693-fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
694-fcompare-debug@r{[}=@var{opts}@r{]}  -fcompare-debug-second @gol
695-fenable-@var{kind}-@var{pass} @gol
696-fenable-@var{kind}-@var{pass}=@var{range-list} @gol
697-fira-verbose=@var{n} @gol
698-flto-report  -flto-report-wpa  -fmem-report-wpa @gol
699-fmem-report  -fpre-ipa-mem-report  -fpost-ipa-mem-report @gol
700-fopt-info  -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
701-fprofile-report @gol
702-frandom-seed=@var{string}  -fsched-verbose=@var{n} @gol
703-fsel-sched-verbose  -fsel-sched-dump-cfg  -fsel-sched-pipelining-verbose @gol
704-fstats  -fstack-usage  -ftime-report  -ftime-report-details @gol
705-fvar-tracking-assignments-toggle  -gtoggle @gol
706-print-file-name=@var{library}  -print-libgcc-file-name @gol
707-print-multi-directory  -print-multi-lib  -print-multi-os-directory @gol
708-print-prog-name=@var{program}  -print-search-dirs  -Q @gol
709-print-sysroot  -print-sysroot-headers-suffix @gol
710-save-temps  -save-temps=cwd  -save-temps=obj  -time@r{[}=@var{file}@r{]}}
711
712@item Machine-Dependent Options
713@xref{Submodel Options,,Machine-Dependent Options}.
714@c This list is ordered alphanumerically by subsection name.
715@c Try and put the significant identifier (CPU or system) first,
716@c so users have a clue at guessing where the ones they want will be.
717
718@emph{AArch64 Options}
719@gccoptlist{-mabi=@var{name}  -mbig-endian  -mlittle-endian @gol
720-mgeneral-regs-only @gol
721-mcmodel=tiny  -mcmodel=small  -mcmodel=large @gol
722-mstrict-align  -mno-strict-align @gol
723-momit-leaf-frame-pointer @gol
724-mtls-dialect=desc  -mtls-dialect=traditional @gol
725-mtls-size=@var{size} @gol
726-mfix-cortex-a53-835769  -mfix-cortex-a53-843419 @gol
727-mlow-precision-recip-sqrt  -mlow-precision-sqrt  -mlow-precision-div @gol
728-mpc-relative-literal-loads @gol
729-msign-return-address=@var{scope} @gol
730-mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}
731+@var{b-key}]|@var{bti} @gol
732-mharden-sls=@var{opts} @gol
733-march=@var{name}  -mcpu=@var{name}  -mtune=@var{name}  @gol
734-moverride=@var{string}  -mverbose-cost-dump @gol
735-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg} @gol
736-mstack-protector-guard-offset=@var{offset} -mtrack-speculation @gol
737-moutline-atomics }
738
739@emph{Adapteva Epiphany Options}
740@gccoptlist{-mhalf-reg-file  -mprefer-short-insn-regs @gol
741-mbranch-cost=@var{num}  -mcmove  -mnops=@var{num}  -msoft-cmpsf @gol
742-msplit-lohi  -mpost-inc  -mpost-modify  -mstack-offset=@var{num} @gol
743-mround-nearest  -mlong-calls  -mshort-calls  -msmall16 @gol
744-mfp-mode=@var{mode}  -mvect-double  -max-vect-align=@var{num} @gol
745-msplit-vecmove-early  -m1reg-@var{reg}}
746
747@emph{AMD GCN Options}
748@gccoptlist{-march=@var{gpu} -mtune=@var{gpu} -mstack-size=@var{bytes}}
749
750@emph{ARC Options}
751@gccoptlist{-mbarrel-shifter  -mjli-always @gol
752-mcpu=@var{cpu}  -mA6  -mARC600  -mA7  -mARC700 @gol
753-mdpfp  -mdpfp-compact  -mdpfp-fast  -mno-dpfp-lrsr @gol
754-mea  -mno-mpy  -mmul32x16  -mmul64  -matomic @gol
755-mnorm  -mspfp  -mspfp-compact  -mspfp-fast  -msimd  -msoft-float  -mswap @gol
756-mcrc  -mdsp-packa  -mdvbf  -mlock  -mmac-d16  -mmac-24  -mrtsc  -mswape @gol
757-mtelephony  -mxy  -misize  -mannotate-align  -marclinux  -marclinux_prof @gol
758-mlong-calls  -mmedium-calls  -msdata  -mirq-ctrl-saved @gol
759-mrgf-banked-regs  -mlpc-width=@var{width}  -G @var{num} @gol
760-mvolatile-cache  -mtp-regno=@var{regno} @gol
761-malign-call  -mauto-modify-reg  -mbbit-peephole  -mno-brcc @gol
762-mcase-vector-pcrel  -mcompact-casesi  -mno-cond-exec  -mearly-cbranchsi @gol
763-mexpand-adddi  -mindexed-loads  -mlra  -mlra-priority-none @gol
764-mlra-priority-compact mlra-priority-noncompact  -mmillicode @gol
765-mmixed-code  -mq-class  -mRcq  -mRcw  -msize-level=@var{level} @gol
766-mtune=@var{cpu}  -mmultcost=@var{num}  -mcode-density-frame @gol
767-munalign-prob-threshold=@var{probability}  -mmpy-option=@var{multo} @gol
768-mdiv-rem  -mcode-density  -mll64  -mfpu=@var{fpu}  -mrf16  -mbranch-index}
769
770@emph{ARM Options}
771@gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
772-mabi=@var{name} @gol
773-mapcs-stack-check  -mno-apcs-stack-check @gol
774-mapcs-reentrant  -mno-apcs-reentrant @gol
775-mgeneral-regs-only @gol
776-msched-prolog  -mno-sched-prolog @gol
777-mlittle-endian  -mbig-endian @gol
778-mbe8  -mbe32 @gol
779-mfloat-abi=@var{name} @gol
780-mfp16-format=@var{name}
781-mthumb-interwork  -mno-thumb-interwork @gol
782-mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
783-mtune=@var{name}  -mprint-tune-info @gol
784-mstructure-size-boundary=@var{n} @gol
785-mabort-on-noreturn @gol
786-mlong-calls  -mno-long-calls @gol
787-msingle-pic-base  -mno-single-pic-base @gol
788-mpic-register=@var{reg} @gol
789-mnop-fun-dllimport @gol
790-mpoke-function-name @gol
791-mthumb  -marm  -mflip-thumb @gol
792-mtpcs-frame  -mtpcs-leaf-frame @gol
793-mcaller-super-interworking  -mcallee-super-interworking @gol
794-mtp=@var{name}  -mtls-dialect=@var{dialect} @gol
795-mword-relocations @gol
796-mfix-cortex-m3-ldrd @gol
797-munaligned-access @gol
798-mneon-for-64bits @gol
799-mslow-flash-data @gol
800-masm-syntax-unified @gol
801-mrestrict-it @gol
802-mverbose-cost-dump @gol
803-mpure-code @gol
804-mcmse @gol
805-mfdpic}
806
807@emph{AVR Options}
808@gccoptlist{-mmcu=@var{mcu}  -mabsdata  -maccumulate-args @gol
809-mbranch-cost=@var{cost} @gol
810-mcall-prologues  -mgas-isr-prologues  -mint8 @gol
811-mdouble=@var{bits} -mlong-double=@var{bits} @gol
812-mn_flash=@var{size}  -mno-interrupts @gol
813-mmain-is-OS_task  -mrelax  -mrmw  -mstrict-X  -mtiny-stack @gol
814-mfract-convert-truncate @gol
815-mshort-calls  -nodevicelib  -nodevicespecs @gol
816-Waddr-space-convert  -Wmisspelled-isr}
817
818@emph{Blackfin Options}
819@gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
820-msim  -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
821-mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly @gol
822-mlow-64k  -mno-low64k  -mstack-check-l1  -mid-shared-library @gol
823-mno-id-shared-library  -mshared-library-id=@var{n} @gol
824-mleaf-id-shared-library  -mno-leaf-id-shared-library @gol
825-msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls @gol
826-mfast-fp  -minline-plt  -mmulticore  -mcorea  -mcoreb  -msdram @gol
827-micplb}
828
829@emph{C6X Options}
830@gccoptlist{-mbig-endian  -mlittle-endian  -march=@var{cpu} @gol
831-msim  -msdata=@var{sdata-type}}
832
833@emph{CRIS Options}
834@gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}  -mtune=@var{cpu} @gol
835-mmax-stack-frame=@var{n}  -melinux-stacksize=@var{n} @gol
836-metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
837-mstack-align  -mdata-align  -mconst-align @gol
838-m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt @gol
839-melf  -maout  -melinux  -mlinux  -sim  -sim2 @gol
840-mmul-bug-workaround  -mno-mul-bug-workaround}
841
842@emph{CR16 Options}
843@gccoptlist{-mmac @gol
844-mcr16cplus  -mcr16c @gol
845-msim  -mint32  -mbit-ops
846-mdata-model=@var{model}}
847
848@emph{C-SKY Options}
849@gccoptlist{-march=@var{arch}  -mcpu=@var{cpu} @gol
850-mbig-endian  -EB  -mlittle-endian  -EL @gol
851-mhard-float  -msoft-float  -mfpu=@var{fpu}  -mdouble-float  -mfdivdu @gol
852-mfloat-abi=@var{name} @gol
853-melrw  -mistack  -mmp  -mcp  -mcache  -msecurity  -mtrust @gol
854-mdsp  -medsp  -mvdsp @gol
855-mdiv  -msmart  -mhigh-registers  -manchor @gol
856-mpushpop  -mmultiple-stld  -mconstpool  -mstack-size  -mccrt @gol
857-mbranch-cost=@var{n}  -mcse-cc  -msched-prolog -msim}
858
859@emph{Darwin Options}
860@gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
861-arch_only  -bind_at_load  -bundle  -bundle_loader @gol
862-client_name  -compatibility_version  -current_version @gol
863-dead_strip @gol
864-dependency-file  -dylib_file  -dylinker_install_name @gol
865-dynamic  -dynamiclib  -exported_symbols_list @gol
866-filelist  -flat_namespace  -force_cpusubtype_ALL @gol
867-force_flat_namespace  -headerpad_max_install_names @gol
868-iframework @gol
869-image_base  -init  -install_name  -keep_private_externs @gol
870-multi_module  -multiply_defined  -multiply_defined_unused @gol
871-noall_load   -no_dead_strip_inits_and_terms @gol
872-nofixprebinding  -nomultidefs  -noprebind  -noseglinkedit @gol
873-pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
874-private_bundle  -read_only_relocs  -sectalign @gol
875-sectobjectsymbols  -whyload  -seg1addr @gol
876-sectcreate  -sectobjectsymbols  -sectorder @gol
877-segaddr  -segs_read_only_addr  -segs_read_write_addr @gol
878-seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
879-segprot  -segs_read_only_addr  -segs_read_write_addr @gol
880-single_module  -static  -sub_library  -sub_umbrella @gol
881-twolevel_namespace  -umbrella  -undefined @gol
882-unexported_symbols_list  -weak_reference_mismatches @gol
883-whatsloaded  -F  -gused  -gfull  -mmacosx-version-min=@var{version} @gol
884-mkernel  -mone-byte-bool}
885
886@emph{DEC Alpha Options}
887@gccoptlist{-mno-fp-regs  -msoft-float @gol
888-mieee  -mieee-with-inexact  -mieee-conformant @gol
889-mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
890-mtrap-precision=@var{mode}  -mbuild-constants @gol
891-mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
892-mbwx  -mmax  -mfix  -mcix @gol
893-mfloat-vax  -mfloat-ieee @gol
894-mexplicit-relocs  -msmall-data  -mlarge-data @gol
895-msmall-text  -mlarge-text @gol
896-mmemory-latency=@var{time}}
897
898@emph{eBPF Options}
899@gccoptlist{-mbig-endian -mlittle-endian -mkernel=@var{version}
900-mframe-limit=@var{bytes} -mxbpf}
901
902@emph{FR30 Options}
903@gccoptlist{-msmall-model  -mno-lsim}
904
905@emph{FT32 Options}
906@gccoptlist{-msim  -mlra  -mnodiv  -mft32b  -mcompress  -mnopm}
907
908@emph{FRV Options}
909@gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
910-mhard-float  -msoft-float @gol
911-malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
912-mdouble  -mno-double @gol
913-mmedia  -mno-media  -mmuladd  -mno-muladd @gol
914-mfdpic  -minline-plt  -mgprel-ro  -multilib-library-pic @gol
915-mlinked-fp  -mlong-calls  -malign-labels @gol
916-mlibrary-pic  -macc-4  -macc-8 @gol
917-mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
918-moptimize-membar  -mno-optimize-membar @gol
919-mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
920-mvliw-branch  -mno-vliw-branch @gol
921-mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
922-mno-nested-cond-exec  -mtomcat-stats @gol
923-mTLS  -mtls @gol
924-mcpu=@var{cpu}}
925
926@emph{GNU/Linux Options}
927@gccoptlist{-mglibc  -muclibc  -mmusl  -mbionic  -mandroid @gol
928-tno-android-cc  -tno-android-ld}
929
930@emph{H8/300 Options}
931@gccoptlist{-mrelax  -mh  -ms  -mn  -mexr  -mno-exr  -mint32  -malign-300}
932
933@emph{HPPA Options}
934@gccoptlist{-march=@var{architecture-type} @gol
935-mcaller-copies  -mdisable-fpregs  -mdisable-indexing @gol
936-mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
937-mfixed-range=@var{register-range} @gol
938-mjump-in-delay  -mlinker-opt  -mlong-calls @gol
939-mlong-load-store  -mno-disable-fpregs @gol
940-mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
941-mno-jump-in-delay  -mno-long-load-store @gol
942-mno-portable-runtime  -mno-soft-float @gol
943-mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
944-mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
945-mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
946-munix=@var{unix-std}  -nolibdld  -static  -threads}
947
948@emph{IA-64 Options}
949@gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
950-mvolatile-asm-stop  -mregister-names  -msdata  -mno-sdata @gol
951-mconstant-gp  -mauto-pic  -mfused-madd @gol
952-minline-float-divide-min-latency @gol
953-minline-float-divide-max-throughput @gol
954-mno-inline-float-divide @gol
955-minline-int-divide-min-latency @gol
956-minline-int-divide-max-throughput  @gol
957-mno-inline-int-divide @gol
958-minline-sqrt-min-latency  -minline-sqrt-max-throughput @gol
959-mno-inline-sqrt @gol
960-mdwarf2-asm  -mearly-stop-bits @gol
961-mfixed-range=@var{register-range}  -mtls-size=@var{tls-size} @gol
962-mtune=@var{cpu-type}  -milp32  -mlp64 @gol
963-msched-br-data-spec  -msched-ar-data-spec  -msched-control-spec @gol
964-msched-br-in-data-spec  -msched-ar-in-data-spec  -msched-in-control-spec @gol
965-msched-spec-ldc  -msched-spec-control-ldc @gol
966-msched-prefer-non-data-spec-insns  -msched-prefer-non-control-spec-insns @gol
967-msched-stop-bits-after-every-cycle  -msched-count-spec-in-critical-path @gol
968-msel-sched-dont-check-control-spec  -msched-fp-mem-deps-zero-cost @gol
969-msched-max-memory-insns-hard-limit  -msched-max-memory-insns=@var{max-insns}}
970
971@emph{LM32 Options}
972@gccoptlist{-mbarrel-shift-enabled  -mdivide-enabled  -mmultiply-enabled @gol
973-msign-extend-enabled  -muser-enabled}
974
975@emph{M32R/D Options}
976@gccoptlist{-m32r2  -m32rx  -m32r @gol
977-mdebug @gol
978-malign-loops  -mno-align-loops @gol
979-missue-rate=@var{number} @gol
980-mbranch-cost=@var{number} @gol
981-mmodel=@var{code-size-model-type} @gol
982-msdata=@var{sdata-type} @gol
983-mno-flush-func  -mflush-func=@var{name} @gol
984-mno-flush-trap  -mflush-trap=@var{number} @gol
985-G @var{num}}
986
987@emph{M32C Options}
988@gccoptlist{-mcpu=@var{cpu}  -msim  -memregs=@var{number}}
989
990@emph{M680x0 Options}
991@gccoptlist{-march=@var{arch}  -mcpu=@var{cpu}  -mtune=@var{tune} @gol
992-m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
993-m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 @gol
994-mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 @gol
995-mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort @gol
996-mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel @gol
997-malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
998-mshared-library-id=n  -mid-shared-library  -mno-id-shared-library @gol
999-mxgot  -mno-xgot  -mlong-jump-table-offsets}
1000
1001@emph{MCore Options}
1002@gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
1003-mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
1004-m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
1005-mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
1006-mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
1007
1008@emph{MeP Options}
1009@gccoptlist{-mabsdiff  -mall-opts  -maverage  -mbased=@var{n}  -mbitops @gol
1010-mc=@var{n}  -mclip  -mconfig=@var{name}  -mcop  -mcop32  -mcop64  -mivc2 @gol
1011-mdc  -mdiv  -meb  -mel  -mio-volatile  -ml  -mleadz  -mm  -mminmax @gol
1012-mmult  -mno-opts  -mrepeat  -ms  -msatur  -msdram  -msim  -msimnovec  -mtf @gol
1013-mtiny=@var{n}}
1014
1015@emph{MicroBlaze Options}
1016@gccoptlist{-msoft-float  -mhard-float  -msmall-divides  -mcpu=@var{cpu} @gol
1017-mmemcpy  -mxl-soft-mul  -mxl-soft-div  -mxl-barrel-shift @gol
1018-mxl-pattern-compare  -mxl-stack-check  -mxl-gp-opt  -mno-clearbss @gol
1019-mxl-multiply-high  -mxl-float-convert  -mxl-float-sqrt @gol
1020-mbig-endian  -mlittle-endian  -mxl-reorder  -mxl-mode-@var{app-model} @gol
1021-mpic-data-is-text-relative}
1022
1023@emph{MIPS Options}
1024@gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
1025-mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips32r3  -mips32r5 @gol
1026-mips32r6  -mips64  -mips64r2  -mips64r3  -mips64r5  -mips64r6 @gol
1027-mips16  -mno-mips16  -mflip-mips16 @gol
1028-minterlink-compressed  -mno-interlink-compressed @gol
1029-minterlink-mips16  -mno-interlink-mips16 @gol
1030-mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
1031-mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot @gol
1032-mgp32  -mgp64  -mfp32  -mfpxx  -mfp64  -mhard-float  -msoft-float @gol
1033-mno-float  -msingle-float  -mdouble-float @gol
1034-modd-spreg  -mno-odd-spreg @gol
1035-mabs=@var{mode}  -mnan=@var{encoding} @gol
1036-mdsp  -mno-dsp  -mdspr2  -mno-dspr2 @gol
1037-mmcu  -mmno-mcu @gol
1038-meva  -mno-eva @gol
1039-mvirt  -mno-virt @gol
1040-mxpa  -mno-xpa @gol
1041-mcrc  -mno-crc @gol
1042-mginv  -mno-ginv @gol
1043-mmicromips  -mno-micromips @gol
1044-mmsa  -mno-msa @gol
1045-mloongson-mmi  -mno-loongson-mmi @gol
1046-mloongson-ext  -mno-loongson-ext @gol
1047-mloongson-ext2  -mno-loongson-ext2 @gol
1048-mfpu=@var{fpu-type} @gol
1049-msmartmips  -mno-smartmips @gol
1050-mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx @gol
1051-mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc @gol
1052-mlong64  -mlong32  -msym32  -mno-sym32 @gol
1053-G@var{num}  -mlocal-sdata  -mno-local-sdata @gol
1054-mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt @gol
1055-membedded-data  -mno-embedded-data @gol
1056-muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
1057-mcode-readable=@var{setting} @gol
1058-msplit-addresses  -mno-split-addresses @gol
1059-mexplicit-relocs  -mno-explicit-relocs @gol
1060-mcheck-zero-division  -mno-check-zero-division @gol
1061-mdivide-traps  -mdivide-breaks @gol
1062-mload-store-pairs  -mno-load-store-pairs @gol
1063-mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
1064-mmad  -mno-mad  -mimadd  -mno-imadd  -mfused-madd  -mno-fused-madd  -nocpp @gol
1065-mfix-24k  -mno-fix-24k @gol
1066-mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
1067-mfix-r5900  -mno-fix-r5900 @gol
1068-mfix-r10000  -mno-fix-r10000  -mfix-rm7000  -mno-fix-rm7000 @gol
1069-mfix-vr4120  -mno-fix-vr4120 @gol
1070-mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 @gol
1071-mflush-func=@var{func}  -mno-flush-func @gol
1072-mbranch-cost=@var{num}  -mbranch-likely  -mno-branch-likely @gol
1073-mcompact-branches=@var{policy} @gol
1074-mfp-exceptions  -mno-fp-exceptions @gol
1075-mvr4130-align  -mno-vr4130-align  -msynci  -mno-synci @gol
1076-mlxc1-sxc1  -mno-lxc1-sxc1  -mmadd4  -mno-madd4 @gol
1077-mrelax-pic-calls  -mno-relax-pic-calls  -mmcount-ra-address @gol
1078-mframe-header-opt  -mno-frame-header-opt}
1079
1080@emph{MMIX Options}
1081@gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
1082-mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
1083-melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
1084-mno-base-addresses  -msingle-exit  -mno-single-exit}
1085
1086@emph{MN10300 Options}
1087@gccoptlist{-mmult-bug  -mno-mult-bug @gol
1088-mno-am33  -mam33  -mam33-2  -mam34 @gol
1089-mtune=@var{cpu-type} @gol
1090-mreturn-pointer-on-d0 @gol
1091-mno-crt0  -mrelax  -mliw  -msetlb}
1092
1093@emph{Moxie Options}
1094@gccoptlist{-meb  -mel  -mmul.x  -mno-crt0}
1095
1096@emph{MSP430 Options}
1097@gccoptlist{-msim  -masm-hex  -mmcu=  -mcpu=  -mlarge  -msmall  -mrelax @gol
1098-mwarn-mcu @gol
1099-mcode-region=  -mdata-region= @gol
1100-msilicon-errata=  -msilicon-errata-warn= @gol
1101-mhwmult=  -minrt  -mtiny-printf  -mmax-inline-shift=}
1102
1103@emph{NDS32 Options}
1104@gccoptlist{-mbig-endian  -mlittle-endian @gol
1105-mreduced-regs  -mfull-regs @gol
1106-mcmov  -mno-cmov @gol
1107-mext-perf  -mno-ext-perf @gol
1108-mext-perf2  -mno-ext-perf2 @gol
1109-mext-string  -mno-ext-string @gol
1110-mv3push  -mno-v3push @gol
1111-m16bit  -mno-16bit @gol
1112-misr-vector-size=@var{num} @gol
1113-mcache-block-size=@var{num} @gol
1114-march=@var{arch} @gol
1115-mcmodel=@var{code-model} @gol
1116-mctor-dtor  -mrelax}
1117
1118@emph{Nios II Options}
1119@gccoptlist{-G @var{num}  -mgpopt=@var{option}  -mgpopt  -mno-gpopt @gol
1120-mgprel-sec=@var{regexp}  -mr0rel-sec=@var{regexp} @gol
1121-mel  -meb @gol
1122-mno-bypass-cache  -mbypass-cache @gol
1123-mno-cache-volatile  -mcache-volatile @gol
1124-mno-fast-sw-div  -mfast-sw-div @gol
1125-mhw-mul  -mno-hw-mul  -mhw-mulx  -mno-hw-mulx  -mno-hw-div  -mhw-div @gol
1126-mcustom-@var{insn}=@var{N}  -mno-custom-@var{insn} @gol
1127-mcustom-fpu-cfg=@var{name} @gol
1128-mhal  -msmallc  -msys-crt0=@var{name}  -msys-lib=@var{name} @gol
1129-march=@var{arch}  -mbmx  -mno-bmx  -mcdx  -mno-cdx}
1130
1131@emph{Nvidia PTX Options}
1132@gccoptlist{-m64  -mmainkernel  -moptimize}
1133
1134@emph{OpenRISC Options}
1135@gccoptlist{-mboard=@var{name}  -mnewlib  -mhard-mul  -mhard-div @gol
1136-msoft-mul  -msoft-div @gol
1137-msoft-float  -mhard-float  -mdouble-float -munordered-float @gol
1138-mcmov  -mror  -mrori  -msext  -msfimm  -mshftimm}
1139
1140@emph{PDP-11 Options}
1141@gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
1142-mint32  -mno-int16  -mint16  -mno-int32 @gol
1143-msplit  -munix-asm  -mdec-asm  -mgnu-asm  -mlra}
1144
1145@emph{picoChip Options}
1146@gccoptlist{-mae=@var{ae_type}  -mvliw-lookahead=@var{N} @gol
1147-msymbol-as-address  -mno-inefficient-warnings}
1148
1149@emph{PowerPC Options}
1150See RS/6000 and PowerPC Options.
1151
1152@emph{PRU Options}
1153@gccoptlist{-mmcu=@var{mcu}  -minrt  -mno-relax  -mloop @gol
1154-mabi=@var{variant} @gol}
1155
1156@emph{RISC-V Options}
1157@gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1158-mplt  -mno-plt @gol
1159-mabi=@var{ABI-string} @gol
1160-mfdiv  -mno-fdiv @gol
1161-mdiv  -mno-div @gol
1162-march=@var{ISA-string} @gol
1163-mtune=@var{processor-string} @gol
1164-mpreferred-stack-boundary=@var{num} @gol
1165-msmall-data-limit=@var{N-bytes} @gol
1166-msave-restore  -mno-save-restore @gol
1167-mshorten-memrefs  -mno-shorten-memrefs @gol
1168-mstrict-align  -mno-strict-align @gol
1169-mcmodel=medlow  -mcmodel=medany @gol
1170-mexplicit-relocs  -mno-explicit-relocs @gol
1171-mrelax  -mno-relax @gol
1172-mriscv-attribute  -mmo-riscv-attribute @gol
1173-malign-data=@var{type} @gol
1174-mbig-endian  -mlittle-endian @gol
1175+-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1176+-mstack-protector-guard-offset=@var{offset}}
1177
1178@emph{RL78 Options}
1179@gccoptlist{-msim  -mmul=none  -mmul=g13  -mmul=g14  -mallregs @gol
1180-mcpu=g10  -mcpu=g13  -mcpu=g14  -mg10  -mg13  -mg14 @gol
1181-m64bit-doubles  -m32bit-doubles  -msave-mduc-in-interrupts}
1182
1183@emph{RS/6000 and PowerPC Options}
1184@gccoptlist{-mcpu=@var{cpu-type} @gol
1185-mtune=@var{cpu-type} @gol
1186-mcmodel=@var{code-model} @gol
1187-mpowerpc64 @gol
1188-maltivec  -mno-altivec @gol
1189-mpowerpc-gpopt  -mno-powerpc-gpopt @gol
1190-mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
1191-mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb  -mpopcntd  -mno-popcntd @gol
1192-mfprnd  -mno-fprnd @gol
1193-mcmpb  -mno-cmpb  -mhard-dfp  -mno-hard-dfp @gol
1194-mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
1195-m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
1196-malign-power  -malign-natural @gol
1197-msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
1198-mupdate  -mno-update @gol
1199-mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
1200-mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
1201-mstrict-align  -mno-strict-align  -mrelocatable @gol
1202-mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
1203-mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
1204-mdynamic-no-pic  -mswdiv  -msingle-pic-base @gol
1205-mprioritize-restricted-insns=@var{priority} @gol
1206-msched-costly-dep=@var{dependence_type} @gol
1207-minsert-sched-nops=@var{scheme} @gol
1208-mcall-aixdesc  -mcall-eabi  -mcall-freebsd  @gol
1209-mcall-linux  -mcall-netbsd  -mcall-openbsd  @gol
1210-mcall-sysv  -mcall-sysv-eabi  -mcall-sysv-noeabi @gol
1211-mtraceback=@var{traceback_type} @gol
1212-maix-struct-return  -msvr4-struct-return @gol
1213-mabi=@var{abi-type}  -msecure-plt  -mbss-plt @gol
1214-mlongcall  -mno-longcall  -mpltseq  -mno-pltseq  @gol
1215-mblock-move-inline-limit=@var{num} @gol
1216-mblock-compare-inline-limit=@var{num} @gol
1217-mblock-compare-inline-loop-limit=@var{num} @gol
1218-mno-block-ops-unaligned-vsx @gol
1219-mstring-compare-inline-limit=@var{num} @gol
1220-misel  -mno-isel @gol
1221-mvrsave  -mno-vrsave @gol
1222-mmulhw  -mno-mulhw @gol
1223-mdlmzb  -mno-dlmzb @gol
1224-mprototype  -mno-prototype @gol
1225-msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
1226-msdata=@var{opt}  -mreadonly-in-sdata  -mvxworks  -G @var{num} @gol
1227-mrecip  -mrecip=@var{opt}  -mno-recip  -mrecip-precision @gol
1228-mno-recip-precision @gol
1229-mveclibabi=@var{type}  -mfriz  -mno-friz @gol
1230-mpointers-to-nested-functions  -mno-pointers-to-nested-functions @gol
1231-msave-toc-indirect  -mno-save-toc-indirect @gol
1232-mpower8-fusion  -mno-mpower8-fusion  -mpower8-vector  -mno-power8-vector @gol
1233-mcrypto  -mno-crypto  -mhtm  -mno-htm @gol
1234-mquad-memory  -mno-quad-memory @gol
1235-mquad-memory-atomic  -mno-quad-memory-atomic @gol
1236-mcompat-align-parm  -mno-compat-align-parm @gol
1237-mfloat128  -mno-float128  -mfloat128-hardware  -mno-float128-hardware @gol
1238-mgnu-attribute  -mno-gnu-attribute @gol
1239-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1240-mstack-protector-guard-offset=@var{offset} -mprefixed -mno-prefixed @gol
1241-mpcrel -mno-pcrel -mmma -mno-mmma -mrop-protect -mno-rop-protect @gol
1242-mprivileged -mno-privileged}
1243
1244@emph{RX Options}
1245@gccoptlist{-m64bit-doubles  -m32bit-doubles  -fpu  -nofpu@gol
1246-mcpu=@gol
1247-mbig-endian-data  -mlittle-endian-data @gol
1248-msmall-data @gol
1249-msim  -mno-sim@gol
1250-mas100-syntax  -mno-as100-syntax@gol
1251-mrelax@gol
1252-mmax-constant-size=@gol
1253-mint-register=@gol
1254-mpid@gol
1255-mallow-string-insns  -mno-allow-string-insns@gol
1256-mjsr@gol
1257-mno-warn-multiple-fast-interrupts@gol
1258-msave-acc-in-interrupts}
1259
1260@emph{S/390 and zSeries Options}
1261@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1262-mhard-float  -msoft-float  -mhard-dfp  -mno-hard-dfp @gol
1263-mlong-double-64  -mlong-double-128 @gol
1264-mbackchain  -mno-backchain  -mpacked-stack  -mno-packed-stack @gol
1265-msmall-exec  -mno-small-exec  -mmvcle  -mno-mvcle @gol
1266-m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
1267-mhtm  -mvx  -mzvector @gol
1268-mtpf-trace  -mno-tpf-trace  -mtpf-trace-skip  -mno-tpf-trace-skip @gol
1269-mfused-madd  -mno-fused-madd @gol
1270-mwarn-framesize  -mwarn-dynamicstack  -mstack-size  -mstack-guard @gol
1271-mhotpatch=@var{halfwords},@var{halfwords}}
1272
1273@emph{Score Options}
1274@gccoptlist{-meb  -mel @gol
1275-mnhwloop @gol
1276-muls @gol
1277-mmac @gol
1278-mscore5  -mscore5u  -mscore7  -mscore7d}
1279
1280@emph{SH Options}
1281@gccoptlist{-m1  -m2  -m2e @gol
1282-m2a-nofpu  -m2a-single-only  -m2a-single  -m2a @gol
1283-m3  -m3e @gol
1284-m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
1285-m4a-nofpu  -m4a-single-only  -m4a-single  -m4a  -m4al @gol
1286-mb  -ml  -mdalign  -mrelax @gol
1287-mbigtable  -mfmovd  -mrenesas  -mno-renesas  -mnomacsave @gol
1288-mieee  -mno-ieee  -mbitops  -misize  -minline-ic_invalidate  -mpadstruct @gol
1289-mprefergot  -musermode  -multcost=@var{number}  -mdiv=@var{strategy} @gol
1290-mdivsi3_libfunc=@var{name}  -mfixed-range=@var{register-range} @gol
1291-maccumulate-outgoing-args @gol
1292-matomic-model=@var{atomic-model} @gol
1293-mbranch-cost=@var{num}  -mzdcbranch  -mno-zdcbranch @gol
1294-mcbranch-force-delay-slot @gol
1295-mfused-madd  -mno-fused-madd  -mfsca  -mno-fsca  -mfsrra  -mno-fsrra @gol
1296-mpretend-cmove  -mtas}
1297
1298@emph{Solaris 2 Options}
1299@gccoptlist{-mclear-hwcap  -mno-clear-hwcap  -mimpure-text  -mno-impure-text @gol
1300-pthreads}
1301
1302@emph{SPARC Options}
1303@gccoptlist{-mcpu=@var{cpu-type} @gol
1304-mtune=@var{cpu-type} @gol
1305-mcmodel=@var{code-model} @gol
1306-mmemory-model=@var{mem-model} @gol
1307-m32  -m64  -mapp-regs  -mno-app-regs @gol
1308-mfaster-structs  -mno-faster-structs  -mflat  -mno-flat @gol
1309-mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1310-mhard-quad-float  -msoft-quad-float @gol
1311-mstack-bias  -mno-stack-bias @gol
1312-mstd-struct-return  -mno-std-struct-return @gol
1313-munaligned-doubles  -mno-unaligned-doubles @gol
1314-muser-mode  -mno-user-mode @gol
1315-mv8plus  -mno-v8plus  -mvis  -mno-vis @gol
1316-mvis2  -mno-vis2  -mvis3  -mno-vis3 @gol
1317-mvis4  -mno-vis4  -mvis4b  -mno-vis4b @gol
1318-mcbcond  -mno-cbcond  -mfmaf  -mno-fmaf  -mfsmuld  -mno-fsmuld  @gol
1319-mpopc  -mno-popc  -msubxc  -mno-subxc @gol
1320-mfix-at697f  -mfix-ut699  -mfix-ut700  -mfix-gr712rc @gol
1321-mlra  -mno-lra}
1322
1323@emph{System V Options}
1324@gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
1325
1326@emph{TILE-Gx Options}
1327@gccoptlist{-mcpu=CPU  -m32  -m64  -mbig-endian  -mlittle-endian @gol
1328-mcmodel=@var{code-model}}
1329
1330@emph{TILEPro Options}
1331@gccoptlist{-mcpu=@var{cpu}  -m32}
1332
1333@emph{V850 Options}
1334@gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
1335-mprolog-function  -mno-prolog-function  -mspace @gol
1336-mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
1337-mapp-regs  -mno-app-regs @gol
1338-mdisable-callt  -mno-disable-callt @gol
1339-mv850e2v3  -mv850e2  -mv850e1  -mv850es @gol
1340-mv850e  -mv850  -mv850e3v5 @gol
1341-mloop @gol
1342-mrelax @gol
1343-mlong-jumps @gol
1344-msoft-float @gol
1345-mhard-float @gol
1346-mgcc-abi @gol
1347-mrh850-abi @gol
1348-mbig-switch}
1349
1350@emph{VAX Options}
1351@gccoptlist{-mg  -mgnu  -munix}
1352
1353@emph{Visium Options}
1354@gccoptlist{-mdebug  -msim  -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1355-mcpu=@var{cpu-type}  -mtune=@var{cpu-type}  -msv-mode  -muser-mode}
1356
1357@emph{VMS Options}
1358@gccoptlist{-mvms-return-codes  -mdebug-main=@var{prefix}  -mmalloc64 @gol
1359-mpointer-size=@var{size}}
1360
1361@emph{VxWorks Options}
1362@gccoptlist{-mrtp  -non-static  -Bstatic  -Bdynamic @gol
1363-Xbind-lazy  -Xbind-now}
1364
1365@emph{x86 Options}
1366@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1367-mtune-ctrl=@var{feature-list}  -mdump-tune-features  -mno-default @gol
1368-mfpmath=@var{unit} @gol
1369-masm=@var{dialect}  -mno-fancy-math-387 @gol
1370-mno-fp-ret-in-387  -m80387  -mhard-float  -msoft-float @gol
1371-mno-wide-multiply  -mrtd  -malign-double @gol
1372-mpreferred-stack-boundary=@var{num} @gol
1373-mincoming-stack-boundary=@var{num} @gol
1374-mcld  -mcx16  -msahf  -mmovbe  -mcrc32 @gol
1375-mrecip  -mrecip=@var{opt} @gol
1376-mvzeroupper  -mprefer-avx128  -mprefer-vector-width=@var{opt} @gol
1377-mmmx  -msse  -msse2  -msse3  -mssse3  -msse4.1  -msse4.2  -msse4  -mavx @gol
1378-mavx2  -mavx512f  -mavx512pf  -mavx512er  -mavx512cd  -mavx512vl @gol
1379-mavx512bw  -mavx512dq  -mavx512ifma  -mavx512vbmi  -msha  -maes @gol
1380-mpclmul  -mfsgsbase  -mrdrnd  -mf16c  -mfma  -mpconfig  -mwbnoinvd  @gol
1381-mptwrite  -mprefetchwt1  -mclflushopt  -mclwb  -mxsavec  -mxsaves @gol
1382-msse4a  -m3dnow  -m3dnowa  -mpopcnt  -mabm  -mbmi  -mtbm  -mfma4  -mxop @gol
1383-madx  -mlzcnt  -mbmi2  -mfxsr  -mxsave  -mxsaveopt  -mrtm  -mhle  -mlwp @gol
1384-mmwaitx  -mclzero  -mpku  -mthreads  -mgfni  -mvaes  -mwaitpkg @gol
1385-mshstk -mmanual-endbr -mforce-indirect-call  -mavx512vbmi2 -mavx512bf16 -menqcmd @gol
1386-mvpclmulqdq  -mavx512bitalg  -mmovdiri  -mmovdir64b  -mavx512vpopcntdq @gol
1387-mavx5124fmaps  -mavx512vnni  -mavx5124vnniw  -mprfchw  -mrdpid @gol
1388-mrdseed  -msgx -mavx512vp2intersect -mserialize -mtsxldtrk@gol
1389-mamx-tile  -mamx-int8  -mamx-bf16 -muintr -mhreset -mavxvnni@gol
1390-mcldemote  -mms-bitfields  -mno-align-stringops  -minline-all-stringops @gol
1391-minline-stringops-dynamically  -mstringop-strategy=@var{alg} @gol
1392-mkl -mwidekl @gol
1393-mmemcpy-strategy=@var{strategy}  -mmemset-strategy=@var{strategy} @gol
1394-mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
1395-m96bit-long-double  -mlong-double-64  -mlong-double-80  -mlong-double-128 @gol
1396-mregparm=@var{num}  -msseregparm @gol
1397-mveclibabi=@var{type}  -mvect8-ret-in-mem @gol
1398-mpc32  -mpc64  -mpc80  -mstackrealign @gol
1399-momit-leaf-frame-pointer  -mno-red-zone  -mno-tls-direct-seg-refs @gol
1400-mcmodel=@var{code-model}  -mabi=@var{name}  -maddress-mode=@var{mode} @gol
1401-m32  -m64  -mx32  -m16  -miamcu  -mlarge-data-threshold=@var{num} @gol
1402-msse2avx  -mfentry  -mrecord-mcount  -mnop-mcount  -m8bit-idiv @gol
1403-minstrument-return=@var{type} -mfentry-name=@var{name} -mfentry-section=@var{name} @gol
1404-mavx256-split-unaligned-load  -mavx256-split-unaligned-store @gol
1405-malign-data=@var{type}  -mstack-protector-guard=@var{guard} @gol
1406-mstack-protector-guard-reg=@var{reg} @gol
1407-mstack-protector-guard-offset=@var{offset} @gol
1408-mstack-protector-guard-symbol=@var{symbol} @gol
1409-mgeneral-regs-only  -mcall-ms2sysv-xlogues @gol
1410-mindirect-branch=@var{choice}  -mfunction-return=@var{choice} @gol
1411-mindirect-branch-register -mneeded}
1412
1413@emph{x86 Windows Options}
1414@gccoptlist{-mconsole  -mcygwin  -mno-cygwin  -mdll @gol
1415-mnop-fun-dllimport  -mthread @gol
1416-municode  -mwin32  -mwindows  -fno-set-stack-executable}
1417
1418@emph{Xstormy16 Options}
1419@gccoptlist{-msim}
1420
1421@emph{Xtensa Options}
1422@gccoptlist{-mconst16  -mno-const16 @gol
1423-mfused-madd  -mno-fused-madd @gol
1424-mforce-no-pic @gol
1425-mserialize-volatile  -mno-serialize-volatile @gol
1426-mtext-section-literals  -mno-text-section-literals @gol
1427-mauto-litpools  -mno-auto-litpools @gol
1428-mtarget-align  -mno-target-align @gol
1429-mlongcalls  -mno-longcalls @gol
1430-mabi=@var{abi-type}}
1431
1432@emph{zSeries Options}
1433See S/390 and zSeries Options.
1434@end table
1435
1436
1437@node Overall Options
1438@section Options Controlling the Kind of Output
1439
1440Compilation can involve up to four stages: preprocessing, compilation
1441proper, assembly and linking, always in that order.  GCC is capable of
1442preprocessing and compiling several files either into several
1443assembler input files, or into one assembler input file; then each
1444assembler input file produces an object file, and linking combines all
1445the object files (those newly compiled, and those specified as input)
1446into an executable file.
1447
1448@cindex file name suffix
1449For any given input file, the file name suffix determines what kind of
1450compilation is done:
1451
1452@table @gcctabopt
1453@item @var{file}.c
1454C source code that must be preprocessed.
1455
1456@item @var{file}.i
1457C source code that should not be preprocessed.
1458
1459@item @var{file}.ii
1460C++ source code that should not be preprocessed.
1461
1462@item @var{file}.m
1463Objective-C source code.  Note that you must link with the @file{libobjc}
1464library to make an Objective-C program work.
1465
1466@item @var{file}.mi
1467Objective-C source code that should not be preprocessed.
1468
1469@item @var{file}.mm
1470@itemx @var{file}.M
1471Objective-C++ source code.  Note that you must link with the @file{libobjc}
1472library to make an Objective-C++ program work.  Note that @samp{.M} refers
1473to a literal capital M@.
1474
1475@item @var{file}.mii
1476Objective-C++ source code that should not be preprocessed.
1477
1478@item @var{file}.h
1479C, C++, Objective-C or Objective-C++ header file to be turned into a
1480precompiled header (default), or C, C++ header file to be turned into an
1481Ada spec (via the @option{-fdump-ada-spec} switch).
1482
1483@item @var{file}.cc
1484@itemx @var{file}.cp
1485@itemx @var{file}.cxx
1486@itemx @var{file}.cpp
1487@itemx @var{file}.CPP
1488@itemx @var{file}.c++
1489@itemx @var{file}.C
1490C++ source code that must be preprocessed.  Note that in @samp{.cxx},
1491the last two letters must both be literally @samp{x}.  Likewise,
1492@samp{.C} refers to a literal capital C@.
1493
1494@item @var{file}.mm
1495@itemx @var{file}.M
1496Objective-C++ source code that must be preprocessed.
1497
1498@item @var{file}.mii
1499Objective-C++ source code that should not be preprocessed.
1500
1501@item @var{file}.hh
1502@itemx @var{file}.H
1503@itemx @var{file}.hp
1504@itemx @var{file}.hxx
1505@itemx @var{file}.hpp
1506@itemx @var{file}.HPP
1507@itemx @var{file}.h++
1508@itemx @var{file}.tcc
1509C++ header file to be turned into a precompiled header or Ada spec.
1510
1511@item @var{file}.f
1512@itemx @var{file}.for
1513@itemx @var{file}.ftn
1514Fixed form Fortran source code that should not be preprocessed.
1515
1516@item @var{file}.F
1517@itemx @var{file}.FOR
1518@itemx @var{file}.fpp
1519@itemx @var{file}.FPP
1520@itemx @var{file}.FTN
1521Fixed form Fortran source code that must be preprocessed (with the traditional
1522preprocessor).
1523
1524@item @var{file}.f90
1525@itemx @var{file}.f95
1526@itemx @var{file}.f03
1527@itemx @var{file}.f08
1528Free form Fortran source code that should not be preprocessed.
1529
1530@item @var{file}.F90
1531@itemx @var{file}.F95
1532@itemx @var{file}.F03
1533@itemx @var{file}.F08
1534Free form Fortran source code that must be preprocessed (with the
1535traditional preprocessor).
1536
1537@item @var{file}.go
1538Go source code.
1539
1540@item @var{file}.brig
1541BRIG files (binary representation of HSAIL).
1542
1543@item @var{file}.d
1544D source code.
1545
1546@item @var{file}.di
1547D interface file.
1548
1549@item @var{file}.dd
1550D documentation code (Ddoc).
1551
1552@item @var{file}.ads
1553Ada source code file that contains a library unit declaration (a
1554declaration of a package, subprogram, or generic, or a generic
1555instantiation), or a library unit renaming declaration (a package,
1556generic, or subprogram renaming declaration).  Such files are also
1557called @dfn{specs}.
1558
1559@item @var{file}.adb
1560Ada source code file containing a library unit body (a subprogram or
1561package body).  Such files are also called @dfn{bodies}.
1562
1563@c GCC also knows about some suffixes for languages not yet included:
1564@c Ratfor:
1565@c @var{file}.r
1566
1567@item @var{file}.s
1568Assembler code.
1569
1570@item @var{file}.S
1571@itemx @var{file}.sx
1572Assembler code that must be preprocessed.
1573
1574@item @var{other}
1575An object file to be fed straight into linking.
1576Any file name with no recognized suffix is treated this way.
1577@end table
1578
1579@opindex x
1580You can specify the input language explicitly with the @option{-x} option:
1581
1582@table @gcctabopt
1583@item -x @var{language}
1584Specify explicitly the @var{language} for the following input files
1585(rather than letting the compiler choose a default based on the file
1586name suffix).  This option applies to all following input files until
1587the next @option{-x} option.  Possible values for @var{language} are:
1588@smallexample
1589c  c-header  cpp-output
1590c++  c++-header  c++-system-header c++-user-header c++-cpp-output
1591objective-c  objective-c-header  objective-c-cpp-output
1592objective-c++ objective-c++-header objective-c++-cpp-output
1593assembler  assembler-with-cpp
1594ada
1595d
1596f77  f77-cpp-input f95  f95-cpp-input
1597go
1598brig
1599@end smallexample
1600
1601@item -x none
1602Turn off any specification of a language, so that subsequent files are
1603handled according to their file name suffixes (as they are if @option{-x}
1604has not been used at all).
1605@end table
1606
1607If you only want some of the stages of compilation, you can use
1608@option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1609one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1610@command{gcc} is to stop.  Note that some combinations (for example,
1611@samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1612
1613@table @gcctabopt
1614@item -c
1615@opindex c
1616Compile or assemble the source files, but do not link.  The linking
1617stage simply is not done.  The ultimate output is in the form of an
1618object file for each source file.
1619
1620By default, the object file name for a source file is made by replacing
1621the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1622
1623Unrecognized input files, not requiring compilation or assembly, are
1624ignored.
1625
1626@item -S
1627@opindex S
1628Stop after the stage of compilation proper; do not assemble.  The output
1629is in the form of an assembler code file for each non-assembler input
1630file specified.
1631
1632By default, the assembler file name for a source file is made by
1633replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1634
1635Input files that don't require compilation are ignored.
1636
1637@item -E
1638@opindex E
1639Stop after the preprocessing stage; do not run the compiler proper.  The
1640output is in the form of preprocessed source code, which is sent to the
1641standard output.
1642
1643Input files that don't require preprocessing are ignored.
1644
1645@cindex output file option
1646@item -o @var{file}
1647@opindex o
1648Place the primary output in file @var{file}.  This applies to whatever
1649sort of output is being produced, whether it be an executable file, an
1650object file, an assembler file or preprocessed C code.
1651
1652If @option{-o} is not specified, the default is to put an executable
1653file in @file{a.out}, the object file for
1654@file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1655assembler file in @file{@var{source}.s}, a precompiled header file in
1656@file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1657standard output.
1658
1659Though @option{-o} names only the primary output, it also affects the
1660naming of auxiliary and dump outputs.  See the examples below.  Unless
1661overridden, both auxiliary outputs and dump outputs are placed in the
1662same directory as the primary output.  In auxiliary outputs, the suffix
1663of the input file is replaced with that of the auxiliary output file
1664type; in dump outputs, the suffix of the dump file is appended to the
1665input file suffix.  In compilation commands, the base name of both
1666auxiliary and dump outputs is that of the primary output; in compile and
1667link commands, the primary output name, minus the executable suffix, is
1668combined with the input file name.  If both share the same base name,
1669disregarding the suffix, the result of the combination is that base
1670name, otherwise, they are concatenated, separated by a dash.
1671
1672@smallexample
1673gcc -c foo.c ...
1674@end smallexample
1675
1676will use @file{foo.o} as the primary output, and place aux outputs and
1677dumps next to it, e.g., aux file @file{foo.dwo} for
1678@option{-gsplit-dwarf}, and dump file @file{foo.c.???r.final} for
1679@option{-fdump-rtl-final}.
1680
1681If a non-linker output file is explicitly specified, aux and dump files
1682by default take the same base name:
1683
1684@smallexample
1685gcc -c foo.c -o dir/foobar.o ...
1686@end smallexample
1687
1688will name aux outputs @file{dir/foobar.*} and dump outputs
1689@file{dir/foobar.c.*}.
1690
1691A linker output will instead prefix aux and dump outputs:
1692
1693@smallexample
1694gcc foo.c bar.c -o dir/foobar ...
1695@end smallexample
1696
1697will generally name aux outputs @file{dir/foobar-foo.*} and
1698@file{dir/foobar-bar.*}, and dump outputs @file{dir/foobar-foo.c.*} and
1699@file{dir/foobar-bar.c.*}.
1700
1701The one exception to the above is when the executable shares the base
1702name with the single input:
1703
1704@smallexample
1705gcc foo.c -o dir/foo ...
1706@end smallexample
1707
1708in which case aux outputs are named @file{dir/foo.*} and dump outputs
1709named @file{dir/foo.c.*}.
1710
1711The location and the names of auxiliary and dump outputs can be adjusted
1712by the options @option{-dumpbase}, @option{-dumpbase-ext},
1713@option{-dumpdir}, @option{-save-temps=cwd}, and
1714@option{-save-temps=obj}.
1715
1716
1717@item -dumpbase @var{dumpbase}
1718@opindex dumpbase
1719This option sets the base name for auxiliary and dump output files.  It
1720does not affect the name of the primary output file.  Intermediate
1721outputs, when preserved, are not regarded as primary outputs, but as
1722auxiliary outputs:
1723
1724@smallexample
1725gcc -save-temps -S foo.c
1726@end smallexample
1727
1728saves the (no longer) temporary preprocessed file in @file{foo.i}, and
1729then compiles to the (implied) output file @file{foo.s}, whereas:
1730
1731@smallexample
1732gcc -save-temps -dumpbase save-foo -c foo.c
1733@end smallexample
1734
1735preprocesses to in @file{save-foo.i}, compiles to @file{save-foo.s} (now
1736an intermediate, thus auxiliary output), and then assembles to the
1737(implied) output file @file{foo.o}.
1738
1739Absent this option, dump and aux files take their names from the input
1740file, or from the (non-linker) output file, if one is explicitly
1741specified: dump output files (e.g. those requested by @option{-fdump-*}
1742options) with the input name suffix, and aux output files (those
1743requested by other non-dump options, e.g. @code{-save-temps},
1744@code{-gsplit-dwarf}, @code{-fcallgraph-info}) without it.
1745
1746Similar suffix differentiation of dump and aux outputs can be attained
1747for explicitly-given @option{-dumpbase basename.suf} by also specifying
1748@option{-dumpbase-ext .suf}.
1749
1750If @var{dumpbase} is explicitly specified with any directory component,
1751any @var{dumppfx} specification (e.g. @option{-dumpdir} or
1752@option{-save-temps=*}) is ignored, and instead of appending to it,
1753@var{dumpbase} fully overrides it:
1754
1755@smallexample
1756gcc foo.c -c -o dir/foo.o -dumpbase alt/foo \
1757  -dumpdir pfx- -save-temps=cwd ...
1758@end smallexample
1759
1760creates auxiliary and dump outputs named @file{alt/foo.*}, disregarding
1761@file{dir/} in @option{-o}, the @file{./} prefix implied by
1762@option{-save-temps=cwd}, and @file{pfx-} in @option{-dumpdir}.
1763
1764When @option{-dumpbase} is specified in a command that compiles multiple
1765inputs, or that compiles and then links, it may be combined with
1766@var{dumppfx}, as specified under @option{-dumpdir}.  Then, each input
1767file is compiled using the combined @var{dumppfx}, and default values
1768for @var{dumpbase} and @var{auxdropsuf} are computed for each input
1769file:
1770
1771@smallexample
1772gcc foo.c bar.c -c -dumpbase main ...
1773@end smallexample
1774
1775creates @file{foo.o} and @file{bar.o} as primary outputs, and avoids
1776overwriting the auxiliary and dump outputs by using the @var{dumpbase}
1777as a prefix, creating auxiliary and dump outputs named @file{main-foo.*}
1778and @file{main-bar.*}.
1779
1780An empty string specified as @var{dumpbase} avoids the influence of the
1781output basename in the naming of auxiliary and dump outputs during
1782compilation, computing default values :
1783
1784@smallexample
1785gcc -c foo.c -o dir/foobar.o -dumpbase '' ...
1786@end smallexample
1787
1788will name aux outputs @file{dir/foo.*} and dump outputs
1789@file{dir/foo.c.*}.  Note how their basenames are taken from the input
1790name, but the directory still defaults to that of the output.
1791
1792The empty-string dumpbase does not prevent the use of the output
1793basename for outputs during linking:
1794
1795@smallexample
1796gcc foo.c bar.c -o dir/foobar -dumpbase '' -flto ...
1797@end smallexample
1798
1799The compilation of the source files will name auxiliary outputs
1800@file{dir/foo.*} and @file{dir/bar.*}, and dump outputs
1801@file{dir/foo.c.*} and @file{dir/bar.c.*}.  LTO recompilation during
1802linking will use @file{dir/foobar.} as the prefix for dumps and
1803auxiliary files.
1804
1805
1806@item -dumpbase-ext @var{auxdropsuf}
1807@opindex dumpbase-ext
1808When forming the name of an auxiliary (but not a dump) output file, drop
1809trailing @var{auxdropsuf} from @var{dumpbase} before appending any
1810suffixes.  If not specified, this option defaults to the suffix of a
1811default @var{dumpbase}, i.e., the suffix of the input file when
1812@option{-dumpbase} is not present in the command line, or @var{dumpbase}
1813is combined with @var{dumppfx}.
1814
1815@smallexample
1816gcc foo.c -c -o dir/foo.o -dumpbase x-foo.c -dumpbase-ext .c ...
1817@end smallexample
1818
1819creates @file{dir/foo.o} as the main output, and generates auxiliary
1820outputs in @file{dir/x-foo.*}, taking the location of the primary
1821output, and dropping the @file{.c} suffix from the @var{dumpbase}.  Dump
1822outputs retain the suffix: @file{dir/x-foo.c.*}.
1823
1824This option is disregarded if it does not match the suffix of a
1825specified @var{dumpbase}, except as an alternative to the executable
1826suffix when appending the linker output base name to @var{dumppfx}, as
1827specified below:
1828
1829@smallexample
1830gcc foo.c bar.c -o main.out -dumpbase-ext .out ...
1831@end smallexample
1832
1833creates @file{main.out} as the primary output, and avoids overwriting
1834the auxiliary and dump outputs by using the executable name minus
1835@var{auxdropsuf} as a prefix, creating auxiliary outputs named
1836@file{main-foo.*} and @file{main-bar.*} and dump outputs named
1837@file{main-foo.c.*} and @file{main-bar.c.*}.
1838
1839
1840@item -dumpdir @var{dumppfx}
1841@opindex dumpdir
1842When forming the name of an auxiliary or dump output file, use
1843@var{dumppfx} as a prefix:
1844
1845@smallexample
1846gcc -dumpdir pfx- -c foo.c ...
1847@end smallexample
1848
1849creates @file{foo.o} as the primary output, and auxiliary outputs named
1850@file{pfx-foo.*}, combining the given @var{dumppfx} with the default
1851@var{dumpbase} derived from the default primary output, derived in turn
1852from the input name.  Dump outputs also take the input name suffix:
1853@file{pfx-foo.c.*}.
1854
1855If @var{dumppfx} is to be used as a directory name, it must end with a
1856directory separator:
1857
1858@smallexample
1859gcc -dumpdir dir/ -c foo.c -o obj/bar.o ...
1860@end smallexample
1861
1862creates @file{obj/bar.o} as the primary output, and auxiliary outputs
1863named @file{dir/bar.*}, combining the given @var{dumppfx} with the
1864default @var{dumpbase} derived from the primary output name.  Dump
1865outputs also take the input name suffix: @file{dir/bar.c.*}.
1866
1867It defaults to the location of the output file; options
1868@option{-save-temps=cwd} and @option{-save-temps=obj} override this
1869default, just like an explicit @option{-dumpdir} option.  In case
1870multiple such options are given, the last one prevails:
1871
1872@smallexample
1873gcc -dumpdir pfx- -c foo.c -save-temps=obj ...
1874@end smallexample
1875
1876outputs @file{foo.o}, with auxiliary outputs named @file{foo.*} because
1877@option{-save-temps=*} overrides the @var{dumppfx} given by the earlier
1878@option{-dumpdir} option.  It does not matter that @option{=obj} is the
1879default for @option{-save-temps}, nor that the output directory is
1880implicitly the current directory.  Dump outputs are named
1881@file{foo.c.*}.
1882
1883When compiling from multiple input files, if @option{-dumpbase} is
1884specified, @var{dumpbase}, minus a @var{auxdropsuf} suffix, and a dash
1885are appended to (or override, if containing any directory components) an
1886explicit or defaulted @var{dumppfx}, so that each of the multiple
1887compilations gets differently-named aux and dump outputs.
1888
1889@smallexample
1890gcc foo.c bar.c -c -dumpdir dir/pfx- -dumpbase main ...
1891@end smallexample
1892
1893outputs auxiliary dumps to @file{dir/pfx-main-foo.*} and
1894@file{dir/pfx-main-bar.*}, appending @var{dumpbase}- to @var{dumppfx}.
1895Dump outputs retain the input file suffix: @file{dir/pfx-main-foo.c.*}
1896and @file{dir/pfx-main-bar.c.*}, respectively.  Contrast with the
1897single-input compilation:
1898
1899@smallexample
1900gcc foo.c -c -dumpdir dir/pfx- -dumpbase main ...
1901@end smallexample
1902
1903that, applying @option{-dumpbase} to a single source, does not compute
1904and append a separate @var{dumpbase} per input file.  Its auxiliary and
1905dump outputs go in @file{dir/pfx-main.*}.
1906
1907When compiling and then linking from multiple input files, a defaulted
1908or explicitly specified @var{dumppfx} also undergoes the @var{dumpbase}-
1909transformation above (e.g. the compilation of @file{foo.c} and
1910@file{bar.c} above, but without @option{-c}).  If neither
1911@option{-dumpdir} nor @option{-dumpbase} are given, the linker output
1912base name, minus @var{auxdropsuf}, if specified, or the executable
1913suffix otherwise, plus a dash is appended to the default @var{dumppfx}
1914instead.  Note, however, that unlike earlier cases of linking:
1915
1916@smallexample
1917gcc foo.c bar.c -dumpdir dir/pfx- -o main ...
1918@end smallexample
1919
1920does not append the output name @file{main} to @var{dumppfx}, because
1921@option{-dumpdir} is explicitly specified.  The goal is that the
1922explicitly-specified @var{dumppfx} may contain the specified output name
1923as part of the prefix, if desired; only an explicitly-specified
1924@option{-dumpbase} would be combined with it, in order to avoid simply
1925discarding a meaningful option.
1926
1927When compiling and then linking from a single input file, the linker
1928output base name will only be appended to the default @var{dumppfx} as
1929above if it does not share the base name with the single input file
1930name.  This has been covered in single-input linking cases above, but
1931not with an explicit @option{-dumpdir} that inhibits the combination,
1932even if overridden by @option{-save-temps=*}:
1933
1934@smallexample
1935gcc foo.c -dumpdir alt/pfx- -o dir/main.exe -save-temps=cwd ...
1936@end smallexample
1937
1938Auxiliary outputs are named @file{foo.*}, and dump outputs
1939@file{foo.c.*}, in the current working directory as ultimately requested
1940by @option{-save-temps=cwd}.
1941
1942Summing it all up for an intuitive though slightly imprecise data flow:
1943the primary output name is broken into a directory part and a basename
1944part; @var{dumppfx} is set to the former, unless overridden by
1945@option{-dumpdir} or @option{-save-temps=*}, and @var{dumpbase} is set
1946to the latter, unless overriden by @option{-dumpbase}.  If there are
1947multiple inputs or linking, this @var{dumpbase} may be combined with
1948@var{dumppfx} and taken from each input file.  Auxiliary output names
1949for each input are formed by combining @var{dumppfx}, @var{dumpbase}
1950minus suffix, and the auxiliary output suffix; dump output names are
1951only different in that the suffix from @var{dumpbase} is retained.
1952
1953When it comes to auxiliary and dump outputs created during LTO
1954recompilation, a combination of @var{dumppfx} and @var{dumpbase}, as
1955given or as derived from the linker output name but not from inputs,
1956even in cases in which this combination would not otherwise be used as
1957such, is passed down with a trailing period replacing the compiler-added
1958dash, if any, as a @option{-dumpdir} option to @command{lto-wrapper};
1959being involved in linking, this program does not normally get any
1960@option{-dumpbase} and @option{-dumpbase-ext}, and it ignores them.
1961
1962When running sub-compilers, @command{lto-wrapper} appends LTO stage
1963names to the received @var{dumppfx}, ensures it contains a directory
1964component so that it overrides any @option{-dumpdir}, and passes that as
1965@option{-dumpbase} to sub-compilers.
1966
1967@item -v
1968@opindex v
1969Print (on standard error output) the commands executed to run the stages
1970of compilation.  Also print the version number of the compiler driver
1971program and of the preprocessor and the compiler proper.
1972
1973@item -###
1974@opindex ###
1975Like @option{-v} except the commands are not executed and arguments
1976are quoted unless they contain only alphanumeric characters or @code{./-_}.
1977This is useful for shell scripts to capture the driver-generated command lines.
1978
1979@item --help
1980@opindex help
1981Print (on the standard output) a description of the command-line options
1982understood by @command{gcc}.  If the @option{-v} option is also specified
1983then @option{--help} is also passed on to the various processes
1984invoked by @command{gcc}, so that they can display the command-line options
1985they accept.  If the @option{-Wextra} option has also been specified
1986(prior to the @option{--help} option), then command-line options that
1987have no documentation associated with them are also displayed.
1988
1989@item --target-help
1990@opindex target-help
1991Print (on the standard output) a description of target-specific command-line
1992options for each tool.  For some targets extra target-specific
1993information may also be printed.
1994
1995@item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1996Print (on the standard output) a description of the command-line
1997options understood by the compiler that fit into all specified classes
1998and qualifiers.  These are the supported classes:
1999
2000@table @asis
2001@item @samp{optimizers}
2002Display all of the optimization options supported by the
2003compiler.
2004
2005@item @samp{warnings}
2006Display all of the options controlling warning messages
2007produced by the compiler.
2008
2009@item @samp{target}
2010Display target-specific options.  Unlike the
2011@option{--target-help} option however, target-specific options of the
2012linker and assembler are not displayed.  This is because those
2013tools do not currently support the extended @option{--help=} syntax.
2014
2015@item @samp{params}
2016Display the values recognized by the @option{--param}
2017option.
2018
2019@item @var{language}
2020Display the options supported for @var{language}, where
2021@var{language} is the name of one of the languages supported in this
2022version of GCC@.  If an option is supported by all languages, one needs
2023to select @samp{common} class.
2024
2025@item @samp{common}
2026Display the options that are common to all languages.
2027@end table
2028
2029These are the supported qualifiers:
2030
2031@table @asis
2032@item @samp{undocumented}
2033Display only those options that are undocumented.
2034
2035@item @samp{joined}
2036Display options taking an argument that appears after an equal
2037sign in the same continuous piece of text, such as:
2038@samp{--help=target}.
2039
2040@item @samp{separate}
2041Display options taking an argument that appears as a separate word
2042following the original option, such as: @samp{-o output-file}.
2043@end table
2044
2045Thus for example to display all the undocumented target-specific
2046switches supported by the compiler, use:
2047
2048@smallexample
2049--help=target,undocumented
2050@end smallexample
2051
2052The sense of a qualifier can be inverted by prefixing it with the
2053@samp{^} character, so for example to display all binary warning
2054options (i.e., ones that are either on or off and that do not take an
2055argument) that have a description, use:
2056
2057@smallexample
2058--help=warnings,^joined,^undocumented
2059@end smallexample
2060
2061The argument to @option{--help=} should not consist solely of inverted
2062qualifiers.
2063
2064Combining several classes is possible, although this usually
2065restricts the output so much that there is nothing to display.  One
2066case where it does work, however, is when one of the classes is
2067@var{target}.  For example, to display all the target-specific
2068optimization options, use:
2069
2070@smallexample
2071--help=target,optimizers
2072@end smallexample
2073
2074The @option{--help=} option can be repeated on the command line.  Each
2075successive use displays its requested class of options, skipping
2076those that have already been displayed.  If @option{--help} is also
2077specified anywhere on the command line then this takes precedence
2078over any @option{--help=} option.
2079
2080If the @option{-Q} option appears on the command line before the
2081@option{--help=} option, then the descriptive text displayed by
2082@option{--help=} is changed.  Instead of describing the displayed
2083options, an indication is given as to whether the option is enabled,
2084disabled or set to a specific value (assuming that the compiler
2085knows this at the point where the @option{--help=} option is used).
2086
2087Here is a truncated example from the ARM port of @command{gcc}:
2088
2089@smallexample
2090  % gcc -Q -mabi=2 --help=target -c
2091  The following options are target specific:
2092  -mabi=                                2
2093  -mabort-on-noreturn                   [disabled]
2094  -mapcs                                [disabled]
2095@end smallexample
2096
2097The output is sensitive to the effects of previous command-line
2098options, so for example it is possible to find out which optimizations
2099are enabled at @option{-O2} by using:
2100
2101@smallexample
2102-Q -O2 --help=optimizers
2103@end smallexample
2104
2105Alternatively you can discover which binary optimizations are enabled
2106by @option{-O3} by using:
2107
2108@smallexample
2109gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
2110gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
2111diff /tmp/O2-opts /tmp/O3-opts | grep enabled
2112@end smallexample
2113
2114@item --version
2115@opindex version
2116Display the version number and copyrights of the invoked GCC@.
2117
2118@item -pass-exit-codes
2119@opindex pass-exit-codes
2120Normally the @command{gcc} program exits with the code of 1 if any
2121phase of the compiler returns a non-success return code.  If you specify
2122@option{-pass-exit-codes}, the @command{gcc} program instead returns with
2123the numerically highest error produced by any phase returning an error
2124indication.  The C, C++, and Fortran front ends return 4 if an internal
2125compiler error is encountered.
2126
2127@item -pipe
2128@opindex pipe
2129Use pipes rather than temporary files for communication between the
2130various stages of compilation.  This fails to work on some systems where
2131the assembler is unable to read from a pipe; but the GNU assembler has
2132no trouble.
2133
2134@item -specs=@var{file}
2135@opindex specs
2136Process @var{file} after the compiler reads in the standard @file{specs}
2137file, in order to override the defaults which the @command{gcc} driver
2138program uses when determining what switches to pass to @command{cc1},
2139@command{cc1plus}, @command{as}, @command{ld}, etc.  More than one
2140@option{-specs=@var{file}} can be specified on the command line, and they
2141are processed in order, from left to right.  @xref{Spec Files}, for
2142information about the format of the @var{file}.
2143
2144@item -wrapper
2145@opindex wrapper
2146Invoke all subcommands under a wrapper program.  The name of the
2147wrapper program and its parameters are passed as a comma separated
2148list.
2149
2150@smallexample
2151gcc -c t.c -wrapper gdb,--args
2152@end smallexample
2153
2154@noindent
2155This invokes all subprograms of @command{gcc} under
2156@samp{gdb --args}, thus the invocation of @command{cc1} is
2157@samp{gdb --args cc1 @dots{}}.
2158
2159@item -ffile-prefix-map=@var{old}=@var{new}
2160@opindex ffile-prefix-map
2161When compiling files residing in directory @file{@var{old}}, record
2162any references to them in the result of the compilation as if the
2163files resided in directory @file{@var{new}} instead.  Specifying this
2164option is equivalent to specifying all the individual
2165@option{-f*-prefix-map} options.  This can be used to make reproducible
2166builds that are location independent.  See also
2167@option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
2168
2169@item -fplugin=@var{name}.so
2170@opindex fplugin
2171Load the plugin code in file @var{name}.so, assumed to be a
2172shared object to be dlopen'd by the compiler.  The base name of
2173the shared object file is used to identify the plugin for the
2174purposes of argument parsing (See
2175@option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
2176Each plugin should define the callback functions specified in the
2177Plugins API.
2178
2179@item -fplugin-arg-@var{name}-@var{key}=@var{value}
2180@opindex fplugin-arg
2181Define an argument called @var{key} with a value of @var{value}
2182for the plugin called @var{name}.
2183
2184@item -fdump-ada-spec@r{[}-slim@r{]}
2185@opindex fdump-ada-spec
2186For C and C++ source and include files, generate corresponding Ada specs.
2187@xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
2188GNAT User's Guide}, which provides detailed documentation on this feature.
2189
2190@item -fada-spec-parent=@var{unit}
2191@opindex fada-spec-parent
2192In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
2193Ada specs as child units of parent @var{unit}.
2194
2195@item -fdump-go-spec=@var{file}
2196@opindex fdump-go-spec
2197For input files in any language, generate corresponding Go
2198declarations in @var{file}.  This generates Go @code{const},
2199@code{type}, @code{var}, and @code{func} declarations which may be a
2200useful way to start writing a Go interface to code written in some
2201other language.
2202
2203@include @value{srcdir}/../libiberty/at-file.texi
2204@end table
2205
2206@node Invoking G++
2207@section Compiling C++ Programs
2208
2209@cindex suffixes for C++ source
2210@cindex C++ source file suffixes
2211C++ source files conventionally use one of the suffixes @samp{.C},
2212@samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
2213@samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
2214@samp{.H}, or (for shared template code) @samp{.tcc}; and
2215preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
2216files with these names and compiles them as C++ programs even if you
2217call the compiler the same way as for compiling C programs (usually
2218with the name @command{gcc}).
2219
2220@findex g++
2221@findex c++
2222However, the use of @command{gcc} does not add the C++ library.
2223@command{g++} is a program that calls GCC and automatically specifies linking
2224against the C++ library.  It treats @samp{.c},
2225@samp{.h} and @samp{.i} files as C++ source files instead of C source
2226files unless @option{-x} is used.  This program is also useful when
2227precompiling a C header file with a @samp{.h} extension for use in C++
2228compilations.  On many systems, @command{g++} is also installed with
2229the name @command{c++}.
2230
2231@cindex invoking @command{g++}
2232When you compile C++ programs, you may specify many of the same
2233command-line options that you use for compiling programs in any
2234language; or command-line options meaningful for C and related
2235languages; or options that are meaningful only for C++ programs.
2236@xref{C Dialect Options,,Options Controlling C Dialect}, for
2237explanations of options for languages related to C@.
2238@xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
2239explanations of options that are meaningful only for C++ programs.
2240
2241@node C Dialect Options
2242@section Options Controlling C Dialect
2243@cindex dialect options
2244@cindex language dialect options
2245@cindex options, dialect
2246
2247The following options control the dialect of C (or languages derived
2248from C, such as C++, Objective-C and Objective-C++) that the compiler
2249accepts:
2250
2251@table @gcctabopt
2252@cindex ANSI support
2253@cindex ISO support
2254@item -ansi
2255@opindex ansi
2256In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
2257equivalent to @option{-std=c++98}.
2258
2259This turns off certain features of GCC that are incompatible with ISO
2260C90 (when compiling C code), or of standard C++ (when compiling C++ code),
2261such as the @code{asm} and @code{typeof} keywords, and
2262predefined macros such as @code{unix} and @code{vax} that identify the
2263type of system you are using.  It also enables the undesirable and
2264rarely used ISO trigraph feature.  For the C compiler,
2265it disables recognition of C++ style @samp{//} comments as well as
2266the @code{inline} keyword.
2267
2268The alternate keywords @code{__asm__}, @code{__extension__},
2269@code{__inline__} and @code{__typeof__} continue to work despite
2270@option{-ansi}.  You would not want to use them in an ISO C program, of
2271course, but it is useful to put them in header files that might be included
2272in compilations done with @option{-ansi}.  Alternate predefined macros
2273such as @code{__unix__} and @code{__vax__} are also available, with or
2274without @option{-ansi}.
2275
2276The @option{-ansi} option does not cause non-ISO programs to be
2277rejected gratuitously.  For that, @option{-Wpedantic} is required in
2278addition to @option{-ansi}.  @xref{Warning Options}.
2279
2280The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
2281option is used.  Some header files may notice this macro and refrain
2282from declaring certain functions or defining certain macros that the
2283ISO standard doesn't call for; this is to avoid interfering with any
2284programs that might use these names for other things.
2285
2286Functions that are normally built in but do not have semantics
2287defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
2288functions when @option{-ansi} is used.  @xref{Other Builtins,,Other
2289built-in functions provided by GCC}, for details of the functions
2290affected.
2291
2292@item -std=
2293@opindex std
2294Determine the language standard. @xref{Standards,,Language Standards
2295Supported by GCC}, for details of these standard versions.  This option
2296is currently only supported when compiling C or C++.
2297
2298The compiler can accept several base standards, such as @samp{c90} or
2299@samp{c++98}, and GNU dialects of those standards, such as
2300@samp{gnu90} or @samp{gnu++98}.  When a base standard is specified, the
2301compiler accepts all programs following that standard plus those
2302using GNU extensions that do not contradict it.  For example,
2303@option{-std=c90} turns off certain features of GCC that are
2304incompatible with ISO C90, such as the @code{asm} and @code{typeof}
2305keywords, but not other GNU extensions that do not have a meaning in
2306ISO C90, such as omitting the middle term of a @code{?:}
2307expression. On the other hand, when a GNU dialect of a standard is
2308specified, all features supported by the compiler are enabled, even when
2309those features change the meaning of the base standard.  As a result, some
2310strict-conforming programs may be rejected.  The particular standard
2311is used by @option{-Wpedantic} to identify which features are GNU
2312extensions given that version of the standard. For example
2313@option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
2314comments, while @option{-std=gnu99 -Wpedantic} does not.
2315
2316A value for this option must be provided; possible values are
2317
2318@table @samp
2319@item c90
2320@itemx c89
2321@itemx iso9899:1990
2322Support all ISO C90 programs (certain GNU extensions that conflict
2323with ISO C90 are disabled). Same as @option{-ansi} for C code.
2324
2325@item iso9899:199409
2326ISO C90 as modified in amendment 1.
2327
2328@item c99
2329@itemx c9x
2330@itemx iso9899:1999
2331@itemx iso9899:199x
2332ISO C99.  This standard is substantially completely supported, modulo
2333bugs and floating-point issues
2334(mainly but not entirely relating to optional C99 features from
2335Annexes F and G).  See
2336@w{@uref{http://gcc.gnu.org/c99status.html}} for more information.  The
2337names @samp{c9x} and @samp{iso9899:199x} are deprecated.
2338
2339@item c11
2340@itemx c1x
2341@itemx iso9899:2011
2342ISO C11, the 2011 revision of the ISO C standard.  This standard is
2343substantially completely supported, modulo bugs, floating-point issues
2344(mainly but not entirely relating to optional C11 features from
2345Annexes F and G) and the optional Annexes K (Bounds-checking
2346interfaces) and L (Analyzability).  The name @samp{c1x} is deprecated.
2347
2348@item c17
2349@itemx c18
2350@itemx iso9899:2017
2351@itemx iso9899:2018
2352ISO C17, the 2017 revision of the ISO C standard
2353(published in 2018).  This standard is
2354same as C11 except for corrections of defects (all of which are also
2355applied with @option{-std=c11}) and a new value of
2356@code{__STDC_VERSION__}, and so is supported to the same extent as C11.
2357
2358@item c2x
2359The next version of the ISO C standard, still under development.  The
2360support for this version is experimental and incomplete.
2361
2362@item gnu90
2363@itemx gnu89
2364GNU dialect of ISO C90 (including some C99 features).
2365
2366@item gnu99
2367@itemx gnu9x
2368GNU dialect of ISO C99.  The name @samp{gnu9x} is deprecated.
2369
2370@item gnu11
2371@itemx gnu1x
2372GNU dialect of ISO C11.
2373The name @samp{gnu1x} is deprecated.
2374
2375@item gnu17
2376@itemx gnu18
2377GNU dialect of ISO C17.  This is the default for C code.
2378
2379@item gnu2x
2380The next version of the ISO C standard, still under development, plus
2381GNU extensions.  The support for this version is experimental and
2382incomplete.
2383
2384@item c++98
2385@itemx c++03
2386The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
2387additional defect reports. Same as @option{-ansi} for C++ code.
2388
2389@item gnu++98
2390@itemx gnu++03
2391GNU dialect of @option{-std=c++98}.
2392
2393@item c++11
2394@itemx c++0x
2395The 2011 ISO C++ standard plus amendments.
2396The name @samp{c++0x} is deprecated.
2397
2398@item gnu++11
2399@itemx gnu++0x
2400GNU dialect of @option{-std=c++11}.
2401The name @samp{gnu++0x} is deprecated.
2402
2403@item c++14
2404@itemx c++1y
2405The 2014 ISO C++ standard plus amendments.
2406The name @samp{c++1y} is deprecated.
2407
2408@item gnu++14
2409@itemx gnu++1y
2410GNU dialect of @option{-std=c++14}.
2411The name @samp{gnu++1y} is deprecated.
2412
2413@item c++17
2414@itemx c++1z
2415The 2017 ISO C++ standard plus amendments.
2416The name @samp{c++1z} is deprecated.
2417
2418@item gnu++17
2419@itemx gnu++1z
2420GNU dialect of @option{-std=c++17}.
2421This is the default for C++ code.
2422The name @samp{gnu++1z} is deprecated.
2423
2424@item c++20
2425@itemx c++2a
2426The 2020 ISO C++ standard plus amendments.
2427Support is experimental, and could change in incompatible ways in
2428future releases.
2429The name @samp{c++2a} is deprecated.
2430
2431@item gnu++20
2432@itemx gnu++2a
2433GNU dialect of @option{-std=c++20}.
2434Support is experimental, and could change in incompatible ways in
2435future releases.
2436The name @samp{gnu++2a} is deprecated.
2437
2438@item c++2b
2439@itemx c++23
2440The next revision of the ISO C++ standard, planned for
24412023.  Support is highly experimental, and will almost certainly
2442change in incompatible ways in future releases.
2443
2444@item gnu++2b
2445@itemx gnu++23
2446GNU dialect of @option{-std=c++2b}.  Support is highly experimental,
2447and will almost certainly change in incompatible ways in future
2448releases.
2449@end table
2450
2451@item -fgnu89-inline
2452@opindex fgnu89-inline
2453The option @option{-fgnu89-inline} tells GCC to use the traditional
2454GNU semantics for @code{inline} functions when in C99 mode.
2455@xref{Inline,,An Inline Function is As Fast As a Macro}.
2456Using this option is roughly equivalent to adding the
2457@code{gnu_inline} function attribute to all inline functions
2458(@pxref{Function Attributes}).
2459
2460The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
2461C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
2462specifies the default behavior).
2463This option is not supported in @option{-std=c90} or
2464@option{-std=gnu90} mode.
2465
2466The preprocessor macros @code{__GNUC_GNU_INLINE__} and
2467@code{__GNUC_STDC_INLINE__} may be used to check which semantics are
2468in effect for @code{inline} functions.  @xref{Common Predefined
2469Macros,,,cpp,The C Preprocessor}.
2470
2471@item -fpermitted-flt-eval-methods=@var{style}
2472@opindex fpermitted-flt-eval-methods
2473@opindex fpermitted-flt-eval-methods=c11
2474@opindex fpermitted-flt-eval-methods=ts-18661-3
2475ISO/IEC TS 18661-3 defines new permissible values for
2476@code{FLT_EVAL_METHOD} that indicate that operations and constants with
2477a semantic type that is an interchange or extended format should be
2478evaluated to the precision and range of that type.  These new values are
2479a superset of those permitted under C99/C11, which does not specify the
2480meaning of other positive values of @code{FLT_EVAL_METHOD}.  As such, code
2481conforming to C11 may not have been written expecting the possibility of
2482the new values.
2483
2484@option{-fpermitted-flt-eval-methods} specifies whether the compiler
2485should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2486or the extended set of values specified in ISO/IEC TS 18661-3.
2487
2488@var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2489
2490The default when in a standards compliant mode (@option{-std=c11} or similar)
2491is @option{-fpermitted-flt-eval-methods=c11}.  The default when in a GNU
2492dialect (@option{-std=gnu11} or similar) is
2493@option{-fpermitted-flt-eval-methods=ts-18661-3}.
2494
2495@item -aux-info @var{filename}
2496@opindex aux-info
2497Output to the given filename prototyped declarations for all functions
2498declared and/or defined in a translation unit, including those in header
2499files.  This option is silently ignored in any language other than C@.
2500
2501Besides declarations, the file indicates, in comments, the origin of
2502each declaration (source file and line), whether the declaration was
2503implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2504@samp{O} for old, respectively, in the first character after the line
2505number and the colon), and whether it came from a declaration or a
2506definition (@samp{C} or @samp{F}, respectively, in the following
2507character).  In the case of function definitions, a K&R-style list of
2508arguments followed by their declarations is also provided, inside
2509comments, after the declaration.
2510
2511@item -fallow-parameterless-variadic-functions
2512@opindex fallow-parameterless-variadic-functions
2513Accept variadic functions without named parameters.
2514
2515Although it is possible to define such a function, this is not very
2516useful as it is not possible to read the arguments.  This is only
2517supported for C as this construct is allowed by C++.
2518
2519@item -fno-asm
2520@opindex fno-asm
2521@opindex fasm
2522Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2523keyword, so that code can use these words as identifiers.  You can use
2524the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2525instead.  @option{-ansi} implies @option{-fno-asm}.
2526
2527In C++, this switch only affects the @code{typeof} keyword, since
2528@code{asm} and @code{inline} are standard keywords.  You may want to
2529use the @option{-fno-gnu-keywords} flag instead, which has the same
2530effect.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2531switch only affects the @code{asm} and @code{typeof} keywords, since
2532@code{inline} is a standard keyword in ISO C99.
2533
2534@item -fno-builtin
2535@itemx -fno-builtin-@var{function}
2536@opindex fno-builtin
2537@opindex fbuiltin
2538@cindex built-in functions
2539Don't recognize built-in functions that do not begin with
2540@samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
2541functions provided by GCC}, for details of the functions affected,
2542including those which are not built-in functions when @option{-ansi} or
2543@option{-std} options for strict ISO C conformance are used because they
2544do not have an ISO standard meaning.
2545
2546GCC normally generates special code to handle certain built-in functions
2547more efficiently; for instance, calls to @code{alloca} may become single
2548instructions which adjust the stack directly, and calls to @code{memcpy}
2549may become inline copy loops.  The resulting code is often both smaller
2550and faster, but since the function calls no longer appear as such, you
2551cannot set a breakpoint on those calls, nor can you change the behavior
2552of the functions by linking with a different library.  In addition,
2553when a function is recognized as a built-in function, GCC may use
2554information about that function to warn about problems with calls to
2555that function, or to generate more efficient code, even if the
2556resulting code still contains calls to that function.  For example,
2557warnings are given with @option{-Wformat} for bad calls to
2558@code{printf} when @code{printf} is built in and @code{strlen} is
2559known not to modify global memory.
2560
2561With the @option{-fno-builtin-@var{function}} option
2562only the built-in function @var{function} is
2563disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
2564function is named that is not built-in in this version of GCC, this
2565option is ignored.  There is no corresponding
2566@option{-fbuiltin-@var{function}} option; if you wish to enable
2567built-in functions selectively when using @option{-fno-builtin} or
2568@option{-ffreestanding}, you may define macros such as:
2569
2570@smallexample
2571#define abs(n)          __builtin_abs ((n))
2572#define strcpy(d, s)    __builtin_strcpy ((d), (s))
2573@end smallexample
2574
2575@item -fgimple
2576@opindex fgimple
2577
2578Enable parsing of function definitions marked with @code{__GIMPLE}.
2579This is an experimental feature that allows unit testing of GIMPLE
2580passes.
2581
2582@item -fhosted
2583@opindex fhosted
2584@cindex hosted environment
2585
2586Assert that compilation targets a hosted environment.  This implies
2587@option{-fbuiltin}.  A hosted environment is one in which the
2588entire standard library is available, and in which @code{main} has a return
2589type of @code{int}.  Examples are nearly everything except a kernel.
2590This is equivalent to @option{-fno-freestanding}.
2591
2592@item -ffreestanding
2593@opindex ffreestanding
2594@cindex hosted environment
2595
2596Assert that compilation targets a freestanding environment.  This
2597implies @option{-fno-builtin}.  A freestanding environment
2598is one in which the standard library may not exist, and program startup may
2599not necessarily be at @code{main}.  The most obvious example is an OS kernel.
2600This is equivalent to @option{-fno-hosted}.
2601
2602@xref{Standards,,Language Standards Supported by GCC}, for details of
2603freestanding and hosted environments.
2604
2605@item -fopenacc
2606@opindex fopenacc
2607@cindex OpenACC accelerator programming
2608Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2609@code{!$acc} in Fortran.  When @option{-fopenacc} is specified, the
2610compiler generates accelerated code according to the OpenACC Application
2611Programming Interface v2.6 @w{@uref{https://www.openacc.org}}.  This option
2612implies @option{-pthread}, and thus is only supported on targets that
2613have support for @option{-pthread}.
2614
2615@item -fopenacc-dim=@var{geom}
2616@opindex fopenacc-dim
2617@cindex OpenACC accelerator programming
2618Specify default compute dimensions for parallel offload regions that do
2619not explicitly specify.  The @var{geom} value is a triple of
2620':'-separated sizes, in order 'gang', 'worker' and, 'vector'.  A size
2621can be omitted, to use a target-specific default value.
2622
2623@item -fopenmp
2624@opindex fopenmp
2625@cindex OpenMP parallel
2626Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2627@code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
2628compiler generates parallel code according to the OpenMP Application
2629Program Interface v4.5 @w{@uref{https://www.openmp.org}}.  This option
2630implies @option{-pthread}, and thus is only supported on targets that
2631have support for @option{-pthread}. @option{-fopenmp} implies
2632@option{-fopenmp-simd}.
2633
2634@item -fopenmp-simd
2635@opindex fopenmp-simd
2636@cindex OpenMP SIMD
2637@cindex SIMD
2638Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2639in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2640are ignored.
2641
2642@item -fgnu-tm
2643@opindex fgnu-tm
2644When the option @option{-fgnu-tm} is specified, the compiler
2645generates code for the Linux variant of Intel's current Transactional
2646Memory ABI specification document (Revision 1.1, May 6 2009).  This is
2647an experimental feature whose interface may change in future versions
2648of GCC, as the official specification changes.  Please note that not
2649all architectures are supported for this feature.
2650
2651For more information on GCC's support for transactional memory,
2652@xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2653Transactional Memory Library}.
2654
2655Note that the transactional memory feature is not supported with
2656non-call exceptions (@option{-fnon-call-exceptions}).
2657
2658@item -fms-extensions
2659@opindex fms-extensions
2660Accept some non-standard constructs used in Microsoft header files.
2661
2662In C++ code, this allows member names in structures to be similar
2663to previous types declarations.
2664
2665@smallexample
2666typedef int UOW;
2667struct ABC @{
2668  UOW UOW;
2669@};
2670@end smallexample
2671
2672Some cases of unnamed fields in structures and unions are only
2673accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
2674fields within structs/unions}, for details.
2675
2676Note that this option is off for all targets except for x86
2677targets using ms-abi.
2678
2679@item -fplan9-extensions
2680@opindex fplan9-extensions
2681Accept some non-standard constructs used in Plan 9 code.
2682
2683This enables @option{-fms-extensions}, permits passing pointers to
2684structures with anonymous fields to functions that expect pointers to
2685elements of the type of the field, and permits referring to anonymous
2686fields declared using a typedef.  @xref{Unnamed Fields,,Unnamed
2687struct/union fields within structs/unions}, for details.  This is only
2688supported for C, not C++.
2689
2690@item -fcond-mismatch
2691@opindex fcond-mismatch
2692Allow conditional expressions with mismatched types in the second and
2693third arguments.  The value of such an expression is void.  This option
2694is not supported for C++.
2695
2696@item -flax-vector-conversions
2697@opindex flax-vector-conversions
2698Allow implicit conversions between vectors with differing numbers of
2699elements and/or incompatible element types.  This option should not be
2700used for new code.
2701
2702@item -funsigned-char
2703@opindex funsigned-char
2704Let the type @code{char} be unsigned, like @code{unsigned char}.
2705
2706Each kind of machine has a default for what @code{char} should
2707be.  It is either like @code{unsigned char} by default or like
2708@code{signed char} by default.
2709
2710Ideally, a portable program should always use @code{signed char} or
2711@code{unsigned char} when it depends on the signedness of an object.
2712But many programs have been written to use plain @code{char} and
2713expect it to be signed, or expect it to be unsigned, depending on the
2714machines they were written for.  This option, and its inverse, let you
2715make such a program work with the opposite default.
2716
2717The type @code{char} is always a distinct type from each of
2718@code{signed char} or @code{unsigned char}, even though its behavior
2719is always just like one of those two.
2720
2721@item -fsigned-char
2722@opindex fsigned-char
2723Let the type @code{char} be signed, like @code{signed char}.
2724
2725Note that this is equivalent to @option{-fno-unsigned-char}, which is
2726the negative form of @option{-funsigned-char}.  Likewise, the option
2727@option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2728
2729@item -fsigned-bitfields
2730@itemx -funsigned-bitfields
2731@itemx -fno-signed-bitfields
2732@itemx -fno-unsigned-bitfields
2733@opindex fsigned-bitfields
2734@opindex funsigned-bitfields
2735@opindex fno-signed-bitfields
2736@opindex fno-unsigned-bitfields
2737These options control whether a bit-field is signed or unsigned, when the
2738declaration does not use either @code{signed} or @code{unsigned}.  By
2739default, such a bit-field is signed, because this is consistent: the
2740basic integer types such as @code{int} are signed types.
2741
2742@item -fsso-struct=@var{endianness}
2743@opindex fsso-struct
2744Set the default scalar storage order of structures and unions to the
2745specified endianness.  The accepted values are @samp{big-endian},
2746@samp{little-endian} and @samp{native} for the native endianness of
2747the target (the default).  This option is not supported for C++.
2748
2749@strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2750code that is not binary compatible with code generated without it if the
2751specified endianness is not the native endianness of the target.
2752@end table
2753
2754@node C++ Dialect Options
2755@section Options Controlling C++ Dialect
2756
2757@cindex compiler options, C++
2758@cindex C++ options, command-line
2759@cindex options, C++
2760This section describes the command-line options that are only meaningful
2761for C++ programs.  You can also use most of the GNU compiler options
2762regardless of what language your program is in.  For example, you
2763might compile a file @file{firstClass.C} like this:
2764
2765@smallexample
2766g++ -g -fstrict-enums -O -c firstClass.C
2767@end smallexample
2768
2769@noindent
2770In this example, only @option{-fstrict-enums} is an option meant
2771only for C++ programs; you can use the other options with any
2772language supported by GCC@.
2773
2774Some options for compiling C programs, such as @option{-std}, are also
2775relevant for C++ programs.
2776@xref{C Dialect Options,,Options Controlling C Dialect}.
2777
2778Here is a list of options that are @emph{only} for compiling C++ programs:
2779
2780@table @gcctabopt
2781
2782@item -fabi-version=@var{n}
2783@opindex fabi-version
2784Use version @var{n} of the C++ ABI@.  The default is version 0.
2785
2786Version 0 refers to the version conforming most closely to
2787the C++ ABI specification.  Therefore, the ABI obtained using version 0
2788will change in different versions of G++ as ABI bugs are fixed.
2789
2790Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2791
2792Version 2 is the version of the C++ ABI that first appeared in G++
27933.4, and was the default through G++ 4.9.
2794
2795Version 3 corrects an error in mangling a constant address as a
2796template argument.
2797
2798Version 4, which first appeared in G++ 4.5, implements a standard
2799mangling for vector types.
2800
2801Version 5, which first appeared in G++ 4.6, corrects the mangling of
2802attribute const/volatile on function pointer types, decltype of a
2803plain decl, and use of a function parameter in the declaration of
2804another parameter.
2805
2806Version 6, which first appeared in G++ 4.7, corrects the promotion
2807behavior of C++11 scoped enums and the mangling of template argument
2808packs, const/static_cast, prefix ++ and --, and a class scope function
2809used as a template argument.
2810
2811Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2812builtin type and corrects the mangling of lambdas in default argument
2813scope.
2814
2815Version 8, which first appeared in G++ 4.9, corrects the substitution
2816behavior of function types with function-cv-qualifiers.
2817
2818Version 9, which first appeared in G++ 5.2, corrects the alignment of
2819@code{nullptr_t}.
2820
2821Version 10, which first appeared in G++ 6.1, adds mangling of
2822attributes that affect type identity, such as ia32 calling convention
2823attributes (e.g.@: @samp{stdcall}).
2824
2825Version 11, which first appeared in G++ 7, corrects the mangling of
2826sizeof... expressions and operator names.  For multiple entities with
2827the same name within a function, that are declared in different scopes,
2828the mangling now changes starting with the twelfth occurrence.  It also
2829implies @option{-fnew-inheriting-ctors}.
2830
2831Version 12, which first appeared in G++ 8, corrects the calling
2832conventions for empty classes on the x86_64 target and for classes
2833with only deleted copy/move constructors.  It accidentally changes the
2834calling convention for classes with a deleted copy constructor and a
2835trivial move constructor.
2836
2837Version 13, which first appeared in G++ 8.2, fixes the accidental
2838change in version 12.
2839
2840Version 14, which first appeared in G++ 10, corrects the mangling of
2841the nullptr expression.
2842
2843Version 15, which first appeared in G++ 11, changes the mangling of
2844@code{__alignof__} to be distinct from that of @code{alignof}, and
2845dependent operator names.
2846
2847See also @option{-Wabi}.
2848
2849@item -fabi-compat-version=@var{n}
2850@opindex fabi-compat-version
2851On targets that support strong aliases, G++
2852works around mangling changes by creating an alias with the correct
2853mangled name when defining a symbol with an incorrect mangled name.
2854This switch specifies which ABI version to use for the alias.
2855
2856With @option{-fabi-version=0} (the default), this defaults to 11 (GCC 7
2857compatibility).  If another ABI version is explicitly selected, this
2858defaults to 0.  For compatibility with GCC versions 3.2 through 4.9,
2859use @option{-fabi-compat-version=2}.
2860
2861If this option is not provided but @option{-Wabi=@var{n}} is, that
2862version is used for compatibility aliases.  If this option is provided
2863along with @option{-Wabi} (without the version), the version from this
2864option is used for the warning.
2865
2866@item -fno-access-control
2867@opindex fno-access-control
2868@opindex faccess-control
2869Turn off all access checking.  This switch is mainly useful for working
2870around bugs in the access control code.
2871
2872@item -faligned-new
2873@opindex faligned-new
2874Enable support for C++17 @code{new} of types that require more
2875alignment than @code{void* ::operator new(std::size_t)} provides.  A
2876numeric argument such as @code{-faligned-new=32} can be used to
2877specify how much alignment (in bytes) is provided by that function,
2878but few users will need to override the default of
2879@code{alignof(std::max_align_t)}.
2880
2881This flag is enabled by default for @option{-std=c++17}.
2882
2883@item -fchar8_t
2884@itemx -fno-char8_t
2885@opindex fchar8_t
2886@opindex fno-char8_t
2887Enable support for @code{char8_t} as adopted for C++20.  This includes
2888the addition of a new @code{char8_t} fundamental type, changes to the
2889types of UTF-8 string and character literals, new signatures for
2890user-defined literals, associated standard library updates, and new
2891@code{__cpp_char8_t} and @code{__cpp_lib_char8_t} feature test macros.
2892
2893This option enables functions to be overloaded for ordinary and UTF-8
2894strings:
2895
2896@smallexample
2897int f(const char *);    // #1
2898int f(const char8_t *); // #2
2899int v1 = f("text");     // Calls #1
2900int v2 = f(u8"text");   // Calls #2
2901@end smallexample
2902
2903@noindent
2904and introduces new signatures for user-defined literals:
2905
2906@smallexample
2907int operator""_udl1(char8_t);
2908int v3 = u8'x'_udl1;
2909int operator""_udl2(const char8_t*, std::size_t);
2910int v4 = u8"text"_udl2;
2911template<typename T, T...> int operator""_udl3();
2912int v5 = u8"text"_udl3;
2913@end smallexample
2914
2915@noindent
2916The change to the types of UTF-8 string and character literals introduces
2917incompatibilities with ISO C++11 and later standards.  For example, the
2918following code is well-formed under ISO C++11, but is ill-formed when
2919@option{-fchar8_t} is specified.
2920
2921@smallexample
2922char ca[] = u8"xx";     // error: char-array initialized from wide
2923                        //        string
2924const char *cp = u8"xx";// error: invalid conversion from
2925                        //        `const char8_t*' to `const char*'
2926int f(const char*);
2927auto v = f(u8"xx");     // error: invalid conversion from
2928                        //        `const char8_t*' to `const char*'
2929std::string s@{u8"xx"@};  // error: no matching function for call to
2930                        //        `std::basic_string<char>::basic_string()'
2931using namespace std::literals;
2932s = u8"xx"s;            // error: conversion from
2933                        //        `basic_string<char8_t>' to non-scalar
2934                        //        type `basic_string<char>' requested
2935@end smallexample
2936
2937@item -fcheck-new
2938@opindex fcheck-new
2939Check that the pointer returned by @code{operator new} is non-null
2940before attempting to modify the storage allocated.  This check is
2941normally unnecessary because the C++ standard specifies that
2942@code{operator new} only returns @code{0} if it is declared
2943@code{throw()}, in which case the compiler always checks the
2944return value even without this option.  In all other cases, when
2945@code{operator new} has a non-empty exception specification, memory
2946exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
2947@samp{new (nothrow)}.
2948
2949@item -fconcepts
2950@itemx -fconcepts-ts
2951@opindex fconcepts
2952@opindex fconcepts-ts
2953Below @option{-std=c++20}, @option{-fconcepts} enables support for the
2954C++ Extensions for Concepts Technical Specification, ISO 19217 (2015).
2955
2956With @option{-std=c++20} and above, Concepts are part of the language
2957standard, so @option{-fconcepts} defaults to on.  But the standard
2958specification of Concepts differs significantly from the TS, so some
2959constructs that were allowed in the TS but didn't make it into the
2960standard can still be enabled by @option{-fconcepts-ts}.
2961
2962@item -fconstexpr-depth=@var{n}
2963@opindex fconstexpr-depth
2964Set the maximum nested evaluation depth for C++11 constexpr functions
2965to @var{n}.  A limit is needed to detect endless recursion during
2966constant expression evaluation.  The minimum specified by the standard
2967is 512.
2968
2969@item -fconstexpr-cache-depth=@var{n}
2970@opindex fconstexpr-cache-depth
2971Set the maximum level of nested evaluation depth for C++11 constexpr
2972functions that will be cached to @var{n}.  This is a heuristic that
2973trades off compilation speed (when the cache avoids repeated
2974calculations) against memory consumption (when the cache grows very
2975large from highly recursive evaluations).  The default is 8.  Very few
2976users are likely to want to adjust it, but if your code does heavy
2977constexpr calculations you might want to experiment to find which
2978value works best for you.
2979
2980@item -fconstexpr-loop-limit=@var{n}
2981@opindex fconstexpr-loop-limit
2982Set the maximum number of iterations for a loop in C++14 constexpr functions
2983to @var{n}.  A limit is needed to detect infinite loops during
2984constant expression evaluation.  The default is 262144 (1<<18).
2985
2986@item -fconstexpr-ops-limit=@var{n}
2987@opindex fconstexpr-ops-limit
2988Set the maximum number of operations during a single constexpr evaluation.
2989Even when number of iterations of a single loop is limited with the above limit,
2990if there are several nested loops and each of them has many iterations but still
2991smaller than the above limit, or if in a body of some loop or even outside
2992of a loop too many expressions need to be evaluated, the resulting constexpr
2993evaluation might take too long.
2994The default is 33554432 (1<<25).
2995
2996@item -fcoroutines
2997@opindex fcoroutines
2998Enable support for the C++ coroutines extension (experimental).
2999
3000@item -fno-elide-constructors
3001@opindex fno-elide-constructors
3002@opindex felide-constructors
3003The C++ standard allows an implementation to omit creating a temporary
3004that is only used to initialize another object of the same type.
3005Specifying this option disables that optimization, and forces G++ to
3006call the copy constructor in all cases.  This option also causes G++
3007to call trivial member functions which otherwise would be expanded inline.
3008
3009In C++17, the compiler is required to omit these temporaries, but this
3010option still affects trivial member functions.
3011
3012@item -fno-enforce-eh-specs
3013@opindex fno-enforce-eh-specs
3014@opindex fenforce-eh-specs
3015Don't generate code to check for violation of exception specifications
3016at run time.  This option violates the C++ standard, but may be useful
3017for reducing code size in production builds, much like defining
3018@code{NDEBUG}.  This does not give user code permission to throw
3019exceptions in violation of the exception specifications; the compiler
3020still optimizes based on the specifications, so throwing an
3021unexpected exception results in undefined behavior at run time.
3022
3023@item -fextern-tls-init
3024@itemx -fno-extern-tls-init
3025@opindex fextern-tls-init
3026@opindex fno-extern-tls-init
3027The C++11 and OpenMP standards allow @code{thread_local} and
3028@code{threadprivate} variables to have dynamic (runtime)
3029initialization.  To support this, any use of such a variable goes
3030through a wrapper function that performs any necessary initialization.
3031When the use and definition of the variable are in the same
3032translation unit, this overhead can be optimized away, but when the
3033use is in a different translation unit there is significant overhead
3034even if the variable doesn't actually need dynamic initialization.  If
3035the programmer can be sure that no use of the variable in a
3036non-defining TU needs to trigger dynamic initialization (either
3037because the variable is statically initialized, or a use of the
3038variable in the defining TU will be executed before any uses in
3039another TU), they can avoid this overhead with the
3040@option{-fno-extern-tls-init} option.
3041
3042On targets that support symbol aliases, the default is
3043@option{-fextern-tls-init}.  On targets that do not support symbol
3044aliases, the default is @option{-fno-extern-tls-init}.
3045
3046@item -fno-gnu-keywords
3047@opindex fno-gnu-keywords
3048@opindex fgnu-keywords
3049Do not recognize @code{typeof} as a keyword, so that code can use this
3050word as an identifier.  You can use the keyword @code{__typeof__} instead.
3051This option is implied by the strict ISO C++ dialects: @option{-ansi},
3052@option{-std=c++98}, @option{-std=c++11}, etc.
3053
3054@item -fno-implicit-templates
3055@opindex fno-implicit-templates
3056@opindex fimplicit-templates
3057Never emit code for non-inline templates that are instantiated
3058implicitly (i.e.@: by use); only emit code for explicit instantiations.
3059If you use this option, you must take care to structure your code to
3060include all the necessary explicit instantiations to avoid getting
3061undefined symbols at link time.
3062@xref{Template Instantiation}, for more information.
3063
3064@item -fno-implicit-inline-templates
3065@opindex fno-implicit-inline-templates
3066@opindex fimplicit-inline-templates
3067Don't emit code for implicit instantiations of inline templates, either.
3068The default is to handle inlines differently so that compiles with and
3069without optimization need the same set of explicit instantiations.
3070
3071@item -fno-implement-inlines
3072@opindex fno-implement-inlines
3073@opindex fimplement-inlines
3074To save space, do not emit out-of-line copies of inline functions
3075controlled by @code{#pragma implementation}.  This causes linker
3076errors if these functions are not inlined everywhere they are called.
3077
3078@item -fmodules-ts
3079@itemx -fno-modules-ts
3080@opindex fmodules-ts
3081@opindex fno-modules-ts
3082Enable support for C++20 modules (@xref{C++ Modules}).  The
3083@option{-fno-modules-ts} is usually not needed, as that is the
3084default.  Even though this is a C++20 feature, it is not currently
3085implicitly enabled by selecting that standard version.
3086
3087@item -fmodule-header
3088@itemx -fmodule-header=user
3089@itemx -fmodule-header=system
3090@opindex fmodule-header
3091Compile a header file to create an importable header unit.
3092
3093@item -fmodule-implicit-inline
3094@opindex fmodule-implicit-inline
3095Member functions defined in their class definitions are not implicitly
3096inline for modular code.  This is different to traditional C++
3097behavior, for good reasons.  However, it may result in a difficulty
3098during code porting.  This option makes such function definitions
3099implicitly inline.  It does however generate an ABI incompatibility,
3100so you must use it everywhere or nowhere.  (Such definitions outside
3101of a named module remain implicitly inline, regardless.)
3102
3103@item -fno-module-lazy
3104@opindex fno-module-lazy
3105@opindex fmodule-lazy
3106Disable lazy module importing and module mapper creation.
3107
3108@item -fmodule-mapper=@r{[}@var{hostname}@r{]}:@var{port}@r{[}?@var{ident}@r{]}
3109@itemx -fmodule-mapper=|@var{program}@r{[}?@var{ident}@r{]} @var{args...}
3110@itemx -fmodule-mapper==@var{socket}@r{[}?@var{ident}@r{]}
3111@itemx -fmodule-mapper=<>@r{[}@var{inout}@r{]}@r{[}?@var{ident}@r{]}
3112@itemx -fmodule-mapper=<@var{in}>@var{out}@r{[}?@var{ident}@r{]}
3113@itemx -fmodule-mapper=@var{file}@r{[}?@var{ident}@r{]}
3114@vindex CXX_MODULE_MAPPER @r{environment variable}
3115@opindex fmodule-mapper
3116An oracle to query for module name to filename mappings.  If
3117unspecified the @env{CXX_MODULE_MAPPER} environment variable is used,
3118and if that is unset, an in-process default is provided.
3119
3120@item -fmodule-only
3121@opindex fmodule-only
3122Only emit the Compiled Module Interface, inhibiting any object file.
3123
3124@item -fms-extensions
3125@opindex fms-extensions
3126Disable Wpedantic warnings about constructs used in MFC, such as implicit
3127int and getting a pointer to member function via non-standard syntax.
3128
3129@item -fnew-inheriting-ctors
3130@opindex fnew-inheriting-ctors
3131Enable the P0136 adjustment to the semantics of C++11 constructor
3132inheritance.  This is part of C++17 but also considered to be a Defect
3133Report against C++11 and C++14.  This flag is enabled by default
3134unless @option{-fabi-version=10} or lower is specified.
3135
3136@item -fnew-ttp-matching
3137@opindex fnew-ttp-matching
3138Enable the P0522 resolution to Core issue 150, template template
3139parameters and default arguments: this allows a template with default
3140template arguments as an argument for a template template parameter
3141with fewer template parameters.  This flag is enabled by default for
3142@option{-std=c++17}.
3143
3144@item -fno-nonansi-builtins
3145@opindex fno-nonansi-builtins
3146@opindex fnonansi-builtins
3147Disable built-in declarations of functions that are not mandated by
3148ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
3149@code{index}, @code{bzero}, @code{conjf}, and other related functions.
3150
3151@item -fnothrow-opt
3152@opindex fnothrow-opt
3153Treat a @code{throw()} exception specification as if it were a
3154@code{noexcept} specification to reduce or eliminate the text size
3155overhead relative to a function with no exception specification.  If
3156the function has local variables of types with non-trivial
3157destructors, the exception specification actually makes the
3158function smaller because the EH cleanups for those variables can be
3159optimized away.  The semantic effect is that an exception thrown out of
3160a function with such an exception specification results in a call
3161to @code{terminate} rather than @code{unexpected}.
3162
3163@item -fno-operator-names
3164@opindex fno-operator-names
3165@opindex foperator-names
3166Do not treat the operator name keywords @code{and}, @code{bitand},
3167@code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
3168synonyms as keywords.
3169
3170@item -fno-optional-diags
3171@opindex fno-optional-diags
3172@opindex foptional-diags
3173Disable diagnostics that the standard says a compiler does not need to
3174issue.  Currently, the only such diagnostic issued by G++ is the one for
3175a name having multiple meanings within a class.
3176
3177@item -fpermissive
3178@opindex fpermissive
3179Downgrade some diagnostics about nonconformant code from errors to
3180warnings.  Thus, using @option{-fpermissive} allows some
3181nonconforming code to compile.
3182
3183@item -fno-pretty-templates
3184@opindex fno-pretty-templates
3185@opindex fpretty-templates
3186When an error message refers to a specialization of a function
3187template, the compiler normally prints the signature of the
3188template followed by the template arguments and any typedefs or
3189typenames in the signature (e.g.@: @code{void f(T) [with T = int]}
3190rather than @code{void f(int)}) so that it's clear which template is
3191involved.  When an error message refers to a specialization of a class
3192template, the compiler omits any template arguments that match
3193the default template arguments for that template.  If either of these
3194behaviors make it harder to understand the error message rather than
3195easier, you can use @option{-fno-pretty-templates} to disable them.
3196
3197@item -fno-rtti
3198@opindex fno-rtti
3199@opindex frtti
3200Disable generation of information about every class with virtual
3201functions for use by the C++ run-time type identification features
3202(@code{dynamic_cast} and @code{typeid}).  If you don't use those parts
3203of the language, you can save some space by using this flag.  Note that
3204exception handling uses the same information, but G++ generates it as
3205needed. The @code{dynamic_cast} operator can still be used for casts that
3206do not require run-time type information, i.e.@: casts to @code{void *} or to
3207unambiguous base classes.
3208
3209Mixing code compiled with @option{-frtti} with that compiled with
3210@option{-fno-rtti} may not work.  For example, programs may
3211fail to link if a class compiled with @option{-fno-rtti} is used as a base
3212for a class compiled with @option{-frtti}.
3213
3214@item -fsized-deallocation
3215@opindex fsized-deallocation
3216Enable the built-in global declarations
3217@smallexample
3218void operator delete (void *, std::size_t) noexcept;
3219void operator delete[] (void *, std::size_t) noexcept;
3220@end smallexample
3221as introduced in C++14.  This is useful for user-defined replacement
3222deallocation functions that, for example, use the size of the object
3223to make deallocation faster.  Enabled by default under
3224@option{-std=c++14} and above.  The flag @option{-Wsized-deallocation}
3225warns about places that might want to add a definition.
3226
3227@item -fstrict-enums
3228@opindex fstrict-enums
3229Allow the compiler to optimize using the assumption that a value of
3230enumerated type can only be one of the values of the enumeration (as
3231defined in the C++ standard; basically, a value that can be
3232represented in the minimum number of bits needed to represent all the
3233enumerators).  This assumption may not be valid if the program uses a
3234cast to convert an arbitrary integer value to the enumerated type.
3235
3236@item -fstrong-eval-order
3237@opindex fstrong-eval-order
3238Evaluate member access, array subscripting, and shift expressions in
3239left-to-right order, and evaluate assignment in right-to-left order,
3240as adopted for C++17.  Enabled by default with @option{-std=c++17}.
3241@option{-fstrong-eval-order=some} enables just the ordering of member
3242access and shift expressions, and is the default without
3243@option{-std=c++17}.
3244
3245@item -ftemplate-backtrace-limit=@var{n}
3246@opindex ftemplate-backtrace-limit
3247Set the maximum number of template instantiation notes for a single
3248warning or error to @var{n}.  The default value is 10.
3249
3250@item -ftemplate-depth=@var{n}
3251@opindex ftemplate-depth
3252Set the maximum instantiation depth for template classes to @var{n}.
3253A limit on the template instantiation depth is needed to detect
3254endless recursions during template class instantiation.  ANSI/ISO C++
3255conforming programs must not rely on a maximum depth greater than 17
3256(changed to 1024 in C++11).  The default value is 900, as the compiler
3257can run out of stack space before hitting 1024 in some situations.
3258
3259@item -fno-threadsafe-statics
3260@opindex fno-threadsafe-statics
3261@opindex fthreadsafe-statics
3262Do not emit the extra code to use the routines specified in the C++
3263ABI for thread-safe initialization of local statics.  You can use this
3264option to reduce code size slightly in code that doesn't need to be
3265thread-safe.
3266
3267@item -fuse-cxa-atexit
3268@opindex fuse-cxa-atexit
3269Register destructors for objects with static storage duration with the
3270@code{__cxa_atexit} function rather than the @code{atexit} function.
3271This option is required for fully standards-compliant handling of static
3272destructors, but only works if your C library supports
3273@code{__cxa_atexit}.
3274
3275@item -fno-use-cxa-get-exception-ptr
3276@opindex fno-use-cxa-get-exception-ptr
3277@opindex fuse-cxa-get-exception-ptr
3278Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
3279causes @code{std::uncaught_exception} to be incorrect, but is necessary
3280if the runtime routine is not available.
3281
3282@item -fvisibility-inlines-hidden
3283@opindex fvisibility-inlines-hidden
3284This switch declares that the user does not attempt to compare
3285pointers to inline functions or methods where the addresses of the two functions
3286are taken in different shared objects.
3287
3288The effect of this is that GCC may, effectively, mark inline methods with
3289@code{__attribute__ ((visibility ("hidden")))} so that they do not
3290appear in the export table of a DSO and do not require a PLT indirection
3291when used within the DSO@.  Enabling this option can have a dramatic effect
3292on load and link times of a DSO as it massively reduces the size of the
3293dynamic export table when the library makes heavy use of templates.
3294
3295The behavior of this switch is not quite the same as marking the
3296methods as hidden directly, because it does not affect static variables
3297local to the function or cause the compiler to deduce that
3298the function is defined in only one shared object.
3299
3300You may mark a method as having a visibility explicitly to negate the
3301effect of the switch for that method.  For example, if you do want to
3302compare pointers to a particular inline method, you might mark it as
3303having default visibility.  Marking the enclosing class with explicit
3304visibility has no effect.
3305
3306Explicitly instantiated inline methods are unaffected by this option
3307as their linkage might otherwise cross a shared library boundary.
3308@xref{Template Instantiation}.
3309
3310@item -fvisibility-ms-compat
3311@opindex fvisibility-ms-compat
3312This flag attempts to use visibility settings to make GCC's C++
3313linkage model compatible with that of Microsoft Visual Studio.
3314
3315The flag makes these changes to GCC's linkage model:
3316
3317@enumerate
3318@item
3319It sets the default visibility to @code{hidden}, like
3320@option{-fvisibility=hidden}.
3321
3322@item
3323Types, but not their members, are not hidden by default.
3324
3325@item
3326The One Definition Rule is relaxed for types without explicit
3327visibility specifications that are defined in more than one
3328shared object: those declarations are permitted if they are
3329permitted when this option is not used.
3330@end enumerate
3331
3332In new code it is better to use @option{-fvisibility=hidden} and
3333export those classes that are intended to be externally visible.
3334Unfortunately it is possible for code to rely, perhaps accidentally,
3335on the Visual Studio behavior.
3336
3337Among the consequences of these changes are that static data members
3338of the same type with the same name but defined in different shared
3339objects are different, so changing one does not change the other;
3340and that pointers to function members defined in different shared
3341objects may not compare equal.  When this flag is given, it is a
3342violation of the ODR to define types with the same name differently.
3343
3344@item -fno-weak
3345@opindex fno-weak
3346@opindex fweak
3347Do not use weak symbol support, even if it is provided by the linker.
3348By default, G++ uses weak symbols if they are available.  This
3349option exists only for testing, and should not be used by end-users;
3350it results in inferior code and has no benefits.  This option may
3351be removed in a future release of G++.
3352
3353@item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3354@opindex fext-numeric-literals
3355@opindex fno-ext-numeric-literals
3356Accept imaginary, fixed-point, or machine-defined
3357literal number suffixes as GNU extensions.
3358When this option is turned off these suffixes are treated
3359as C++11 user-defined literal numeric suffixes.
3360This is on by default for all pre-C++11 dialects and all GNU dialects:
3361@option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3362@option{-std=gnu++14}.
3363This option is off by default
3364for ISO C++11 onwards (@option{-std=c++11}, ...).
3365
3366@item -nostdinc++
3367@opindex nostdinc++
3368Do not search for header files in the standard directories specific to
3369C++, but do still search the other standard directories.  (This option
3370is used when building the C++ library.)
3371
3372@item -flang-info-include-translate
3373@itemx -flang-info-include-translate-not
3374@itemx -flang-info-include-translate=@var{header}
3375@opindex flang-info-include-translate
3376@opindex flang-info-include-translate-not
3377Inform of include translation events.  The first will note accepted
3378include translations, the second will note declined include
3379translations.  The @var{header} form will inform of include
3380translations relating to that specific header.  If @var{header} is of
3381the form @code{"user"} or @code{<system>} it will be resolved to a
3382specific user or system header using the include path.
3383
3384@item -flang-info-module-cmi
3385@itemx -flang-info-module-cmi=@var{module}
3386@opindex flang-info-module-cmi
3387Inform of Compiled Module Interface pathnames.  The first will note
3388all read CMI pathnames.  The @var{module} form will not reading a
3389specific module's CMI.  @var{module} may be a named module or a
3390header-unit (the latter indicated by either being a pathname containing
3391directory separators or enclosed in @code{<>} or @code{""}).
3392
3393@item -stdlib=@var{libstdc++,libc++}
3394@opindex stdlib
3395When G++ is configured to support this option, it allows specification of
3396alternate C++ runtime libraries.  Two options are available: @var{libstdc++}
3397(the default, native C++ runtime for G++) and @var{libc++} which is the
3398C++ runtime installed on some operating systems (e.g. Darwin versions from
3399Darwin11 onwards).  The option switches G++ to use the headers from the
3400specified library and to emit @code{-lstdc++} or @code{-lc++} respectively,
3401when a C++ runtime is required for linking.
3402@end table
3403
3404In addition, these warning options have meanings only for C++ programs:
3405
3406@table @gcctabopt
3407@item -Wabi-tag @r{(C++ and Objective-C++ only)}
3408@opindex Wabi-tag
3409Warn when a type with an ABI tag is used in a context that does not
3410have that ABI tag.  See @ref{C++ Attributes} for more information
3411about ABI tags.
3412
3413@item -Wcomma-subscript @r{(C++ and Objective-C++ only)}
3414@opindex Wcomma-subscript
3415@opindex Wno-comma-subscript
3416Warn about uses of a comma expression within a subscripting expression.
3417This usage was deprecated in C++20.  However, a comma expression wrapped
3418in @code{( )} is not deprecated.  Example:
3419
3420@smallexample
3421@group
3422void f(int *a, int b, int c) @{
3423    a[b,c];     // deprecated
3424    a[(b,c)];   // OK
3425@}
3426@end group
3427@end smallexample
3428
3429Enabled by default with @option{-std=c++20}.
3430
3431@item -Wctad-maybe-unsupported @r{(C++ and Objective-C++ only)}
3432@opindex Wctad-maybe-unsupported
3433@opindex Wno-ctad-maybe-unsupported
3434Warn when performing class template argument deduction (CTAD) on a type with
3435no explicitly written deduction guides.  This warning will point out cases
3436where CTAD succeeded only because the compiler synthesized the implicit
3437deduction guides, which might not be what the programmer intended.  Certain
3438style guides allow CTAD only on types that specifically "opt-in"; i.e., on
3439types that are designed to support CTAD.  This warning can be suppressed with
3440the following pattern:
3441
3442@smallexample
3443struct allow_ctad_t; // any name works
3444template <typename T> struct S @{
3445  S(T) @{ @}
3446@};
3447S(allow_ctad_t) -> S<void>; // guide with incomplete parameter type will never be considered
3448@end smallexample
3449
3450@item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
3451@opindex Wctor-dtor-privacy
3452@opindex Wno-ctor-dtor-privacy
3453Warn when a class seems unusable because all the constructors or
3454destructors in that class are private, and it has neither friends nor
3455public static member functions.  Also warn if there are no non-private
3456methods, and there's at least one private member function that isn't
3457a constructor or destructor.
3458
3459@item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
3460@opindex Wdelete-non-virtual-dtor
3461@opindex Wno-delete-non-virtual-dtor
3462Warn when @code{delete} is used to destroy an instance of a class that
3463has virtual functions and non-virtual destructor. It is unsafe to delete
3464an instance of a derived class through a pointer to a base class if the
3465base class does not have a virtual destructor.  This warning is enabled
3466by @option{-Wall}.
3467
3468@item -Wdeprecated-copy @r{(C++ and Objective-C++ only)}
3469@opindex Wdeprecated-copy
3470@opindex Wno-deprecated-copy
3471Warn that the implicit declaration of a copy constructor or copy
3472assignment operator is deprecated if the class has a user-provided
3473copy constructor or copy assignment operator, in C++11 and up.  This
3474warning is enabled by @option{-Wextra}.  With
3475@option{-Wdeprecated-copy-dtor}, also deprecate if the class has a
3476user-provided destructor.
3477
3478@item -Wno-deprecated-enum-enum-conversion @r{(C++ and Objective-C++ only)}
3479@opindex Wdeprecated-enum-enum-conversion
3480@opindex Wno-deprecated-enum-enum-conversion
3481Disable the warning about the case when the usual arithmetic conversions
3482are applied on operands where one is of enumeration type and the other is
3483of a different enumeration type.  This conversion was deprecated in C++20.
3484For example:
3485
3486@smallexample
3487enum E1 @{ e @};
3488enum E2 @{ f @};
3489int k = f - e;
3490@end smallexample
3491
3492@option{-Wdeprecated-enum-enum-conversion} is enabled by default with
3493@option{-std=c++20}.  In pre-C++20 dialects, this warning can be enabled
3494by @option{-Wenum-conversion}.
3495
3496@item -Wno-deprecated-enum-float-conversion @r{(C++ and Objective-C++ only)}
3497@opindex Wdeprecated-enum-float-conversion
3498@opindex Wno-deprecated-enum-float-conversion
3499Disable the warning about the case when the usual arithmetic conversions
3500are applied on operands where one is of enumeration type and the other is
3501of a floating-point type.  This conversion was deprecated in C++20.  For
3502example:
3503
3504@smallexample
3505enum E1 @{ e @};
3506enum E2 @{ f @};
3507bool b = e <= 3.7;
3508@end smallexample
3509
3510@option{-Wdeprecated-enum-float-conversion} is enabled by default with
3511@option{-std=c++20}.  In pre-C++20 dialects, this warning can be enabled
3512by @option{-Wenum-conversion}.
3513
3514@item -Wno-init-list-lifetime @r{(C++ and Objective-C++ only)}
3515@opindex Winit-list-lifetime
3516@opindex Wno-init-list-lifetime
3517Do not warn about uses of @code{std::initializer_list} that are likely
3518to result in dangling pointers.  Since the underlying array for an
3519@code{initializer_list} is handled like a normal C++ temporary object,
3520it is easy to inadvertently keep a pointer to the array past the end
3521of the array's lifetime.  For example:
3522
3523@itemize @bullet
3524@item
3525If a function returns a temporary @code{initializer_list}, or a local
3526@code{initializer_list} variable, the array's lifetime ends at the end
3527of the return statement, so the value returned has a dangling pointer.
3528
3529@item
3530If a new-expression creates an @code{initializer_list}, the array only
3531lives until the end of the enclosing full-expression, so the
3532@code{initializer_list} in the heap has a dangling pointer.
3533
3534@item
3535When an @code{initializer_list} variable is assigned from a
3536brace-enclosed initializer list, the temporary array created for the
3537right side of the assignment only lives until the end of the
3538full-expression, so at the next statement the @code{initializer_list}
3539variable has a dangling pointer.
3540
3541@smallexample
3542// li's initial underlying array lives as long as li
3543std::initializer_list<int> li = @{ 1,2,3 @};
3544// assignment changes li to point to a temporary array
3545li = @{ 4, 5 @};
3546// now the temporary is gone and li has a dangling pointer
3547int i = li.begin()[0] // undefined behavior
3548@end smallexample
3549
3550@item
3551When a list constructor stores the @code{begin} pointer from the
3552@code{initializer_list} argument, this doesn't extend the lifetime of
3553the array, so if a class variable is constructed from a temporary
3554@code{initializer_list}, the pointer is left dangling by the end of
3555the variable declaration statement.
3556
3557@end itemize
3558
3559@item -Winvalid-imported-macros
3560@opindex Winvalid-imported-macros
3561@opindex Wno-invalid-imported-macros
3562Verify all imported macro definitions are valid at the end of
3563compilation.  This is not enabled by default, as it requires
3564additional processing to determine.  It may be useful when preparing
3565sets of header-units to ensure consistent macros.
3566
3567@item -Wno-literal-suffix @r{(C++ and Objective-C++ only)}
3568@opindex Wliteral-suffix
3569@opindex Wno-literal-suffix
3570Do not warn when a string or character literal is followed by a
3571ud-suffix which does not begin with an underscore.  As a conforming
3572extension, GCC treats such suffixes as separate preprocessing tokens
3573in order to maintain backwards compatibility with code that uses
3574formatting macros from @code{<inttypes.h>}.  For example:
3575
3576@smallexample
3577#define __STDC_FORMAT_MACROS
3578#include <inttypes.h>
3579#include <stdio.h>
3580
3581int main() @{
3582  int64_t i64 = 123;
3583  printf("My int64: %" PRId64"\n", i64);
3584@}
3585@end smallexample
3586
3587In this case, @code{PRId64} is treated as a separate preprocessing token.
3588
3589This option also controls warnings when a user-defined literal
3590operator is declared with a literal suffix identifier that doesn't
3591begin with an underscore. Literal suffix identifiers that don't begin
3592with an underscore are reserved for future standardization.
3593
3594These warnings are enabled by default.
3595
3596@item -Wno-narrowing @r{(C++ and Objective-C++ only)}
3597@opindex Wnarrowing
3598@opindex Wno-narrowing
3599For C++11 and later standards, narrowing conversions are diagnosed by default,
3600as required by the standard.  A narrowing conversion from a constant produces
3601an error, and a narrowing conversion from a non-constant produces a warning,
3602but @option{-Wno-narrowing} suppresses the diagnostic.
3603Note that this does not affect the meaning of well-formed code;
3604narrowing conversions are still considered ill-formed in SFINAE contexts.
3605
3606With @option{-Wnarrowing} in C++98, warn when a narrowing
3607conversion prohibited by C++11 occurs within
3608@samp{@{ @}}, e.g.
3609
3610@smallexample
3611int i = @{ 2.2 @}; // error: narrowing from double to int
3612@end smallexample
3613
3614This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
3615
3616@item -Wnoexcept @r{(C++ and Objective-C++ only)}
3617@opindex Wnoexcept
3618@opindex Wno-noexcept
3619Warn when a noexcept-expression evaluates to false because of a call
3620to a function that does not have a non-throwing exception
3621specification (i.e. @code{throw()} or @code{noexcept}) but is known by
3622the compiler to never throw an exception.
3623
3624@item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
3625@opindex Wnoexcept-type
3626@opindex Wno-noexcept-type
3627Warn if the C++17 feature making @code{noexcept} part of a function
3628type changes the mangled name of a symbol relative to C++14.  Enabled
3629by @option{-Wabi} and @option{-Wc++17-compat}.
3630
3631As an example:
3632
3633@smallexample
3634template <class T> void f(T t) @{ t(); @};
3635void g() noexcept;
3636void h() @{ f(g); @}
3637@end smallexample
3638
3639@noindent
3640In C++14, @code{f} calls @code{f<void(*)()>}, but in
3641C++17 it calls @code{f<void(*)()noexcept>}.
3642
3643@item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3644@opindex Wclass-memaccess
3645@opindex Wno-class-memaccess
3646Warn when the destination of a call to a raw memory function such as
3647@code{memset} or @code{memcpy} is an object of class type, and when writing
3648into such an object might bypass the class non-trivial or deleted constructor
3649or copy assignment, violate const-correctness or encapsulation, or corrupt
3650virtual table pointers.  Modifying the representation of such objects may
3651violate invariants maintained by member functions of the class.  For example,
3652the call to @code{memset} below is undefined because it modifies a non-trivial
3653class object and is, therefore, diagnosed.  The safe way to either initialize
3654or clear the storage of objects of such types is by using the appropriate
3655constructor or assignment operator, if one is available.
3656@smallexample
3657std::string str = "abc";
3658memset (&str, 0, sizeof str);
3659@end smallexample
3660The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3661Explicitly casting the pointer to the class object to @code{void *} or
3662to a type that can be safely accessed by the raw memory function suppresses
3663the warning.
3664
3665@item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3666@opindex Wnon-virtual-dtor
3667@opindex Wno-non-virtual-dtor
3668Warn when a class has virtual functions and an accessible non-virtual
3669destructor itself or in an accessible polymorphic base class, in which
3670case it is possible but unsafe to delete an instance of a derived
3671class through a pointer to the class itself or base class.  This
3672warning is automatically enabled if @option{-Weffc++} is specified.
3673
3674@item -Wregister @r{(C++ and Objective-C++ only)}
3675@opindex Wregister
3676@opindex Wno-register
3677Warn on uses of the @code{register} storage class specifier, except
3678when it is part of the GNU @ref{Explicit Register Variables} extension.
3679The use of the @code{register} keyword as storage class specifier has
3680been deprecated in C++11 and removed in C++17.
3681Enabled by default with @option{-std=c++17}.
3682
3683@item -Wreorder @r{(C++ and Objective-C++ only)}
3684@opindex Wreorder
3685@opindex Wno-reorder
3686@cindex reordering, warning
3687@cindex warning for reordering of member initializers
3688Warn when the order of member initializers given in the code does not
3689match the order in which they must be executed.  For instance:
3690
3691@smallexample
3692struct A @{
3693  int i;
3694  int j;
3695  A(): j (0), i (1) @{ @}
3696@};
3697@end smallexample
3698
3699@noindent
3700The compiler rearranges the member initializers for @code{i}
3701and @code{j} to match the declaration order of the members, emitting
3702a warning to that effect.  This warning is enabled by @option{-Wall}.
3703
3704@item -Wno-pessimizing-move @r{(C++ and Objective-C++ only)}
3705@opindex Wpessimizing-move
3706@opindex Wno-pessimizing-move
3707This warning warns when a call to @code{std::move} prevents copy
3708elision.  A typical scenario when copy elision can occur is when returning in
3709a function with a class return type, when the expression being returned is the
3710name of a non-volatile automatic object, and is not a function parameter, and
3711has the same type as the function return type.
3712
3713@smallexample
3714struct T @{
3715@dots{}
3716@};
3717T fn()
3718@{
3719  T t;
3720  @dots{}
3721  return std::move (t);
3722@}
3723@end smallexample
3724
3725But in this example, the @code{std::move} call prevents copy elision.
3726
3727This warning is enabled by @option{-Wall}.
3728
3729@item -Wno-redundant-move @r{(C++ and Objective-C++ only)}
3730@opindex Wredundant-move
3731@opindex Wno-redundant-move
3732This warning warns about redundant calls to @code{std::move}; that is, when
3733a move operation would have been performed even without the @code{std::move}
3734call.  This happens because the compiler is forced to treat the object as if
3735it were an rvalue in certain situations such as returning a local variable,
3736where copy elision isn't applicable.  Consider:
3737
3738@smallexample
3739struct T @{
3740@dots{}
3741@};
3742T fn(T t)
3743@{
3744  @dots{}
3745  return std::move (t);
3746@}
3747@end smallexample
3748
3749Here, the @code{std::move} call is redundant.  Because G++ implements Core
3750Issue 1579, another example is:
3751
3752@smallexample
3753struct T @{ // convertible to U
3754@dots{}
3755@};
3756struct U @{
3757@dots{}
3758@};
3759U fn()
3760@{
3761  T t;
3762  @dots{}
3763  return std::move (t);
3764@}
3765@end smallexample
3766In this example, copy elision isn't applicable because the type of the
3767expression being returned and the function return type differ, yet G++
3768treats the return value as if it were designated by an rvalue.
3769
3770This warning is enabled by @option{-Wextra}.
3771
3772@item -Wrange-loop-construct @r{(C++ and Objective-C++ only)}
3773@opindex Wrange-loop-construct
3774@opindex Wno-range-loop-construct
3775This warning warns when a C++ range-based for-loop is creating an unnecessary
3776copy.  This can happen when the range declaration is not a reference, but
3777probably should be.  For example:
3778
3779@smallexample
3780struct S @{ char arr[128]; @};
3781void fn () @{
3782  S arr[5];
3783  for (const auto x : arr) @{ @dots{} @}
3784@}
3785@end smallexample
3786
3787It does not warn when the type being copied is a trivially-copyable type whose
3788size is less than 64 bytes.
3789
3790This warning also warns when a loop variable in a range-based for-loop is
3791initialized with a value of a different type resulting in a copy.  For example:
3792
3793@smallexample
3794void fn() @{
3795  int arr[10];
3796  for (const double &x : arr) @{ @dots{} @}
3797@}
3798@end smallexample
3799
3800In the example above, in every iteration of the loop a temporary value of
3801type @code{double} is created and destroyed, to which the reference
3802@code{const double &} is bound.
3803
3804This warning is enabled by @option{-Wall}.
3805
3806@item -Wredundant-tags @r{(C++ and Objective-C++ only)}
3807@opindex Wredundant-tags
3808@opindex Wno-redundant-tags
3809Warn about redundant class-key and enum-key in references to class types
3810and enumerated types in contexts where the key can be eliminated without
3811causing an ambiguity.  For example:
3812
3813@smallexample
3814struct foo;
3815struct foo *p;   // warn that keyword struct can be eliminated
3816@end smallexample
3817
3818@noindent
3819On the other hand, in this example there is no warning:
3820
3821@smallexample
3822struct foo;
3823void foo ();   // "hides" struct foo
3824void bar (struct foo&);  // no warning, keyword struct is necessary
3825@end smallexample
3826
3827@item -Wno-subobject-linkage @r{(C++ and Objective-C++ only)}
3828@opindex Wsubobject-linkage
3829@opindex Wno-subobject-linkage
3830Do not warn
3831if a class type has a base or a field whose type uses the anonymous
3832namespace or depends on a type with no linkage.  If a type A depends on
3833a type B with no or internal linkage, defining it in multiple
3834translation units would be an ODR violation because the meaning of B
3835is different in each translation unit.  If A only appears in a single
3836translation unit, the best way to silence the warning is to give it
3837internal linkage by putting it in an anonymous namespace as well.  The
3838compiler doesn't give this warning for types defined in the main .C
3839file, as those are unlikely to have multiple definitions.
3840@option{-Wsubobject-linkage} is enabled by default.
3841
3842@item -Weffc++ @r{(C++ and Objective-C++ only)}
3843@opindex Weffc++
3844@opindex Wno-effc++
3845Warn about violations of the following style guidelines from Scott Meyers'
3846@cite{Effective C++} series of books:
3847
3848@itemize @bullet
3849@item
3850Define a copy constructor and an assignment operator for classes
3851with dynamically-allocated memory.
3852
3853@item
3854Prefer initialization to assignment in constructors.
3855
3856@item
3857Have @code{operator=} return a reference to @code{*this}.
3858
3859@item
3860Don't try to return a reference when you must return an object.
3861
3862@item
3863Distinguish between prefix and postfix forms of increment and
3864decrement operators.
3865
3866@item
3867Never overload @code{&&}, @code{||}, or @code{,}.
3868
3869@end itemize
3870
3871This option also enables @option{-Wnon-virtual-dtor}, which is also
3872one of the effective C++ recommendations.  However, the check is
3873extended to warn about the lack of virtual destructor in accessible
3874non-polymorphic bases classes too.
3875
3876When selecting this option, be aware that the standard library
3877headers do not obey all of these guidelines; use @samp{grep -v}
3878to filter out those warnings.
3879
3880@item -Wno-exceptions @r{(C++ and Objective-C++ only)}
3881@opindex Wexceptions
3882@opindex Wno-exceptions
3883Disable the warning about the case when an exception handler is shadowed by
3884another handler, which can point out a wrong ordering of exception handlers.
3885
3886@item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3887@opindex Wstrict-null-sentinel
3888@opindex Wno-strict-null-sentinel
3889Warn about the use of an uncasted @code{NULL} as sentinel.  When
3890compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3891to @code{__null}.  Although it is a null pointer constant rather than a
3892null pointer, it is guaranteed to be of the same size as a pointer.
3893But this use is not portable across different compilers.
3894
3895@item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3896@opindex Wno-non-template-friend
3897@opindex Wnon-template-friend
3898Disable warnings when non-template friend functions are declared
3899within a template.  In very old versions of GCC that predate implementation
3900of the ISO standard, declarations such as
3901@samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3902could be interpreted as a particular specialization of a template
3903function; the warning exists to diagnose compatibility problems,
3904and is enabled by default.
3905
3906@item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3907@opindex Wold-style-cast
3908@opindex Wno-old-style-cast
3909Warn if an old-style (C-style) cast to a non-void type is used within
3910a C++ program.  The new-style casts (@code{dynamic_cast},
3911@code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3912less vulnerable to unintended effects and much easier to search for.
3913
3914@item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3915@opindex Woverloaded-virtual
3916@opindex Wno-overloaded-virtual
3917@cindex overloaded virtual function, warning
3918@cindex warning for overloaded virtual function
3919Warn when a function declaration hides virtual functions from a
3920base class.  For example, in:
3921
3922@smallexample
3923struct A @{
3924  virtual void f();
3925@};
3926
3927struct B: public A @{
3928  void f(int);
3929@};
3930@end smallexample
3931
3932the @code{A} class version of @code{f} is hidden in @code{B}, and code
3933like:
3934
3935@smallexample
3936B* b;
3937b->f();
3938@end smallexample
3939
3940@noindent
3941fails to compile.
3942
3943@item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3944@opindex Wno-pmf-conversions
3945@opindex Wpmf-conversions
3946Disable the diagnostic for converting a bound pointer to member function
3947to a plain pointer.
3948
3949@item -Wsign-promo @r{(C++ and Objective-C++ only)}
3950@opindex Wsign-promo
3951@opindex Wno-sign-promo
3952Warn when overload resolution chooses a promotion from unsigned or
3953enumerated type to a signed type, over a conversion to an unsigned type of
3954the same size.  Previous versions of G++ tried to preserve
3955unsignedness, but the standard mandates the current behavior.
3956
3957@item -Wtemplates @r{(C++ and Objective-C++ only)}
3958@opindex Wtemplates
3959@opindex Wno-templates
3960Warn when a primary template declaration is encountered.  Some coding
3961rules disallow templates, and this may be used to enforce that rule.
3962The warning is inactive inside a system header file, such as the STL, so
3963one can still use the STL.  One may also instantiate or specialize
3964templates.
3965
3966@item -Wno-mismatched-new-delete @r{(C++ and Objective-C++ only)}
3967@opindex Wmismatched-new-delete
3968@opindex Wno-mismatched-new-delete
3969Warn for mismatches between calls to @code{operator new} or @code{operator
3970delete} and the corresponding call to the allocation or deallocation function.
3971This includes invocations of C++ @code{operator delete} with pointers
3972returned from either mismatched forms of @code{operator new}, or from other
3973functions that allocate objects for which the @code{operator delete} isn't
3974a suitable deallocator, as well as calls to other deallocation functions
3975with pointers returned from @code{operator new} for which the deallocation
3976function isn't suitable.
3977
3978For example, the @code{delete} expression in the function below is diagnosed
3979because it doesn't match the array form of the @code{new} expression
3980the pointer argument was returned from.  Similarly, the call to @code{free}
3981is also diagnosed.
3982
3983@smallexample
3984void f ()
3985@{
3986  int *a = new int[n];
3987  delete a;   // warning: mismatch in array forms of expressions
3988
3989  char *p = new char[n];
3990  free (p);   // warning: mismatch between new and free
3991@}
3992@end smallexample
3993
3994The related option @option{-Wmismatched-dealloc} diagnoses mismatches
3995involving allocation and deallocation functions other than @code{operator
3996new} and @code{operator delete}.
3997
3998@option{-Wmismatched-new-delete} is enabled by default.
3999
4000@item -Wmismatched-tags @r{(C++ and Objective-C++ only)}
4001@opindex Wmismatched-tags
4002@opindex Wno-mismatched-tags
4003Warn for declarations of structs, classes, and class templates and their
4004specializations with a class-key that does not match either the definition
4005or the first declaration if no definition is provided.
4006
4007For example, the declaration of @code{struct Object} in the argument list
4008of @code{draw} triggers the warning.  To avoid it, either remove the redundant
4009class-key @code{struct} or replace it with @code{class} to match its definition.
4010@smallexample
4011class Object @{
4012public:
4013  virtual ~Object () = 0;
4014@};
4015void draw (struct Object*);
4016@end smallexample
4017
4018It is not wrong to declare a class with the class-key @code{struct} as
4019the example above shows.  The @option{-Wmismatched-tags} option is intended
4020to help achieve a consistent style of class declarations.  In code that is
4021intended to be portable to Windows-based compilers the warning helps prevent
4022unresolved references due to the difference in the mangling of symbols
4023declared with different class-keys.  The option can be used either on its
4024own or in conjunction with @option{-Wredundant-tags}.
4025
4026@item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
4027@opindex Wmultiple-inheritance
4028@opindex Wno-multiple-inheritance
4029Warn when a class is defined with multiple direct base classes.  Some
4030coding rules disallow multiple inheritance, and this may be used to
4031enforce that rule.  The warning is inactive inside a system header file,
4032such as the STL, so one can still use the STL.  One may also define
4033classes that indirectly use multiple inheritance.
4034
4035@item -Wvirtual-inheritance
4036@opindex Wvirtual-inheritance
4037@opindex Wno-virtual-inheritance
4038Warn when a class is defined with a virtual direct base class.  Some
4039coding rules disallow multiple inheritance, and this may be used to
4040enforce that rule.  The warning is inactive inside a system header file,
4041such as the STL, so one can still use the STL.  One may also define
4042classes that indirectly use virtual inheritance.
4043
4044@item -Wno-virtual-move-assign
4045@opindex Wvirtual-move-assign
4046@opindex Wno-virtual-move-assign
4047Suppress warnings about inheriting from a virtual base with a
4048non-trivial C++11 move assignment operator.  This is dangerous because
4049if the virtual base is reachable along more than one path, it is
4050moved multiple times, which can mean both objects end up in the
4051moved-from state.  If the move assignment operator is written to avoid
4052moving from a moved-from object, this warning can be disabled.
4053
4054@item -Wnamespaces
4055@opindex Wnamespaces
4056@opindex Wno-namespaces
4057Warn when a namespace definition is opened.  Some coding rules disallow
4058namespaces, and this may be used to enforce that rule.  The warning is
4059inactive inside a system header file, such as the STL, so one can still
4060use the STL.  One may also use using directives and qualified names.
4061
4062@item -Wno-terminate @r{(C++ and Objective-C++ only)}
4063@opindex Wterminate
4064@opindex Wno-terminate
4065Disable the warning about a throw-expression that will immediately
4066result in a call to @code{terminate}.
4067
4068@item -Wno-vexing-parse @r{(C++ and Objective-C++ only)}
4069@opindex Wvexing-parse
4070@opindex Wno-vexing-parse
4071Warn about the most vexing parse syntactic ambiguity.  This warns about
4072the cases when a declaration looks like a variable definition, but the
4073C++ language requires it to be interpreted as a function declaration.
4074For instance:
4075
4076@smallexample
4077void f(double a) @{
4078  int i();        // extern int i (void);
4079  int n(int(a));  // extern int n (int);
4080@}
4081@end smallexample
4082
4083Another example:
4084
4085@smallexample
4086struct S @{ S(int); @};
4087void f(double a) @{
4088  S x(int(a));   // extern struct S x (int);
4089  S y(int());    // extern struct S y (int (*) (void));
4090  S z();         // extern struct S z (void);
4091@}
4092@end smallexample
4093
4094The warning will suggest options how to deal with such an ambiguity; e.g.,
4095it can suggest removing the parentheses or using braces instead.
4096
4097This warning is enabled by default.
4098
4099@item -Wno-class-conversion @r{(C++ and Objective-C++ only)}
4100@opindex Wno-class-conversion
4101@opindex Wclass-conversion
4102Do not warn when a conversion function converts an
4103object to the same type, to a base class of that type, or to void; such
4104a conversion function will never be called.
4105
4106@item -Wvolatile @r{(C++ and Objective-C++ only)}
4107@opindex Wvolatile
4108@opindex Wno-volatile
4109Warn about deprecated uses of the @code{volatile} qualifier.  This includes
4110postfix and prefix @code{++} and @code{--} expressions of
4111@code{volatile}-qualified types, using simple assignments where the left
4112operand is a @code{volatile}-qualified non-class type for their value,
4113compound assignments where the left operand is a @code{volatile}-qualified
4114non-class type, @code{volatile}-qualified function return type,
4115@code{volatile}-qualified parameter type, and structured bindings of a
4116@code{volatile}-qualified type.  This usage was deprecated in C++20.
4117
4118Enabled by default with @option{-std=c++20}.
4119
4120@item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4121@opindex Wzero-as-null-pointer-constant
4122@opindex Wno-zero-as-null-pointer-constant
4123Warn when a literal @samp{0} is used as null pointer constant.  This can
4124be useful to facilitate the conversion to @code{nullptr} in C++11.
4125
4126@item -Waligned-new
4127@opindex Waligned-new
4128@opindex Wno-aligned-new
4129Warn about a new-expression of a type that requires greater alignment
4130than the @code{alignof(std::max_align_t)} but uses an allocation
4131function without an explicit alignment parameter. This option is
4132enabled by @option{-Wall}.
4133
4134Normally this only warns about global allocation functions, but
4135@option{-Waligned-new=all} also warns about class member allocation
4136functions.
4137
4138@item -Wno-placement-new
4139@itemx -Wplacement-new=@var{n}
4140@opindex Wplacement-new
4141@opindex Wno-placement-new
4142Warn about placement new expressions with undefined behavior, such as
4143constructing an object in a buffer that is smaller than the type of
4144the object.  For example, the placement new expression below is diagnosed
4145because it attempts to construct an array of 64 integers in a buffer only
414664 bytes large.
4147@smallexample
4148char buf [64];
4149new (buf) int[64];
4150@end smallexample
4151This warning is enabled by default.
4152
4153@table @gcctabopt
4154@item -Wplacement-new=1
4155This is the default warning level of @option{-Wplacement-new}.  At this
4156level the warning is not issued for some strictly undefined constructs that
4157GCC allows as extensions for compatibility with legacy code.  For example,
4158the following @code{new} expression is not diagnosed at this level even
4159though it has undefined behavior according to the C++ standard because
4160it writes past the end of the one-element array.
4161@smallexample
4162struct S @{ int n, a[1]; @};
4163S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
4164new (s->a)int [32]();
4165@end smallexample
4166
4167@item -Wplacement-new=2
4168At this level, in addition to diagnosing all the same constructs as at level
41691, a diagnostic is also issued for placement new expressions that construct
4170an object in the last member of structure whose type is an array of a single
4171element and whose size is less than the size of the object being constructed.
4172While the previous example would be diagnosed, the following construct makes
4173use of the flexible member array extension to avoid the warning at level 2.
4174@smallexample
4175struct S @{ int n, a[]; @};
4176S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
4177new (s->a)int [32]();
4178@end smallexample
4179
4180@end table
4181
4182@item -Wcatch-value
4183@itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
4184@opindex Wcatch-value
4185@opindex Wno-catch-value
4186Warn about catch handlers that do not catch via reference.
4187With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
4188warn about polymorphic class types that are caught by value.
4189With @option{-Wcatch-value=2} warn about all class types that are caught
4190by value. With @option{-Wcatch-value=3} warn about all types that are
4191not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
4192
4193@item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4194@opindex Wconditionally-supported
4195@opindex Wno-conditionally-supported
4196Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4197
4198@item -Wno-delete-incomplete @r{(C++ and Objective-C++ only)}
4199@opindex Wdelete-incomplete
4200@opindex Wno-delete-incomplete
4201Do not warn when deleting a pointer to incomplete type, which may cause
4202undefined behavior at runtime.  This warning is enabled by default.
4203
4204@item -Wextra-semi @r{(C++, Objective-C++ only)}
4205@opindex Wextra-semi
4206@opindex Wno-extra-semi
4207Warn about redundant semicolons after in-class function definitions.
4208
4209@item -Wno-inaccessible-base @r{(C++, Objective-C++ only)}
4210@opindex Winaccessible-base
4211@opindex Wno-inaccessible-base
4212This option controls warnings
4213when a base class is inaccessible in a class derived from it due to
4214ambiguity.  The warning is enabled by default.
4215Note that the warning for ambiguous virtual
4216bases is enabled by the @option{-Wextra} option.
4217@smallexample
4218@group
4219struct A @{ int a; @};
4220
4221struct B : A @{ @};
4222
4223struct C : B, A @{ @};
4224@end group
4225@end smallexample
4226
4227@item -Wno-inherited-variadic-ctor
4228@opindex Winherited-variadic-ctor
4229@opindex Wno-inherited-variadic-ctor
4230Suppress warnings about use of C++11 inheriting constructors when the
4231base class inherited from has a C variadic constructor; the warning is
4232on by default because the ellipsis is not inherited.
4233
4234@item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
4235@opindex Wno-invalid-offsetof
4236@opindex Winvalid-offsetof
4237Suppress warnings from applying the @code{offsetof} macro to a non-POD
4238type.  According to the 2014 ISO C++ standard, applying @code{offsetof}
4239to a non-standard-layout type is undefined.  In existing C++ implementations,
4240however, @code{offsetof} typically gives meaningful results.
4241This flag is for users who are aware that they are
4242writing nonportable code and who have deliberately chosen to ignore the
4243warning about it.
4244
4245The restrictions on @code{offsetof} may be relaxed in a future version
4246of the C++ standard.
4247
4248@item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
4249@opindex Wsized-deallocation
4250@opindex Wno-sized-deallocation
4251Warn about a definition of an unsized deallocation function
4252@smallexample
4253void operator delete (void *) noexcept;
4254void operator delete[] (void *) noexcept;
4255@end smallexample
4256without a definition of the corresponding sized deallocation function
4257@smallexample
4258void operator delete (void *, std::size_t) noexcept;
4259void operator delete[] (void *, std::size_t) noexcept;
4260@end smallexample
4261or vice versa.  Enabled by @option{-Wextra} along with
4262@option{-fsized-deallocation}.
4263
4264@item -Wsuggest-final-types
4265@opindex Wno-suggest-final-types
4266@opindex Wsuggest-final-types
4267Warn about types with virtual methods where code quality would be improved
4268if the type were declared with the C++11 @code{final} specifier,
4269or, if possible,
4270declared in an anonymous namespace. This allows GCC to more aggressively
4271devirtualize the polymorphic calls. This warning is more effective with
4272link-time optimization,
4273where the information about the class hierarchy graph is
4274more complete.
4275
4276@item -Wsuggest-final-methods
4277@opindex Wno-suggest-final-methods
4278@opindex Wsuggest-final-methods
4279Warn about virtual methods where code quality would be improved if the method
4280were declared with the C++11 @code{final} specifier,
4281or, if possible, its type were
4282declared in an anonymous namespace or with the @code{final} specifier.
4283This warning is
4284more effective with link-time optimization, where the information about the
4285class hierarchy graph is more complete. It is recommended to first consider
4286suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4287annotations.
4288
4289@item -Wsuggest-override
4290@opindex Wsuggest-override
4291@opindex Wno-suggest-override
4292Warn about overriding virtual functions that are not marked with the
4293@code{override} keyword.
4294
4295@item -Wuseless-cast @r{(C++ and Objective-C++ only)}
4296@opindex Wuseless-cast
4297@opindex Wno-useless-cast
4298Warn when an expression is casted to its own type.
4299
4300@item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4301@opindex Wconversion-null
4302@opindex Wno-conversion-null
4303Do not warn for conversions between @code{NULL} and non-pointer
4304types. @option{-Wconversion-null} is enabled by default.
4305
4306@end table
4307
4308@node Objective-C and Objective-C++ Dialect Options
4309@section Options Controlling Objective-C and Objective-C++ Dialects
4310
4311@cindex compiler options, Objective-C and Objective-C++
4312@cindex Objective-C and Objective-C++ options, command-line
4313@cindex options, Objective-C and Objective-C++
4314(NOTE: This manual does not describe the Objective-C and Objective-C++
4315languages themselves.  @xref{Standards,,Language Standards
4316Supported by GCC}, for references.)
4317
4318This section describes the command-line options that are only meaningful
4319for Objective-C and Objective-C++ programs.  You can also use most of
4320the language-independent GNU compiler options.
4321For example, you might compile a file @file{some_class.m} like this:
4322
4323@smallexample
4324gcc -g -fgnu-runtime -O -c some_class.m
4325@end smallexample
4326
4327@noindent
4328In this example, @option{-fgnu-runtime} is an option meant only for
4329Objective-C and Objective-C++ programs; you can use the other options with
4330any language supported by GCC@.
4331
4332Note that since Objective-C is an extension of the C language, Objective-C
4333compilations may also use options specific to the C front-end (e.g.,
4334@option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
4335C++-specific options (e.g., @option{-Wabi}).
4336
4337Here is a list of options that are @emph{only} for compiling Objective-C
4338and Objective-C++ programs:
4339
4340@table @gcctabopt
4341@item -fconstant-string-class=@var{class-name}
4342@opindex fconstant-string-class
4343Use @var{class-name} as the name of the class to instantiate for each
4344literal string specified with the syntax @code{@@"@dots{}"}.  The default
4345class name is @code{NXConstantString} if the GNU runtime is being used, and
4346@code{NSConstantString} if the NeXT runtime is being used (see below).  The
4347@option{-fconstant-cfstrings} option, if also present, overrides the
4348@option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
4349to be laid out as constant CoreFoundation strings.
4350
4351@item -fgnu-runtime
4352@opindex fgnu-runtime
4353Generate object code compatible with the standard GNU Objective-C
4354runtime.  This is the default for most types of systems.
4355
4356@item -fnext-runtime
4357@opindex fnext-runtime
4358Generate output compatible with the NeXT runtime.  This is the default
4359for NeXT-based systems, including Darwin and Mac OS X@.  The macro
4360@code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
4361used.
4362
4363@item -fno-nil-receivers
4364@opindex fno-nil-receivers
4365@opindex fnil-receivers
4366Assume that all Objective-C message dispatches (@code{[receiver
4367message:arg]}) in this translation unit ensure that the receiver is
4368not @code{nil}.  This allows for more efficient entry points in the
4369runtime to be used.  This option is only available in conjunction with
4370the NeXT runtime and ABI version 0 or 1.
4371
4372@item -fobjc-abi-version=@var{n}
4373@opindex fobjc-abi-version
4374Use version @var{n} of the Objective-C ABI for the selected runtime.
4375This option is currently supported only for the NeXT runtime.  In that
4376case, Version 0 is the traditional (32-bit) ABI without support for
4377properties and other Objective-C 2.0 additions.  Version 1 is the
4378traditional (32-bit) ABI with support for properties and other
4379Objective-C 2.0 additions.  Version 2 is the modern (64-bit) ABI.  If
4380nothing is specified, the default is Version 0 on 32-bit target
4381machines, and Version 2 on 64-bit target machines.
4382
4383@item -fobjc-call-cxx-cdtors
4384@opindex fobjc-call-cxx-cdtors
4385For each Objective-C class, check if any of its instance variables is a
4386C++ object with a non-trivial default constructor.  If so, synthesize a
4387special @code{- (id) .cxx_construct} instance method which runs
4388non-trivial default constructors on any such instance variables, in order,
4389and then return @code{self}.  Similarly, check if any instance variable
4390is a C++ object with a non-trivial destructor, and if so, synthesize a
4391special @code{- (void) .cxx_destruct} method which runs
4392all such default destructors, in reverse order.
4393
4394The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
4395methods thusly generated only operate on instance variables
4396declared in the current Objective-C class, and not those inherited
4397from superclasses.  It is the responsibility of the Objective-C
4398runtime to invoke all such methods in an object's inheritance
4399hierarchy.  The @code{- (id) .cxx_construct} methods are invoked
4400by the runtime immediately after a new object instance is allocated;
4401the @code{- (void) .cxx_destruct} methods are invoked immediately
4402before the runtime deallocates an object instance.
4403
4404As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
4405support for invoking the @code{- (id) .cxx_construct} and
4406@code{- (void) .cxx_destruct} methods.
4407
4408@item -fobjc-direct-dispatch
4409@opindex fobjc-direct-dispatch
4410Allow fast jumps to the message dispatcher.  On Darwin this is
4411accomplished via the comm page.
4412
4413@item -fobjc-exceptions
4414@opindex fobjc-exceptions
4415Enable syntactic support for structured exception handling in
4416Objective-C, similar to what is offered by C++.  This option
4417is required to use the Objective-C keywords @code{@@try},
4418@code{@@throw}, @code{@@catch}, @code{@@finally} and
4419@code{@@synchronized}.  This option is available with both the GNU
4420runtime and the NeXT runtime (but not available in conjunction with
4421the NeXT runtime on Mac OS X 10.2 and earlier).
4422
4423@item -fobjc-gc
4424@opindex fobjc-gc
4425Enable garbage collection (GC) in Objective-C and Objective-C++
4426programs.  This option is only available with the NeXT runtime; the
4427GNU runtime has a different garbage collection implementation that
4428does not require special compiler flags.
4429
4430@item -fobjc-nilcheck
4431@opindex fobjc-nilcheck
4432For the NeXT runtime with version 2 of the ABI, check for a nil
4433receiver in method invocations before doing the actual method call.
4434This is the default and can be disabled using
4435@option{-fno-objc-nilcheck}.  Class methods and super calls are never
4436checked for nil in this way no matter what this flag is set to.
4437Currently this flag does nothing when the GNU runtime, or an older
4438version of the NeXT runtime ABI, is used.
4439
4440@item -fobjc-std=objc1
4441@opindex fobjc-std
4442Conform to the language syntax of Objective-C 1.0, the language
4443recognized by GCC 4.0.  This only affects the Objective-C additions to
4444the C/C++ language; it does not affect conformance to C/C++ standards,
4445which is controlled by the separate C/C++ dialect option flags.  When
4446this option is used with the Objective-C or Objective-C++ compiler,
4447any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
4448This is useful if you need to make sure that your Objective-C code can
4449be compiled with older versions of GCC@.
4450
4451@item -freplace-objc-classes
4452@opindex freplace-objc-classes
4453Emit a special marker instructing @command{ld(1)} not to statically link in
4454the resulting object file, and allow @command{dyld(1)} to load it in at
4455run time instead.  This is used in conjunction with the Fix-and-Continue
4456debugging mode, where the object file in question may be recompiled and
4457dynamically reloaded in the course of program execution, without the need
4458to restart the program itself.  Currently, Fix-and-Continue functionality
4459is only available in conjunction with the NeXT runtime on Mac OS X 10.3
4460and later.
4461
4462@item -fzero-link
4463@opindex fzero-link
4464When compiling for the NeXT runtime, the compiler ordinarily replaces calls
4465to @code{objc_getClass("@dots{}")} (when the name of the class is known at
4466compile time) with static class references that get initialized at load time,
4467which improves run-time performance.  Specifying the @option{-fzero-link} flag
4468suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
4469to be retained.  This is useful in Zero-Link debugging mode, since it allows
4470for individual class implementations to be modified during program execution.
4471The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
4472regardless of command-line options.
4473
4474@item -fno-local-ivars
4475@opindex fno-local-ivars
4476@opindex flocal-ivars
4477By default instance variables in Objective-C can be accessed as if
4478they were local variables from within the methods of the class they're
4479declared in.  This can lead to shadowing between instance variables
4480and other variables declared either locally inside a class method or
4481globally with the same name.  Specifying the @option{-fno-local-ivars}
4482flag disables this behavior thus avoiding variable shadowing issues.
4483
4484@item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
4485@opindex fivar-visibility
4486Set the default instance variable visibility to the specified option
4487so that instance variables declared outside the scope of any access
4488modifier directives default to the specified visibility.
4489
4490@item -gen-decls
4491@opindex gen-decls
4492Dump interface declarations for all classes seen in the source file to a
4493file named @file{@var{sourcename}.decl}.
4494
4495@item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
4496@opindex Wassign-intercept
4497@opindex Wno-assign-intercept
4498Warn whenever an Objective-C assignment is being intercepted by the
4499garbage collector.
4500
4501@item -Wno-property-assign-default @r{(Objective-C and Objective-C++ only)}
4502@opindex Wproperty-assign-default
4503@opindex Wno-property-assign-default
4504Do not warn if a property for an Objective-C object has no assign
4505semantics specified.
4506
4507@item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
4508@opindex Wno-protocol
4509@opindex Wprotocol
4510If a class is declared to implement a protocol, a warning is issued for
4511every method in the protocol that is not implemented by the class.  The
4512default behavior is to issue a warning for every method not explicitly
4513implemented in the class, even if a method implementation is inherited
4514from the superclass.  If you use the @option{-Wno-protocol} option, then
4515methods inherited from the superclass are considered to be implemented,
4516and no warning is issued for them.
4517
4518@item -Wobjc-root-class @r{(Objective-C and Objective-C++ only)}
4519@opindex Wobjc-root-class
4520Warn if a class interface lacks a superclass. Most classes will inherit
4521from @code{NSObject} (or @code{Object}) for example.  When declaring
4522classes intended to be root classes, the warning can be suppressed by
4523marking their interfaces with @code{__attribute__((objc_root_class))}.
4524
4525@item -Wselector @r{(Objective-C and Objective-C++ only)}
4526@opindex Wselector
4527@opindex Wno-selector
4528Warn if multiple methods of different types for the same selector are
4529found during compilation.  The check is performed on the list of methods
4530in the final stage of compilation.  Additionally, a check is performed
4531for each selector appearing in a @code{@@selector(@dots{})}
4532expression, and a corresponding method for that selector has been found
4533during compilation.  Because these checks scan the method table only at
4534the end of compilation, these warnings are not produced if the final
4535stage of compilation is not reached, for example because an error is
4536found during compilation, or because the @option{-fsyntax-only} option is
4537being used.
4538
4539@item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
4540@opindex Wstrict-selector-match
4541@opindex Wno-strict-selector-match
4542Warn if multiple methods with differing argument and/or return types are
4543found for a given selector when attempting to send a message using this
4544selector to a receiver of type @code{id} or @code{Class}.  When this flag
4545is off (which is the default behavior), the compiler omits such warnings
4546if any differences found are confined to types that share the same size
4547and alignment.
4548
4549@item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
4550@opindex Wundeclared-selector
4551@opindex Wno-undeclared-selector
4552Warn if a @code{@@selector(@dots{})} expression referring to an
4553undeclared selector is found.  A selector is considered undeclared if no
4554method with that name has been declared before the
4555@code{@@selector(@dots{})} expression, either explicitly in an
4556@code{@@interface} or @code{@@protocol} declaration, or implicitly in
4557an @code{@@implementation} section.  This option always performs its
4558checks as soon as a @code{@@selector(@dots{})} expression is found,
4559while @option{-Wselector} only performs its checks in the final stage of
4560compilation.  This also enforces the coding style convention
4561that methods and selectors must be declared before being used.
4562
4563@item -print-objc-runtime-info
4564@opindex print-objc-runtime-info
4565Generate C header describing the largest structure that is passed by
4566value, if any.
4567
4568@end table
4569
4570@node Diagnostic Message Formatting Options
4571@section Options to Control Diagnostic Messages Formatting
4572@cindex options to control diagnostics formatting
4573@cindex diagnostic messages
4574@cindex message formatting
4575
4576Traditionally, diagnostic messages have been formatted irrespective of
4577the output device's aspect (e.g.@: its width, @dots{}).  You can use the
4578options described below
4579to control the formatting algorithm for diagnostic messages,
4580e.g.@: how many characters per line, how often source location
4581information should be reported.  Note that some language front ends may not
4582honor these options.
4583
4584@table @gcctabopt
4585@item -fmessage-length=@var{n}
4586@opindex fmessage-length
4587Try to format error messages so that they fit on lines of about
4588@var{n} characters.  If @var{n} is zero, then no line-wrapping is
4589done; each error message appears on a single line.  This is the
4590default for all front ends.
4591
4592Note - this option also affects the display of the @samp{#error} and
4593@samp{#warning} pre-processor directives, and the @samp{deprecated}
4594function/type/variable attribute.  It does not however affect the
4595@samp{pragma GCC warning} and @samp{pragma GCC error} pragmas.
4596
4597@item -fdiagnostics-plain-output
4598This option requests that diagnostic output look as plain as possible, which
4599may be useful when running @command{dejagnu} or other utilities that need to
4600parse diagnostics output and prefer that it remain more stable over time.
4601@option{-fdiagnostics-plain-output} is currently equivalent to the following
4602options:
4603@gccoptlist{-fno-diagnostics-show-caret @gol
4604-fno-diagnostics-show-line-numbers @gol
4605-fdiagnostics-color=never @gol
4606-fdiagnostics-urls=never @gol
4607-fdiagnostics-path-format=separate-events}
4608In the future, if GCC changes the default appearance of its diagnostics, the
4609corresponding option to disable the new behavior will be added to this list.
4610
4611@item -fdiagnostics-show-location=once
4612@opindex fdiagnostics-show-location
4613Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
4614reporter to emit source location information @emph{once}; that is, in
4615case the message is too long to fit on a single physical line and has to
4616be wrapped, the source location won't be emitted (as prefix) again,
4617over and over, in subsequent continuation lines.  This is the default
4618behavior.
4619
4620@item -fdiagnostics-show-location=every-line
4621Only meaningful in line-wrapping mode.  Instructs the diagnostic
4622messages reporter to emit the same source location information (as
4623prefix) for physical lines that result from the process of breaking
4624a message which is too long to fit on a single line.
4625
4626@item -fdiagnostics-color[=@var{WHEN}]
4627@itemx -fno-diagnostics-color
4628@opindex fdiagnostics-color
4629@cindex highlight, color
4630@vindex GCC_COLORS @r{environment variable}
4631Use color in diagnostics.  @var{WHEN} is @samp{never}, @samp{always},
4632or @samp{auto}.  The default depends on how the compiler has been configured,
4633it can be any of the above @var{WHEN} options or also @samp{never}
4634if @env{GCC_COLORS} environment variable isn't present in the environment,
4635and @samp{auto} otherwise.
4636@samp{auto} makes GCC use color only when the standard error is a terminal,
4637and when not executing in an emacs shell.
4638The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
4639aliases for @option{-fdiagnostics-color=always} and
4640@option{-fdiagnostics-color=never}, respectively.
4641
4642The colors are defined by the environment variable @env{GCC_COLORS}.
4643Its value is a colon-separated list of capabilities and Select Graphic
4644Rendition (SGR) substrings. SGR commands are interpreted by the
4645terminal or terminal emulator.  (See the section in the documentation
4646of your text terminal for permitted values and their meanings as
4647character attributes.)  These substring values are integers in decimal
4648representation and can be concatenated with semicolons.
4649Common values to concatenate include
4650@samp{1} for bold,
4651@samp{4} for underline,
4652@samp{5} for blink,
4653@samp{7} for inverse,
4654@samp{39} for default foreground color,
4655@samp{30} to @samp{37} for foreground colors,
4656@samp{90} to @samp{97} for 16-color mode foreground colors,
4657@samp{38;5;0} to @samp{38;5;255}
4658for 88-color and 256-color modes foreground colors,
4659@samp{49} for default background color,
4660@samp{40} to @samp{47} for background colors,
4661@samp{100} to @samp{107} for 16-color mode background colors,
4662and @samp{48;5;0} to @samp{48;5;255}
4663for 88-color and 256-color modes background colors.
4664
4665The default @env{GCC_COLORS} is
4666@smallexample
4667error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
4668quote=01:path=01;36:fixit-insert=32:fixit-delete=31:\
4669diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
4670type-diff=01;32
4671@end smallexample
4672@noindent
4673where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
4674@samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
4675@samp{01} is bold, and @samp{31} is red.
4676Setting @env{GCC_COLORS} to the empty string disables colors.
4677Supported capabilities are as follows.
4678
4679@table @code
4680@item error=
4681@vindex error GCC_COLORS @r{capability}
4682SGR substring for error: markers.
4683
4684@item warning=
4685@vindex warning GCC_COLORS @r{capability}
4686SGR substring for warning: markers.
4687
4688@item note=
4689@vindex note GCC_COLORS @r{capability}
4690SGR substring for note: markers.
4691
4692@item path=
4693@vindex path GCC_COLORS @r{capability}
4694SGR substring for colorizing paths of control-flow events as printed
4695via @option{-fdiagnostics-path-format=}, such as the identifiers of
4696individual events and lines indicating interprocedural calls and returns.
4697
4698@item range1=
4699@vindex range1 GCC_COLORS @r{capability}
4700SGR substring for first additional range.
4701
4702@item range2=
4703@vindex range2 GCC_COLORS @r{capability}
4704SGR substring for second additional range.
4705
4706@item locus=
4707@vindex locus GCC_COLORS @r{capability}
4708SGR substring for location information, @samp{file:line} or
4709@samp{file:line:column} etc.
4710
4711@item quote=
4712@vindex quote GCC_COLORS @r{capability}
4713SGR substring for information printed within quotes.
4714
4715@item fixit-insert=
4716@vindex fixit-insert GCC_COLORS @r{capability}
4717SGR substring for fix-it hints suggesting text to
4718be inserted or replaced.
4719
4720@item fixit-delete=
4721@vindex fixit-delete GCC_COLORS @r{capability}
4722SGR substring for fix-it hints suggesting text to
4723be deleted.
4724
4725@item diff-filename=
4726@vindex diff-filename GCC_COLORS @r{capability}
4727SGR substring for filename headers within generated patches.
4728
4729@item diff-hunk=
4730@vindex diff-hunk GCC_COLORS @r{capability}
4731SGR substring for the starts of hunks within generated patches.
4732
4733@item diff-delete=
4734@vindex diff-delete GCC_COLORS @r{capability}
4735SGR substring for deleted lines within generated patches.
4736
4737@item diff-insert=
4738@vindex diff-insert GCC_COLORS @r{capability}
4739SGR substring for inserted lines within generated patches.
4740
4741@item type-diff=
4742@vindex type-diff GCC_COLORS @r{capability}
4743SGR substring for highlighting mismatching types within template
4744arguments in the C++ frontend.
4745@end table
4746
4747@item -fdiagnostics-urls[=@var{WHEN}]
4748@opindex fdiagnostics-urls
4749@cindex urls
4750@vindex GCC_URLS @r{environment variable}
4751@vindex TERM_URLS @r{environment variable}
4752Use escape sequences to embed URLs in diagnostics.  For example, when
4753@option{-fdiagnostics-show-option} emits text showing the command-line
4754option controlling a diagnostic, embed a URL for documentation of that
4755option.
4756
4757@var{WHEN} is @samp{never}, @samp{always}, or @samp{auto}.
4758@samp{auto} makes GCC use URL escape sequences only when the standard error
4759is a terminal, and when not executing in an emacs shell or any graphical
4760terminal which is known to be incompatible with this feature, see below.
4761
4762The default depends on how the compiler has been configured.
4763It can be any of the above @var{WHEN} options.
4764
4765GCC can also be configured (via the
4766@option{--with-diagnostics-urls=auto-if-env} configure-time option)
4767so that the default is affected by environment variables.
4768Under such a configuration, GCC defaults to using @samp{auto}
4769if either @env{GCC_URLS} or @env{TERM_URLS} environment variables are
4770present and non-empty in the environment of the compiler, or @samp{never}
4771if neither are.
4772
4773However, even with @option{-fdiagnostics-urls=always} the behavior is
4774dependent on those environment variables:
4775If @env{GCC_URLS} is set to empty or @samp{no}, do not embed URLs in
4776diagnostics.  If set to @samp{st}, URLs use ST escape sequences.
4777If set to @samp{bel}, the default, URLs use BEL escape sequences.
4778Any other non-empty value enables the feature.
4779If @env{GCC_URLS} is not set, use @env{TERM_URLS} as a fallback.
4780Note: ST is an ANSI escape sequence, string terminator @samp{ESC \},
4781BEL is an ASCII character, CTRL-G that usually sounds like a beep.
4782
4783At this time GCC tries to detect also a few terminals that are known to
4784not implement the URL feature, and have bugs or at least had bugs in
4785some versions that are still in use, where the URL escapes are likely
4786to misbehave, i.e. print garbage on the screen.
4787That list is currently xfce4-terminal, certain known to be buggy
4788gnome-terminal versions, the linux console, and mingw.
4789This check can be skipped with the @option{-fdiagnostics-urls=always}.
4790
4791@item -fno-diagnostics-show-option
4792@opindex fno-diagnostics-show-option
4793@opindex fdiagnostics-show-option
4794By default, each diagnostic emitted includes text indicating the
4795command-line option that directly controls the diagnostic (if such an
4796option is known to the diagnostic machinery).  Specifying the
4797@option{-fno-diagnostics-show-option} flag suppresses that behavior.
4798
4799@item -fno-diagnostics-show-caret
4800@opindex fno-diagnostics-show-caret
4801@opindex fdiagnostics-show-caret
4802By default, each diagnostic emitted includes the original source line
4803and a caret @samp{^} indicating the column.  This option suppresses this
4804information.  The source line is truncated to @var{n} characters, if
4805the @option{-fmessage-length=n} option is given.  When the output is done
4806to the terminal, the width is limited to the width given by the
4807@env{COLUMNS} environment variable or, if not set, to the terminal width.
4808
4809@item -fno-diagnostics-show-labels
4810@opindex fno-diagnostics-show-labels
4811@opindex fdiagnostics-show-labels
4812By default, when printing source code (via @option{-fdiagnostics-show-caret}),
4813diagnostics can label ranges of source code with pertinent information, such
4814as the types of expressions:
4815
4816@smallexample
4817    printf ("foo %s bar", long_i + long_j);
4818                 ~^       ~~~~~~~~~~~~~~~
4819                  |              |
4820                  char *         long int
4821@end smallexample
4822
4823This option suppresses the printing of these labels (in the example above,
4824the vertical bars and the ``char *'' and ``long int'' text).
4825
4826@item -fno-diagnostics-show-cwe
4827@opindex fno-diagnostics-show-cwe
4828@opindex fdiagnostics-show-cwe
4829Diagnostic messages can optionally have an associated
4830@url{https://cwe.mitre.org/index.html, CWE} identifier.
4831GCC itself only provides such metadata for some of the @option{-fanalyzer}
4832diagnostics.  GCC plugins may also provide diagnostics with such metadata.
4833By default, if this information is present, it will be printed with
4834the diagnostic.  This option suppresses the printing of this metadata.
4835
4836@item -fno-diagnostics-show-line-numbers
4837@opindex fno-diagnostics-show-line-numbers
4838@opindex fdiagnostics-show-line-numbers
4839By default, when printing source code (via @option{-fdiagnostics-show-caret}),
4840a left margin is printed, showing line numbers.  This option suppresses this
4841left margin.
4842
4843@item -fdiagnostics-minimum-margin-width=@var{width}
4844@opindex fdiagnostics-minimum-margin-width
4845This option controls the minimum width of the left margin printed by
4846@option{-fdiagnostics-show-line-numbers}.  It defaults to 6.
4847
4848@item -fdiagnostics-parseable-fixits
4849@opindex fdiagnostics-parseable-fixits
4850Emit fix-it hints in a machine-parseable format, suitable for consumption
4851by IDEs.  For each fix-it, a line will be printed after the relevant
4852diagnostic, starting with the string ``fix-it:''.  For example:
4853
4854@smallexample
4855fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
4856@end smallexample
4857
4858The location is expressed as a half-open range, expressed as a count of
4859bytes, starting at byte 1 for the initial column.  In the above example,
4860bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
4861given string:
4862
4863@smallexample
486400000000011111111112222222222
486512345678901234567890123456789
4866  gtk_widget_showall (dlg);
4867  ^^^^^^^^^^^^^^^^^^
4868  gtk_widget_show_all
4869@end smallexample
4870
4871The filename and replacement string escape backslash as ``\\", tab as ``\t'',
4872newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
4873(e.g. vertical tab as ``\013'').
4874
4875An empty replacement string indicates that the given range is to be removed.
4876An empty range (e.g. ``45:3-45:3'') indicates that the string is to
4877be inserted at the given position.
4878
4879@item -fdiagnostics-generate-patch
4880@opindex fdiagnostics-generate-patch
4881Print fix-it hints to stderr in unified diff format, after any diagnostics
4882are printed.  For example:
4883
4884@smallexample
4885--- test.c
4886+++ test.c
4887@@ -42,5 +42,5 @@
4888
4889 void show_cb(GtkDialog *dlg)
4890 @{
4891-  gtk_widget_showall(dlg);
4892+  gtk_widget_show_all(dlg);
4893 @}
4894
4895@end smallexample
4896
4897The diff may or may not be colorized, following the same rules
4898as for diagnostics (see @option{-fdiagnostics-color}).
4899
4900@item -fdiagnostics-show-template-tree
4901@opindex fdiagnostics-show-template-tree
4902
4903In the C++ frontend, when printing diagnostics showing mismatching
4904template types, such as:
4905
4906@smallexample
4907  could not convert 'std::map<int, std::vector<double> >()'
4908    from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4909@end smallexample
4910
4911the @option{-fdiagnostics-show-template-tree} flag enables printing a
4912tree-like structure showing the common and differing parts of the types,
4913such as:
4914
4915@smallexample
4916  map<
4917    [...],
4918    vector<
4919      [double != float]>>
4920@end smallexample
4921
4922The parts that differ are highlighted with color (``double'' and
4923``float'' in this case).
4924
4925@item -fno-elide-type
4926@opindex fno-elide-type
4927@opindex felide-type
4928By default when the C++ frontend prints diagnostics showing mismatching
4929template types, common parts of the types are printed as ``[...]'' to
4930simplify the error message.  For example:
4931
4932@smallexample
4933  could not convert 'std::map<int, std::vector<double> >()'
4934    from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4935@end smallexample
4936
4937Specifying the @option{-fno-elide-type} flag suppresses that behavior.
4938This flag also affects the output of the
4939@option{-fdiagnostics-show-template-tree} flag.
4940
4941@item -fdiagnostics-path-format=@var{KIND}
4942@opindex fdiagnostics-path-format
4943Specify how to print paths of control-flow events for diagnostics that
4944have such a path associated with them.
4945
4946@var{KIND} is @samp{none}, @samp{separate-events}, or @samp{inline-events},
4947the default.
4948
4949@samp{none} means to not print diagnostic paths.
4950
4951@samp{separate-events} means to print a separate ``note'' diagnostic for
4952each event within the diagnostic.  For example:
4953
4954@smallexample
4955test.c:29:5: error: passing NULL as argument 1 to 'PyList_Append' which requires a non-NULL parameter
4956test.c:25:10: note: (1) when 'PyList_New' fails, returning NULL
4957test.c:27:3: note: (2) when 'i < count'
4958test.c:29:5: note: (3) when calling 'PyList_Append', passing NULL from (1) as argument 1
4959@end smallexample
4960
4961@samp{inline-events} means to print the events ``inline'' within the source
4962code.  This view attempts to consolidate the events into runs of
4963sufficiently-close events, printing them as labelled ranges within the source.
4964
4965For example, the same events as above might be printed as:
4966
4967@smallexample
4968  'test': events 1-3
4969    |
4970    |   25 |   list = PyList_New(0);
4971    |      |          ^~~~~~~~~~~~~
4972    |      |          |
4973    |      |          (1) when 'PyList_New' fails, returning NULL
4974    |   26 |
4975    |   27 |   for (i = 0; i < count; i++) @{
4976    |      |   ~~~
4977    |      |   |
4978    |      |   (2) when 'i < count'
4979    |   28 |     item = PyLong_FromLong(random());
4980    |   29 |     PyList_Append(list, item);
4981    |      |     ~~~~~~~~~~~~~~~~~~~~~~~~~
4982    |      |     |
4983    |      |     (3) when calling 'PyList_Append', passing NULL from (1) as argument 1
4984    |
4985@end smallexample
4986
4987Interprocedural control flow is shown by grouping the events by stack frame,
4988and using indentation to show how stack frames are nested, pushed, and popped.
4989
4990For example:
4991
4992@smallexample
4993  'test': events 1-2
4994    |
4995    |  133 | @{
4996    |      | ^
4997    |      | |
4998    |      | (1) entering 'test'
4999    |  134 |   boxed_int *obj = make_boxed_int (i);
5000    |      |                    ~~~~~~~~~~~~~~~~~~
5001    |      |                    |
5002    |      |                    (2) calling 'make_boxed_int'
5003    |
5004    +--> 'make_boxed_int': events 3-4
5005           |
5006           |  120 | @{
5007           |      | ^
5008           |      | |
5009           |      | (3) entering 'make_boxed_int'
5010           |  121 |   boxed_int *result = (boxed_int *)wrapped_malloc (sizeof (boxed_int));
5011           |      |                                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5012           |      |                                    |
5013           |      |                                    (4) calling 'wrapped_malloc'
5014           |
5015           +--> 'wrapped_malloc': events 5-6
5016                  |
5017                  |    7 | @{
5018                  |      | ^
5019                  |      | |
5020                  |      | (5) entering 'wrapped_malloc'
5021                  |    8 |   return malloc (size);
5022                  |      |          ~~~~~~~~~~~~~
5023                  |      |          |
5024                  |      |          (6) calling 'malloc'
5025                  |
5026    <-------------+
5027    |
5028 'test': event 7
5029    |
5030    |  138 |   free_boxed_int (obj);
5031    |      |   ^~~~~~~~~~~~~~~~~~~~
5032    |      |   |
5033    |      |   (7) calling 'free_boxed_int'
5034    |
5035(etc)
5036@end smallexample
5037
5038@item -fdiagnostics-show-path-depths
5039@opindex fdiagnostics-show-path-depths
5040This option provides additional information when printing control-flow paths
5041associated with a diagnostic.
5042
5043If this is option is provided then the stack depth will be printed for
5044each run of events within @option{-fdiagnostics-path-format=separate-events}.
5045
5046This is intended for use by GCC developers and plugin developers when
5047debugging diagnostics that report interprocedural control flow.
5048
5049@item -fno-show-column
5050@opindex fno-show-column
5051@opindex fshow-column
5052Do not print column numbers in diagnostics.  This may be necessary if
5053diagnostics are being scanned by a program that does not understand the
5054column numbers, such as @command{dejagnu}.
5055
5056@item -fdiagnostics-column-unit=@var{UNIT}
5057@opindex fdiagnostics-column-unit
5058Select the units for the column number.  This affects traditional diagnostics
5059(in the absence of @option{-fno-show-column}), as well as JSON format
5060diagnostics if requested.
5061
5062The default @var{UNIT}, @samp{display}, considers the number of display
5063columns occupied by each character.  This may be larger than the number
5064of bytes required to encode the character, in the case of tab
5065characters, or it may be smaller, in the case of multibyte characters.
5066For example, the character ``GREEK SMALL LETTER PI (U+03C0)'' occupies one
5067display column, and its UTF-8 encoding requires two bytes; the character
5068``SLIGHTLY SMILING FACE (U+1F642)'' occupies two display columns, and
5069its UTF-8 encoding requires four bytes.
5070
5071Setting @var{UNIT} to @samp{byte} changes the column number to the raw byte
5072count in all cases, as was traditionally output by GCC prior to version 11.1.0.
5073
5074@item -fdiagnostics-column-origin=@var{ORIGIN}
5075@opindex fdiagnostics-column-origin
5076Select the origin for column numbers, i.e. the column number assigned to the
5077first column.  The default value of 1 corresponds to traditional GCC
5078behavior and to the GNU style guide.  Some utilities may perform better with an
5079origin of 0; any non-negative value may be specified.
5080
5081@item -fdiagnostics-format=@var{FORMAT}
5082@opindex fdiagnostics-format
5083Select a different format for printing diagnostics.
5084@var{FORMAT} is @samp{text} or @samp{json}.
5085The default is @samp{text}.
5086
5087The @samp{json} format consists of a top-level JSON array containing JSON
5088objects representing the diagnostics.
5089
5090The JSON is emitted as one line, without formatting; the examples below
5091have been formatted for clarity.
5092
5093Diagnostics can have child diagnostics.  For example, this error and note:
5094
5095@smallexample
5096misleading-indentation.c:15:3: warning: this 'if' clause does not
5097  guard... [-Wmisleading-indentation]
5098   15 |   if (flag)
5099      |   ^~
5100misleading-indentation.c:17:5: note: ...this statement, but the latter
5101  is misleadingly indented as if it were guarded by the 'if'
5102   17 |     y = 2;
5103      |     ^
5104@end smallexample
5105
5106@noindent
5107might be printed in JSON form (after formatting) like this:
5108
5109@smallexample
5110[
5111    @{
5112        "kind": "warning",
5113        "locations": [
5114            @{
5115                "caret": @{
5116		    "display-column": 3,
5117		    "byte-column": 3,
5118                    "column": 3,
5119                    "file": "misleading-indentation.c",
5120                    "line": 15
5121                @},
5122                "finish": @{
5123		    "display-column": 4,
5124		    "byte-column": 4,
5125                    "column": 4,
5126                    "file": "misleading-indentation.c",
5127                    "line": 15
5128                @}
5129            @}
5130        ],
5131        "message": "this \u2018if\u2019 clause does not guard...",
5132        "option": "-Wmisleading-indentation",
5133        "option_url": "https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wmisleading-indentation",
5134        "children": [
5135            @{
5136                "kind": "note",
5137                "locations": [
5138                    @{
5139                        "caret": @{
5140			    "display-column": 5,
5141			    "byte-column": 5,
5142                            "column": 5,
5143                            "file": "misleading-indentation.c",
5144                            "line": 17
5145                        @}
5146                    @}
5147                ],
5148                "message": "...this statement, but the latter is @dots{}"
5149            @}
5150        ]
5151	"column-origin": 1,
5152    @},
5153    @dots{}
5154]
5155@end smallexample
5156
5157@noindent
5158where the @code{note} is a child of the @code{warning}.
5159
5160A diagnostic has a @code{kind}.  If this is @code{warning}, then there is
5161an @code{option} key describing the command-line option controlling the
5162warning.
5163
5164A diagnostic can contain zero or more locations.  Each location has an
5165optional @code{label} string and up to three positions within it: a
5166@code{caret} position and optional @code{start} and @code{finish} positions.
5167A position is described by a @code{file} name, a @code{line} number, and
5168three numbers indicating a column position:
5169@itemize @bullet
5170
5171@item
5172@code{display-column} counts display columns, accounting for tabs and
5173multibyte characters.
5174
5175@item
5176@code{byte-column} counts raw bytes.
5177
5178@item
5179@code{column} is equal to one of
5180the previous two, as dictated by the @option{-fdiagnostics-column-unit}
5181option.
5182
5183@end itemize
5184All three columns are relative to the origin specified by
5185@option{-fdiagnostics-column-origin}, which is typically equal to 1 but may
5186be set, for instance, to 0 for compatibility with other utilities that
5187number columns from 0.  The column origin is recorded in the JSON output in
5188the @code{column-origin} tag.  In the remaining examples below, the extra
5189column number outputs have been omitted for brevity.
5190
5191For example, this error:
5192
5193@smallexample
5194bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' @{aka
5195   'struct s'@} and 'T' @{aka 'struct t'@})
5196   64 |   return callee_4a () + callee_4b ();
5197      |          ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~
5198      |          |              |
5199      |          |              T @{aka struct t@}
5200      |          S @{aka struct s@}
5201@end smallexample
5202
5203@noindent
5204has three locations.  Its primary location is at the ``+'' token at column
520523.  It has two secondary locations, describing the left and right-hand sides
5206of the expression, which have labels.  It might be printed in JSON form as:
5207
5208@smallexample
5209    @{
5210        "children": [],
5211        "kind": "error",
5212        "locations": [
5213            @{
5214                "caret": @{
5215                    "column": 23, "file": "bad-binary-ops.c", "line": 64
5216                @}
5217            @},
5218            @{
5219                "caret": @{
5220                    "column": 10, "file": "bad-binary-ops.c", "line": 64
5221                @},
5222                "finish": @{
5223                    "column": 21, "file": "bad-binary-ops.c", "line": 64
5224                @},
5225                "label": "S @{aka struct s@}"
5226            @},
5227            @{
5228                "caret": @{
5229                    "column": 25, "file": "bad-binary-ops.c", "line": 64
5230                @},
5231                "finish": @{
5232                    "column": 36, "file": "bad-binary-ops.c", "line": 64
5233                @},
5234                "label": "T @{aka struct t@}"
5235            @}
5236        ],
5237        "message": "invalid operands to binary + @dots{}"
5238    @}
5239@end smallexample
5240
5241If a diagnostic contains fix-it hints, it has a @code{fixits} array,
5242consisting of half-open intervals, similar to the output of
5243@option{-fdiagnostics-parseable-fixits}.  For example, this diagnostic
5244with a replacement fix-it hint:
5245
5246@smallexample
5247demo.c:8:15: error: 'struct s' has no member named 'colour'; did you
5248  mean 'color'?
5249    8 |   return ptr->colour;
5250      |               ^~~~~~
5251      |               color
5252@end smallexample
5253
5254@noindent
5255might be printed in JSON form as:
5256
5257@smallexample
5258    @{
5259        "children": [],
5260        "fixits": [
5261            @{
5262                "next": @{
5263                    "column": 21,
5264                    "file": "demo.c",
5265                    "line": 8
5266                @},
5267                "start": @{
5268                    "column": 15,
5269                    "file": "demo.c",
5270                    "line": 8
5271                @},
5272                "string": "color"
5273            @}
5274        ],
5275        "kind": "error",
5276        "locations": [
5277            @{
5278                "caret": @{
5279                    "column": 15,
5280                    "file": "demo.c",
5281                    "line": 8
5282                @},
5283                "finish": @{
5284                    "column": 20,
5285                    "file": "demo.c",
5286                    "line": 8
5287                @}
5288            @}
5289        ],
5290        "message": "\u2018struct s\u2019 has no member named @dots{}"
5291    @}
5292@end smallexample
5293
5294@noindent
5295where the fix-it hint suggests replacing the text from @code{start} up
5296to but not including @code{next} with @code{string}'s value.  Deletions
5297are expressed via an empty value for @code{string}, insertions by
5298having @code{start} equal @code{next}.
5299
5300If the diagnostic has a path of control-flow events associated with it,
5301it has a @code{path} array of objects representing the events.  Each
5302event object has a @code{description} string, a @code{location} object,
5303along with a @code{function} string and a @code{depth} number for
5304representing interprocedural paths.  The @code{function} represents the
5305current function at that event, and the @code{depth} represents the
5306stack depth relative to some baseline: the higher, the more frames are
5307within the stack.
5308
5309For example, the intraprocedural example shown for
5310@option{-fdiagnostics-path-format=} might have this JSON for its path:
5311
5312@smallexample
5313    "path": [
5314        @{
5315            "depth": 0,
5316            "description": "when 'PyList_New' fails, returning NULL",
5317            "function": "test",
5318            "location": @{
5319                "column": 10,
5320                "file": "test.c",
5321                "line": 25
5322            @}
5323        @},
5324        @{
5325            "depth": 0,
5326            "description": "when 'i < count'",
5327            "function": "test",
5328            "location": @{
5329                "column": 3,
5330                "file": "test.c",
5331                "line": 27
5332            @}
5333        @},
5334        @{
5335            "depth": 0,
5336            "description": "when calling 'PyList_Append', passing NULL from (1) as argument 1",
5337            "function": "test",
5338            "location": @{
5339                "column": 5,
5340                "file": "test.c",
5341                "line": 29
5342            @}
5343        @}
5344    ]
5345@end smallexample
5346
5347@end table
5348
5349@node Warning Options
5350@section Options to Request or Suppress Warnings
5351@cindex options to control warnings
5352@cindex warning messages
5353@cindex messages, warning
5354@cindex suppressing warnings
5355
5356Warnings are diagnostic messages that report constructions that
5357are not inherently erroneous but that are risky or suggest there
5358may have been an error.
5359
5360The following language-independent options do not enable specific
5361warnings but control the kinds of diagnostics produced by GCC@.
5362
5363@table @gcctabopt
5364@cindex syntax checking
5365@item -fsyntax-only
5366@opindex fsyntax-only
5367Check the code for syntax errors, but don't do anything beyond that.
5368
5369@item -fmax-errors=@var{n}
5370@opindex fmax-errors
5371Limits the maximum number of error messages to @var{n}, at which point
5372GCC bails out rather than attempting to continue processing the source
5373code.  If @var{n} is 0 (the default), there is no limit on the number
5374of error messages produced.  If @option{-Wfatal-errors} is also
5375specified, then @option{-Wfatal-errors} takes precedence over this
5376option.
5377
5378@item -w
5379@opindex w
5380Inhibit all warning messages.
5381
5382@item -Werror
5383@opindex Werror
5384@opindex Wno-error
5385Make all warnings into errors.
5386
5387@item -Werror=
5388@opindex Werror=
5389@opindex Wno-error=
5390Make the specified warning into an error.  The specifier for a warning
5391is appended; for example @option{-Werror=switch} turns the warnings
5392controlled by @option{-Wswitch} into errors.  This switch takes a
5393negative form, to be used to negate @option{-Werror} for specific
5394warnings; for example @option{-Wno-error=switch} makes
5395@option{-Wswitch} warnings not be errors, even when @option{-Werror}
5396is in effect.
5397
5398The warning message for each controllable warning includes the
5399option that controls the warning.  That option can then be used with
5400@option{-Werror=} and @option{-Wno-error=} as described above.
5401(Printing of the option in the warning message can be disabled using the
5402@option{-fno-diagnostics-show-option} flag.)
5403
5404Note that specifying @option{-Werror=}@var{foo} automatically implies
5405@option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
5406imply anything.
5407
5408@item -Wfatal-errors
5409@opindex Wfatal-errors
5410@opindex Wno-fatal-errors
5411This option causes the compiler to abort compilation on the first error
5412occurred rather than trying to keep going and printing further error
5413messages.
5414
5415@end table
5416
5417You can request many specific warnings with options beginning with
5418@samp{-W}, for example @option{-Wimplicit} to request warnings on
5419implicit declarations.  Each of these specific warning options also
5420has a negative form beginning @samp{-Wno-} to turn off warnings; for
5421example, @option{-Wno-implicit}.  This manual lists only one of the
5422two forms, whichever is not the default.  For further
5423language-specific options also refer to @ref{C++ Dialect Options} and
5424@ref{Objective-C and Objective-C++ Dialect Options}.
5425Additional warnings can be produced by enabling the static analyzer;
5426@xref{Static Analyzer Options}.
5427
5428Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
5429options, such as @option{-Wunused}, which may turn on further options,
5430such as @option{-Wunused-value}. The combined effect of positive and
5431negative forms is that more specific options have priority over less
5432specific ones, independently of their position in the command-line. For
5433options of the same specificity, the last one takes effect. Options
5434enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
5435as if they appeared at the end of the command-line.
5436
5437When an unrecognized warning option is requested (e.g.,
5438@option{-Wunknown-warning}), GCC emits a diagnostic stating
5439that the option is not recognized.  However, if the @option{-Wno-} form
5440is used, the behavior is slightly different: no diagnostic is
5441produced for @option{-Wno-unknown-warning} unless other diagnostics
5442are being produced.  This allows the use of new @option{-Wno-} options
5443with old compilers, but if something goes wrong, the compiler
5444warns that an unrecognized option is present.
5445
5446The effectiveness of some warnings depends on optimizations also being
5447enabled. For example @option{-Wsuggest-final-types} is more effective
5448with link-time optimization and @option{-Wmaybe-uninitialized} does not
5449warn at all unless optimization is enabled.
5450
5451@table @gcctabopt
5452@item -Wpedantic
5453@itemx -pedantic
5454@opindex pedantic
5455@opindex Wpedantic
5456@opindex Wno-pedantic
5457Issue all the warnings demanded by strict ISO C and ISO C++;
5458reject all programs that use forbidden extensions, and some other
5459programs that do not follow ISO C and ISO C++.  For ISO C, follows the
5460version of the ISO C standard specified by any @option{-std} option used.
5461
5462Valid ISO C and ISO C++ programs should compile properly with or without
5463this option (though a rare few require @option{-ansi} or a
5464@option{-std} option specifying the required version of ISO C)@.  However,
5465without this option, certain GNU extensions and traditional C and C++
5466features are supported as well.  With this option, they are rejected.
5467
5468@option{-Wpedantic} does not cause warning messages for use of the
5469alternate keywords whose names begin and end with @samp{__}.  This alternate
5470format can also be used to disable warnings for non-ISO @samp{__intN} types,
5471i.e. @samp{__intN__}.
5472Pedantic warnings are also disabled in the expression that follows
5473@code{__extension__}.  However, only system header files should use
5474these escape routes; application programs should avoid them.
5475@xref{Alternate Keywords}.
5476
5477Some users try to use @option{-Wpedantic} to check programs for strict ISO
5478C conformance.  They soon find that it does not do quite what they want:
5479it finds some non-ISO practices, but not all---only those for which
5480ISO C @emph{requires} a diagnostic, and some others for which
5481diagnostics have been added.
5482
5483A feature to report any failure to conform to ISO C might be useful in
5484some instances, but would require considerable additional work and would
5485be quite different from @option{-Wpedantic}.  We don't have plans to
5486support such a feature in the near future.
5487
5488Where the standard specified with @option{-std} represents a GNU
5489extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
5490corresponding @dfn{base standard}, the version of ISO C on which the GNU
5491extended dialect is based.  Warnings from @option{-Wpedantic} are given
5492where they are required by the base standard.  (It does not make sense
5493for such warnings to be given only for features not in the specified GNU
5494C dialect, since by definition the GNU dialects of C include all
5495features the compiler supports with the given option, and there would be
5496nothing to warn about.)
5497
5498@item -pedantic-errors
5499@opindex pedantic-errors
5500Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
5501requires a diagnostic, in some cases where there is undefined behavior
5502at compile-time and in some other cases that do not prevent compilation
5503of programs that are valid according to the standard. This is not
5504equivalent to @option{-Werror=pedantic}, since there are errors enabled
5505by this option and not enabled by the latter and vice versa.
5506
5507@item -Wall
5508@opindex Wall
5509@opindex Wno-all
5510This enables all the warnings about constructions that some users
5511consider questionable, and that are easy to avoid (or modify to
5512prevent the warning), even in conjunction with macros.  This also
5513enables some language-specific warnings described in @ref{C++ Dialect
5514Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
5515
5516@option{-Wall} turns on the following warning flags:
5517
5518@gccoptlist{-Waddress   @gol
5519-Warray-bounds=1 @r{(only with} @option{-O2}@r{)}  @gol
5520-Warray-parameter=2 @r{(C and Objective-C only)} @gol
5521-Wbool-compare  @gol
5522-Wbool-operation  @gol
5523-Wc++11-compat  -Wc++14-compat  @gol
5524-Wcatch-value @r{(C++ and Objective-C++ only)}  @gol
5525-Wchar-subscripts  @gol
5526-Wcomment  @gol
5527-Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
5528-Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
5529-Wformat   @gol
5530-Wformat-overflow  @gol
5531-Wformat-truncation  @gol
5532-Wint-in-bool-context  @gol
5533-Wimplicit @r{(C and Objective-C only)} @gol
5534-Wimplicit-int @r{(C and Objective-C only)} @gol
5535-Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
5536-Winit-self @r{(only for C++)} @gol
5537-Wlogical-not-parentheses @gol
5538-Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}  @gol
5539-Wmaybe-uninitialized @gol
5540-Wmemset-elt-size @gol
5541-Wmemset-transposed-args @gol
5542-Wmisleading-indentation @r{(only for C/C++)} @gol
5543-Wmissing-attributes @gol
5544-Wmissing-braces @r{(only for C/ObjC)} @gol
5545-Wmultistatement-macros  @gol
5546-Wnarrowing @r{(only for C++)}  @gol
5547-Wnonnull  @gol
5548-Wnonnull-compare  @gol
5549-Wopenmp-simd @gol
5550-Wparentheses  @gol
5551-Wpessimizing-move @r{(only for C++)}  @gol
5552-Wpointer-sign  @gol
5553-Wrange-loop-construct @r{(only for C++)}  @gol
5554-Wreorder   @gol
5555-Wrestrict   @gol
5556-Wreturn-type  @gol
5557-Wsequence-point  @gol
5558-Wsign-compare @r{(only in C++)}  @gol
5559-Wsizeof-array-div @gol
5560-Wsizeof-pointer-div @gol
5561-Wsizeof-pointer-memaccess @gol
5562-Wstrict-aliasing  @gol
5563-Wstrict-overflow=1  @gol
5564-Wswitch  @gol
5565-Wtautological-compare  @gol
5566-Wtrigraphs  @gol
5567-Wuninitialized  @gol
5568-Wunknown-pragmas  @gol
5569-Wunused-function  @gol
5570-Wunused-label     @gol
5571-Wunused-value     @gol
5572-Wunused-variable  @gol
5573-Wvla-parameter @r{(C and Objective-C only)} @gol
5574-Wvolatile-register-var  @gol
5575-Wzero-length-bounds}
5576
5577Note that some warning flags are not implied by @option{-Wall}.  Some of
5578them warn about constructions that users generally do not consider
5579questionable, but which occasionally you might wish to check for;
5580others warn about constructions that are necessary or hard to avoid in
5581some cases, and there is no simple way to modify the code to suppress
5582the warning. Some of them are enabled by @option{-Wextra} but many of
5583them must be enabled individually.
5584
5585@item -Wextra
5586@opindex W
5587@opindex Wextra
5588@opindex Wno-extra
5589This enables some extra warning flags that are not enabled by
5590@option{-Wall}. (This option used to be called @option{-W}.  The older
5591name is still supported, but the newer name is more descriptive.)
5592
5593@gccoptlist{-Wclobbered  @gol
5594-Wcast-function-type  @gol
5595-Wdeprecated-copy @r{(C++ only)} @gol
5596-Wempty-body  @gol
5597-Wenum-conversion @r{(C only)} @gol
5598-Wignored-qualifiers @gol
5599-Wimplicit-fallthrough=3 @gol
5600-Wmissing-field-initializers  @gol
5601-Wmissing-parameter-type @r{(C only)}  @gol
5602-Wold-style-declaration @r{(C only)}  @gol
5603-Woverride-init  @gol
5604-Wsign-compare @r{(C only)} @gol
5605-Wstring-compare @gol
5606-Wredundant-move @r{(only for C++)}  @gol
5607-Wtype-limits  @gol
5608-Wuninitialized  @gol
5609-Wshift-negative-value @r{(in C++03 and in C99 and newer)}  @gol
5610-Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
5611-Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}}
5612
5613
5614The option @option{-Wextra} also prints warning messages for the
5615following cases:
5616
5617@itemize @bullet
5618
5619@item
5620A pointer is compared against integer zero with @code{<}, @code{<=},
5621@code{>}, or @code{>=}.
5622
5623@item
5624(C++ only) An enumerator and a non-enumerator both appear in a
5625conditional expression.
5626
5627@item
5628(C++ only) Ambiguous virtual bases.
5629
5630@item
5631(C++ only) Subscripting an array that has been declared @code{register}.
5632
5633@item
5634(C++ only) Taking the address of a variable that has been declared
5635@code{register}.
5636
5637@item
5638(C++ only) A base class is not initialized in the copy constructor
5639of a derived class.
5640
5641@end itemize
5642
5643@item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
5644@opindex Wabi
5645@opindex Wno-abi
5646
5647Warn about code affected by ABI changes.  This includes code that may
5648not be compatible with the vendor-neutral C++ ABI as well as the psABI
5649for the particular target.
5650
5651Since G++ now defaults to updating the ABI with each major release,
5652normally @option{-Wabi} warns only about C++ ABI compatibility
5653problems if there is a check added later in a release series for an
5654ABI issue discovered since the initial release.  @option{-Wabi} warns
5655about more things if an older ABI version is selected (with
5656@option{-fabi-version=@var{n}}).
5657
5658@option{-Wabi} can also be used with an explicit version number to
5659warn about C++ ABI compatibility with a particular @option{-fabi-version}
5660level, e.g.@: @option{-Wabi=2} to warn about changes relative to
5661@option{-fabi-version=2}.
5662
5663If an explicit version number is provided and
5664@option{-fabi-compat-version} is not specified, the version number
5665from this option is used for compatibility aliases.  If no explicit
5666version number is provided with this option, but
5667@option{-fabi-compat-version} is specified, that version number is
5668used for C++ ABI warnings.
5669
5670Although an effort has been made to warn about
5671all such cases, there are probably some cases that are not warned about,
5672even though G++ is generating incompatible code.  There may also be
5673cases where warnings are emitted even though the code that is generated
5674is compatible.
5675
5676You should rewrite your code to avoid these warnings if you are
5677concerned about the fact that code generated by G++ may not be binary
5678compatible with code generated by other compilers.
5679
5680Known incompatibilities in @option{-fabi-version=2} (which was the
5681default from GCC 3.4 to 4.9) include:
5682
5683@itemize @bullet
5684
5685@item
5686A template with a non-type template parameter of reference type was
5687mangled incorrectly:
5688@smallexample
5689extern int N;
5690template <int &> struct S @{@};
5691void n (S<N>) @{2@}
5692@end smallexample
5693
5694This was fixed in @option{-fabi-version=3}.
5695
5696@item
5697SIMD vector types declared using @code{__attribute ((vector_size))} were
5698mangled in a non-standard way that does not allow for overloading of
5699functions taking vectors of different sizes.
5700
5701The mangling was changed in @option{-fabi-version=4}.
5702
5703@item
5704@code{__attribute ((const))} and @code{noreturn} were mangled as type
5705qualifiers, and @code{decltype} of a plain declaration was folded away.
5706
5707These mangling issues were fixed in @option{-fabi-version=5}.
5708
5709@item
5710Scoped enumerators passed as arguments to a variadic function are
5711promoted like unscoped enumerators, causing @code{va_arg} to complain.
5712On most targets this does not actually affect the parameter passing
5713ABI, as there is no way to pass an argument smaller than @code{int}.
5714
5715Also, the ABI changed the mangling of template argument packs,
5716@code{const_cast}, @code{static_cast}, prefix increment/decrement, and
5717a class scope function used as a template argument.
5718
5719These issues were corrected in @option{-fabi-version=6}.
5720
5721@item
5722Lambdas in default argument scope were mangled incorrectly, and the
5723ABI changed the mangling of @code{nullptr_t}.
5724
5725These issues were corrected in @option{-fabi-version=7}.
5726
5727@item
5728When mangling a function type with function-cv-qualifiers, the
5729un-qualified function type was incorrectly treated as a substitution
5730candidate.
5731
5732This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
5733
5734@item
5735@code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
5736unaligned accesses.  Note that this did not affect the ABI of a
5737function with a @code{nullptr_t} parameter, as parameters have a
5738minimum alignment.
5739
5740This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
5741
5742@item
5743Target-specific attributes that affect the identity of a type, such as
5744ia32 calling conventions on a function type (stdcall, regparm, etc.),
5745did not affect the mangled name, leading to name collisions when
5746function pointers were used as template arguments.
5747
5748This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
5749
5750@end itemize
5751
5752This option also enables warnings about psABI-related changes.
5753The known psABI changes at this point include:
5754
5755@itemize @bullet
5756
5757@item
5758For SysV/x86-64, unions with @code{long double} members are
5759passed in memory as specified in psABI.  Prior to GCC 4.4, this was not
5760the case.  For example:
5761
5762@smallexample
5763union U @{
5764  long double ld;
5765  int i;
5766@};
5767@end smallexample
5768
5769@noindent
5770@code{union U} is now always passed in memory.
5771
5772@end itemize
5773
5774@item -Wchar-subscripts
5775@opindex Wchar-subscripts
5776@opindex Wno-char-subscripts
5777Warn if an array subscript has type @code{char}.  This is a common cause
5778of error, as programmers often forget that this type is signed on some
5779machines.
5780This warning is enabled by @option{-Wall}.
5781
5782@item -Wno-coverage-mismatch
5783@opindex Wno-coverage-mismatch
5784@opindex Wcoverage-mismatch
5785Warn if feedback profiles do not match when using the
5786@option{-fprofile-use} option.
5787If a source file is changed between compiling with @option{-fprofile-generate}
5788and with @option{-fprofile-use}, the files with the profile feedback can fail
5789to match the source file and GCC cannot use the profile feedback
5790information.  By default, this warning is enabled and is treated as an
5791error.  @option{-Wno-coverage-mismatch} can be used to disable the
5792warning or @option{-Wno-error=coverage-mismatch} can be used to
5793disable the error.  Disabling the error for this warning can result in
5794poorly optimized code and is useful only in the
5795case of very minor changes such as bug fixes to an existing code-base.
5796Completely disabling the warning is not recommended.
5797
5798@item -Wno-cpp
5799@r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
5800@opindex Wno-cpp
5801@opindex Wcpp
5802Suppress warning messages emitted by @code{#warning} directives.
5803
5804@item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
5805@opindex Wdouble-promotion
5806@opindex Wno-double-promotion
5807Give a warning when a value of type @code{float} is implicitly
5808promoted to @code{double}.  CPUs with a 32-bit ``single-precision''
5809floating-point unit implement @code{float} in hardware, but emulate
5810@code{double} in software.  On such a machine, doing computations
5811using @code{double} values is much more expensive because of the
5812overhead required for software emulation.
5813
5814It is easy to accidentally do computations with @code{double} because
5815floating-point literals are implicitly of type @code{double}.  For
5816example, in:
5817@smallexample
5818@group
5819float area(float radius)
5820@{
5821   return 3.14159 * radius * radius;
5822@}
5823@end group
5824@end smallexample
5825the compiler performs the entire computation with @code{double}
5826because the floating-point literal is a @code{double}.
5827
5828@item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
5829@opindex Wduplicate-decl-specifier
5830@opindex Wno-duplicate-decl-specifier
5831Warn if a declaration has duplicate @code{const}, @code{volatile},
5832@code{restrict} or @code{_Atomic} specifier.  This warning is enabled by
5833@option{-Wall}.
5834
5835@item -Wformat
5836@itemx -Wformat=@var{n}
5837@opindex Wformat
5838@opindex Wno-format
5839@opindex ffreestanding
5840@opindex fno-builtin
5841@opindex Wformat=
5842Check calls to @code{printf} and @code{scanf}, etc., to make sure that
5843the arguments supplied have types appropriate to the format string
5844specified, and that the conversions specified in the format string make
5845sense.  This includes standard functions, and others specified by format
5846attributes (@pxref{Function Attributes}), in the @code{printf},
5847@code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
5848not in the C standard) families (or other target-specific families).
5849Which functions are checked without format attributes having been
5850specified depends on the standard version selected, and such checks of
5851functions without the attribute specified are disabled by
5852@option{-ffreestanding} or @option{-fno-builtin}.
5853
5854The formats are checked against the format features supported by GNU
5855libc version 2.2.  These include all ISO C90 and C99 features, as well
5856as features from the Single Unix Specification and some BSD and GNU
5857extensions.  Other library implementations may not support all these
5858features; GCC does not support warning about features that go beyond a
5859particular library's limitations.  However, if @option{-Wpedantic} is used
5860with @option{-Wformat}, warnings are given about format features not
5861in the selected standard version (but not for @code{strfmon} formats,
5862since those are not in any version of the C standard).  @xref{C Dialect
5863Options,,Options Controlling C Dialect}.
5864
5865@table @gcctabopt
5866@item -Wformat=1
5867@itemx -Wformat
5868@opindex Wformat
5869@opindex Wformat=1
5870Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
5871@option{-Wno-format} is equivalent to @option{-Wformat=0}.  Since
5872@option{-Wformat} also checks for null format arguments for several
5873functions, @option{-Wformat} also implies @option{-Wnonnull}.  Some
5874aspects of this level of format checking can be disabled by the
5875options: @option{-Wno-format-contains-nul},
5876@option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
5877@option{-Wformat} is enabled by @option{-Wall}.
5878
5879@item -Wformat=2
5880@opindex Wformat=2
5881Enable @option{-Wformat} plus additional format checks.  Currently
5882equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
5883-Wformat-y2k}.
5884@end table
5885
5886@item -Wno-format-contains-nul
5887@opindex Wno-format-contains-nul
5888@opindex Wformat-contains-nul
5889If @option{-Wformat} is specified, do not warn about format strings that
5890contain NUL bytes.
5891
5892@item -Wno-format-extra-args
5893@opindex Wno-format-extra-args
5894@opindex Wformat-extra-args
5895If @option{-Wformat} is specified, do not warn about excess arguments to a
5896@code{printf} or @code{scanf} format function.  The C standard specifies
5897that such arguments are ignored.
5898
5899Where the unused arguments lie between used arguments that are
5900specified with @samp{$} operand number specifications, normally
5901warnings are still given, since the implementation could not know what
5902type to pass to @code{va_arg} to skip the unused arguments.  However,
5903in the case of @code{scanf} formats, this option suppresses the
5904warning if the unused arguments are all pointers, since the Single
5905Unix Specification says that such unused arguments are allowed.
5906
5907@item -Wformat-overflow
5908@itemx -Wformat-overflow=@var{level}
5909@opindex Wformat-overflow
5910@opindex Wno-format-overflow
5911Warn about calls to formatted input/output functions such as @code{sprintf}
5912and @code{vsprintf} that might overflow the destination buffer.  When the
5913exact number of bytes written by a format directive cannot be determined
5914at compile-time it is estimated based on heuristics that depend on the
5915@var{level} argument and on optimization.  While enabling optimization
5916will in most cases improve the accuracy of the warning, it may also
5917result in false positives.
5918
5919@table @gcctabopt
5920@item -Wformat-overflow
5921@itemx -Wformat-overflow=1
5922@opindex Wformat-overflow
5923@opindex Wno-format-overflow
5924Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
5925employs a conservative approach that warns only about calls that most
5926likely overflow the buffer.  At this level, numeric arguments to format
5927directives with unknown values are assumed to have the value of one, and
5928strings of unknown length to be empty.  Numeric arguments that are known
5929to be bounded to a subrange of their type, or string arguments whose output
5930is bounded either by their directive's precision or by a finite set of
5931string literals, are assumed to take on the value within the range that
5932results in the most bytes on output.  For example, the call to @code{sprintf}
5933below is diagnosed because even with both @var{a} and @var{b} equal to zero,
5934the terminating NUL character (@code{'\0'}) appended by the function
5935to the destination buffer will be written past its end.  Increasing
5936the size of the buffer by a single byte is sufficient to avoid the
5937warning, though it may not be sufficient to avoid the overflow.
5938
5939@smallexample
5940void f (int a, int b)
5941@{
5942  char buf [13];
5943  sprintf (buf, "a = %i, b = %i\n", a, b);
5944@}
5945@end smallexample
5946
5947@item -Wformat-overflow=2
5948Level @var{2} warns also about calls that might overflow the destination
5949buffer given an argument of sufficient length or magnitude.  At level
5950@var{2}, unknown numeric arguments are assumed to have the minimum
5951representable value for signed types with a precision greater than 1, and
5952the maximum representable value otherwise.  Unknown string arguments whose
5953length cannot be assumed to be bounded either by the directive's precision,
5954or by a finite set of string literals they may evaluate to, or the character
5955array they may point to, are assumed to be 1 character long.
5956
5957At level @var{2}, the call in the example above is again diagnosed, but
5958this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
5959@code{%i} directive will write some of its digits beyond the end of
5960the destination buffer.  To make the call safe regardless of the values
5961of the two variables, the size of the destination buffer must be increased
5962to at least 34 bytes.  GCC includes the minimum size of the buffer in
5963an informational note following the warning.
5964
5965An alternative to increasing the size of the destination buffer is to
5966constrain the range of formatted values.  The maximum length of string
5967arguments can be bounded by specifying the precision in the format
5968directive.  When numeric arguments of format directives can be assumed
5969to be bounded by less than the precision of their type, choosing
5970an appropriate length modifier to the format specifier will reduce
5971the required buffer size.  For example, if @var{a} and @var{b} in the
5972example above can be assumed to be within the precision of
5973the @code{short int} type then using either the @code{%hi} format
5974directive or casting the argument to @code{short} reduces the maximum
5975required size of the buffer to 24 bytes.
5976
5977@smallexample
5978void f (int a, int b)
5979@{
5980  char buf [23];
5981  sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
5982@}
5983@end smallexample
5984@end table
5985
5986@item -Wno-format-zero-length
5987@opindex Wno-format-zero-length
5988@opindex Wformat-zero-length
5989If @option{-Wformat} is specified, do not warn about zero-length formats.
5990The C standard specifies that zero-length formats are allowed.
5991
5992@item -Wformat-nonliteral
5993@opindex Wformat-nonliteral
5994@opindex Wno-format-nonliteral
5995If @option{-Wformat} is specified, also warn if the format string is not a
5996string literal and so cannot be checked, unless the format function
5997takes its format arguments as a @code{va_list}.
5998
5999@item -Wformat-security
6000@opindex Wformat-security
6001@opindex Wno-format-security
6002If @option{-Wformat} is specified, also warn about uses of format
6003functions that represent possible security problems.  At present, this
6004warns about calls to @code{printf} and @code{scanf} functions where the
6005format string is not a string literal and there are no format arguments,
6006as in @code{printf (foo);}.  This may be a security hole if the format
6007string came from untrusted input and contains @samp{%n}.  (This is
6008currently a subset of what @option{-Wformat-nonliteral} warns about, but
6009in future warnings may be added to @option{-Wformat-security} that are not
6010included in @option{-Wformat-nonliteral}.)
6011
6012@item -Wformat-signedness
6013@opindex Wformat-signedness
6014@opindex Wno-format-signedness
6015If @option{-Wformat} is specified, also warn if the format string
6016requires an unsigned argument and the argument is signed and vice versa.
6017
6018@item -Wformat-truncation
6019@itemx -Wformat-truncation=@var{level}
6020@opindex Wformat-truncation
6021@opindex Wno-format-truncation
6022Warn about calls to formatted input/output functions such as @code{snprintf}
6023and @code{vsnprintf} that might result in output truncation.  When the exact
6024number of bytes written by a format directive cannot be determined at
6025compile-time it is estimated based on heuristics that depend on
6026the @var{level} argument and on optimization.  While enabling optimization
6027will in most cases improve the accuracy of the warning, it may also result
6028in false positives.  Except as noted otherwise, the option uses the same
6029logic @option{-Wformat-overflow}.
6030
6031@table @gcctabopt
6032@item -Wformat-truncation
6033@itemx -Wformat-truncation=1
6034@opindex Wformat-truncation
6035@opindex Wno-format-truncation
6036Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
6037employs a conservative approach that warns only about calls to bounded
6038functions whose return value is unused and that will most likely result
6039in output truncation.
6040
6041@item -Wformat-truncation=2
6042Level @var{2} warns also about calls to bounded functions whose return
6043value is used and that might result in truncation given an argument of
6044sufficient length or magnitude.
6045@end table
6046
6047@item -Wformat-y2k
6048@opindex Wformat-y2k
6049@opindex Wno-format-y2k
6050If @option{-Wformat} is specified, also warn about @code{strftime}
6051formats that may yield only a two-digit year.
6052
6053@item -Wnonnull
6054@opindex Wnonnull
6055@opindex Wno-nonnull
6056Warn about passing a null pointer for arguments marked as
6057requiring a non-null value by the @code{nonnull} function attribute.
6058
6059@option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
6060can be disabled with the @option{-Wno-nonnull} option.
6061
6062@item -Wnonnull-compare
6063@opindex Wnonnull-compare
6064@opindex Wno-nonnull-compare
6065Warn when comparing an argument marked with the @code{nonnull}
6066function attribute against null inside the function.
6067
6068@option{-Wnonnull-compare} is included in @option{-Wall}.  It
6069can be disabled with the @option{-Wno-nonnull-compare} option.
6070
6071@item -Wnull-dereference
6072@opindex Wnull-dereference
6073@opindex Wno-null-dereference
6074Warn if the compiler detects paths that trigger erroneous or
6075undefined behavior due to dereferencing a null pointer.  This option
6076is only active when @option{-fdelete-null-pointer-checks} is active,
6077which is enabled by optimizations in most targets.  The precision of
6078the warnings depends on the optimization options used.
6079
6080@item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
6081@opindex Winit-self
6082@opindex Wno-init-self
6083Warn about uninitialized variables that are initialized with themselves.
6084Note this option can only be used with the @option{-Wuninitialized} option.
6085
6086For example, GCC warns about @code{i} being uninitialized in the
6087following snippet only when @option{-Winit-self} has been specified:
6088@smallexample
6089@group
6090int f()
6091@{
6092  int i = i;
6093  return i;
6094@}
6095@end group
6096@end smallexample
6097
6098This warning is enabled by @option{-Wall} in C++.
6099
6100@item -Wno-implicit-int @r{(C and Objective-C only)}
6101@opindex Wimplicit-int
6102@opindex Wno-implicit-int
6103This option controls warnings when a declaration does not specify a type.
6104This warning is enabled by default in C99 and later dialects of C,
6105and also by @option{-Wall}.
6106
6107@item -Wno-implicit-function-declaration @r{(C and Objective-C only)}
6108@opindex Wimplicit-function-declaration
6109@opindex Wno-implicit-function-declaration
6110This option controls warnings when a function is used before being declared.
6111This warning is enabled by default in C99 and later dialects of C,
6112and also by @option{-Wall}.
6113The warning is made into an error by @option{-pedantic-errors}.
6114
6115@item -Wimplicit @r{(C and Objective-C only)}
6116@opindex Wimplicit
6117@opindex Wno-implicit
6118Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
6119This warning is enabled by @option{-Wall}.
6120
6121@item -Wimplicit-fallthrough
6122@opindex Wimplicit-fallthrough
6123@opindex Wno-implicit-fallthrough
6124@option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
6125and @option{-Wno-implicit-fallthrough} is the same as
6126@option{-Wimplicit-fallthrough=0}.
6127
6128@item -Wimplicit-fallthrough=@var{n}
6129@opindex Wimplicit-fallthrough=
6130Warn when a switch case falls through.  For example:
6131
6132@smallexample
6133@group
6134switch (cond)
6135  @{
6136  case 1:
6137    a = 1;
6138    break;
6139  case 2:
6140    a = 2;
6141  case 3:
6142    a = 3;
6143    break;
6144  @}
6145@end group
6146@end smallexample
6147
6148This warning does not warn when the last statement of a case cannot
6149fall through, e.g. when there is a return statement or a call to function
6150declared with the noreturn attribute.  @option{-Wimplicit-fallthrough=}
6151also takes into account control flow statements, such as ifs, and only
6152warns when appropriate.  E.g.@:
6153
6154@smallexample
6155@group
6156switch (cond)
6157  @{
6158  case 1:
6159    if (i > 3) @{
6160      bar (5);
6161      break;
6162    @} else if (i < 1) @{
6163      bar (0);
6164    @} else
6165      return;
6166  default:
6167    @dots{}
6168  @}
6169@end group
6170@end smallexample
6171
6172Since there are occasions where a switch case fall through is desirable,
6173GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
6174to be used along with a null statement to suppress this warning that
6175would normally occur:
6176
6177@smallexample
6178@group
6179switch (cond)
6180  @{
6181  case 1:
6182    bar (0);
6183    __attribute__ ((fallthrough));
6184  default:
6185    @dots{}
6186  @}
6187@end group
6188@end smallexample
6189
6190C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
6191warning using @code{[[fallthrough]];} instead of the GNU attribute.  In C++11
6192or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
6193Instead of these attributes, it is also possible to add a fallthrough comment
6194to silence the warning.  The whole body of the C or C++ style comment should
6195match the given regular expressions listed below.  The option argument @var{n}
6196specifies what kind of comments are accepted:
6197
6198@itemize @bullet
6199
6200@item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
6201
6202@item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
6203expression, any comment is used as fallthrough comment.
6204
6205@item @option{-Wimplicit-fallthrough=2} case insensitively matches
6206@code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
6207
6208@item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
6209following regular expressions:
6210
6211@itemize @bullet
6212
6213@item @code{-fallthrough}
6214
6215@item @code{@@fallthrough@@}
6216
6217@item @code{lint -fallthrough[ \t]*}
6218
6219@item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
6220
6221@item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
6222
6223@item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
6224
6225@end itemize
6226
6227@item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
6228following regular expressions:
6229
6230@itemize @bullet
6231
6232@item @code{-fallthrough}
6233
6234@item @code{@@fallthrough@@}
6235
6236@item @code{lint -fallthrough[ \t]*}
6237
6238@item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
6239
6240@end itemize
6241
6242@item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
6243fallthrough comments, only attributes disable the warning.
6244
6245@end itemize
6246
6247The comment needs to be followed after optional whitespace and other comments
6248by @code{case} or @code{default} keywords or by a user label that precedes some
6249@code{case} or @code{default} label.
6250
6251@smallexample
6252@group
6253switch (cond)
6254  @{
6255  case 1:
6256    bar (0);
6257    /* FALLTHRU */
6258  default:
6259    @dots{}
6260  @}
6261@end group
6262@end smallexample
6263
6264The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
6265
6266@item -Wno-if-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
6267@opindex Wif-not-aligned
6268@opindex Wno-if-not-aligned
6269Control if warnings triggered by the @code{warn_if_not_aligned} attribute
6270should be issued.  These warnings are enabled by default.
6271
6272@item -Wignored-qualifiers @r{(C and C++ only)}
6273@opindex Wignored-qualifiers
6274@opindex Wno-ignored-qualifiers
6275Warn if the return type of a function has a type qualifier
6276such as @code{const}.  For ISO C such a type qualifier has no effect,
6277since the value returned by a function is not an lvalue.
6278For C++, the warning is only emitted for scalar types or @code{void}.
6279ISO C prohibits qualified @code{void} return types on function
6280definitions, so such return types always receive a warning
6281even without this option.
6282
6283This warning is also enabled by @option{-Wextra}.
6284
6285@item -Wno-ignored-attributes @r{(C and C++ only)}
6286@opindex Wignored-attributes
6287@opindex Wno-ignored-attributes
6288This option controls warnings when an attribute is ignored.
6289This is different from the
6290@option{-Wattributes} option in that it warns whenever the compiler decides
6291to drop an attribute, not that the attribute is either unknown, used in a
6292wrong place, etc.  This warning is enabled by default.
6293
6294@item -Wmain
6295@opindex Wmain
6296@opindex Wno-main
6297Warn if the type of @code{main} is suspicious.  @code{main} should be
6298a function with external linkage, returning int, taking either zero
6299arguments, two, or three arguments of appropriate types.  This warning
6300is enabled by default in C++ and is enabled by either @option{-Wall}
6301or @option{-Wpedantic}.
6302
6303@item -Wmisleading-indentation @r{(C and C++ only)}
6304@opindex Wmisleading-indentation
6305@opindex Wno-misleading-indentation
6306Warn when the indentation of the code does not reflect the block structure.
6307Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
6308@code{for} clauses with a guarded statement that does not use braces,
6309followed by an unguarded statement with the same indentation.
6310
6311In the following example, the call to ``bar'' is misleadingly indented as
6312if it were guarded by the ``if'' conditional.
6313
6314@smallexample
6315  if (some_condition ())
6316    foo ();
6317    bar ();  /* Gotcha: this is not guarded by the "if".  */
6318@end smallexample
6319
6320In the case of mixed tabs and spaces, the warning uses the
6321@option{-ftabstop=} option to determine if the statements line up
6322(defaulting to 8).
6323
6324The warning is not issued for code involving multiline preprocessor logic
6325such as the following example.
6326
6327@smallexample
6328  if (flagA)
6329    foo (0);
6330#if SOME_CONDITION_THAT_DOES_NOT_HOLD
6331  if (flagB)
6332#endif
6333    foo (1);
6334@end smallexample
6335
6336The warning is not issued after a @code{#line} directive, since this
6337typically indicates autogenerated code, and no assumptions can be made
6338about the layout of the file that the directive references.
6339
6340This warning is enabled by @option{-Wall} in C and C++.
6341
6342@item -Wmissing-attributes
6343@opindex Wmissing-attributes
6344@opindex Wno-missing-attributes
6345Warn when a declaration of a function is missing one or more attributes
6346that a related function is declared with and whose absence may adversely
6347affect the correctness or efficiency of generated code.  For example,
6348the warning is issued for declarations of aliases that use attributes
6349to specify less restrictive requirements than those of their targets.
6350This typically represents a potential optimization opportunity.
6351By contrast, the @option{-Wattribute-alias=2} option controls warnings
6352issued when the alias is more restrictive than the target, which could
6353lead to incorrect code generation.
6354Attributes considered include @code{alloc_align}, @code{alloc_size},
6355@code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
6356@code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
6357@code{returns_nonnull}, and @code{returns_twice}.
6358
6359In C++, the warning is issued when an explicit specialization of a primary
6360template declared with attribute @code{alloc_align}, @code{alloc_size},
6361@code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
6362or @code{nonnull} is declared without it.  Attributes @code{deprecated},
6363@code{error}, and @code{warning} suppress the warning.
6364(@pxref{Function Attributes}).
6365
6366You can use the @code{copy} attribute to apply the same
6367set of attributes to a declaration as that on another declaration without
6368explicitly enumerating the attributes. This attribute can be applied
6369to declarations of functions (@pxref{Common Function Attributes}),
6370variables (@pxref{Common Variable Attributes}), or types
6371(@pxref{Common Type Attributes}).
6372
6373@option{-Wmissing-attributes} is enabled by @option{-Wall}.
6374
6375For example, since the declaration of the primary function template
6376below makes use of both attribute @code{malloc} and @code{alloc_size}
6377the declaration of the explicit specialization of the template is
6378diagnosed because it is missing one of the attributes.
6379
6380@smallexample
6381template <class T>
6382T* __attribute__ ((malloc, alloc_size (1)))
6383allocate (size_t);
6384
6385template <>
6386void* __attribute__ ((malloc))   // missing alloc_size
6387allocate<void> (size_t);
6388@end smallexample
6389
6390@item -Wmissing-braces
6391@opindex Wmissing-braces
6392@opindex Wno-missing-braces
6393Warn if an aggregate or union initializer is not fully bracketed.  In
6394the following example, the initializer for @code{a} is not fully
6395bracketed, but that for @code{b} is fully bracketed.
6396
6397@smallexample
6398int a[2][2] = @{ 0, 1, 2, 3 @};
6399int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
6400@end smallexample
6401
6402This warning is enabled by @option{-Wall}.
6403
6404@item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
6405@opindex Wmissing-include-dirs
6406@opindex Wno-missing-include-dirs
6407Warn if a user-supplied include directory does not exist.
6408
6409@item -Wno-missing-profile
6410@opindex Wmissing-profile
6411@opindex Wno-missing-profile
6412This option controls warnings if feedback profiles are missing when using the
6413@option{-fprofile-use} option.
6414This option diagnoses those cases where a new function or a new file is added
6415between compiling with @option{-fprofile-generate} and with
6416@option{-fprofile-use}, without regenerating the profiles.
6417In these cases, the profile feedback data files do not contain any
6418profile feedback information for
6419the newly added function or file respectively.  Also, in the case when profile
6420count data (.gcda) files are removed, GCC cannot use any profile feedback
6421information.  In all these cases, warnings are issued to inform you that a
6422profile generation step is due.
6423Ignoring the warning can result in poorly optimized code.
6424@option{-Wno-missing-profile} can be used to
6425disable the warning, but this is not recommended and should be done only
6426when non-existent profile data is justified.
6427
6428@item -Wno-mismatched-dealloc
6429@opindex Wmismatched-dealloc
6430@opindex Wno-mismatched-dealloc
6431
6432Warn for calls to deallocation functions with pointer arguments returned
6433from from allocations functions for which the former isn't a suitable
6434deallocator.  A pair of functions can be associated as matching allocators
6435and deallocators by use of attribute @code{malloc}.  Unless disabled by
6436the @option{-fno-builtin} option the standard functions @code{calloc},
6437@code{malloc}, @code{realloc}, and @code{free}, as well as the corresponding
6438forms of C++ @code{operator new} and @code{operator delete} are implicitly
6439associated as matching allocators and deallocators.  In the following
6440example @code{mydealloc} is the deallocator for pointers returned from
6441@code{myalloc}.
6442
6443@smallexample
6444void mydealloc (void*);
6445
6446__attribute__ ((malloc (mydealloc, 1))) void*
6447myalloc (size_t);
6448
6449void f (void)
6450@{
6451  void *p = myalloc (32);
6452  // @dots{}use p@dots{}
6453  free (p);   // warning: not a matching deallocator for myalloc
6454  mydealloc (p);   // ok
6455@}
6456@end smallexample
6457
6458In C++, the related option @option{-Wmismatched-new-delete} diagnoses
6459mismatches involving either @code{operator new} or @code{operator delete}.
6460
6461Option @option{-Wmismatched-dealloc} is enabled by default.
6462
6463@item -Wmultistatement-macros
6464@opindex Wmultistatement-macros
6465@opindex Wno-multistatement-macros
6466Warn about unsafe multiple statement macros that appear to be guarded
6467by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
6468@code{while}, in which only the first statement is actually guarded after
6469the macro is expanded.
6470
6471For example:
6472
6473@smallexample
6474#define DOIT x++; y++
6475if (c)
6476  DOIT;
6477@end smallexample
6478
6479will increment @code{y} unconditionally, not just when @code{c} holds.
6480The can usually be fixed by wrapping the macro in a do-while loop:
6481@smallexample
6482#define DOIT do @{ x++; y++; @} while (0)
6483if (c)
6484  DOIT;
6485@end smallexample
6486
6487This warning is enabled by @option{-Wall} in C and C++.
6488
6489@item -Wparentheses
6490@opindex Wparentheses
6491@opindex Wno-parentheses
6492Warn if parentheses are omitted in certain contexts, such
6493as when there is an assignment in a context where a truth value
6494is expected, or when operators are nested whose precedence people
6495often get confused about.
6496
6497Also warn if a comparison like @code{x<=y<=z} appears; this is
6498equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
6499interpretation from that of ordinary mathematical notation.
6500
6501Also warn for dangerous uses of the GNU extension to
6502@code{?:} with omitted middle operand. When the condition
6503in the @code{?}: operator is a boolean expression, the omitted value is
6504always 1.  Often programmers expect it to be a value computed
6505inside the conditional expression instead.
6506
6507For C++ this also warns for some cases of unnecessary parentheses in
6508declarations, which can indicate an attempt at a function call instead
6509of a declaration:
6510@smallexample
6511@{
6512  // Declares a local variable called mymutex.
6513  std::unique_lock<std::mutex> (mymutex);
6514  // User meant std::unique_lock<std::mutex> lock (mymutex);
6515@}
6516@end smallexample
6517
6518This warning is enabled by @option{-Wall}.
6519
6520@item -Wsequence-point
6521@opindex Wsequence-point
6522@opindex Wno-sequence-point
6523Warn about code that may have undefined semantics because of violations
6524of sequence point rules in the C and C++ standards.
6525
6526The C and C++ standards define the order in which expressions in a C/C++
6527program are evaluated in terms of @dfn{sequence points}, which represent
6528a partial ordering between the execution of parts of the program: those
6529executed before the sequence point, and those executed after it.  These
6530occur after the evaluation of a full expression (one which is not part
6531of a larger expression), after the evaluation of the first operand of a
6532@code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
6533function is called (but after the evaluation of its arguments and the
6534expression denoting the called function), and in certain other places.
6535Other than as expressed by the sequence point rules, the order of
6536evaluation of subexpressions of an expression is not specified.  All
6537these rules describe only a partial order rather than a total order,
6538since, for example, if two functions are called within one expression
6539with no sequence point between them, the order in which the functions
6540are called is not specified.  However, the standards committee have
6541ruled that function calls do not overlap.
6542
6543It is not specified when between sequence points modifications to the
6544values of objects take effect.  Programs whose behavior depends on this
6545have undefined behavior; the C and C++ standards specify that ``Between
6546the previous and next sequence point an object shall have its stored
6547value modified at most once by the evaluation of an expression.
6548Furthermore, the prior value shall be read only to determine the value
6549to be stored.''.  If a program breaks these rules, the results on any
6550particular implementation are entirely unpredictable.
6551
6552Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
6553= b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
6554diagnosed by this option, and it may give an occasional false positive
6555result, but in general it has been found fairly effective at detecting
6556this sort of problem in programs.
6557
6558The C++17 standard will define the order of evaluation of operands in
6559more cases: in particular it requires that the right-hand side of an
6560assignment be evaluated before the left-hand side, so the above
6561examples are no longer undefined.  But this option will still warn
6562about them, to help people avoid writing code that is undefined in C
6563and earlier revisions of C++.
6564
6565The standard is worded confusingly, therefore there is some debate
6566over the precise meaning of the sequence point rules in subtle cases.
6567Links to discussions of the problem, including proposed formal
6568definitions, may be found on the GCC readings page, at
6569@uref{http://gcc.gnu.org/@/readings.html}.
6570
6571This warning is enabled by @option{-Wall} for C and C++.
6572
6573@item -Wno-return-local-addr
6574@opindex Wno-return-local-addr
6575@opindex Wreturn-local-addr
6576Do not warn about returning a pointer (or in C++, a reference) to a
6577variable that goes out of scope after the function returns.
6578
6579@item -Wreturn-type
6580@opindex Wreturn-type
6581@opindex Wno-return-type
6582Warn whenever a function is defined with a return type that defaults
6583to @code{int}.  Also warn about any @code{return} statement with no
6584return value in a function whose return type is not @code{void}
6585(falling off the end of the function body is considered returning
6586without a value).
6587
6588For C only, warn about a @code{return} statement with an expression in a
6589function whose return type is @code{void}, unless the expression type is
6590also @code{void}.  As a GNU extension, the latter case is accepted
6591without a warning unless @option{-Wpedantic} is used.  Attempting
6592to use the return value of a non-@code{void} function other than @code{main}
6593that flows off the end by reaching the closing curly brace that terminates
6594the function is undefined.
6595
6596Unlike in C, in C++, flowing off the end of a non-@code{void} function other
6597than @code{main} results in undefined behavior even when the value of
6598the function is not used.
6599
6600This warning is enabled by default in C++ and by @option{-Wall} otherwise.
6601
6602@item -Wno-shift-count-negative
6603@opindex Wshift-count-negative
6604@opindex Wno-shift-count-negative
6605Controls warnings if a shift count is negative.
6606This warning is enabled by default.
6607
6608@item -Wno-shift-count-overflow
6609@opindex Wshift-count-overflow
6610@opindex Wno-shift-count-overflow
6611Controls warnings if a shift count is greater than or equal to the bit width
6612of the type.  This warning is enabled by default.
6613
6614@item -Wshift-negative-value
6615@opindex Wshift-negative-value
6616@opindex Wno-shift-negative-value
6617Warn if left shifting a negative value.  This warning is enabled by
6618@option{-Wextra} in C99 and C++11 modes (and newer).
6619
6620@item -Wno-shift-overflow
6621@itemx -Wshift-overflow=@var{n}
6622@opindex Wshift-overflow
6623@opindex Wno-shift-overflow
6624These options control warnings about left shift overflows.
6625
6626@table @gcctabopt
6627@item -Wshift-overflow=1
6628This is the warning level of @option{-Wshift-overflow} and is enabled
6629by default in C99 and C++11 modes (and newer).  This warning level does
6630not warn about left-shifting 1 into the sign bit.  (However, in C, such
6631an overflow is still rejected in contexts where an integer constant expression
6632is required.)  No warning is emitted in C++20 mode (and newer), as signed left
6633shifts always wrap.
6634
6635@item -Wshift-overflow=2
6636This warning level also warns about left-shifting 1 into the sign bit,
6637unless C++14 mode (or newer) is active.
6638@end table
6639
6640@item -Wswitch
6641@opindex Wswitch
6642@opindex Wno-switch
6643Warn whenever a @code{switch} statement has an index of enumerated type
6644and lacks a @code{case} for one or more of the named codes of that
6645enumeration.  (The presence of a @code{default} label prevents this
6646warning.)  @code{case} labels outside the enumeration range also
6647provoke warnings when this option is used (even if there is a
6648@code{default} label).
6649This warning is enabled by @option{-Wall}.
6650
6651@item -Wswitch-default
6652@opindex Wswitch-default
6653@opindex Wno-switch-default
6654Warn whenever a @code{switch} statement does not have a @code{default}
6655case.
6656
6657@item -Wswitch-enum
6658@opindex Wswitch-enum
6659@opindex Wno-switch-enum
6660Warn whenever a @code{switch} statement has an index of enumerated type
6661and lacks a @code{case} for one or more of the named codes of that
6662enumeration.  @code{case} labels outside the enumeration range also
6663provoke warnings when this option is used.  The only difference
6664between @option{-Wswitch} and this option is that this option gives a
6665warning about an omitted enumeration code even if there is a
6666@code{default} label.
6667
6668@item -Wno-switch-bool
6669@opindex Wswitch-bool
6670@opindex Wno-switch-bool
6671Do not warn when a @code{switch} statement has an index of boolean type
6672and the case values are outside the range of a boolean type.
6673It is possible to suppress this warning by casting the controlling
6674expression to a type other than @code{bool}.  For example:
6675@smallexample
6676@group
6677switch ((int) (a == 4))
6678  @{
6679  @dots{}
6680  @}
6681@end group
6682@end smallexample
6683This warning is enabled by default for C and C++ programs.
6684
6685@item -Wno-switch-outside-range
6686@opindex Wswitch-outside-range
6687@opindex Wno-switch-outside-range
6688This option controls warnings when a @code{switch} case has a value
6689that is outside of its
6690respective type range.  This warning is enabled by default for
6691C and C++ programs.
6692
6693@item -Wno-switch-unreachable
6694@opindex Wswitch-unreachable
6695@opindex Wno-switch-unreachable
6696Do not warn when a @code{switch} statement contains statements between the
6697controlling expression and the first case label, which will never be
6698executed.  For example:
6699@smallexample
6700@group
6701switch (cond)
6702  @{
6703   i = 15;
6704  @dots{}
6705   case 5:
6706  @dots{}
6707  @}
6708@end group
6709@end smallexample
6710@option{-Wswitch-unreachable} does not warn if the statement between the
6711controlling expression and the first case label is just a declaration:
6712@smallexample
6713@group
6714switch (cond)
6715  @{
6716   int i;
6717  @dots{}
6718   case 5:
6719   i = 5;
6720  @dots{}
6721  @}
6722@end group
6723@end smallexample
6724This warning is enabled by default for C and C++ programs.
6725
6726@item -Wsync-nand @r{(C and C++ only)}
6727@opindex Wsync-nand
6728@opindex Wno-sync-nand
6729Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
6730built-in functions are used.  These functions changed semantics in GCC 4.4.
6731
6732@item -Wunused-but-set-parameter
6733@opindex Wunused-but-set-parameter
6734@opindex Wno-unused-but-set-parameter
6735Warn whenever a function parameter is assigned to, but otherwise unused
6736(aside from its declaration).
6737
6738To suppress this warning use the @code{unused} attribute
6739(@pxref{Variable Attributes}).
6740
6741This warning is also enabled by @option{-Wunused} together with
6742@option{-Wextra}.
6743
6744@item -Wunused-but-set-variable
6745@opindex Wunused-but-set-variable
6746@opindex Wno-unused-but-set-variable
6747Warn whenever a local variable is assigned to, but otherwise unused
6748(aside from its declaration).
6749This warning is enabled by @option{-Wall}.
6750
6751To suppress this warning use the @code{unused} attribute
6752(@pxref{Variable Attributes}).
6753
6754This warning is also enabled by @option{-Wunused}, which is enabled
6755by @option{-Wall}.
6756
6757@item -Wunused-function
6758@opindex Wunused-function
6759@opindex Wno-unused-function
6760Warn whenever a static function is declared but not defined or a
6761non-inline static function is unused.
6762This warning is enabled by @option{-Wall}.
6763
6764@item -Wunused-label
6765@opindex Wunused-label
6766@opindex Wno-unused-label
6767Warn whenever a label is declared but not used.
6768This warning is enabled by @option{-Wall}.
6769
6770To suppress this warning use the @code{unused} attribute
6771(@pxref{Variable Attributes}).
6772
6773@item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
6774@opindex Wunused-local-typedefs
6775@opindex Wno-unused-local-typedefs
6776Warn when a typedef locally defined in a function is not used.
6777This warning is enabled by @option{-Wall}.
6778
6779@item -Wunused-parameter
6780@opindex Wunused-parameter
6781@opindex Wno-unused-parameter
6782Warn whenever a function parameter is unused aside from its declaration.
6783
6784To suppress this warning use the @code{unused} attribute
6785(@pxref{Variable Attributes}).
6786
6787@item -Wno-unused-result
6788@opindex Wunused-result
6789@opindex Wno-unused-result
6790Do not warn if a caller of a function marked with attribute
6791@code{warn_unused_result} (@pxref{Function Attributes}) does not use
6792its return value. The default is @option{-Wunused-result}.
6793
6794@item -Wunused-variable
6795@opindex Wunused-variable
6796@opindex Wno-unused-variable
6797Warn whenever a local or static variable is unused aside from its
6798declaration. This option implies @option{-Wunused-const-variable=1} for C,
6799but not for C++. This warning is enabled by @option{-Wall}.
6800
6801To suppress this warning use the @code{unused} attribute
6802(@pxref{Variable Attributes}).
6803
6804@item -Wunused-const-variable
6805@itemx -Wunused-const-variable=@var{n}
6806@opindex Wunused-const-variable
6807@opindex Wno-unused-const-variable
6808Warn whenever a constant static variable is unused aside from its declaration.
6809@option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
6810for C, but not for C++. In C this declares variable storage, but in C++ this
6811is not an error since const variables take the place of @code{#define}s.
6812
6813To suppress this warning use the @code{unused} attribute
6814(@pxref{Variable Attributes}).
6815
6816@table @gcctabopt
6817@item -Wunused-const-variable=1
6818This is the warning level that is enabled by @option{-Wunused-variable} for
6819C.  It warns only about unused static const variables defined in the main
6820compilation unit, but not about static const variables declared in any
6821header included.
6822
6823@item -Wunused-const-variable=2
6824This warning level also warns for unused constant static variables in
6825headers (excluding system headers).  This is the warning level of
6826@option{-Wunused-const-variable} and must be explicitly requested since
6827in C++ this isn't an error and in C it might be harder to clean up all
6828headers included.
6829@end table
6830
6831@item -Wunused-value
6832@opindex Wunused-value
6833@opindex Wno-unused-value
6834Warn whenever a statement computes a result that is explicitly not
6835used. To suppress this warning cast the unused expression to
6836@code{void}. This includes an expression-statement or the left-hand
6837side of a comma expression that contains no side effects. For example,
6838an expression such as @code{x[i,j]} causes a warning, while
6839@code{x[(void)i,j]} does not.
6840
6841This warning is enabled by @option{-Wall}.
6842
6843@item -Wunused
6844@opindex Wunused
6845@opindex Wno-unused
6846All the above @option{-Wunused} options combined.
6847
6848In order to get a warning about an unused function parameter, you must
6849either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
6850@option{-Wunused}), or separately specify @option{-Wunused-parameter}.
6851
6852@item -Wuninitialized
6853@opindex Wuninitialized
6854@opindex Wno-uninitialized
6855Warn if an object with automatic or allocated storage duration is used
6856without having been initialized.  In C++, also warn if a non-static
6857reference or non-static @code{const} member appears in a class without
6858constructors.
6859
6860In addition, passing a pointer (or in C++, a reference) to an uninitialized
6861object to a @code{const}-qualified argument of a built-in function known to
6862read the object is also diagnosed by this warning.
6863(@option{-Wmaybe-uninitialized} is issued for ordinary functions.)
6864
6865If you want to warn about code that uses the uninitialized value of the
6866variable in its own initializer, use the @option{-Winit-self} option.
6867
6868These warnings occur for individual uninitialized elements of
6869structure, union or array variables as well as for variables that are
6870uninitialized as a whole.  They do not occur for variables or elements
6871declared @code{volatile}.  Because these warnings depend on
6872optimization, the exact variables or elements for which there are
6873warnings depend on the precise optimization options and version of GCC
6874used.
6875
6876Note that there may be no warning about a variable that is used only
6877to compute a value that itself is never used, because such
6878computations may be deleted by data flow analysis before the warnings
6879are printed.
6880
6881@item -Wno-invalid-memory-model
6882@opindex Winvalid-memory-model
6883@opindex Wno-invalid-memory-model
6884This option controls warnings
6885for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
6886and the C11 atomic generic functions with a memory consistency argument
6887that is either invalid for the operation or outside the range of values
6888of the @code{memory_order} enumeration.  For example, since the
6889@code{__atomic_store} and @code{__atomic_store_n} built-ins are only
6890defined for the relaxed, release, and sequentially consistent memory
6891orders the following code is diagnosed:
6892
6893@smallexample
6894void store (int *i)
6895@{
6896  __atomic_store_n (i, 0, memory_order_consume);
6897@}
6898@end smallexample
6899
6900@option{-Winvalid-memory-model} is enabled by default.
6901
6902@item -Wmaybe-uninitialized
6903@opindex Wmaybe-uninitialized
6904@opindex Wno-maybe-uninitialized
6905For an object with automatic or allocated storage duration, if there exists
6906a path from the function entry to a use of the object that is initialized,
6907but there exist some other paths for which the object is not initialized,
6908the compiler emits a warning if it cannot prove the uninitialized paths
6909are not executed at run time.
6910
6911In addition, passing a pointer (or in C++, a reference) to an uninitialized
6912object to a @code{const}-qualified function argument is also diagnosed by
6913this warning.  (@option{-Wuninitialized} is issued for built-in functions
6914known to read the object.)  Annotating the function with attribute
6915@code{access (none)} indicates that the argument isn't used to access
6916the object and avoids the warning (@pxref{Common Function Attributes}).
6917
6918These warnings are only possible in optimizing compilation, because otherwise
6919GCC does not keep track of the state of variables.
6920
6921These warnings are made optional because GCC may not be able to determine when
6922the code is correct in spite of appearing to have an error.  Here is one
6923example of how this can happen:
6924
6925@smallexample
6926@group
6927@{
6928  int x;
6929  switch (y)
6930    @{
6931    case 1: x = 1;
6932      break;
6933    case 2: x = 4;
6934      break;
6935    case 3: x = 5;
6936    @}
6937  foo (x);
6938@}
6939@end group
6940@end smallexample
6941
6942@noindent
6943If the value of @code{y} is always 1, 2 or 3, then @code{x} is
6944always initialized, but GCC doesn't know this. To suppress the
6945warning, you need to provide a default case with assert(0) or
6946similar code.
6947
6948@cindex @code{longjmp} warnings
6949This option also warns when a non-volatile automatic variable might be
6950changed by a call to @code{longjmp}.
6951The compiler sees only the calls to @code{setjmp}.  It cannot know
6952where @code{longjmp} will be called; in fact, a signal handler could
6953call it at any point in the code.  As a result, you may get a warning
6954even when there is in fact no problem because @code{longjmp} cannot
6955in fact be called at the place that would cause a problem.
6956
6957Some spurious warnings can be avoided if you declare all the functions
6958you use that never return as @code{noreturn}.  @xref{Function
6959Attributes}.
6960
6961This warning is enabled by @option{-Wall} or @option{-Wextra}.
6962
6963@item -Wunknown-pragmas
6964@opindex Wunknown-pragmas
6965@opindex Wno-unknown-pragmas
6966@cindex warning for unknown pragmas
6967@cindex unknown pragmas, warning
6968@cindex pragmas, warning of unknown
6969Warn when a @code{#pragma} directive is encountered that is not understood by
6970GCC@.  If this command-line option is used, warnings are even issued
6971for unknown pragmas in system header files.  This is not the case if
6972the warnings are only enabled by the @option{-Wall} command-line option.
6973
6974@item -Wno-pragmas
6975@opindex Wno-pragmas
6976@opindex Wpragmas
6977Do not warn about misuses of pragmas, such as incorrect parameters,
6978invalid syntax, or conflicts between pragmas.  See also
6979@option{-Wunknown-pragmas}.
6980
6981@item -Wno-prio-ctor-dtor
6982@opindex Wno-prio-ctor-dtor
6983@opindex Wprio-ctor-dtor
6984Do not warn if a priority from 0 to 100 is used for constructor or destructor.
6985The use of constructor and destructor attributes allow you to assign a
6986priority to the constructor/destructor to control its order of execution
6987before @code{main} is called or after it returns.  The priority values must be
6988greater than 100 as the compiler reserves priority values between 0--100 for
6989the implementation.
6990
6991@item -Wstrict-aliasing
6992@opindex Wstrict-aliasing
6993@opindex Wno-strict-aliasing
6994This option is only active when @option{-fstrict-aliasing} is active.
6995It warns about code that might break the strict aliasing rules that the
6996compiler is using for optimization.  The warning does not catch all
6997cases, but does attempt to catch the more common pitfalls.  It is
6998included in @option{-Wall}.
6999It is equivalent to @option{-Wstrict-aliasing=3}
7000
7001@item -Wstrict-aliasing=n
7002@opindex Wstrict-aliasing=n
7003This option is only active when @option{-fstrict-aliasing} is active.
7004It warns about code that might break the strict aliasing rules that the
7005compiler is using for optimization.
7006Higher levels correspond to higher accuracy (fewer false positives).
7007Higher levels also correspond to more effort, similar to the way @option{-O}
7008works.
7009@option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
7010
7011Level 1: Most aggressive, quick, least accurate.
7012Possibly useful when higher levels
7013do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
7014false negatives.  However, it has many false positives.
7015Warns for all pointer conversions between possibly incompatible types,
7016even if never dereferenced.  Runs in the front end only.
7017
7018Level 2: Aggressive, quick, not too precise.
7019May still have many false positives (not as many as level 1 though),
7020and few false negatives (but possibly more than level 1).
7021Unlike level 1, it only warns when an address is taken.  Warns about
7022incomplete types.  Runs in the front end only.
7023
7024Level 3 (default for @option{-Wstrict-aliasing}):
7025Should have very few false positives and few false
7026negatives.  Slightly slower than levels 1 or 2 when optimization is enabled.
7027Takes care of the common pun+dereference pattern in the front end:
7028@code{*(int*)&some_float}.
7029If optimization is enabled, it also runs in the back end, where it deals
7030with multiple statement cases using flow-sensitive points-to information.
7031Only warns when the converted pointer is dereferenced.
7032Does not warn about incomplete types.
7033
7034@item -Wstrict-overflow
7035@itemx -Wstrict-overflow=@var{n}
7036@opindex Wstrict-overflow
7037@opindex Wno-strict-overflow
7038This option is only active when signed overflow is undefined.
7039It warns about cases where the compiler optimizes based on the
7040assumption that signed overflow does not occur.  Note that it does not
7041warn about all cases where the code might overflow: it only warns
7042about cases where the compiler implements some optimization.  Thus
7043this warning depends on the optimization level.
7044
7045An optimization that assumes that signed overflow does not occur is
7046perfectly safe if the values of the variables involved are such that
7047overflow never does, in fact, occur.  Therefore this warning can
7048easily give a false positive: a warning about code that is not
7049actually a problem.  To help focus on important issues, several
7050warning levels are defined.  No warnings are issued for the use of
7051undefined signed overflow when estimating how many iterations a loop
7052requires, in particular when determining whether a loop will be
7053executed at all.
7054
7055@table @gcctabopt
7056@item -Wstrict-overflow=1
7057Warn about cases that are both questionable and easy to avoid.  For
7058example the compiler simplifies
7059@code{x + 1 > x} to @code{1}.  This level of
7060@option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
7061are not, and must be explicitly requested.
7062
7063@item -Wstrict-overflow=2
7064Also warn about other cases where a comparison is simplified to a
7065constant.  For example: @code{abs (x) >= 0}.  This can only be
7066simplified when signed integer overflow is undefined, because
7067@code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
7068zero.  @option{-Wstrict-overflow} (with no level) is the same as
7069@option{-Wstrict-overflow=2}.
7070
7071@item -Wstrict-overflow=3
7072Also warn about other cases where a comparison is simplified.  For
7073example: @code{x + 1 > 1} is simplified to @code{x > 0}.
7074
7075@item -Wstrict-overflow=4
7076Also warn about other simplifications not covered by the above cases.
7077For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
7078
7079@item -Wstrict-overflow=5
7080Also warn about cases where the compiler reduces the magnitude of a
7081constant involved in a comparison.  For example: @code{x + 2 > y} is
7082simplified to @code{x + 1 >= y}.  This is reported only at the
7083highest warning level because this simplification applies to many
7084comparisons, so this warning level gives a very large number of
7085false positives.
7086@end table
7087
7088@item -Wstring-compare
7089@opindex Wstring-compare
7090@opindex Wno-string-compare
7091Warn for calls to @code{strcmp} and @code{strncmp} whose result is
7092determined to be either zero or non-zero in tests for such equality
7093owing to the length of one argument being greater than the size of
7094the array the other argument is stored in (or the bound in the case
7095of @code{strncmp}).  Such calls could be mistakes.  For example,
7096the call to @code{strcmp} below is diagnosed because its result is
7097necessarily non-zero irrespective of the contents of the array @code{a}.
7098
7099@smallexample
7100extern char a[4];
7101void f (char *d)
7102@{
7103  strcpy (d, "string");
7104  @dots{}
7105  if (0 == strcmp (a, d))   // cannot be true
7106    puts ("a and d are the same");
7107@}
7108@end smallexample
7109
7110@option{-Wstring-compare} is enabled by @option{-Wextra}.
7111
7112@item -Wno-stringop-overflow
7113@item -Wstringop-overflow
7114@itemx -Wstringop-overflow=@var{type}
7115@opindex Wstringop-overflow
7116@opindex Wno-stringop-overflow
7117Warn for calls to string manipulation functions such as @code{memcpy} and
7118@code{strcpy} that are determined to overflow the destination buffer.  The
7119optional argument is one greater than the type of Object Size Checking to
7120perform to determine the size of the destination.  @xref{Object Size Checking}.
7121The argument is meaningful only for functions that operate on character arrays
7122but not for raw memory functions like @code{memcpy} which always make use
7123of Object Size type-0.  The option also warns for calls that specify a size
7124in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
7125The option produces the best results with optimization enabled but can detect
7126a small subset of simple buffer overflows even without optimization in
7127calls to the GCC built-in functions like @code{__builtin_memcpy} that
7128correspond to the standard functions.  In any case, the option warns about
7129just a subset of buffer overflows detected by the corresponding overflow
7130checking built-ins.  For example, the option issues a warning for
7131the @code{strcpy} call below because it copies at least 5 characters
7132(the string @code{"blue"} including the terminating NUL) into the buffer
7133of size 4.
7134
7135@smallexample
7136enum Color @{ blue, purple, yellow @};
7137const char* f (enum Color clr)
7138@{
7139  static char buf [4];
7140  const char *str;
7141  switch (clr)
7142    @{
7143      case blue: str = "blue"; break;
7144      case purple: str = "purple"; break;
7145      case yellow: str = "yellow"; break;
7146    @}
7147
7148  return strcpy (buf, str);   // warning here
7149@}
7150@end smallexample
7151
7152Option @option{-Wstringop-overflow=2} is enabled by default.
7153
7154@table @gcctabopt
7155@item -Wstringop-overflow
7156@itemx -Wstringop-overflow=1
7157@opindex Wstringop-overflow
7158@opindex Wno-stringop-overflow
7159The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
7160to determine the sizes of destination objects.  At this setting the option
7161does not warn for writes past the end of subobjects of larger objects accessed
7162by pointers unless the size of the largest surrounding object is known.  When
7163the destination may be one of several objects it is assumed to be the largest
7164one of them.  On Linux systems, when optimization is enabled at this setting
7165the option warns for the same code as when the @code{_FORTIFY_SOURCE} macro
7166is defined to a non-zero value.
7167
7168@item -Wstringop-overflow=2
7169The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
7170to determine the sizes of destination objects.  At this setting the option
7171warns about overflows when writing to members of the largest complete
7172objects whose exact size is known.  However, it does not warn for excessive
7173writes to the same members of unknown objects referenced by pointers since
7174they may point to arrays containing unknown numbers of elements.  This is
7175the default setting of the option.
7176
7177@item -Wstringop-overflow=3
7178The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
7179to determine the sizes of destination objects.  At this setting the option
7180warns about overflowing the smallest object or data member.  This is the
7181most restrictive setting of the option that may result in warnings for safe
7182code.
7183
7184@item -Wstringop-overflow=4
7185The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
7186to determine the sizes of destination objects.  At this setting the option
7187warns about overflowing any data members, and when the destination is
7188one of several objects it uses the size of the largest of them to decide
7189whether to issue a warning.  Similarly to @option{-Wstringop-overflow=3} this
7190setting of the option may result in warnings for benign code.
7191@end table
7192
7193@item -Wno-stringop-overread
7194@opindex Wstringop-overread
7195@opindex Wno-stringop-overread
7196Warn for calls to string manipulation functions such as @code{memchr}, or
7197@code{strcpy} that are determined to read past the end of the source
7198sequence.
7199
7200Option @option{-Wstringop-overread} is enabled by default.
7201
7202@item -Wno-stringop-truncation
7203@opindex Wstringop-truncation
7204@opindex Wno-stringop-truncation
7205Do not warn for calls to bounded string manipulation functions
7206such as @code{strncat},
7207@code{strncpy}, and @code{stpncpy} that may either truncate the copied string
7208or leave the destination unchanged.
7209
7210In the following example, the call to @code{strncat} specifies a bound that
7211is less than the length of the source string.  As a result, the copy of
7212the source will be truncated and so the call is diagnosed.  To avoid the
7213warning use @code{bufsize - strlen (buf) - 1)} as the bound.
7214
7215@smallexample
7216void append (char *buf, size_t bufsize)
7217@{
7218  strncat (buf, ".txt", 3);
7219@}
7220@end smallexample
7221
7222As another example, the following call to @code{strncpy} results in copying
7223to @code{d} just the characters preceding the terminating NUL, without
7224appending the NUL to the end.  Assuming the result of @code{strncpy} is
7225necessarily a NUL-terminated string is a common mistake, and so the call
7226is diagnosed.  To avoid the warning when the result is not expected to be
7227NUL-terminated, call @code{memcpy} instead.
7228
7229@smallexample
7230void copy (char *d, const char *s)
7231@{
7232  strncpy (d, s, strlen (s));
7233@}
7234@end smallexample
7235
7236In the following example, the call to @code{strncpy} specifies the size
7237of the destination buffer as the bound.  If the length of the source
7238string is equal to or greater than this size the result of the copy will
7239not be NUL-terminated.  Therefore, the call is also diagnosed.  To avoid
7240the warning, specify @code{sizeof buf - 1} as the bound and set the last
7241element of the buffer to @code{NUL}.
7242
7243@smallexample
7244void copy (const char *s)
7245@{
7246  char buf[80];
7247  strncpy (buf, s, sizeof buf);
7248  @dots{}
7249@}
7250@end smallexample
7251
7252In situations where a character array is intended to store a sequence
7253of bytes with no terminating @code{NUL} such an array may be annotated
7254with attribute @code{nonstring} to avoid this warning.  Such arrays,
7255however, are not suitable arguments to functions that expect
7256@code{NUL}-terminated strings.  To help detect accidental misuses of
7257such arrays GCC issues warnings unless it can prove that the use is
7258safe.  @xref{Common Variable Attributes}.
7259
7260@item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
7261@opindex Wsuggest-attribute=
7262@opindex Wno-suggest-attribute=
7263Warn for cases where adding an attribute may be beneficial. The
7264attributes currently supported are listed below.
7265
7266@table @gcctabopt
7267@item -Wsuggest-attribute=pure
7268@itemx -Wsuggest-attribute=const
7269@itemx -Wsuggest-attribute=noreturn
7270@itemx -Wmissing-noreturn
7271@itemx -Wsuggest-attribute=malloc
7272@opindex Wsuggest-attribute=pure
7273@opindex Wno-suggest-attribute=pure
7274@opindex Wsuggest-attribute=const
7275@opindex Wno-suggest-attribute=const
7276@opindex Wsuggest-attribute=noreturn
7277@opindex Wno-suggest-attribute=noreturn
7278@opindex Wmissing-noreturn
7279@opindex Wno-missing-noreturn
7280@opindex Wsuggest-attribute=malloc
7281@opindex Wno-suggest-attribute=malloc
7282
7283Warn about functions that might be candidates for attributes
7284@code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
7285only warns for functions visible in other compilation units or (in the case of
7286@code{pure} and @code{const}) if it cannot prove that the function returns
7287normally. A function returns normally if it doesn't contain an infinite loop or
7288return abnormally by throwing, calling @code{abort} or trapping.  This analysis
7289requires option @option{-fipa-pure-const}, which is enabled by default at
7290@option{-O} and higher.  Higher optimization levels improve the accuracy
7291of the analysis.
7292
7293@item -Wsuggest-attribute=format
7294@itemx -Wmissing-format-attribute
7295@opindex Wsuggest-attribute=format
7296@opindex Wmissing-format-attribute
7297@opindex Wno-suggest-attribute=format
7298@opindex Wno-missing-format-attribute
7299@opindex Wformat
7300@opindex Wno-format
7301
7302Warn about function pointers that might be candidates for @code{format}
7303attributes.  Note these are only possible candidates, not absolute ones.
7304GCC guesses that function pointers with @code{format} attributes that
7305are used in assignment, initialization, parameter passing or return
7306statements should have a corresponding @code{format} attribute in the
7307resulting type.  I.e.@: the left-hand side of the assignment or
7308initialization, the type of the parameter variable, or the return type
7309of the containing function respectively should also have a @code{format}
7310attribute to avoid the warning.
7311
7312GCC also warns about function definitions that might be
7313candidates for @code{format} attributes.  Again, these are only
7314possible candidates.  GCC guesses that @code{format} attributes
7315might be appropriate for any function that calls a function like
7316@code{vprintf} or @code{vscanf}, but this might not always be the
7317case, and some functions for which @code{format} attributes are
7318appropriate may not be detected.
7319
7320@item -Wsuggest-attribute=cold
7321@opindex Wsuggest-attribute=cold
7322@opindex Wno-suggest-attribute=cold
7323
7324Warn about functions that might be candidates for @code{cold} attribute.  This
7325is based on static detection and generally only warns about functions which
7326always leads to a call to another @code{cold} function such as wrappers of
7327C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
7328@end table
7329
7330@item -Walloc-zero
7331@opindex Wno-alloc-zero
7332@opindex Walloc-zero
7333Warn about calls to allocation functions decorated with attribute
7334@code{alloc_size} that specify zero bytes, including those to the built-in
7335forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
7336@code{malloc}, and @code{realloc}.  Because the behavior of these functions
7337when called with a zero size differs among implementations (and in the case
7338of @code{realloc} has been deprecated) relying on it may result in subtle
7339portability bugs and should be avoided.
7340
7341@item -Walloc-size-larger-than=@var{byte-size}
7342@opindex Walloc-size-larger-than=
7343@opindex Wno-alloc-size-larger-than
7344Warn about calls to functions decorated with attribute @code{alloc_size}
7345that attempt to allocate objects larger than the specified number of bytes,
7346or where the result of the size computation in an integer type with infinite
7347precision would exceed the value of @samp{PTRDIFF_MAX} on the target.
7348@option{-Walloc-size-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
7349Warnings controlled by the option can be disabled either by specifying
7350@var{byte-size} of @samp{SIZE_MAX} or more or by
7351@option{-Wno-alloc-size-larger-than}.
7352@xref{Function Attributes}.
7353
7354@item -Wno-alloc-size-larger-than
7355@opindex Wno-alloc-size-larger-than
7356Disable @option{-Walloc-size-larger-than=} warnings.  The option is
7357equivalent to @option{-Walloc-size-larger-than=}@samp{SIZE_MAX} or
7358larger.
7359
7360@item -Walloca
7361@opindex Wno-alloca
7362@opindex Walloca
7363This option warns on all uses of @code{alloca} in the source.
7364
7365@item -Walloca-larger-than=@var{byte-size}
7366@opindex Walloca-larger-than=
7367@opindex Wno-alloca-larger-than
7368This option warns on calls to @code{alloca} with an integer argument whose
7369value is either zero, or that is not bounded by a controlling predicate
7370that limits its value to at most @var{byte-size}.  It also warns for calls
7371to @code{alloca} where the bound value is unknown.  Arguments of non-integer
7372types are considered unbounded even if they appear to be constrained to
7373the expected range.
7374
7375For example, a bounded case of @code{alloca} could be:
7376
7377@smallexample
7378void func (size_t n)
7379@{
7380  void *p;
7381  if (n <= 1000)
7382    p = alloca (n);
7383  else
7384    p = malloc (n);
7385  f (p);
7386@}
7387@end smallexample
7388
7389In the above example, passing @code{-Walloca-larger-than=1000} would not
7390issue a warning because the call to @code{alloca} is known to be at most
73911000 bytes.  However, if @code{-Walloca-larger-than=500} were passed,
7392the compiler would emit a warning.
7393
7394Unbounded uses, on the other hand, are uses of @code{alloca} with no
7395controlling predicate constraining its integer argument.  For example:
7396
7397@smallexample
7398void func ()
7399@{
7400  void *p = alloca (n);
7401  f (p);
7402@}
7403@end smallexample
7404
7405If @code{-Walloca-larger-than=500} were passed, the above would trigger
7406a warning, but this time because of the lack of bounds checking.
7407
7408Note, that even seemingly correct code involving signed integers could
7409cause a warning:
7410
7411@smallexample
7412void func (signed int n)
7413@{
7414  if (n < 500)
7415    @{
7416      p = alloca (n);
7417      f (p);
7418    @}
7419@}
7420@end smallexample
7421
7422In the above example, @var{n} could be negative, causing a larger than
7423expected argument to be implicitly cast into the @code{alloca} call.
7424
7425This option also warns when @code{alloca} is used in a loop.
7426
7427@option{-Walloca-larger-than=}@samp{PTRDIFF_MAX} is enabled by default
7428but is usually only effective  when @option{-ftree-vrp} is active (default
7429for @option{-O2} and above).
7430
7431See also @option{-Wvla-larger-than=}@samp{byte-size}.
7432
7433@item -Wno-alloca-larger-than
7434@opindex Wno-alloca-larger-than
7435Disable @option{-Walloca-larger-than=} warnings.  The option is
7436equivalent to @option{-Walloca-larger-than=}@samp{SIZE_MAX} or larger.
7437
7438@item -Warith-conversion
7439@opindex Warith-conversion
7440@opindex Wno-arith-conversion
7441Do warn about implicit conversions from arithmetic operations even
7442when conversion of the operands to the same type cannot change their
7443values.  This affects warnings from @option{-Wconversion},
7444@option{-Wfloat-conversion}, and @option{-Wsign-conversion}.
7445
7446@smallexample
7447@group
7448void f (char c, int i)
7449@{
7450  c = c + i; // warns with @option{-Wconversion}
7451  c = c + 1; // only warns with @option{-Warith-conversion}
7452@}
7453@end group
7454@end smallexample
7455
7456@item -Warray-bounds
7457@itemx -Warray-bounds=@var{n}
7458@opindex Wno-array-bounds
7459@opindex Warray-bounds
7460This option is only active when @option{-ftree-vrp} is active
7461(default for @option{-O2} and above). It warns about subscripts to arrays
7462that are always out of bounds. This warning is enabled by @option{-Wall}.
7463
7464@table @gcctabopt
7465@item -Warray-bounds=1
7466This is the warning level of @option{-Warray-bounds} and is enabled
7467by @option{-Wall}; higher levels are not, and must be explicitly requested.
7468
7469@item -Warray-bounds=2
7470This warning level also warns about out of bounds access for
7471arrays at the end of a struct and for arrays accessed through
7472pointers. This warning level may give a larger number of
7473false positives and is deactivated by default.
7474@end table
7475
7476@item -Warray-parameter
7477@itemx -Warray-parameter=@var{n}
7478@opindex Wno-array-parameter
7479Warn about redeclarations of functions involving arguments of array or
7480pointer types of inconsistent kinds or forms, and enable the detection
7481of out-of-bounds accesses to such parameters by warnings such as
7482@option{-Warray-bounds}.
7483
7484If the first function declaration uses the array form the bound specified
7485in the array is assumed to be the minimum number of elements expected to
7486be provided in calls to the function and the maximum number of elements
7487accessed by it.  Failing to provide arguments of sufficient size or accessing
7488more than the maximum number of elements may be diagnosed by warnings such
7489as @option{-Warray-bounds}.  At level 1 the warning diagnoses inconsistencies
7490involving array parameters declared using the @code{T[static N]} form.
7491
7492For example, the warning triggers for the following redeclarations because
7493the first one allows an array of any size to be passed to @code{f} while
7494the second one with the keyword @code{static} specifies that the array
7495argument must have at least four elements.
7496
7497@smallexample
7498void f (int[static 4]);
7499void f (int[]);           // warning (inconsistent array form)
7500
7501void g (void)
7502@{
7503  int *p = (int *)malloc (4);
7504  f (p);                  // warning (array too small)
7505  @dots{}
7506@}
7507@end smallexample
7508
7509At level 2 the warning also triggers for redeclarations involving any other
7510inconsistency in array or pointer argument forms denoting array sizes.
7511Pointers and arrays of unspecified bound are considered equivalent and do
7512not trigger a warning.
7513
7514@smallexample
7515void g (int*);
7516void g (int[]);     // no warning
7517void g (int[8]);    // warning (inconsistent array bound)
7518@end smallexample
7519
7520@option{-Warray-parameter=2} is included in @option{-Wall}.  The
7521@option{-Wvla-parameter} option triggers warnings for similar inconsistencies
7522involving Variable Length Array arguments.
7523
7524@item -Wattribute-alias=@var{n}
7525@itemx -Wno-attribute-alias
7526@opindex Wattribute-alias
7527@opindex Wno-attribute-alias
7528Warn about declarations using the @code{alias} and similar attributes whose
7529target is incompatible with the type of the alias.
7530@xref{Function Attributes,,Declaring Attributes of Functions}.
7531
7532@table @gcctabopt
7533@item -Wattribute-alias=1
7534The default warning level of the @option{-Wattribute-alias} option diagnoses
7535incompatibilities between the type of the alias declaration and that of its
7536target.  Such incompatibilities are typically indicative of bugs.
7537
7538@item -Wattribute-alias=2
7539
7540At this level @option{-Wattribute-alias} also diagnoses cases where
7541the attributes of the alias declaration are more restrictive than the
7542attributes applied to its target.  These mismatches can potentially
7543result in incorrect code generation.  In other cases they may be
7544benign and could be resolved simply by adding the missing attribute to
7545the target.  For comparison, see the @option{-Wmissing-attributes}
7546option, which controls diagnostics when the alias declaration is less
7547restrictive than the target, rather than more restrictive.
7548
7549Attributes considered include @code{alloc_align}, @code{alloc_size},
7550@code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
7551@code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
7552@code{returns_nonnull}, and @code{returns_twice}.
7553@end table
7554
7555@option{-Wattribute-alias} is equivalent to @option{-Wattribute-alias=1}.
7556This is the default.  You can disable these warnings with either
7557@option{-Wno-attribute-alias} or @option{-Wattribute-alias=0}.
7558
7559@item -Wbool-compare
7560@opindex Wno-bool-compare
7561@opindex Wbool-compare
7562Warn about boolean expression compared with an integer value different from
7563@code{true}/@code{false}.  For instance, the following comparison is
7564always false:
7565@smallexample
7566int n = 5;
7567@dots{}
7568if ((n > 1) == 2) @{ @dots{} @}
7569@end smallexample
7570This warning is enabled by @option{-Wall}.
7571
7572@item -Wbool-operation
7573@opindex Wno-bool-operation
7574@opindex Wbool-operation
7575Warn about suspicious operations on expressions of a boolean type.  For
7576instance, bitwise negation of a boolean is very likely a bug in the program.
7577For C, this warning also warns about incrementing or decrementing a boolean,
7578which rarely makes sense.  (In C++, decrementing a boolean is always invalid.
7579Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
7580
7581This warning is enabled by @option{-Wall}.
7582
7583@item -Wduplicated-branches
7584@opindex Wno-duplicated-branches
7585@opindex Wduplicated-branches
7586Warn when an if-else has identical branches.  This warning detects cases like
7587@smallexample
7588if (p != NULL)
7589  return 0;
7590else
7591  return 0;
7592@end smallexample
7593It doesn't warn when both branches contain just a null statement.  This warning
7594also warn for conditional operators:
7595@smallexample
7596  int i = x ? *p : *p;
7597@end smallexample
7598
7599@item -Wduplicated-cond
7600@opindex Wno-duplicated-cond
7601@opindex Wduplicated-cond
7602Warn about duplicated conditions in an if-else-if chain.  For instance,
7603warn for the following code:
7604@smallexample
7605if (p->q != NULL) @{ @dots{} @}
7606else if (p->q != NULL) @{ @dots{} @}
7607@end smallexample
7608
7609@item -Wframe-address
7610@opindex Wno-frame-address
7611@opindex Wframe-address
7612Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
7613is called with an argument greater than 0.  Such calls may return indeterminate
7614values or crash the program.  The warning is included in @option{-Wall}.
7615
7616@item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
7617@opindex Wno-discarded-qualifiers
7618@opindex Wdiscarded-qualifiers
7619Do not warn if type qualifiers on pointers are being discarded.
7620Typically, the compiler warns if a @code{const char *} variable is
7621passed to a function that takes a @code{char *} parameter.  This option
7622can be used to suppress such a warning.
7623
7624@item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
7625@opindex Wno-discarded-array-qualifiers
7626@opindex Wdiscarded-array-qualifiers
7627Do not warn if type qualifiers on arrays which are pointer targets
7628are being discarded.  Typically, the compiler warns if a
7629@code{const int (*)[]} variable is passed to a function that
7630takes a @code{int (*)[]} parameter.  This option can be used to
7631suppress such a warning.
7632
7633@item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
7634@opindex Wno-incompatible-pointer-types
7635@opindex Wincompatible-pointer-types
7636Do not warn when there is a conversion between pointers that have incompatible
7637types.  This warning is for cases not covered by @option{-Wno-pointer-sign},
7638which warns for pointer argument passing or assignment with different
7639signedness.
7640
7641@item -Wno-int-conversion @r{(C and Objective-C only)}
7642@opindex Wno-int-conversion
7643@opindex Wint-conversion
7644Do not warn about incompatible integer to pointer and pointer to integer
7645conversions.  This warning is about implicit conversions; for explicit
7646conversions the warnings @option{-Wno-int-to-pointer-cast} and
7647@option{-Wno-pointer-to-int-cast} may be used.
7648
7649@item -Wzero-length-bounds
7650@opindex Wzero-length-bounds
7651@opindex Wzero-length-bounds
7652Warn about accesses to elements of zero-length array members that might
7653overlap other members of the same object.  Declaring interior zero-length
7654arrays is discouraged because accesses to them are undefined.  See
7655@xref{Zero Length}.
7656
7657For example, the first two stores in function @code{bad} are diagnosed
7658because the array elements overlap the subsequent members @code{b} and
7659@code{c}.  The third store is diagnosed by @option{-Warray-bounds}
7660because it is beyond the bounds of the enclosing object.
7661
7662@smallexample
7663struct X @{ int a[0]; int b, c; @};
7664struct X x;
7665
7666void bad (void)
7667@{
7668  x.a[0] = 0;   // -Wzero-length-bounds
7669  x.a[1] = 1;   // -Wzero-length-bounds
7670  x.a[2] = 2;   // -Warray-bounds
7671@}
7672@end smallexample
7673
7674Option @option{-Wzero-length-bounds} is enabled by @option{-Warray-bounds}.
7675
7676@item -Wno-div-by-zero
7677@opindex Wno-div-by-zero
7678@opindex Wdiv-by-zero
7679Do not warn about compile-time integer division by zero.  Floating-point
7680division by zero is not warned about, as it can be a legitimate way of
7681obtaining infinities and NaNs.
7682
7683@item -Wsystem-headers
7684@opindex Wsystem-headers
7685@opindex Wno-system-headers
7686@cindex warnings from system headers
7687@cindex system headers, warnings from
7688Print warning messages for constructs found in system header files.
7689Warnings from system headers are normally suppressed, on the assumption
7690that they usually do not indicate real problems and would only make the
7691compiler output harder to read.  Using this command-line option tells
7692GCC to emit warnings from system headers as if they occurred in user
7693code.  However, note that using @option{-Wall} in conjunction with this
7694option does @emph{not} warn about unknown pragmas in system
7695headers---for that, @option{-Wunknown-pragmas} must also be used.
7696
7697@item -Wtautological-compare
7698@opindex Wtautological-compare
7699@opindex Wno-tautological-compare
7700Warn if a self-comparison always evaluates to true or false.  This
7701warning detects various mistakes such as:
7702@smallexample
7703int i = 1;
7704@dots{}
7705if (i > i) @{ @dots{} @}
7706@end smallexample
7707
7708This warning also warns about bitwise comparisons that always evaluate
7709to true or false, for instance:
7710@smallexample
7711if ((a & 16) == 10) @{ @dots{} @}
7712@end smallexample
7713will always be false.
7714
7715This warning is enabled by @option{-Wall}.
7716
7717@item -Wtrampolines
7718@opindex Wtrampolines
7719@opindex Wno-trampolines
7720Warn about trampolines generated for pointers to nested functions.
7721A trampoline is a small piece of data or code that is created at run
7722time on the stack when the address of a nested function is taken, and is
7723used to call the nested function indirectly.  For some targets, it is
7724made up of data only and thus requires no special treatment.  But, for
7725most targets, it is made up of code and thus requires the stack to be
7726made executable in order for the program to work properly.
7727
7728@item -Wfloat-equal
7729@opindex Wfloat-equal
7730@opindex Wno-float-equal
7731Warn if floating-point values are used in equality comparisons.
7732
7733The idea behind this is that sometimes it is convenient (for the
7734programmer) to consider floating-point values as approximations to
7735infinitely precise real numbers.  If you are doing this, then you need
7736to compute (by analyzing the code, or in some other way) the maximum or
7737likely maximum error that the computation introduces, and allow for it
7738when performing comparisons (and when producing output, but that's a
7739different problem).  In particular, instead of testing for equality, you
7740should check to see whether the two values have ranges that overlap; and
7741this is done with the relational operators, so equality comparisons are
7742probably mistaken.
7743
7744@item -Wtraditional @r{(C and Objective-C only)}
7745@opindex Wtraditional
7746@opindex Wno-traditional
7747Warn about certain constructs that behave differently in traditional and
7748ISO C@.  Also warn about ISO C constructs that have no traditional C
7749equivalent, and/or problematic constructs that should be avoided.
7750
7751@itemize @bullet
7752@item
7753Macro parameters that appear within string literals in the macro body.
7754In traditional C macro replacement takes place within string literals,
7755but in ISO C it does not.
7756
7757@item
7758In traditional C, some preprocessor directives did not exist.
7759Traditional preprocessors only considered a line to be a directive
7760if the @samp{#} appeared in column 1 on the line.  Therefore
7761@option{-Wtraditional} warns about directives that traditional C
7762understands but ignores because the @samp{#} does not appear as the
7763first character on the line.  It also suggests you hide directives like
7764@code{#pragma} not understood by traditional C by indenting them.  Some
7765traditional implementations do not recognize @code{#elif}, so this option
7766suggests avoiding it altogether.
7767
7768@item
7769A function-like macro that appears without arguments.
7770
7771@item
7772The unary plus operator.
7773
7774@item
7775The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
7776constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
7777constants.)  Note, these suffixes appear in macros defined in the system
7778headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
7779Use of these macros in user code might normally lead to spurious
7780warnings, however GCC's integrated preprocessor has enough context to
7781avoid warning in these cases.
7782
7783@item
7784A function declared external in one block and then used after the end of
7785the block.
7786
7787@item
7788A @code{switch} statement has an operand of type @code{long}.
7789
7790@item
7791A non-@code{static} function declaration follows a @code{static} one.
7792This construct is not accepted by some traditional C compilers.
7793
7794@item
7795The ISO type of an integer constant has a different width or
7796signedness from its traditional type.  This warning is only issued if
7797the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
7798typically represent bit patterns, are not warned about.
7799
7800@item
7801Usage of ISO string concatenation is detected.
7802
7803@item
7804Initialization of automatic aggregates.
7805
7806@item
7807Identifier conflicts with labels.  Traditional C lacks a separate
7808namespace for labels.
7809
7810@item
7811Initialization of unions.  If the initializer is zero, the warning is
7812omitted.  This is done under the assumption that the zero initializer in
7813user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
7814initializer warnings and relies on default initialization to zero in the
7815traditional C case.
7816
7817@item
7818Conversions by prototypes between fixed/floating-point values and vice
7819versa.  The absence of these prototypes when compiling with traditional
7820C causes serious problems.  This is a subset of the possible
7821conversion warnings; for the full set use @option{-Wtraditional-conversion}.
7822
7823@item
7824Use of ISO C style function definitions.  This warning intentionally is
7825@emph{not} issued for prototype declarations or variadic functions
7826because these ISO C features appear in your code when using
7827libiberty's traditional C compatibility macros, @code{PARAMS} and
7828@code{VPARAMS}.  This warning is also bypassed for nested functions
7829because that feature is already a GCC extension and thus not relevant to
7830traditional C compatibility.
7831@end itemize
7832
7833@item -Wtraditional-conversion @r{(C and Objective-C only)}
7834@opindex Wtraditional-conversion
7835@opindex Wno-traditional-conversion
7836Warn if a prototype causes a type conversion that is different from what
7837would happen to the same argument in the absence of a prototype.  This
7838includes conversions of fixed point to floating and vice versa, and
7839conversions changing the width or signedness of a fixed-point argument
7840except when the same as the default promotion.
7841
7842@item -Wdeclaration-after-statement @r{(C and Objective-C only)}
7843@opindex Wdeclaration-after-statement
7844@opindex Wno-declaration-after-statement
7845Warn when a declaration is found after a statement in a block.  This
7846construct, known from C++, was introduced with ISO C99 and is by default
7847allowed in GCC@.  It is not supported by ISO C90.  @xref{Mixed Labels and Declarations}.
7848
7849@item -Wshadow
7850@opindex Wshadow
7851@opindex Wno-shadow
7852Warn whenever a local variable or type declaration shadows another
7853variable, parameter, type, class member (in C++), or instance variable
7854(in Objective-C) or whenever a built-in function is shadowed.  Note
7855that in C++, the compiler warns if a local variable shadows an
7856explicit typedef, but not if it shadows a struct/class/enum.
7857If this warning is enabled, it includes also all instances of
7858local shadowing.  This means that @option{-Wno-shadow=local}
7859and @option{-Wno-shadow=compatible-local} are ignored when
7860@option{-Wshadow} is used.
7861Same as @option{-Wshadow=global}.
7862
7863@item -Wno-shadow-ivar @r{(Objective-C only)}
7864@opindex Wno-shadow-ivar
7865@opindex Wshadow-ivar
7866Do not warn whenever a local variable shadows an instance variable in an
7867Objective-C method.
7868
7869@item -Wshadow=global
7870@opindex Wshadow=global
7871Warn for any shadowing.
7872Same as @option{-Wshadow}.
7873
7874@item -Wshadow=local
7875@opindex Wshadow=local
7876Warn when a local variable shadows another local variable or parameter.
7877
7878@item -Wshadow=compatible-local
7879@opindex Wshadow=compatible-local
7880Warn when a local variable shadows another local variable or parameter
7881whose type is compatible with that of the shadowing variable.  In C++,
7882type compatibility here means the type of the shadowing variable can be
7883converted to that of the shadowed variable.  The creation of this flag
7884(in addition to @option{-Wshadow=local}) is based on the idea that when
7885a local variable shadows another one of incompatible type, it is most
7886likely intentional, not a bug or typo, as shown in the following example:
7887
7888@smallexample
7889@group
7890for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
7891@{
7892  for (int i = 0; i < N; ++i)
7893  @{
7894    ...
7895  @}
7896  ...
7897@}
7898@end group
7899@end smallexample
7900
7901Since the two variable @code{i} in the example above have incompatible types,
7902enabling only @option{-Wshadow=compatible-local} does not emit a warning.
7903Because their types are incompatible, if a programmer accidentally uses one
7904in place of the other, type checking is expected to catch that and emit an
7905error or warning.  Use of this flag instead of @option{-Wshadow=local} can
7906possibly reduce the number of warnings triggered by intentional shadowing.
7907Note that this also means that shadowing @code{const char *i} by
7908@code{char *i} does not emit a warning.
7909
7910This warning is also enabled by @option{-Wshadow=local}.
7911
7912@item -Wlarger-than=@var{byte-size}
7913@opindex Wlarger-than=
7914@opindex Wlarger-than-@var{byte-size}
7915Warn whenever an object is defined whose size exceeds @var{byte-size}.
7916@option{-Wlarger-than=}@samp{PTRDIFF_MAX} is enabled by default.
7917Warnings controlled by the option can be disabled either by specifying
7918@var{byte-size} of @samp{SIZE_MAX} or more or by @option{-Wno-larger-than}.
7919
7920Also warn for calls to bounded functions such as @code{memchr} or
7921@code{strnlen} that specify a bound greater than the largest possible
7922object, which is @samp{PTRDIFF_MAX} bytes by default.  These warnings
7923can only be disabled by @option{-Wno-larger-than}.
7924
7925@item -Wno-larger-than
7926@opindex Wno-larger-than
7927Disable @option{-Wlarger-than=} warnings.  The option is equivalent
7928to @option{-Wlarger-than=}@samp{SIZE_MAX} or larger.
7929
7930@item -Wframe-larger-than=@var{byte-size}
7931@opindex Wframe-larger-than=
7932@opindex Wno-frame-larger-than
7933Warn if the size of a function frame exceeds @var{byte-size}.
7934The computation done to determine the stack frame size is approximate
7935and not conservative.
7936The actual requirements may be somewhat greater than @var{byte-size}
7937even if you do not get a warning.  In addition, any space allocated
7938via @code{alloca}, variable-length arrays, or related constructs
7939is not included by the compiler when determining
7940whether or not to issue a warning.
7941@option{-Wframe-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
7942Warnings controlled by the option can be disabled either by specifying
7943@var{byte-size} of @samp{SIZE_MAX} or more or by
7944@option{-Wno-frame-larger-than}.
7945
7946@item -Wno-frame-larger-than
7947@opindex Wno-frame-larger-than
7948Disable @option{-Wframe-larger-than=} warnings.  The option is equivalent
7949to @option{-Wframe-larger-than=}@samp{SIZE_MAX} or larger.
7950
7951@item -Wno-free-nonheap-object
7952@opindex Wno-free-nonheap-object
7953@opindex Wfree-nonheap-object
7954Warn when attempting to deallocate an object that was either not allocated
7955on the heap, or by using a pointer that was not returned from a prior call
7956to the corresponding allocation function.  For example, because the call
7957to @code{stpcpy} returns a pointer to the terminating nul character and
7958not to the begginning of the object, the call to @code{free} below is
7959diagnosed.
7960
7961@smallexample
7962void f (char *p)
7963@{
7964  p = stpcpy (p, "abc");
7965  // ...
7966  free (p);   // warning
7967@}
7968@end smallexample
7969
7970@option{-Wfree-nonheap-object} is enabled by default.
7971
7972@item -Wstack-usage=@var{byte-size}
7973@opindex Wstack-usage
7974@opindex Wno-stack-usage
7975Warn if the stack usage of a function might exceed @var{byte-size}.
7976The computation done to determine the stack usage is conservative.
7977Any space allocated via @code{alloca}, variable-length arrays, or related
7978constructs is included by the compiler when determining whether or not to
7979issue a warning.
7980
7981The message is in keeping with the output of @option{-fstack-usage}.
7982
7983@itemize
7984@item
7985If the stack usage is fully static but exceeds the specified amount, it's:
7986
7987@smallexample
7988  warning: stack usage is 1120 bytes
7989@end smallexample
7990@item
7991If the stack usage is (partly) dynamic but bounded, it's:
7992
7993@smallexample
7994  warning: stack usage might be 1648 bytes
7995@end smallexample
7996@item
7997If the stack usage is (partly) dynamic and not bounded, it's:
7998
7999@smallexample
8000  warning: stack usage might be unbounded
8001@end smallexample
8002@end itemize
8003
8004@option{-Wstack-usage=}@samp{PTRDIFF_MAX} is enabled by default.
8005Warnings controlled by the option can be disabled either by specifying
8006@var{byte-size} of @samp{SIZE_MAX} or more or by
8007@option{-Wno-stack-usage}.
8008
8009@item -Wno-stack-usage
8010@opindex Wno-stack-usage
8011Disable @option{-Wstack-usage=} warnings.  The option is equivalent
8012to @option{-Wstack-usage=}@samp{SIZE_MAX} or larger.
8013
8014@item -Wunsafe-loop-optimizations
8015@opindex Wunsafe-loop-optimizations
8016@opindex Wno-unsafe-loop-optimizations
8017Warn if the loop cannot be optimized because the compiler cannot
8018assume anything on the bounds of the loop indices.  With
8019@option{-funsafe-loop-optimizations} warn if the compiler makes
8020such assumptions.
8021
8022@item -Wno-pedantic-ms-format @r{(MinGW targets only)}
8023@opindex Wno-pedantic-ms-format
8024@opindex Wpedantic-ms-format
8025When used in combination with @option{-Wformat}
8026and @option{-pedantic} without GNU extensions, this option
8027disables the warnings about non-ISO @code{printf} / @code{scanf} format
8028width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
8029which depend on the MS runtime.
8030
8031@item -Wpointer-arith
8032@opindex Wpointer-arith
8033@opindex Wno-pointer-arith
8034Warn about anything that depends on the ``size of'' a function type or
8035of @code{void}.  GNU C assigns these types a size of 1, for
8036convenience in calculations with @code{void *} pointers and pointers
8037to functions.  In C++, warn also when an arithmetic operation involves
8038@code{NULL}.  This warning is also enabled by @option{-Wpedantic}.
8039
8040@item -Wno-pointer-compare
8041@opindex Wpointer-compare
8042@opindex Wno-pointer-compare
8043Do not warn if a pointer is compared with a zero character constant.
8044This usually
8045means that the pointer was meant to be dereferenced.  For example:
8046
8047@smallexample
8048const char *p = foo ();
8049if (p == '\0')
8050  return 42;
8051@end smallexample
8052
8053Note that the code above is invalid in C++11.
8054
8055This warning is enabled by default.
8056
8057@item -Wtsan
8058@opindex Wtsan
8059@opindex Wno-tsan
8060Warn about unsupported features in ThreadSanitizer.
8061
8062ThreadSanitizer does not support @code{std::atomic_thread_fence} and
8063can report false positives.
8064
8065This warning is enabled by default.
8066
8067@item -Wtype-limits
8068@opindex Wtype-limits
8069@opindex Wno-type-limits
8070Warn if a comparison is always true or always false due to the limited
8071range of the data type, but do not warn for constant expressions.  For
8072example, warn if an unsigned variable is compared against zero with
8073@code{<} or @code{>=}.  This warning is also enabled by
8074@option{-Wextra}.
8075
8076@item -Wabsolute-value @r{(C and Objective-C only)}
8077@opindex Wabsolute-value
8078@opindex Wno-absolute-value
8079Warn for calls to standard functions that compute the absolute value
8080of an argument when a more appropriate standard function is available.
8081For example, calling @code{abs(3.14)} triggers the warning because the
8082appropriate function to call to compute the absolute value of a double
8083argument is @code{fabs}.  The option also triggers warnings when the
8084argument in a call to such a function has an unsigned type.  This
8085warning can be suppressed with an explicit type cast and it is also
8086enabled by @option{-Wextra}.
8087
8088@include cppwarnopts.texi
8089
8090@item -Wbad-function-cast @r{(C and Objective-C only)}
8091@opindex Wbad-function-cast
8092@opindex Wno-bad-function-cast
8093Warn when a function call is cast to a non-matching type.
8094For example, warn if a call to a function returning an integer type
8095is cast to a pointer type.
8096
8097@item -Wc90-c99-compat @r{(C and Objective-C only)}
8098@opindex Wc90-c99-compat
8099@opindex Wno-c90-c99-compat
8100Warn about features not present in ISO C90, but present in ISO C99.
8101For instance, warn about use of variable length arrays, @code{long long}
8102type, @code{bool} type, compound literals, designated initializers, and so
8103on.  This option is independent of the standards mode.  Warnings are disabled
8104in the expression that follows @code{__extension__}.
8105
8106@item -Wc99-c11-compat @r{(C and Objective-C only)}
8107@opindex Wc99-c11-compat
8108@opindex Wno-c99-c11-compat
8109Warn about features not present in ISO C99, but present in ISO C11.
8110For instance, warn about use of anonymous structures and unions,
8111@code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
8112@code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
8113and so on.  This option is independent of the standards mode.  Warnings are
8114disabled in the expression that follows @code{__extension__}.
8115
8116@item -Wc11-c2x-compat @r{(C and Objective-C only)}
8117@opindex Wc11-c2x-compat
8118@opindex Wno-c11-c2x-compat
8119Warn about features not present in ISO C11, but present in ISO C2X.
8120For instance, warn about omitting the string in @code{_Static_assert},
8121use of @samp{[[]]} syntax for attributes, use of decimal
8122floating-point types, and so on.  This option is independent of the
8123standards mode.  Warnings are disabled in the expression that follows
8124@code{__extension__}.
8125
8126@item -Wc++-compat @r{(C and Objective-C only)}
8127@opindex Wc++-compat
8128@opindex Wno-c++-compat
8129Warn about ISO C constructs that are outside of the common subset of
8130ISO C and ISO C++, e.g.@: request for implicit conversion from
8131@code{void *} to a pointer to non-@code{void} type.
8132
8133@item -Wc++11-compat @r{(C++ and Objective-C++ only)}
8134@opindex Wc++11-compat
8135@opindex Wno-c++11-compat
8136Warn about C++ constructs whose meaning differs between ISO C++ 1998
8137and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
8138in ISO C++ 2011.  This warning turns on @option{-Wnarrowing} and is
8139enabled by @option{-Wall}.
8140
8141@item -Wc++14-compat @r{(C++ and Objective-C++ only)}
8142@opindex Wc++14-compat
8143@opindex Wno-c++14-compat
8144Warn about C++ constructs whose meaning differs between ISO C++ 2011
8145and ISO C++ 2014.  This warning is enabled by @option{-Wall}.
8146
8147@item -Wc++17-compat @r{(C++ and Objective-C++ only)}
8148@opindex Wc++17-compat
8149@opindex Wno-c++17-compat
8150Warn about C++ constructs whose meaning differs between ISO C++ 2014
8151and ISO C++ 2017.  This warning is enabled by @option{-Wall}.
8152
8153@item -Wc++20-compat @r{(C++ and Objective-C++ only)}
8154@opindex Wc++20-compat
8155@opindex Wno-c++20-compat
8156Warn about C++ constructs whose meaning differs between ISO C++ 2017
8157and ISO C++ 2020.  This warning is enabled by @option{-Wall}.
8158
8159@item -Wcast-qual
8160@opindex Wcast-qual
8161@opindex Wno-cast-qual
8162Warn whenever a pointer is cast so as to remove a type qualifier from
8163the target type.  For example, warn if a @code{const char *} is cast
8164to an ordinary @code{char *}.
8165
8166Also warn when making a cast that introduces a type qualifier in an
8167unsafe way.  For example, casting @code{char **} to @code{const char **}
8168is unsafe, as in this example:
8169
8170@smallexample
8171  /* p is char ** value.  */
8172  const char **q = (const char **) p;
8173  /* Assignment of readonly string to const char * is OK.  */
8174  *q = "string";
8175  /* Now char** pointer points to read-only memory.  */
8176  **p = 'b';
8177@end smallexample
8178
8179@item -Wcast-align
8180@opindex Wcast-align
8181@opindex Wno-cast-align
8182Warn whenever a pointer is cast such that the required alignment of the
8183target is increased.  For example, warn if a @code{char *} is cast to
8184an @code{int *} on machines where integers can only be accessed at
8185two- or four-byte boundaries.
8186
8187@item -Wcast-align=strict
8188@opindex Wcast-align=strict
8189Warn whenever a pointer is cast such that the required alignment of the
8190target is increased.  For example, warn if a @code{char *} is cast to
8191an @code{int *} regardless of the target machine.
8192
8193@item -Wcast-function-type
8194@opindex Wcast-function-type
8195@opindex Wno-cast-function-type
8196Warn when a function pointer is cast to an incompatible function pointer.
8197In a cast involving function types with a variable argument list only
8198the types of initial arguments that are provided are considered.
8199Any parameter of pointer-type matches any other pointer-type.  Any benign
8200differences in integral types are ignored, like @code{int} vs.@: @code{long}
8201on ILP32 targets.  Likewise type qualifiers are ignored.  The function
8202type @code{void (*) (void)} is special and matches everything, which can
8203be used to suppress this warning.
8204In a cast involving pointer to member types this warning warns whenever
8205the type cast is changing the pointer to member type.
8206This warning is enabled by @option{-Wextra}.
8207
8208@item -Wwrite-strings
8209@opindex Wwrite-strings
8210@opindex Wno-write-strings
8211When compiling C, give string constants the type @code{const
8212char[@var{length}]} so that copying the address of one into a
8213non-@code{const} @code{char *} pointer produces a warning.  These
8214warnings help you find at compile time code that can try to write
8215into a string constant, but only if you have been very careful about
8216using @code{const} in declarations and prototypes.  Otherwise, it is
8217just a nuisance. This is why we did not make @option{-Wall} request
8218these warnings.
8219
8220When compiling C++, warn about the deprecated conversion from string
8221literals to @code{char *}.  This warning is enabled by default for C++
8222programs.
8223
8224@item -Wclobbered
8225@opindex Wclobbered
8226@opindex Wno-clobbered
8227Warn for variables that might be changed by @code{longjmp} or
8228@code{vfork}.  This warning is also enabled by @option{-Wextra}.
8229
8230@item -Wconversion
8231@opindex Wconversion
8232@opindex Wno-conversion
8233Warn for implicit conversions that may alter a value. This includes
8234conversions between real and integer, like @code{abs (x)} when
8235@code{x} is @code{double}; conversions between signed and unsigned,
8236like @code{unsigned ui = -1}; and conversions to smaller types, like
8237@code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
8238((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
8239changed by the conversion like in @code{abs (2.0)}.  Warnings about
8240conversions between signed and unsigned integers can be disabled by
8241using @option{-Wno-sign-conversion}.
8242
8243For C++, also warn for confusing overload resolution for user-defined
8244conversions; and conversions that never use a type conversion
8245operator: conversions to @code{void}, the same type, a base class or a
8246reference to them. Warnings about conversions between signed and
8247unsigned integers are disabled by default in C++ unless
8248@option{-Wsign-conversion} is explicitly enabled.
8249
8250Warnings about conversion from arithmetic on a small type back to that
8251type are only given with @option{-Warith-conversion}.
8252
8253@item -Wdangling-else
8254@opindex Wdangling-else
8255@opindex Wno-dangling-else
8256Warn about constructions where there may be confusion to which
8257@code{if} statement an @code{else} branch belongs.  Here is an example of
8258such a case:
8259
8260@smallexample
8261@group
8262@{
8263  if (a)
8264    if (b)
8265      foo ();
8266  else
8267    bar ();
8268@}
8269@end group
8270@end smallexample
8271
8272In C/C++, every @code{else} branch belongs to the innermost possible
8273@code{if} statement, which in this example is @code{if (b)}.  This is
8274often not what the programmer expected, as illustrated in the above
8275example by indentation the programmer chose.  When there is the
8276potential for this confusion, GCC issues a warning when this flag
8277is specified.  To eliminate the warning, add explicit braces around
8278the innermost @code{if} statement so there is no way the @code{else}
8279can belong to the enclosing @code{if}.  The resulting code
8280looks like this:
8281
8282@smallexample
8283@group
8284@{
8285  if (a)
8286    @{
8287      if (b)
8288        foo ();
8289      else
8290        bar ();
8291    @}
8292@}
8293@end group
8294@end smallexample
8295
8296This warning is enabled by @option{-Wparentheses}.
8297
8298@item -Wdate-time
8299@opindex Wdate-time
8300@opindex Wno-date-time
8301Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
8302are encountered as they might prevent bit-wise-identical reproducible
8303compilations.
8304
8305@item -Wempty-body
8306@opindex Wempty-body
8307@opindex Wno-empty-body
8308Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
8309while} statement.  This warning is also enabled by @option{-Wextra}.
8310
8311@item -Wno-endif-labels
8312@opindex Wendif-labels
8313@opindex Wno-endif-labels
8314Do not warn about stray tokens after @code{#else} and @code{#endif}.
8315
8316@item -Wenum-compare
8317@opindex Wenum-compare
8318@opindex Wno-enum-compare
8319Warn about a comparison between values of different enumerated types.
8320In C++ enumerated type mismatches in conditional expressions are also
8321diagnosed and the warning is enabled by default.  In C this warning is
8322enabled by @option{-Wall}.
8323
8324@item -Wenum-conversion
8325@opindex Wenum-conversion
8326@opindex Wno-enum-conversion
8327Warn when a value of enumerated type is implicitly converted to a
8328different enumerated type.  This warning is enabled by @option{-Wextra}
8329in C@.
8330
8331@item -Wjump-misses-init @r{(C, Objective-C only)}
8332@opindex Wjump-misses-init
8333@opindex Wno-jump-misses-init
8334Warn if a @code{goto} statement or a @code{switch} statement jumps
8335forward across the initialization of a variable, or jumps backward to a
8336label after the variable has been initialized.  This only warns about
8337variables that are initialized when they are declared.  This warning is
8338only supported for C and Objective-C; in C++ this sort of branch is an
8339error in any case.
8340
8341@option{-Wjump-misses-init} is included in @option{-Wc++-compat}.  It
8342can be disabled with the @option{-Wno-jump-misses-init} option.
8343
8344@item -Wsign-compare
8345@opindex Wsign-compare
8346@opindex Wno-sign-compare
8347@cindex warning for comparison of signed and unsigned values
8348@cindex comparison of signed and unsigned values, warning
8349@cindex signed and unsigned values, comparison warning
8350Warn when a comparison between signed and unsigned values could produce
8351an incorrect result when the signed value is converted to unsigned.
8352In C++, this warning is also enabled by @option{-Wall}.  In C, it is
8353also enabled by @option{-Wextra}.
8354
8355@item -Wsign-conversion
8356@opindex Wsign-conversion
8357@opindex Wno-sign-conversion
8358Warn for implicit conversions that may change the sign of an integer
8359value, like assigning a signed integer expression to an unsigned
8360integer variable. An explicit cast silences the warning. In C, this
8361option is enabled also by @option{-Wconversion}.
8362
8363@item -Wfloat-conversion
8364@opindex Wfloat-conversion
8365@opindex Wno-float-conversion
8366Warn for implicit conversions that reduce the precision of a real value.
8367This includes conversions from real to integer, and from higher precision
8368real to lower precision real values.  This option is also enabled by
8369@option{-Wconversion}.
8370
8371@item -Wno-scalar-storage-order
8372@opindex Wno-scalar-storage-order
8373@opindex Wscalar-storage-order
8374Do not warn on suspicious constructs involving reverse scalar storage order.
8375
8376@item -Wsizeof-array-div
8377@opindex Wsizeof-array-div
8378@opindex Wno-sizeof-array-div
8379Warn about divisions of two sizeof operators when the first one is applied
8380to an array and the divisor does not equal the size of the array element.
8381In such a case, the computation will not yield the number of elements in the
8382array, which is likely what the user intended.  This warning warns e.g. about
8383@smallexample
8384int fn ()
8385@{
8386  int arr[10];
8387  return sizeof (arr) / sizeof (short);
8388@}
8389@end smallexample
8390
8391This warning is enabled by @option{-Wall}.
8392
8393@item -Wsizeof-pointer-div
8394@opindex Wsizeof-pointer-div
8395@opindex Wno-sizeof-pointer-div
8396Warn for suspicious divisions of two sizeof expressions that divide
8397the pointer size by the element size, which is the usual way to compute
8398the array size but won't work out correctly with pointers.  This warning
8399warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
8400not an array, but a pointer.  This warning is enabled by @option{-Wall}.
8401
8402@item -Wsizeof-pointer-memaccess
8403@opindex Wsizeof-pointer-memaccess
8404@opindex Wno-sizeof-pointer-memaccess
8405Warn for suspicious length parameters to certain string and memory built-in
8406functions if the argument uses @code{sizeof}.  This warning triggers for
8407example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
8408an array, but a pointer, and suggests a possible fix, or about
8409@code{memcpy (&foo, ptr, sizeof (&foo));}.  @option{-Wsizeof-pointer-memaccess}
8410also warns about calls to bounded string copy functions like @code{strncat}
8411or @code{strncpy} that specify as the bound a @code{sizeof} expression of
8412the source array.  For example, in the following function the call to
8413@code{strncat} specifies the size of the source string as the bound.  That
8414is almost certainly a mistake and so the call is diagnosed.
8415@smallexample
8416void make_file (const char *name)
8417@{
8418  char path[PATH_MAX];
8419  strncpy (path, name, sizeof path - 1);
8420  strncat (path, ".text", sizeof ".text");
8421  @dots{}
8422@}
8423@end smallexample
8424
8425The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
8426
8427@item -Wno-sizeof-array-argument
8428@opindex Wsizeof-array-argument
8429@opindex Wno-sizeof-array-argument
8430Do not warn when the @code{sizeof} operator is applied to a parameter that is
8431declared as an array in a function definition.  This warning is enabled by
8432default for C and C++ programs.
8433
8434@item -Wmemset-elt-size
8435@opindex Wmemset-elt-size
8436@opindex Wno-memset-elt-size
8437Warn for suspicious calls to the @code{memset} built-in function, if the
8438first argument references an array, and the third argument is a number
8439equal to the number of elements, but not equal to the size of the array
8440in memory.  This indicates that the user has omitted a multiplication by
8441the element size.  This warning is enabled by @option{-Wall}.
8442
8443@item -Wmemset-transposed-args
8444@opindex Wmemset-transposed-args
8445@opindex Wno-memset-transposed-args
8446Warn for suspicious calls to the @code{memset} built-in function where
8447the second argument is not zero and the third argument is zero.  For
8448example, the call @code{memset (buf, sizeof buf, 0)} is diagnosed because
8449@code{memset (buf, 0, sizeof buf)} was meant instead.  The diagnostic
8450is only emitted if the third argument is a literal zero.  Otherwise, if
8451it is an expression that is folded to zero, or a cast of zero to some
8452type, it is far less likely that the arguments have been mistakenly
8453transposed and no warning is emitted.  This warning is enabled
8454by @option{-Wall}.
8455
8456@item -Waddress
8457@opindex Waddress
8458@opindex Wno-address
8459Warn about suspicious uses of memory addresses. These include using
8460the address of a function in a conditional expression, such as
8461@code{void func(void); if (func)}, and comparisons against the memory
8462address of a string literal, such as @code{if (x == "abc")}.  Such
8463uses typically indicate a programmer error: the address of a function
8464always evaluates to true, so their use in a conditional usually
8465indicate that the programmer forgot the parentheses in a function
8466call; and comparisons against string literals result in unspecified
8467behavior and are not portable in C, so they usually indicate that the
8468programmer intended to use @code{strcmp}.  This warning is enabled by
8469@option{-Wall}.
8470
8471@item -Wno-address-of-packed-member
8472@opindex Waddress-of-packed-member
8473@opindex Wno-address-of-packed-member
8474Do not warn when the address of packed member of struct or union is taken,
8475which usually results in an unaligned pointer value.  This is
8476enabled by default.
8477
8478@item -Wlogical-op
8479@opindex Wlogical-op
8480@opindex Wno-logical-op
8481Warn about suspicious uses of logical operators in expressions.
8482This includes using logical operators in contexts where a
8483bit-wise operator is likely to be expected.  Also warns when
8484the operands of a logical operator are the same:
8485@smallexample
8486extern int a;
8487if (a < 0 && a < 0) @{ @dots{} @}
8488@end smallexample
8489
8490@item -Wlogical-not-parentheses
8491@opindex Wlogical-not-parentheses
8492@opindex Wno-logical-not-parentheses
8493Warn about logical not used on the left hand side operand of a comparison.
8494This option does not warn if the right operand is considered to be a boolean
8495expression.  Its purpose is to detect suspicious code like the following:
8496@smallexample
8497int a;
8498@dots{}
8499if (!a > 1) @{ @dots{} @}
8500@end smallexample
8501
8502It is possible to suppress the warning by wrapping the LHS into
8503parentheses:
8504@smallexample
8505if ((!a) > 1) @{ @dots{} @}
8506@end smallexample
8507
8508This warning is enabled by @option{-Wall}.
8509
8510@item -Waggregate-return
8511@opindex Waggregate-return
8512@opindex Wno-aggregate-return
8513Warn if any functions that return structures or unions are defined or
8514called.  (In languages where you can return an array, this also elicits
8515a warning.)
8516
8517@item -Wno-aggressive-loop-optimizations
8518@opindex Wno-aggressive-loop-optimizations
8519@opindex Waggressive-loop-optimizations
8520Warn if in a loop with constant number of iterations the compiler detects
8521undefined behavior in some statement during one or more of the iterations.
8522
8523@item -Wno-attributes
8524@opindex Wno-attributes
8525@opindex Wattributes
8526Do not warn if an unexpected @code{__attribute__} is used, such as
8527unrecognized attributes, function attributes applied to variables,
8528etc.  This does not stop errors for incorrect use of supported
8529attributes.
8530
8531@item -Wno-builtin-declaration-mismatch
8532@opindex Wno-builtin-declaration-mismatch
8533@opindex Wbuiltin-declaration-mismatch
8534Warn if a built-in function is declared with an incompatible signature
8535or as a non-function, or when a built-in function declared with a type
8536that does not include a prototype is called with arguments whose promoted
8537types do not match those expected by the function.  When @option{-Wextra}
8538is specified, also warn when a built-in function that takes arguments is
8539declared without a prototype.  The @option{-Wbuiltin-declaration-mismatch}
8540warning is enabled by default.  To avoid the warning include the appropriate
8541header to bring the prototypes of built-in functions into scope.
8542
8543For example, the call to @code{memset} below is diagnosed by the warning
8544because the function expects a value of type @code{size_t} as its argument
8545but the type of @code{32} is @code{int}.  With @option{-Wextra},
8546the declaration of the function is diagnosed as well.
8547@smallexample
8548extern void* memset ();
8549void f (void *d)
8550@{
8551  memset (d, '\0', 32);
8552@}
8553@end smallexample
8554
8555@item -Wno-builtin-macro-redefined
8556@opindex Wno-builtin-macro-redefined
8557@opindex Wbuiltin-macro-redefined
8558Do not warn if certain built-in macros are redefined.  This suppresses
8559warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
8560@code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
8561
8562@item -Wstrict-prototypes @r{(C and Objective-C only)}
8563@opindex Wstrict-prototypes
8564@opindex Wno-strict-prototypes
8565Warn if a function is declared or defined without specifying the
8566argument types.  (An old-style function definition is permitted without
8567a warning if preceded by a declaration that specifies the argument
8568types.)
8569
8570@item -Wold-style-declaration @r{(C and Objective-C only)}
8571@opindex Wold-style-declaration
8572@opindex Wno-old-style-declaration
8573Warn for obsolescent usages, according to the C Standard, in a
8574declaration. For example, warn if storage-class specifiers like
8575@code{static} are not the first things in a declaration.  This warning
8576is also enabled by @option{-Wextra}.
8577
8578@item -Wold-style-definition @r{(C and Objective-C only)}
8579@opindex Wold-style-definition
8580@opindex Wno-old-style-definition
8581Warn if an old-style function definition is used.  A warning is given
8582even if there is a previous prototype.  A definition using @samp{()}
8583is not considered an old-style definition in C2X mode, because it is
8584equivalent to @samp{(void)} in that case, but is considered an
8585old-style definition for older standards.
8586
8587@item -Wmissing-parameter-type @r{(C and Objective-C only)}
8588@opindex Wmissing-parameter-type
8589@opindex Wno-missing-parameter-type
8590A function parameter is declared without a type specifier in K&R-style
8591functions:
8592
8593@smallexample
8594void foo(bar) @{ @}
8595@end smallexample
8596
8597This warning is also enabled by @option{-Wextra}.
8598
8599@item -Wmissing-prototypes @r{(C and Objective-C only)}
8600@opindex Wmissing-prototypes
8601@opindex Wno-missing-prototypes
8602Warn if a global function is defined without a previous prototype
8603declaration.  This warning is issued even if the definition itself
8604provides a prototype.  Use this option to detect global functions
8605that do not have a matching prototype declaration in a header file.
8606This option is not valid for C++ because all function declarations
8607provide prototypes and a non-matching declaration declares an
8608overload rather than conflict with an earlier declaration.
8609Use @option{-Wmissing-declarations} to detect missing declarations in C++.
8610
8611@item -Wmissing-declarations
8612@opindex Wmissing-declarations
8613@opindex Wno-missing-declarations
8614Warn if a global function is defined without a previous declaration.
8615Do so even if the definition itself provides a prototype.
8616Use this option to detect global functions that are not declared in
8617header files.  In C, no warnings are issued for functions with previous
8618non-prototype declarations; use @option{-Wmissing-prototypes} to detect
8619missing prototypes.  In C++, no warnings are issued for function templates,
8620or for inline functions, or for functions in anonymous namespaces.
8621
8622@item -Wmissing-field-initializers
8623@opindex Wmissing-field-initializers
8624@opindex Wno-missing-field-initializers
8625@opindex W
8626@opindex Wextra
8627@opindex Wno-extra
8628Warn if a structure's initializer has some fields missing.  For
8629example, the following code causes such a warning, because
8630@code{x.h} is implicitly zero:
8631
8632@smallexample
8633struct s @{ int f, g, h; @};
8634struct s x = @{ 3, 4 @};
8635@end smallexample
8636
8637This option does not warn about designated initializers, so the following
8638modification does not trigger a warning:
8639
8640@smallexample
8641struct s @{ int f, g, h; @};
8642struct s x = @{ .f = 3, .g = 4 @};
8643@end smallexample
8644
8645In C this option does not warn about the universal zero initializer
8646@samp{@{ 0 @}}:
8647
8648@smallexample
8649struct s @{ int f, g, h; @};
8650struct s x = @{ 0 @};
8651@end smallexample
8652
8653Likewise, in C++ this option does not warn about the empty @{ @}
8654initializer, for example:
8655
8656@smallexample
8657struct s @{ int f, g, h; @};
8658s x = @{ @};
8659@end smallexample
8660
8661This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
8662warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
8663
8664@item -Wno-multichar
8665@opindex Wno-multichar
8666@opindex Wmultichar
8667Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
8668Usually they indicate a typo in the user's code, as they have
8669implementation-defined values, and should not be used in portable code.
8670
8671@item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
8672@opindex Wnormalized=
8673@opindex Wnormalized
8674@opindex Wno-normalized
8675@cindex NFC
8676@cindex NFKC
8677@cindex character set, input normalization
8678In ISO C and ISO C++, two identifiers are different if they are
8679different sequences of characters.  However, sometimes when characters
8680outside the basic ASCII character set are used, you can have two
8681different character sequences that look the same.  To avoid confusion,
8682the ISO 10646 standard sets out some @dfn{normalization rules} which
8683when applied ensure that two sequences that look the same are turned into
8684the same sequence.  GCC can warn you if you are using identifiers that
8685have not been normalized; this option controls that warning.
8686
8687There are four levels of warning supported by GCC@.  The default is
8688@option{-Wnormalized=nfc}, which warns about any identifier that is
8689not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
8690recommended form for most uses.  It is equivalent to
8691@option{-Wnormalized}.
8692
8693Unfortunately, there are some characters allowed in identifiers by
8694ISO C and ISO C++ that, when turned into NFC, are not allowed in
8695identifiers.  That is, there's no way to use these symbols in portable
8696ISO C or C++ and have all your identifiers in NFC@.
8697@option{-Wnormalized=id} suppresses the warning for these characters.
8698It is hoped that future versions of the standards involved will correct
8699this, which is why this option is not the default.
8700
8701You can switch the warning off for all characters by writing
8702@option{-Wnormalized=none} or @option{-Wno-normalized}.  You should
8703only do this if you are using some other normalization scheme (like
8704``D''), because otherwise you can easily create bugs that are
8705literally impossible to see.
8706
8707Some characters in ISO 10646 have distinct meanings but look identical
8708in some fonts or display methodologies, especially once formatting has
8709been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
8710LETTER N'', displays just like a regular @code{n} that has been
8711placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
8712normalization scheme to convert all these into a standard form as
8713well, and GCC warns if your code is not in NFKC if you use
8714@option{-Wnormalized=nfkc}.  This warning is comparable to warning
8715about every identifier that contains the letter O because it might be
8716confused with the digit 0, and so is not the default, but may be
8717useful as a local coding convention if the programming environment
8718cannot be fixed to display these characters distinctly.
8719
8720@item -Wno-attribute-warning
8721@opindex Wno-attribute-warning
8722@opindex Wattribute-warning
8723Do not warn about usage of functions (@pxref{Function Attributes})
8724declared with @code{warning} attribute.  By default, this warning is
8725enabled.  @option{-Wno-attribute-warning} can be used to disable the
8726warning or @option{-Wno-error=attribute-warning} can be used to
8727disable the error when compiled with @option{-Werror} flag.
8728
8729@item -Wno-deprecated
8730@opindex Wno-deprecated
8731@opindex Wdeprecated
8732Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
8733
8734@item -Wno-deprecated-declarations
8735@opindex Wno-deprecated-declarations
8736@opindex Wdeprecated-declarations
8737Do not warn about uses of functions (@pxref{Function Attributes}),
8738variables (@pxref{Variable Attributes}), and types (@pxref{Type
8739Attributes}) marked as deprecated by using the @code{deprecated}
8740attribute.
8741
8742@item -Wno-overflow
8743@opindex Wno-overflow
8744@opindex Woverflow
8745Do not warn about compile-time overflow in constant expressions.
8746
8747@item -Wno-odr
8748@opindex Wno-odr
8749@opindex Wodr
8750Warn about One Definition Rule violations during link-time optimization.
8751Enabled by default.
8752
8753@item -Wopenmp-simd
8754@opindex Wopenmp-simd
8755@opindex Wno-openmp-simd
8756Warn if the vectorizer cost model overrides the OpenMP
8757simd directive set by user.  The @option{-fsimd-cost-model=unlimited}
8758option can be used to relax the cost model.
8759
8760@item -Woverride-init @r{(C and Objective-C only)}
8761@opindex Woverride-init
8762@opindex Wno-override-init
8763@opindex W
8764@opindex Wextra
8765@opindex Wno-extra
8766Warn if an initialized field without side effects is overridden when
8767using designated initializers (@pxref{Designated Inits, , Designated
8768Initializers}).
8769
8770This warning is included in @option{-Wextra}.  To get other
8771@option{-Wextra} warnings without this one, use @option{-Wextra
8772-Wno-override-init}.
8773
8774@item -Wno-override-init-side-effects @r{(C and Objective-C only)}
8775@opindex Woverride-init-side-effects
8776@opindex Wno-override-init-side-effects
8777Do not warn if an initialized field with side effects is overridden when
8778using designated initializers (@pxref{Designated Inits, , Designated
8779Initializers}).  This warning is enabled by default.
8780
8781@item -Wpacked
8782@opindex Wpacked
8783@opindex Wno-packed
8784Warn if a structure is given the packed attribute, but the packed
8785attribute has no effect on the layout or size of the structure.
8786Such structures may be mis-aligned for little benefit.  For
8787instance, in this code, the variable @code{f.x} in @code{struct bar}
8788is misaligned even though @code{struct bar} does not itself
8789have the packed attribute:
8790
8791@smallexample
8792@group
8793struct foo @{
8794  int x;
8795  char a, b, c, d;
8796@} __attribute__((packed));
8797struct bar @{
8798  char z;
8799  struct foo f;
8800@};
8801@end group
8802@end smallexample
8803
8804@item -Wnopacked-bitfield-compat
8805@opindex Wpacked-bitfield-compat
8806@opindex Wno-packed-bitfield-compat
8807The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
8808on bit-fields of type @code{char}.  This was fixed in GCC 4.4 but
8809the change can lead to differences in the structure layout.  GCC
8810informs you when the offset of such a field has changed in GCC 4.4.
8811For example there is no longer a 4-bit padding between field @code{a}
8812and @code{b} in this structure:
8813
8814@smallexample
8815struct foo
8816@{
8817  char a:4;
8818  char b:8;
8819@} __attribute__ ((packed));
8820@end smallexample
8821
8822This warning is enabled by default.  Use
8823@option{-Wno-packed-bitfield-compat} to disable this warning.
8824
8825@item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
8826@opindex Wpacked-not-aligned
8827@opindex Wno-packed-not-aligned
8828Warn if a structure field with explicitly specified alignment in a
8829packed struct or union is misaligned.  For example, a warning will
8830be issued on @code{struct S}, like, @code{warning: alignment 1 of
8831'struct S' is less than 8}, in this code:
8832
8833@smallexample
8834@group
8835struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
8836struct __attribute__ ((packed)) S @{
8837  struct S8 s8;
8838@};
8839@end group
8840@end smallexample
8841
8842This warning is enabled by @option{-Wall}.
8843
8844@item -Wpadded
8845@opindex Wpadded
8846@opindex Wno-padded
8847Warn if padding is included in a structure, either to align an element
8848of the structure or to align the whole structure.  Sometimes when this
8849happens it is possible to rearrange the fields of the structure to
8850reduce the padding and so make the structure smaller.
8851
8852@item -Wredundant-decls
8853@opindex Wredundant-decls
8854@opindex Wno-redundant-decls
8855Warn if anything is declared more than once in the same scope, even in
8856cases where multiple declaration is valid and changes nothing.
8857
8858@item -Wrestrict
8859@opindex Wrestrict
8860@opindex Wno-restrict
8861Warn when an object referenced by a @code{restrict}-qualified parameter
8862(or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
8863argument, or when copies between such objects overlap.  For example,
8864the call to the @code{strcpy} function below attempts to truncate the string
8865by replacing its initial characters with the last four.  However, because
8866the call writes the terminating NUL into @code{a[4]}, the copies overlap and
8867the call is diagnosed.
8868
8869@smallexample
8870void foo (void)
8871@{
8872  char a[] = "abcd1234";
8873  strcpy (a, a + 4);
8874  @dots{}
8875@}
8876@end smallexample
8877The @option{-Wrestrict} option detects some instances of simple overlap
8878even without optimization but works best at @option{-O2} and above.  It
8879is included in @option{-Wall}.
8880
8881@item -Wnested-externs @r{(C and Objective-C only)}
8882@opindex Wnested-externs
8883@opindex Wno-nested-externs
8884Warn if an @code{extern} declaration is encountered within a function.
8885
8886@item -Winline
8887@opindex Winline
8888@opindex Wno-inline
8889Warn if a function that is declared as inline cannot be inlined.
8890Even with this option, the compiler does not warn about failures to
8891inline functions declared in system headers.
8892
8893The compiler uses a variety of heuristics to determine whether or not
8894to inline a function.  For example, the compiler takes into account
8895the size of the function being inlined and the amount of inlining
8896that has already been done in the current function.  Therefore,
8897seemingly insignificant changes in the source program can cause the
8898warnings produced by @option{-Winline} to appear or disappear.
8899
8900@item -Wint-in-bool-context
8901@opindex Wint-in-bool-context
8902@opindex Wno-int-in-bool-context
8903Warn for suspicious use of integer values where boolean values are expected,
8904such as conditional expressions (?:) using non-boolean integer constants in
8905boolean context, like @code{if (a <= b ? 2 : 3)}.  Or left shifting of signed
8906integers in boolean context, like @code{for (a = 0; 1 << a; a++);}.  Likewise
8907for all kinds of multiplications regardless of the data type.
8908This warning is enabled by @option{-Wall}.
8909
8910@item -Wno-int-to-pointer-cast
8911@opindex Wno-int-to-pointer-cast
8912@opindex Wint-to-pointer-cast
8913Suppress warnings from casts to pointer type of an integer of a
8914different size. In C++, casting to a pointer type of smaller size is
8915an error. @option{Wint-to-pointer-cast} is enabled by default.
8916
8917
8918@item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
8919@opindex Wno-pointer-to-int-cast
8920@opindex Wpointer-to-int-cast
8921Suppress warnings from casts from a pointer to an integer type of a
8922different size.
8923
8924@item -Winvalid-pch
8925@opindex Winvalid-pch
8926@opindex Wno-invalid-pch
8927Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
8928the search path but cannot be used.
8929
8930@item -Wlong-long
8931@opindex Wlong-long
8932@opindex Wno-long-long
8933Warn if @code{long long} type is used.  This is enabled by either
8934@option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
8935modes.  To inhibit the warning messages, use @option{-Wno-long-long}.
8936
8937@item -Wvariadic-macros
8938@opindex Wvariadic-macros
8939@opindex Wno-variadic-macros
8940Warn if variadic macros are used in ISO C90 mode, or if the GNU
8941alternate syntax is used in ISO C99 mode.  This is enabled by either
8942@option{-Wpedantic} or @option{-Wtraditional}.  To inhibit the warning
8943messages, use @option{-Wno-variadic-macros}.
8944
8945@item -Wno-varargs
8946@opindex Wvarargs
8947@opindex Wno-varargs
8948Do not warn upon questionable usage of the macros used to handle variable
8949arguments like @code{va_start}.  These warnings are enabled by default.
8950
8951@item -Wvector-operation-performance
8952@opindex Wvector-operation-performance
8953@opindex Wno-vector-operation-performance
8954Warn if vector operation is not implemented via SIMD capabilities of the
8955architecture.  Mainly useful for the performance tuning.
8956Vector operation can be implemented @code{piecewise}, which means that the
8957scalar operation is performed on every vector element;
8958@code{in parallel}, which means that the vector operation is implemented
8959using scalars of wider type, which normally is more performance efficient;
8960and @code{as a single scalar}, which means that vector fits into a
8961scalar type.
8962
8963@item -Wvla
8964@opindex Wvla
8965@opindex Wno-vla
8966Warn if a variable-length array is used in the code.
8967@option{-Wno-vla} prevents the @option{-Wpedantic} warning of
8968the variable-length array.
8969
8970@item -Wvla-larger-than=@var{byte-size}
8971@opindex Wvla-larger-than=
8972@opindex Wno-vla-larger-than
8973If this option is used, the compiler warns for declarations of
8974variable-length arrays whose size is either unbounded, or bounded
8975by an argument that allows the array size to exceed @var{byte-size}
8976bytes.  This is similar to how @option{-Walloca-larger-than=}@var{byte-size}
8977works, but with variable-length arrays.
8978
8979Note that GCC may optimize small variable-length arrays of a known
8980value into plain arrays, so this warning may not get triggered for
8981such arrays.
8982
8983@option{-Wvla-larger-than=}@samp{PTRDIFF_MAX} is enabled by default but
8984is typically only effective when @option{-ftree-vrp} is active (default
8985for @option{-O2} and above).
8986
8987See also @option{-Walloca-larger-than=@var{byte-size}}.
8988
8989@item -Wno-vla-larger-than
8990@opindex Wno-vla-larger-than
8991Disable @option{-Wvla-larger-than=} warnings.  The option is equivalent
8992to @option{-Wvla-larger-than=}@samp{SIZE_MAX} or larger.
8993
8994@item -Wvla-parameter
8995@opindex Wno-vla-parameter
8996Warn about redeclarations of functions involving arguments of Variable
8997Length Array types of inconsistent kinds or forms, and enable the detection
8998of out-of-bounds accesses to such parameters by warnings such as
8999@option{-Warray-bounds}.
9000
9001If the first function declaration uses the VLA form the bound specified
9002in the array is assumed to be the minimum number of elements expected to
9003be provided in calls to the function and the maximum number of elements
9004accessed by it.  Failing to provide arguments of sufficient size or
9005accessing more than the maximum number of elements may be diagnosed.
9006
9007For example, the warning triggers for the following redeclarations because
9008the first one allows an array of any size to be passed to @code{f} while
9009the second one specifies that the array argument must have at least @code{n}
9010elements.  In addition, calling @code{f} with the assotiated VLA bound
9011parameter in excess of the actual VLA bound triggers a warning as well.
9012
9013@smallexample
9014void f (int n, int[n]);
9015void f (int, int[]);     // warning: argument 2 previously declared as a VLA
9016
9017void g (int n)
9018@{
9019    if (n > 4)
9020      return;
9021    int a[n];
9022    f (sizeof a, a);     // warning: access to a by f may be out of bounds
9023  @dots{}
9024@}
9025
9026@end smallexample
9027
9028@option{-Wvla-parameter} is included in @option{-Wall}.  The
9029@option{-Warray-parameter} option triggers warnings for similar problems
9030involving ordinary array arguments.
9031
9032@item -Wvolatile-register-var
9033@opindex Wvolatile-register-var
9034@opindex Wno-volatile-register-var
9035Warn if a register variable is declared volatile.  The volatile
9036modifier does not inhibit all optimizations that may eliminate reads
9037and/or writes to register variables.  This warning is enabled by
9038@option{-Wall}.
9039
9040@item -Wdisabled-optimization
9041@opindex Wdisabled-optimization
9042@opindex Wno-disabled-optimization
9043Warn if a requested optimization pass is disabled.  This warning does
9044not generally indicate that there is anything wrong with your code; it
9045merely indicates that GCC's optimizers are unable to handle the code
9046effectively.  Often, the problem is that your code is too big or too
9047complex; GCC refuses to optimize programs when the optimization
9048itself is likely to take inordinate amounts of time.
9049
9050@item -Wpointer-sign @r{(C and Objective-C only)}
9051@opindex Wpointer-sign
9052@opindex Wno-pointer-sign
9053Warn for pointer argument passing or assignment with different signedness.
9054This option is only supported for C and Objective-C@.  It is implied by
9055@option{-Wall} and by @option{-Wpedantic}, which can be disabled with
9056@option{-Wno-pointer-sign}.
9057
9058@item -Wstack-protector
9059@opindex Wstack-protector
9060@opindex Wno-stack-protector
9061This option is only active when @option{-fstack-protector} is active.  It
9062warns about functions that are not protected against stack smashing.
9063
9064@item -Woverlength-strings
9065@opindex Woverlength-strings
9066@opindex Wno-overlength-strings
9067Warn about string constants that are longer than the ``minimum
9068maximum'' length specified in the C standard.  Modern compilers
9069generally allow string constants that are much longer than the
9070standard's minimum limit, but very portable programs should avoid
9071using longer strings.
9072
9073The limit applies @emph{after} string constant concatenation, and does
9074not count the trailing NUL@.  In C90, the limit was 509 characters; in
9075C99, it was raised to 4095.  C++98 does not specify a normative
9076minimum maximum, so we do not diagnose overlength strings in C++@.
9077
9078This option is implied by @option{-Wpedantic}, and can be disabled with
9079@option{-Wno-overlength-strings}.
9080
9081@item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
9082@opindex Wunsuffixed-float-constants
9083@opindex Wno-unsuffixed-float-constants
9084
9085Issue a warning for any floating constant that does not have
9086a suffix.  When used together with @option{-Wsystem-headers} it
9087warns about such constants in system header files.  This can be useful
9088when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
9089from the decimal floating-point extension to C99.
9090
9091@item -Wno-lto-type-mismatch
9092@opindex Wlto-type-mismatch
9093@opindex Wno-lto-type-mismatch
9094
9095During the link-time optimization, do not warn about type mismatches in
9096global declarations from different compilation units.
9097Requires @option{-flto} to be enabled.  Enabled by default.
9098
9099@item -Wno-designated-init @r{(C and Objective-C only)}
9100@opindex Wdesignated-init
9101@opindex Wno-designated-init
9102Suppress warnings when a positional initializer is used to initialize
9103a structure that has been marked with the @code{designated_init}
9104attribute.
9105
9106@end table
9107
9108@node Static Analyzer Options
9109@section Options That Control Static Analysis
9110
9111@table @gcctabopt
9112@item -fanalyzer
9113@opindex analyzer
9114@opindex fanalyzer
9115@opindex fno-analyzer
9116This option enables an static analysis of program flow which looks
9117for ``interesting'' interprocedural paths through the
9118code, and issues warnings for problems found on them.
9119
9120This analysis is much more expensive than other GCC warnings.
9121
9122Enabling this option effectively enables the following warnings:
9123
9124@gccoptlist{ @gol
9125-Wanalyzer-double-fclose @gol
9126-Wanalyzer-double-free @gol
9127-Wanalyzer-exposure-through-output-file @gol
9128-Wanalyzer-file-leak @gol
9129-Wanalyzer-free-of-non-heap @gol
9130-Wanalyzer-malloc-leak @gol
9131-Wanalyzer-mismatching-deallocation @gol
9132-Wanalyzer-possible-null-argument @gol
9133-Wanalyzer-possible-null-dereference @gol
9134-Wanalyzer-null-argument @gol
9135-Wanalyzer-null-dereference @gol
9136-Wanalyzer-shift-count-negative @gol
9137-Wanalyzer-shift-count-overflow @gol
9138-Wanalyzer-stale-setjmp-buffer @gol
9139-Wanalyzer-tainted-array-index @gol
9140-Wanalyzer-unsafe-call-within-signal-handler @gol
9141-Wanalyzer-use-after-free @gol
9142-Wanalyzer-use-of-pointer-in-stale-stack-frame @gol
9143-Wanalyzer-write-to-const @gol
9144-Wanalyzer-write-to-string-literal @gol
9145}
9146
9147This option is only available if GCC was configured with analyzer
9148support enabled.
9149
9150@item -Wanalyzer-too-complex
9151@opindex Wanalyzer-too-complex
9152@opindex Wno-analyzer-too-complex
9153If @option{-fanalyzer} is enabled, the analyzer uses various heuristics
9154to attempt to explore the control flow and data flow in the program,
9155but these can be defeated by sufficiently complicated code.
9156
9157By default, the analysis silently stops if the code is too
9158complicated for the analyzer to fully explore and it reaches an internal
9159limit.  The @option{-Wanalyzer-too-complex} option warns if this occurs.
9160
9161@item -Wno-analyzer-double-fclose
9162@opindex Wanalyzer-double-fclose
9163@opindex Wno-analyzer-double-fclose
9164This warning requires @option{-fanalyzer}, which enables it; use
9165@option{-Wno-analyzer-double-fclose} to disable it.
9166
9167This diagnostic warns for paths through the code in which a @code{FILE *}
9168can have @code{fclose} called on it more than once.
9169
9170@item -Wno-analyzer-double-free
9171@opindex Wanalyzer-double-free
9172@opindex Wno-analyzer-double-free
9173This warning requires @option{-fanalyzer}, which enables it; use
9174@option{-Wno-analyzer-double-free} to disable it.
9175
9176This diagnostic warns for paths through the code in which a pointer
9177can have a deallocator called on it more than once, either @code{free},
9178or a deallocator referenced by attribute @code{malloc}.
9179
9180@item -Wno-analyzer-exposure-through-output-file
9181@opindex Wanalyzer-exposure-through-output-file
9182@opindex Wno-analyzer-exposure-through-output-file
9183This warning requires @option{-fanalyzer}, which enables it; use
9184@option{-Wno-analyzer-exposure-through-output-file}
9185to disable it.
9186
9187This diagnostic warns for paths through the code in which a
9188security-sensitive value is written to an output file
9189(such as writing a password to a log file).
9190
9191@item -Wno-analyzer-file-leak
9192@opindex Wanalyzer-file-leak
9193@opindex Wno-analyzer-file-leak
9194This warning requires @option{-fanalyzer}, which enables it; use
9195@option{-Wno-analyzer-file-leak}
9196to disable it.
9197
9198This diagnostic warns for paths through the code in which a
9199@code{<stdio.h>} @code{FILE *} stream object is leaked.
9200
9201@item -Wno-analyzer-free-of-non-heap
9202@opindex Wanalyzer-free-of-non-heap
9203@opindex Wno-analyzer-free-of-non-heap
9204This warning requires @option{-fanalyzer}, which enables it; use
9205@option{-Wno-analyzer-free-of-non-heap}
9206to disable it.
9207
9208This diagnostic warns for paths through the code in which @code{free}
9209is called on a non-heap pointer (e.g. an on-stack buffer, or a global).
9210
9211@item -Wno-analyzer-malloc-leak
9212@opindex Wanalyzer-malloc-leak
9213@opindex Wno-analyzer-malloc-leak
9214This warning requires @option{-fanalyzer}, which enables it; use
9215@option{-Wno-analyzer-malloc-leak}
9216to disable it.
9217
9218This diagnostic warns for paths through the code in which a
9219pointer allocated via an allocator is leaked: either @code{malloc},
9220or a function marked with attribute @code{malloc}.
9221
9222@item -Wno-analyzer-mismatching-deallocation
9223@opindex Wanalyzer-mismatching-deallocation
9224@opindex Wno-analyzer-mismatching-deallocation
9225This warning requires @option{-fanalyzer}, which enables it; use
9226@option{-Wno-analyzer-mismatching-deallocation}
9227to disable it.
9228
9229This diagnostic warns for paths through the code in which the
9230wrong deallocation function is called on a pointer value, based on
9231which function was used to allocate the pointer value.  The diagnostic
9232will warn about mismatches between @code{free}, scalar @code{delete}
9233and vector @code{delete[]}, and those marked as allocator/deallocator
9234pairs using attribute @code{malloc}.
9235
9236@item -Wno-analyzer-possible-null-argument
9237@opindex Wanalyzer-possible-null-argument
9238@opindex Wno-analyzer-possible-null-argument
9239This warning requires @option{-fanalyzer}, which enables it; use
9240@option{-Wno-analyzer-possible-null-argument} to disable it.
9241
9242This diagnostic warns for paths through the code in which a
9243possibly-NULL value is passed to a function argument marked
9244with @code{__attribute__((nonnull))} as requiring a non-NULL
9245value.
9246
9247@item -Wno-analyzer-possible-null-dereference
9248@opindex Wanalyzer-possible-null-dereference
9249@opindex Wno-analyzer-possible-null-dereference
9250This warning requires @option{-fanalyzer}, which enables it; use
9251@option{-Wno-analyzer-possible-null-dereference} to disable it.
9252
9253This diagnostic warns for paths through the code in which a
9254possibly-NULL value is dereferenced.
9255
9256@item -Wno-analyzer-null-argument
9257@opindex Wanalyzer-null-argument
9258@opindex Wno-analyzer-null-argument
9259This warning requires @option{-fanalyzer}, which enables it; use
9260@option{-Wno-analyzer-null-argument} to disable it.
9261
9262This diagnostic warns for paths through the code in which a
9263value known to be NULL is passed to a function argument marked
9264with @code{__attribute__((nonnull))} as requiring a non-NULL
9265value.
9266
9267@item -Wno-analyzer-null-dereference
9268@opindex Wanalyzer-null-dereference
9269@opindex Wno-analyzer-null-dereference
9270This warning requires @option{-fanalyzer}, which enables it; use
9271@option{-Wno-analyzer-null-dereference} to disable it.
9272
9273This diagnostic warns for paths through the code in which a
9274value known to be NULL is dereferenced.
9275
9276@item -Wno-analyzer-shift-count-negative
9277@opindex Wanalyzer-shift-count-negative
9278@opindex Wno-analyzer-shift-count-negative
9279This warning requires @option{-fanalyzer}, which enables it; use
9280@option{-Wno-analyzer-shift-count-negative} to disable it.
9281
9282This diagnostic warns for paths through the code in which a
9283shift is attempted with a negative count.  It is analogous to
9284the @option{-Wshift-count-negative} diagnostic implemented in
9285the C/C++ front ends, but is implemented based on analyzing
9286interprocedural paths, rather than merely parsing the syntax tree.
9287However, the analyzer does not prioritize detection of such paths, so
9288false negatives are more likely relative to other warnings.
9289
9290@item -Wno-analyzer-shift-count-overflow
9291@opindex Wanalyzer-shift-count-overflow
9292@opindex Wno-analyzer-shift-count-overflow
9293This warning requires @option{-fanalyzer}, which enables it; use
9294@option{-Wno-analyzer-shift-count-overflow} to disable it.
9295
9296This diagnostic warns for paths through the code in which a
9297shift is attempted with a count greater than or equal to the
9298precision of the operand's type.  It is analogous to
9299the @option{-Wshift-count-overflow} diagnostic implemented in
9300the C/C++ front ends, but is implemented based on analyzing
9301interprocedural paths, rather than merely parsing the syntax tree.
9302However, the analyzer does not prioritize detection of such paths, so
9303false negatives are more likely relative to other warnings.
9304
9305@item -Wno-analyzer-stale-setjmp-buffer
9306@opindex Wanalyzer-stale-setjmp-buffer
9307@opindex Wno-analyzer-stale-setjmp-buffer
9308This warning requires @option{-fanalyzer}, which enables it; use
9309@option{-Wno-analyzer-stale-setjmp-buffer} to disable it.
9310
9311This diagnostic warns for paths through the code in which
9312@code{longjmp} is called to rewind to a @code{jmp_buf} relating
9313to a @code{setjmp} call in a function that has returned.
9314
9315When @code{setjmp} is called on a @code{jmp_buf} to record a rewind
9316location, it records the stack frame.  The stack frame becomes invalid
9317when the function containing the @code{setjmp} call returns.  Attempting
9318to rewind to it via @code{longjmp} would reference a stack frame that
9319no longer exists, and likely lead to a crash (or worse).
9320
9321@item -Wno-analyzer-tainted-array-index
9322@opindex Wanalyzer-tainted-array-index
9323@opindex Wno-analyzer-tainted-array-index
9324This warning requires both @option{-fanalyzer} and
9325@option{-fanalyzer-checker=taint} to enable it;
9326use @option{-Wno-analyzer-tainted-array-index} to disable it.
9327
9328This diagnostic warns for paths through the code in which a value
9329that could be under an attacker's control is used as the index
9330of an array access without being sanitized.
9331
9332@item -Wno-analyzer-unsafe-call-within-signal-handler
9333@opindex Wanalyzer-unsafe-call-within-signal-handler
9334@opindex Wno-analyzer-unsafe-call-within-signal-handler
9335This warning requires @option{-fanalyzer}, which enables it; use
9336@option{-Wno-analyzer-unsafe-call-within-signal-handler} to disable it.
9337
9338This diagnostic warns for paths through the code in which a
9339function known to be async-signal-unsafe (such as @code{fprintf}) is
9340called from a signal handler.
9341
9342@item -Wno-analyzer-use-after-free
9343@opindex Wanalyzer-use-after-free
9344@opindex Wno-analyzer-use-after-free
9345This warning requires @option{-fanalyzer}, which enables it; use
9346@option{-Wno-analyzer-use-after-free} to disable it.
9347
9348This diagnostic warns for paths through the code in which a
9349pointer is used after a deallocator is called on it: either @code{free},
9350or a deallocator referenced by attribute @code{malloc}.
9351
9352@item -Wno-analyzer-use-of-pointer-in-stale-stack-frame
9353@opindex Wanalyzer-use-of-pointer-in-stale-stack-frame
9354@opindex Wno-analyzer-use-of-pointer-in-stale-stack-frame
9355This warning requires @option{-fanalyzer}, which enables it; use
9356@option{-Wno-analyzer-use-of-pointer-in-stale-stack-frame}
9357to disable it.
9358
9359This diagnostic warns for paths through the code in which a pointer
9360is dereferenced that points to a variable in a stale stack frame.
9361
9362@item -Wno-analyzer-write-to-const
9363@opindex Wanalyzer-write-to-const
9364@opindex Wno-analyzer-write-to-const
9365This warning requires @option{-fanalyzer}, which enables it; use
9366@option{-Wno-analyzer-write-to-const}
9367to disable it.
9368
9369This diagnostic warns for paths through the code in which the analyzer
9370detects an attempt to write through a pointer to a @code{const} object.
9371However, the analyzer does not prioritize detection of such paths, so
9372false negatives are more likely relative to other warnings.
9373
9374@item -Wno-analyzer-write-to-string-literal
9375@opindex Wanalyzer-write-to-string-literal
9376@opindex Wno-analyzer-write-to-string-literal
9377This warning requires @option{-fanalyzer}, which enables it; use
9378@option{-Wno-analyzer-write-to-string-literal}
9379to disable it.
9380
9381This diagnostic warns for paths through the code in which the analyzer
9382detects an attempt to write through a pointer to a string literal.
9383However, the analyzer does not prioritize detection of such paths, so
9384false negatives are more likely relative to other warnings.
9385
9386@end table
9387
9388Pertinent parameters for controlling the exploration are:
9389@option{--param analyzer-bb-explosion-factor=@var{value}},
9390@option{--param analyzer-max-enodes-per-program-point=@var{value}},
9391@option{--param analyzer-max-recursion-depth=@var{value}}, and
9392@option{--param analyzer-min-snodes-for-call-summary=@var{value}}.
9393
9394The following options control the analyzer.
9395
9396@table @gcctabopt
9397
9398@item -fanalyzer-call-summaries
9399@opindex fanalyzer-call-summaries
9400@opindex fno-analyzer-call-summaries
9401Simplify interprocedural analysis by computing the effect of certain calls,
9402rather than exploring all paths through the function from callsite to each
9403possible return.
9404
9405If enabled, call summaries are only used for functions with more than one
9406call site, and that are sufficiently complicated (as per
9407@option{--param analyzer-min-snodes-for-call-summary=@var{value}}).
9408
9409@item -fanalyzer-checker=@var{name}
9410@opindex fanalyzer-checker
9411Restrict the analyzer to run just the named checker, and enable it.
9412
9413Some checkers are disabled by default (even with @option{-fanalyzer}),
9414such as the @code{taint} checker that implements
9415@option{-Wanalyzer-tainted-array-index}, and this option is required
9416to enable them.
9417
9418@item -fno-analyzer-feasibility
9419@opindex fanalyzer-feasibility
9420@opindex fno-analyzer-feasibility
9421This option is intended for analyzer developers.
9422
9423By default the analyzer verifies that there is a feasible control flow path
9424for each diagnostic it emits: that the conditions that hold are not mutually
9425exclusive.  Diagnostics for which no feasible path can be found are rejected.
9426This filtering can be suppressed with @option{-fno-analyzer-feasibility}, for
9427debugging issues in this code.
9428
9429@item -fanalyzer-fine-grained
9430@opindex fanalyzer-fine-grained
9431@opindex fno-analyzer-fine-grained
9432This option is intended for analyzer developers.
9433
9434Internally the analyzer builds an ``exploded graph'' that combines
9435control flow graphs with data flow information.
9436
9437By default, an edge in this graph can contain the effects of a run
9438of multiple statements within a basic block.  With
9439@option{-fanalyzer-fine-grained}, each statement gets its own edge.
9440
9441@item -fanalyzer-show-duplicate-count
9442@opindex fanalyzer-show-duplicate-count
9443@opindex fno-analyzer-show-duplicate-count
9444This option is intended for analyzer developers: if multiple diagnostics
9445have been detected as being duplicates of each other, it emits a note when
9446reporting the best diagnostic, giving the number of additional diagnostics
9447that were suppressed by the deduplication logic.
9448
9449@item -fno-analyzer-state-merge
9450@opindex fanalyzer-state-merge
9451@opindex fno-analyzer-state-merge
9452This option is intended for analyzer developers.
9453
9454By default the analyzer attempts to simplify analysis by merging
9455sufficiently similar states at each program point as it builds its
9456``exploded graph''.  With @option{-fno-analyzer-state-merge} this
9457merging can be suppressed, for debugging state-handling issues.
9458
9459@item -fno-analyzer-state-purge
9460@opindex fanalyzer-state-purge
9461@opindex fno-analyzer-state-purge
9462This option is intended for analyzer developers.
9463
9464By default the analyzer attempts to simplify analysis by purging
9465aspects of state at a program point that appear to no longer be relevant
9466e.g. the values of locals that aren't accessed later in the function
9467and which aren't relevant to leak analysis.
9468
9469With @option{-fno-analyzer-state-purge} this purging of state can
9470be suppressed, for debugging state-handling issues.
9471
9472@item -fanalyzer-transitivity
9473@opindex fanalyzer-transitivity
9474@opindex fno-analyzer-transitivity
9475This option enables transitivity of constraints within the analyzer.
9476
9477@item -fanalyzer-verbose-edges
9478This option is intended for analyzer developers.  It enables more
9479verbose, lower-level detail in the descriptions of control flow
9480within diagnostic paths.
9481
9482@item -fanalyzer-verbose-state-changes
9483This option is intended for analyzer developers.  It enables more
9484verbose, lower-level detail in the descriptions of events relating
9485to state machines within diagnostic paths.
9486
9487@item -fanalyzer-verbosity=@var{level}
9488This option controls the complexity of the control flow paths that are
9489emitted for analyzer diagnostics.
9490
9491The @var{level} can be one of:
9492
9493@table @samp
9494@item 0
9495At this level, interprocedural call and return events are displayed,
9496along with the most pertinent state-change events relating to
9497a diagnostic.  For example, for a double-@code{free} diagnostic,
9498both calls to @code{free} will be shown.
9499
9500@item 1
9501As per the previous level, but also show events for the entry
9502to each function.
9503
9504@item 2
9505As per the previous level, but also show events relating to
9506control flow that are significant to triggering the issue
9507(e.g. ``true path taken'' at a conditional).
9508
9509This level is the default.
9510
9511@item 3
9512As per the previous level, but show all control flow events, not
9513just significant ones.
9514
9515@item 4
9516This level is intended for analyzer developers; it adds various
9517other events intended for debugging the analyzer.
9518
9519@end table
9520
9521@item -fdump-analyzer
9522@opindex fdump-analyzer
9523Dump internal details about what the analyzer is doing to
9524@file{@var{file}.analyzer.txt}.
9525This option is overridden by @option{-fdump-analyzer-stderr}.
9526
9527@item -fdump-analyzer-stderr
9528@opindex fdump-analyzer-stderr
9529Dump internal details about what the analyzer is doing to stderr.
9530This option overrides @option{-fdump-analyzer}.
9531
9532@item -fdump-analyzer-callgraph
9533@opindex fdump-analyzer-callgraph
9534Dump a representation of the call graph suitable for viewing with
9535GraphViz to @file{@var{file}.callgraph.dot}.
9536
9537@item -fdump-analyzer-exploded-graph
9538@opindex fdump-analyzer-exploded-graph
9539Dump a representation of the ``exploded graph'' suitable for viewing with
9540GraphViz to @file{@var{file}.eg.dot}.
9541Nodes are color-coded based on state-machine states to emphasize
9542state changes.
9543
9544@item -fdump-analyzer-exploded-nodes
9545@opindex dump-analyzer-exploded-nodes
9546Emit diagnostics showing where nodes in the ``exploded graph'' are
9547in relation to the program source.
9548
9549@item -fdump-analyzer-exploded-nodes-2
9550@opindex dump-analyzer-exploded-nodes-2
9551Dump a textual representation of the ``exploded graph'' to
9552@file{@var{file}.eg.txt}.
9553
9554@item -fdump-analyzer-exploded-nodes-3
9555@opindex dump-analyzer-exploded-nodes-3
9556Dump a textual representation of the ``exploded graph'' to
9557one dump file per node, to @file{@var{file}.eg-@var{id}.txt}.
9558This is typically a large number of dump files.
9559
9560@item -fdump-analyzer-feasibility
9561@opindex dump-analyzer-feasibility
9562Dump internal details about the analyzer's search for feasible paths.
9563The details are written in a form suitable for viewing with GraphViz
9564to filenames of the form @file{@var{file}.*.fg.dot} and
9565@file{@var{file}.*.tg.dot}.
9566
9567@item -fdump-analyzer-json
9568@opindex fdump-analyzer-json
9569Dump a compressed JSON representation of analyzer internals to
9570@file{@var{file}.analyzer.json.gz}.  The precise format is subject
9571to change.
9572
9573@item -fdump-analyzer-state-purge
9574@opindex fdump-analyzer-state-purge
9575As per @option{-fdump-analyzer-supergraph}, dump a representation of the
9576``supergraph'' suitable for viewing with GraphViz, but annotate the
9577graph with information on what state will be purged at each node.
9578The graph is written to @file{@var{file}.state-purge.dot}.
9579
9580@item -fdump-analyzer-supergraph
9581@opindex fdump-analyzer-supergraph
9582Dump representations of the ``supergraph'' suitable for viewing with
9583GraphViz to @file{@var{file}.supergraph.dot} and to
9584@file{@var{file}.supergraph-eg.dot}.  These show all of the
9585control flow graphs in the program, with interprocedural edges for
9586calls and returns.  The second dump contains annotations showing nodes
9587in the ``exploded graph'' and diagnostics associated with them.
9588
9589@end table
9590
9591@node Debugging Options
9592@section Options for Debugging Your Program
9593@cindex options, debugging
9594@cindex debugging information options
9595
9596To tell GCC to emit extra information for use by a debugger, in almost
9597all cases you need only to add @option{-g} to your other options.
9598
9599GCC allows you to use @option{-g} with
9600@option{-O}.  The shortcuts taken by optimized code may occasionally
9601be surprising: some variables you declared may not exist
9602at all; flow of control may briefly move where you did not expect it;
9603some statements may not be executed because they compute constant
9604results or their values are already at hand; some statements may
9605execute in different places because they have been moved out of loops.
9606Nevertheless it is possible to debug optimized output.  This makes
9607it reasonable to use the optimizer for programs that might have bugs.
9608
9609If you are not using some other optimization option, consider
9610using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
9611With no @option{-O} option at all, some compiler passes that collect
9612information useful for debugging do not run at all, so that
9613@option{-Og} may result in a better debugging experience.
9614
9615@table @gcctabopt
9616@item -g
9617@opindex g
9618Produce debugging information in the operating system's native format
9619(stabs, COFF, XCOFF, or DWARF)@.  GDB can work with this debugging
9620information.
9621
9622On most systems that use stabs format, @option{-g} enables use of extra
9623debugging information that only GDB can use; this extra information
9624makes debugging work better in GDB but probably makes other debuggers
9625crash or
9626refuse to read the program.  If you want to control for certain whether
9627to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
9628@option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
9629
9630@item -ggdb
9631@opindex ggdb
9632Produce debugging information for use by GDB@.  This means to use the
9633most expressive format available (DWARF, stabs, or the native format
9634if neither of those are supported), including GDB extensions if at all
9635possible.
9636
9637@item -gdwarf
9638@itemx -gdwarf-@var{version}
9639@opindex gdwarf
9640Produce debugging information in DWARF format (if that is supported).
9641The value of @var{version} may be either 2, 3, 4 or 5; the default
9642version for most targets is 5 (with the exception of VxWorks, TPF and
9643Darwin/Mac OS X, which default to version 2, and AIX, which defaults
9644to version 4).
9645
9646Note that with DWARF Version 2, some ports require and always
9647use some non-conflicting DWARF 3 extensions in the unwind tables.
9648
9649Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
9650for maximum benefit. Version 5 requires GDB 8.0 or higher.
9651
9652GCC no longer supports DWARF Version 1, which is substantially
9653different than Version 2 and later.  For historical reasons, some
9654other DWARF-related options such as
9655@option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
9656in their names, but apply to all currently-supported versions of DWARF.
9657
9658@item -gstabs
9659@opindex gstabs
9660Produce debugging information in stabs format (if that is supported),
9661without GDB extensions.  This is the format used by DBX on most BSD
9662systems.  On MIPS, Alpha and System V Release 4 systems this option
9663produces stabs debugging output that is not understood by DBX@.
9664On System V Release 4 systems this option requires the GNU assembler.
9665
9666@item -gstabs+
9667@opindex gstabs+
9668Produce debugging information in stabs format (if that is supported),
9669using GNU extensions understood only by the GNU debugger (GDB)@.  The
9670use of these extensions is likely to make other debuggers crash or
9671refuse to read the program.
9672
9673@item -gxcoff
9674@opindex gxcoff
9675Produce debugging information in XCOFF format (if that is supported).
9676This is the format used by the DBX debugger on IBM RS/6000 systems.
9677
9678@item -gxcoff+
9679@opindex gxcoff+
9680Produce debugging information in XCOFF format (if that is supported),
9681using GNU extensions understood only by the GNU debugger (GDB)@.  The
9682use of these extensions is likely to make other debuggers crash or
9683refuse to read the program, and may cause assemblers other than the GNU
9684assembler (GAS) to fail with an error.
9685
9686@item -gvms
9687@opindex gvms
9688Produce debugging information in Alpha/VMS debug format (if that is
9689supported).  This is the format used by DEBUG on Alpha/VMS systems.
9690
9691@item -g@var{level}
9692@itemx -ggdb@var{level}
9693@itemx -gstabs@var{level}
9694@itemx -gxcoff@var{level}
9695@itemx -gvms@var{level}
9696Request debugging information and also use @var{level} to specify how
9697much information.  The default level is 2.
9698
9699Level 0 produces no debug information at all.  Thus, @option{-g0} negates
9700@option{-g}.
9701
9702Level 1 produces minimal information, enough for making backtraces in
9703parts of the program that you don't plan to debug.  This includes
9704descriptions of functions and external variables, and line number
9705tables, but no information about local variables.
9706
9707Level 3 includes extra information, such as all the macro definitions
9708present in the program.  Some debuggers support macro expansion when
9709you use @option{-g3}.
9710
9711If you use multiple @option{-g} options, with or without level numbers,
9712the last such option is the one that is effective.
9713
9714@option{-gdwarf} does not accept a concatenated debug level, to avoid
9715confusion with @option{-gdwarf-@var{level}}.
9716Instead use an additional @option{-g@var{level}} option to change the
9717debug level for DWARF.
9718
9719@item -fno-eliminate-unused-debug-symbols
9720@opindex feliminate-unused-debug-symbols
9721@opindex fno-eliminate-unused-debug-symbols
9722By default, no debug information is produced for symbols that are not actually
9723used. Use this option if you want debug information for all symbols.
9724
9725@item -femit-class-debug-always
9726@opindex femit-class-debug-always
9727Instead of emitting debugging information for a C++ class in only one
9728object file, emit it in all object files using the class.  This option
9729should be used only with debuggers that are unable to handle the way GCC
9730normally emits debugging information for classes because using this
9731option increases the size of debugging information by as much as a
9732factor of two.
9733
9734@item -fno-merge-debug-strings
9735@opindex fmerge-debug-strings
9736@opindex fno-merge-debug-strings
9737Direct the linker to not merge together strings in the debugging
9738information that are identical in different object files.  Merging is
9739not supported by all assemblers or linkers.  Merging decreases the size
9740of the debug information in the output file at the cost of increasing
9741link processing time.  Merging is enabled by default.
9742
9743@item -fdebug-prefix-map=@var{old}=@var{new}
9744@opindex fdebug-prefix-map
9745When compiling files residing in directory @file{@var{old}}, record
9746debugging information describing them as if the files resided in
9747directory @file{@var{new}} instead.  This can be used to replace a
9748build-time path with an install-time path in the debug info.  It can
9749also be used to change an absolute path to a relative path by using
9750@file{.} for @var{new}.  This can give more reproducible builds, which
9751are location independent, but may require an extra command to tell GDB
9752where to find the source files. See also @option{-ffile-prefix-map}.
9753
9754@item -fvar-tracking
9755@opindex fvar-tracking
9756Run variable tracking pass.  It computes where variables are stored at each
9757position in code.  Better debugging information is then generated
9758(if the debugging information format supports this information).
9759
9760It is enabled by default when compiling with optimization (@option{-Os},
9761@option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
9762the debug info format supports it.
9763
9764@item -fvar-tracking-assignments
9765@opindex fvar-tracking-assignments
9766@opindex fno-var-tracking-assignments
9767Annotate assignments to user variables early in the compilation and
9768attempt to carry the annotations over throughout the compilation all the
9769way to the end, in an attempt to improve debug information while
9770optimizing.  Use of @option{-gdwarf-4} is recommended along with it.
9771
9772It can be enabled even if var-tracking is disabled, in which case
9773annotations are created and maintained, but discarded at the end.
9774By default, this flag is enabled together with @option{-fvar-tracking},
9775except when selective scheduling is enabled.
9776
9777@item -gsplit-dwarf
9778@opindex gsplit-dwarf
9779If DWARF debugging information is enabled, separate as much debugging
9780information as possible into a separate output file with the extension
9781@file{.dwo}.  This option allows the build system to avoid linking files with
9782debug information.  To be useful, this option requires a debugger capable of
9783reading @file{.dwo} files.
9784
9785@item -gdwarf32
9786@itemx -gdwarf64
9787@opindex gdwarf32
9788@opindex gdwarf64
9789If DWARF debugging information is enabled, the @option{-gdwarf32} selects
9790the 32-bit DWARF format and the @option{-gdwarf64} selects the 64-bit
9791DWARF format.  The default is target specific, on most targets it is
9792@option{-gdwarf32} though.  The 32-bit DWARF format is smaller, but
9793can't support more than 2GiB of debug information in any of the DWARF
9794debug information sections.  The 64-bit DWARF format allows larger debug
9795information and might not be well supported by all consumers yet.
9796
9797@item -gdescribe-dies
9798@opindex gdescribe-dies
9799Add description attributes to some DWARF DIEs that have no name attribute,
9800such as artificial variables, external references and call site
9801parameter DIEs.
9802
9803@item -gpubnames
9804@opindex gpubnames
9805Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
9806
9807@item -ggnu-pubnames
9808@opindex ggnu-pubnames
9809Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
9810suitable for conversion into a GDB@ index.  This option is only useful
9811with a linker that can produce GDB@ index version 7.
9812
9813@item -fdebug-types-section
9814@opindex fdebug-types-section
9815@opindex fno-debug-types-section
9816When using DWARF Version 4 or higher, type DIEs can be put into
9817their own @code{.debug_types} section instead of making them part of the
9818@code{.debug_info} section.  It is more efficient to put them in a separate
9819comdat section since the linker can then remove duplicates.
9820But not all DWARF consumers support @code{.debug_types} sections yet
9821and on some objects @code{.debug_types} produces larger instead of smaller
9822debugging information.
9823
9824@item -grecord-gcc-switches
9825@itemx -gno-record-gcc-switches
9826@opindex grecord-gcc-switches
9827@opindex gno-record-gcc-switches
9828This switch causes the command-line options used to invoke the
9829compiler that may affect code generation to be appended to the
9830DW_AT_producer attribute in DWARF debugging information.  The options
9831are concatenated with spaces separating them from each other and from
9832the compiler version.
9833It is enabled by default.
9834See also @option{-frecord-gcc-switches} for another
9835way of storing compiler options into the object file.
9836
9837@item -gstrict-dwarf
9838@opindex gstrict-dwarf
9839Disallow using extensions of later DWARF standard version than selected
9840with @option{-gdwarf-@var{version}}.  On most targets using non-conflicting
9841DWARF extensions from later standard versions is allowed.
9842
9843@item -gno-strict-dwarf
9844@opindex gno-strict-dwarf
9845Allow using extensions of later DWARF standard version than selected with
9846@option{-gdwarf-@var{version}}.
9847
9848@item -gas-loc-support
9849@opindex gas-loc-support
9850Inform the compiler that the assembler supports @code{.loc} directives.
9851It may then use them for the assembler to generate DWARF2+ line number
9852tables.
9853
9854This is generally desirable, because assembler-generated line-number
9855tables are a lot more compact than those the compiler can generate
9856itself.
9857
9858This option will be enabled by default if, at GCC configure time, the
9859assembler was found to support such directives.
9860
9861@item -gno-as-loc-support
9862@opindex gno-as-loc-support
9863Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
9864line number tables are to be generated.
9865
9866@item -gas-locview-support
9867@opindex gas-locview-support
9868Inform the compiler that the assembler supports @code{view} assignment
9869and reset assertion checking in @code{.loc} directives.
9870
9871This option will be enabled by default if, at GCC configure time, the
9872assembler was found to support them.
9873
9874@item -gno-as-locview-support
9875Force GCC to assign view numbers internally, if
9876@option{-gvariable-location-views} are explicitly requested.
9877
9878@item -gcolumn-info
9879@itemx -gno-column-info
9880@opindex gcolumn-info
9881@opindex gno-column-info
9882Emit location column information into DWARF debugging information, rather
9883than just file and line.
9884This option is enabled by default.
9885
9886@item -gstatement-frontiers
9887@itemx -gno-statement-frontiers
9888@opindex gstatement-frontiers
9889@opindex gno-statement-frontiers
9890This option causes GCC to create markers in the internal representation
9891at the beginning of statements, and to keep them roughly in place
9892throughout compilation, using them to guide the output of @code{is_stmt}
9893markers in the line number table.  This is enabled by default when
9894compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
9895@dots{}), and outputting DWARF 2 debug information at the normal level.
9896
9897@item -gvariable-location-views
9898@itemx -gvariable-location-views=incompat5
9899@itemx -gno-variable-location-views
9900@opindex gvariable-location-views
9901@opindex gvariable-location-views=incompat5
9902@opindex gno-variable-location-views
9903Augment variable location lists with progressive view numbers implied
9904from the line number table.  This enables debug information consumers to
9905inspect state at certain points of the program, even if no instructions
9906associated with the corresponding source locations are present at that
9907point.  If the assembler lacks support for view numbers in line number
9908tables, this will cause the compiler to emit the line number table,
9909which generally makes them somewhat less compact.  The augmented line
9910number tables and location lists are fully backward-compatible, so they
9911can be consumed by debug information consumers that are not aware of
9912these augmentations, but they won't derive any benefit from them either.
9913
9914This is enabled by default when outputting DWARF 2 debug information at
9915the normal level, as long as there is assembler support,
9916@option{-fvar-tracking-assignments} is enabled and
9917@option{-gstrict-dwarf} is not.  When assembler support is not
9918available, this may still be enabled, but it will force GCC to output
9919internal line number tables, and if
9920@option{-ginternal-reset-location-views} is not enabled, that will most
9921certainly lead to silently mismatching location views.
9922
9923There is a proposed representation for view numbers that is not backward
9924compatible with the location list format introduced in DWARF 5, that can
9925be enabled with @option{-gvariable-location-views=incompat5}.  This
9926option may be removed in the future, is only provided as a reference
9927implementation of the proposed representation.  Debug information
9928consumers are not expected to support this extended format, and they
9929would be rendered unable to decode location lists using it.
9930
9931@item -ginternal-reset-location-views
9932@itemx -gno-internal-reset-location-views
9933@opindex ginternal-reset-location-views
9934@opindex gno-internal-reset-location-views
9935Attempt to determine location views that can be omitted from location
9936view lists.  This requires the compiler to have very accurate insn
9937length estimates, which isn't always the case, and it may cause
9938incorrect view lists to be generated silently when using an assembler
9939that does not support location view lists.  The GNU assembler will flag
9940any such error as a @code{view number mismatch}.  This is only enabled
9941on ports that define a reliable estimation function.
9942
9943@item -ginline-points
9944@itemx -gno-inline-points
9945@opindex ginline-points
9946@opindex gno-inline-points
9947Generate extended debug information for inlined functions.  Location
9948view tracking markers are inserted at inlined entry points, so that
9949address and view numbers can be computed and output in debug
9950information.  This can be enabled independently of location views, in
9951which case the view numbers won't be output, but it can only be enabled
9952along with statement frontiers, and it is only enabled by default if
9953location views are enabled.
9954
9955@item -gz@r{[}=@var{type}@r{]}
9956@opindex gz
9957Produce compressed debug sections in DWARF format, if that is supported.
9958If @var{type} is not given, the default type depends on the capabilities
9959of the assembler and linker used.  @var{type} may be one of
9960@samp{none} (don't compress debug sections), @samp{zlib} (use zlib
9961compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
9962compression in traditional GNU format).  If the linker doesn't support
9963writing compressed debug sections, the option is rejected.  Otherwise,
9964if the assembler does not support them, @option{-gz} is silently ignored
9965when producing object files.
9966
9967@item -femit-struct-debug-baseonly
9968@opindex femit-struct-debug-baseonly
9969Emit debug information for struct-like types
9970only when the base name of the compilation source file
9971matches the base name of file in which the struct is defined.
9972
9973This option substantially reduces the size of debugging information,
9974but at significant potential loss in type information to the debugger.
9975See @option{-femit-struct-debug-reduced} for a less aggressive option.
9976See @option{-femit-struct-debug-detailed} for more detailed control.
9977
9978This option works only with DWARF debug output.
9979
9980@item -femit-struct-debug-reduced
9981@opindex femit-struct-debug-reduced
9982Emit debug information for struct-like types
9983only when the base name of the compilation source file
9984matches the base name of file in which the type is defined,
9985unless the struct is a template or defined in a system header.
9986
9987This option significantly reduces the size of debugging information,
9988with some potential loss in type information to the debugger.
9989See @option{-femit-struct-debug-baseonly} for a more aggressive option.
9990See @option{-femit-struct-debug-detailed} for more detailed control.
9991
9992This option works only with DWARF debug output.
9993
9994@item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
9995@opindex femit-struct-debug-detailed
9996Specify the struct-like types
9997for which the compiler generates debug information.
9998The intent is to reduce duplicate struct debug information
9999between different object files within the same program.
10000
10001This option is a detailed version of
10002@option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
10003which serves for most needs.
10004
10005A specification has the syntax@*
10006[@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
10007
10008The optional first word limits the specification to
10009structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
10010A struct type is used directly when it is the type of a variable, member.
10011Indirect uses arise through pointers to structs.
10012That is, when use of an incomplete struct is valid, the use is indirect.
10013An example is
10014@samp{struct one direct; struct two * indirect;}.
10015
10016The optional second word limits the specification to
10017ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
10018Generic structs are a bit complicated to explain.
10019For C++, these are non-explicit specializations of template classes,
10020or non-template classes within the above.
10021Other programming languages have generics,
10022but @option{-femit-struct-debug-detailed} does not yet implement them.
10023
10024The third word specifies the source files for those
10025structs for which the compiler should emit debug information.
10026The values @samp{none} and @samp{any} have the normal meaning.
10027The value @samp{base} means that
10028the base of name of the file in which the type declaration appears
10029must match the base of the name of the main compilation file.
10030In practice, this means that when compiling @file{foo.c}, debug information
10031is generated for types declared in that file and @file{foo.h},
10032but not other header files.
10033The value @samp{sys} means those types satisfying @samp{base}
10034or declared in system or compiler headers.
10035
10036You may need to experiment to determine the best settings for your application.
10037
10038The default is @option{-femit-struct-debug-detailed=all}.
10039
10040This option works only with DWARF debug output.
10041
10042@item -fno-dwarf2-cfi-asm
10043@opindex fdwarf2-cfi-asm
10044@opindex fno-dwarf2-cfi-asm
10045Emit DWARF unwind info as compiler generated @code{.eh_frame} section
10046instead of using GAS @code{.cfi_*} directives.
10047
10048@item -fno-eliminate-unused-debug-types
10049@opindex feliminate-unused-debug-types
10050@opindex fno-eliminate-unused-debug-types
10051Normally, when producing DWARF output, GCC avoids producing debug symbol
10052output for types that are nowhere used in the source file being compiled.
10053Sometimes it is useful to have GCC emit debugging
10054information for all types declared in a compilation
10055unit, regardless of whether or not they are actually used
10056in that compilation unit, for example
10057if, in the debugger, you want to cast a value to a type that is
10058not actually used in your program (but is declared).  More often,
10059however, this results in a significant amount of wasted space.
10060@end table
10061
10062@node Optimize Options
10063@section Options That Control Optimization
10064@cindex optimize options
10065@cindex options, optimization
10066
10067These options control various sorts of optimizations.
10068
10069Without any optimization option, the compiler's goal is to reduce the
10070cost of compilation and to make debugging produce the expected
10071results.  Statements are independent: if you stop the program with a
10072breakpoint between statements, you can then assign a new value to any
10073variable or change the program counter to any other statement in the
10074function and get exactly the results you expect from the source
10075code.
10076
10077Turning on optimization flags makes the compiler attempt to improve
10078the performance and/or code size at the expense of compilation time
10079and possibly the ability to debug the program.
10080
10081The compiler performs optimization based on the knowledge it has of the
10082program.  Compiling multiple files at once to a single output file mode allows
10083the compiler to use information gained from all of the files when compiling
10084each of them.
10085
10086Not all optimizations are controlled directly by a flag.  Only
10087optimizations that have a flag are listed in this section.
10088
10089Most optimizations are completely disabled at @option{-O0} or if an
10090@option{-O} level is not set on the command line, even if individual
10091optimization flags are specified.  Similarly, @option{-Og} suppresses
10092many optimization passes.
10093
10094Depending on the target and how GCC was configured, a slightly different
10095set of optimizations may be enabled at each @option{-O} level than
10096those listed here.  You can invoke GCC with @option{-Q --help=optimizers}
10097to find out the exact set of optimizations that are enabled at each level.
10098@xref{Overall Options}, for examples.
10099
10100@table @gcctabopt
10101@item -O
10102@itemx -O1
10103@opindex O
10104@opindex O1
10105Optimize.  Optimizing compilation takes somewhat more time, and a lot
10106more memory for a large function.
10107
10108With @option{-O}, the compiler tries to reduce code size and execution
10109time, without performing any optimizations that take a great deal of
10110compilation time.
10111
10112@c Note that in addition to the default_options_table list in opts.c,
10113@c several optimization flags default to true but control optimization
10114@c passes that are explicitly disabled at -O0.
10115
10116@option{-O} turns on the following optimization flags:
10117
10118@c Please keep the following list alphabetized.
10119@gccoptlist{-fauto-inc-dec @gol
10120-fbranch-count-reg @gol
10121-fcombine-stack-adjustments @gol
10122-fcompare-elim @gol
10123-fcprop-registers @gol
10124-fdce @gol
10125-fdefer-pop @gol
10126-fdelayed-branch @gol
10127-fdse @gol
10128-fforward-propagate @gol
10129-fguess-branch-probability @gol
10130-fif-conversion @gol
10131-fif-conversion2 @gol
10132-finline-functions-called-once @gol
10133-fipa-modref @gol
10134-fipa-profile @gol
10135-fipa-pure-const @gol
10136-fipa-reference @gol
10137-fipa-reference-addressable @gol
10138-fmerge-constants @gol
10139-fmove-loop-invariants @gol
10140-fomit-frame-pointer @gol
10141-freorder-blocks @gol
10142-fshrink-wrap @gol
10143-fshrink-wrap-separate @gol
10144-fsplit-wide-types @gol
10145-fssa-backprop @gol
10146-fssa-phiopt @gol
10147-ftree-bit-ccp @gol
10148-ftree-ccp @gol
10149-ftree-ch @gol
10150-ftree-coalesce-vars @gol
10151-ftree-copy-prop @gol
10152-ftree-dce @gol
10153-ftree-dominator-opts @gol
10154-ftree-dse @gol
10155-ftree-forwprop @gol
10156-ftree-fre @gol
10157-ftree-phiprop @gol
10158-ftree-pta @gol
10159-ftree-scev-cprop @gol
10160-ftree-sink @gol
10161-ftree-slsr @gol
10162-ftree-sra @gol
10163-ftree-ter @gol
10164-funit-at-a-time}
10165
10166@item -O2
10167@opindex O2
10168Optimize even more.  GCC performs nearly all supported optimizations
10169that do not involve a space-speed tradeoff.
10170As compared to @option{-O}, this option increases both compilation time
10171and the performance of the generated code.
10172
10173@option{-O2} turns on all optimization flags specified by @option{-O}.  It
10174also turns on the following optimization flags:
10175
10176@c Please keep the following list alphabetized!
10177@gccoptlist{-falign-functions  -falign-jumps @gol
10178-falign-labels  -falign-loops @gol
10179-fcaller-saves @gol
10180-fcode-hoisting @gol
10181-fcrossjumping @gol
10182-fcse-follow-jumps  -fcse-skip-blocks @gol
10183-fdelete-null-pointer-checks @gol
10184-fdevirtualize  -fdevirtualize-speculatively @gol
10185-fexpensive-optimizations @gol
10186-ffinite-loops @gol
10187-fgcse  -fgcse-lm  @gol
10188-fhoist-adjacent-loads @gol
10189-finline-functions @gol
10190-finline-small-functions @gol
10191-findirect-inlining @gol
10192-fipa-bit-cp  -fipa-cp  -fipa-icf @gol
10193-fipa-ra  -fipa-sra  -fipa-vrp @gol
10194-fisolate-erroneous-paths-dereference @gol
10195-flra-remat @gol
10196-foptimize-sibling-calls @gol
10197-foptimize-strlen @gol
10198-fpartial-inlining @gol
10199-fpeephole2 @gol
10200-freorder-blocks-algorithm=stc @gol
10201-freorder-blocks-and-partition  -freorder-functions @gol
10202-frerun-cse-after-loop  @gol
10203-fschedule-insns  -fschedule-insns2 @gol
10204-fsched-interblock  -fsched-spec @gol
10205-fstore-merging @gol
10206-fstrict-aliasing @gol
10207-fthread-jumps @gol
10208-ftree-builtin-call-dce @gol
10209-ftree-pre @gol
10210-ftree-switch-conversion  -ftree-tail-merge @gol
10211-ftree-vrp}
10212
10213Please note the warning under @option{-fgcse} about
10214invoking @option{-O2} on programs that use computed gotos.
10215
10216@item -O3
10217@opindex O3
10218Optimize yet more.  @option{-O3} turns on all optimizations specified
10219by @option{-O2} and also turns on the following optimization flags:
10220
10221@c Please keep the following list alphabetized!
10222@gccoptlist{-fgcse-after-reload @gol
10223-fipa-cp-clone
10224-floop-interchange @gol
10225-floop-unroll-and-jam @gol
10226-fpeel-loops @gol
10227-fpredictive-commoning @gol
10228-fsplit-loops @gol
10229-fsplit-paths @gol
10230-ftree-loop-distribution @gol
10231-ftree-loop-vectorize @gol
10232-ftree-partial-pre @gol
10233-ftree-slp-vectorize @gol
10234-funswitch-loops @gol
10235-fvect-cost-model @gol
10236-fvect-cost-model=dynamic @gol
10237-fversion-loops-for-strides}
10238
10239@item -O0
10240@opindex O0
10241Reduce compilation time and make debugging produce the expected
10242results.  This is the default.
10243
10244@item -Os
10245@opindex Os
10246Optimize for size.  @option{-Os} enables all @option{-O2} optimizations
10247except those that often increase code size:
10248
10249@gccoptlist{-falign-functions  -falign-jumps @gol
10250-falign-labels  -falign-loops @gol
10251-fprefetch-loop-arrays  -freorder-blocks-algorithm=stc}
10252
10253It also enables @option{-finline-functions}, causes the compiler to tune for
10254code size rather than execution speed, and performs further optimizations
10255designed to reduce code size.
10256
10257@item -Ofast
10258@opindex Ofast
10259Disregard strict standards compliance.  @option{-Ofast} enables all
10260@option{-O3} optimizations.  It also enables optimizations that are not
10261valid for all standard-compliant programs.
10262It turns on @option{-ffast-math}, @option{-fallow-store-data-races}
10263and the Fortran-specific @option{-fstack-arrays}, unless
10264@option{-fmax-stack-var-size} is specified, and @option{-fno-protect-parens}.
10265
10266@item -Og
10267@opindex Og
10268Optimize debugging experience.  @option{-Og} should be the optimization
10269level of choice for the standard edit-compile-debug cycle, offering
10270a reasonable level of optimization while maintaining fast compilation
10271and a good debugging experience.  It is a better choice than @option{-O0}
10272for producing debuggable code because some compiler passes
10273that collect debug information are disabled at @option{-O0}.
10274
10275Like @option{-O0}, @option{-Og} completely disables a number of
10276optimization passes so that individual options controlling them have
10277no effect.  Otherwise @option{-Og} enables all @option{-O1}
10278optimization flags except for those that may interfere with debugging:
10279
10280@gccoptlist{-fbranch-count-reg  -fdelayed-branch @gol
10281-fdse  -fif-conversion  -fif-conversion2  @gol
10282-finline-functions-called-once @gol
10283-fmove-loop-invariants  -fssa-phiopt @gol
10284-ftree-bit-ccp  -ftree-dse  -ftree-pta  -ftree-sra}
10285
10286@end table
10287
10288If you use multiple @option{-O} options, with or without level numbers,
10289the last such option is the one that is effective.
10290
10291Options of the form @option{-f@var{flag}} specify machine-independent
10292flags.  Most flags have both positive and negative forms; the negative
10293form of @option{-ffoo} is @option{-fno-foo}.  In the table
10294below, only one of the forms is listed---the one you typically
10295use.  You can figure out the other form by either removing @samp{no-}
10296or adding it.
10297
10298The following options control specific optimizations.  They are either
10299activated by @option{-O} options or are related to ones that are.  You
10300can use the following flags in the rare cases when ``fine-tuning'' of
10301optimizations to be performed is desired.
10302
10303@table @gcctabopt
10304@item -fno-defer-pop
10305@opindex fno-defer-pop
10306@opindex fdefer-pop
10307For machines that must pop arguments after a function call, always pop
10308the arguments as soon as each function returns.
10309At levels @option{-O1} and higher, @option{-fdefer-pop} is the default;
10310this allows the compiler to let arguments accumulate on the stack for several
10311function calls and pop them all at once.
10312
10313@item -fforward-propagate
10314@opindex fforward-propagate
10315Perform a forward propagation pass on RTL@.  The pass tries to combine two
10316instructions and checks if the result can be simplified.  If loop unrolling
10317is active, two passes are performed and the second is scheduled after
10318loop unrolling.
10319
10320This option is enabled by default at optimization levels @option{-O},
10321@option{-O2}, @option{-O3}, @option{-Os}.
10322
10323@item -ffp-contract=@var{style}
10324@opindex ffp-contract
10325@option{-ffp-contract=off} disables floating-point expression contraction.
10326@option{-ffp-contract=fast} enables floating-point expression contraction
10327such as forming of fused multiply-add operations if the target has
10328native support for them.
10329@option{-ffp-contract=on} enables floating-point expression contraction
10330if allowed by the language standard.  This is currently not implemented
10331and treated equal to @option{-ffp-contract=off}.
10332
10333The default is @option{-ffp-contract=fast}.
10334
10335@item -fomit-frame-pointer
10336@opindex fomit-frame-pointer
10337Omit the frame pointer in functions that don't need one.  This avoids the
10338instructions to save, set up and restore the frame pointer; on many targets
10339it also makes an extra register available.
10340
10341On some targets this flag has no effect because the standard calling sequence
10342always uses a frame pointer, so it cannot be omitted.
10343
10344Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
10345is used in all functions.  Several targets always omit the frame pointer in
10346leaf functions.
10347
10348Enabled by default at @option{-O} and higher.
10349
10350@item -foptimize-sibling-calls
10351@opindex foptimize-sibling-calls
10352Optimize sibling and tail recursive calls.
10353
10354Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10355
10356@item -foptimize-strlen
10357@opindex foptimize-strlen
10358Optimize various standard C string functions (e.g.@: @code{strlen},
10359@code{strchr} or @code{strcpy}) and
10360their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
10361
10362Enabled at levels @option{-O2}, @option{-O3}.
10363
10364@item -fno-inline
10365@opindex fno-inline
10366@opindex finline
10367Do not expand any functions inline apart from those marked with
10368the @code{always_inline} attribute.  This is the default when not
10369optimizing.
10370
10371Single functions can be exempted from inlining by marking them
10372with the @code{noinline} attribute.
10373
10374@item -finline-small-functions
10375@opindex finline-small-functions
10376Integrate functions into their callers when their body is smaller than expected
10377function call code (so overall size of program gets smaller).  The compiler
10378heuristically decides which functions are simple enough to be worth integrating
10379in this way.  This inlining applies to all functions, even those not declared
10380inline.
10381
10382Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10383
10384@item -findirect-inlining
10385@opindex findirect-inlining
10386Inline also indirect calls that are discovered to be known at compile
10387time thanks to previous inlining.  This option has any effect only
10388when inlining itself is turned on by the @option{-finline-functions}
10389or @option{-finline-small-functions} options.
10390
10391Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10392
10393@item -finline-functions
10394@opindex finline-functions
10395Consider all functions for inlining, even if they are not declared inline.
10396The compiler heuristically decides which functions are worth integrating
10397in this way.
10398
10399If all calls to a given function are integrated, and the function is
10400declared @code{static}, then the function is normally not output as
10401assembler code in its own right.
10402
10403Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.  Also enabled
10404by @option{-fprofile-use} and @option{-fauto-profile}.
10405
10406@item -finline-functions-called-once
10407@opindex finline-functions-called-once
10408Consider all @code{static} functions called once for inlining into their
10409caller even if they are not marked @code{inline}.  If a call to a given
10410function is integrated, then the function is not output as assembler code
10411in its own right.
10412
10413Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os},
10414but not @option{-Og}.
10415
10416@item -fearly-inlining
10417@opindex fearly-inlining
10418Inline functions marked by @code{always_inline} and functions whose body seems
10419smaller than the function call overhead early before doing
10420@option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
10421makes profiling significantly cheaper and usually inlining faster on programs
10422having large chains of nested wrapper functions.
10423
10424Enabled by default.
10425
10426@item -fipa-sra
10427@opindex fipa-sra
10428Perform interprocedural scalar replacement of aggregates, removal of
10429unused parameters and replacement of parameters passed by reference
10430by parameters passed by value.
10431
10432Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
10433
10434@item -finline-limit=@var{n}
10435@opindex finline-limit
10436By default, GCC limits the size of functions that can be inlined.  This flag
10437allows coarse control of this limit.  @var{n} is the size of functions that
10438can be inlined in number of pseudo instructions.
10439
10440Inlining is actually controlled by a number of parameters, which may be
10441specified individually by using @option{--param @var{name}=@var{value}}.
10442The @option{-finline-limit=@var{n}} option sets some of these parameters
10443as follows:
10444
10445@table @gcctabopt
10446@item max-inline-insns-single
10447is set to @var{n}/2.
10448@item max-inline-insns-auto
10449is set to @var{n}/2.
10450@end table
10451
10452See below for a documentation of the individual
10453parameters controlling inlining and for the defaults of these parameters.
10454
10455@emph{Note:} there may be no value to @option{-finline-limit} that results
10456in default behavior.
10457
10458@emph{Note:} pseudo instruction represents, in this particular context, an
10459abstract measurement of function's size.  In no way does it represent a count
10460of assembly instructions and as such its exact meaning might change from one
10461release to an another.
10462
10463@item -fno-keep-inline-dllexport
10464@opindex fno-keep-inline-dllexport
10465@opindex fkeep-inline-dllexport
10466This is a more fine-grained version of @option{-fkeep-inline-functions},
10467which applies only to functions that are declared using the @code{dllexport}
10468attribute or declspec.  @xref{Function Attributes,,Declaring Attributes of
10469Functions}.
10470
10471@item -fkeep-inline-functions
10472@opindex fkeep-inline-functions
10473In C, emit @code{static} functions that are declared @code{inline}
10474into the object file, even if the function has been inlined into all
10475of its callers.  This switch does not affect functions using the
10476@code{extern inline} extension in GNU C90@.  In C++, emit any and all
10477inline functions into the object file.
10478
10479@item -fkeep-static-functions
10480@opindex fkeep-static-functions
10481Emit @code{static} functions into the object file, even if the function
10482is never used.
10483
10484@item -fkeep-static-consts
10485@opindex fkeep-static-consts
10486Emit variables declared @code{static const} when optimization isn't turned
10487on, even if the variables aren't referenced.
10488
10489GCC enables this option by default.  If you want to force the compiler to
10490check if a variable is referenced, regardless of whether or not
10491optimization is turned on, use the @option{-fno-keep-static-consts} option.
10492
10493@item -fmerge-constants
10494@opindex fmerge-constants
10495Attempt to merge identical constants (string constants and floating-point
10496constants) across compilation units.
10497
10498This option is the default for optimized compilation if the assembler and
10499linker support it.  Use @option{-fno-merge-constants} to inhibit this
10500behavior.
10501
10502Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10503
10504@item -fmerge-all-constants
10505@opindex fmerge-all-constants
10506Attempt to merge identical constants and identical variables.
10507
10508This option implies @option{-fmerge-constants}.  In addition to
10509@option{-fmerge-constants} this considers e.g.@: even constant initialized
10510arrays or initialized constant variables with integral or floating-point
10511types.  Languages like C or C++ require each variable, including multiple
10512instances of the same variable in recursive calls, to have distinct locations,
10513so using this option results in non-conforming
10514behavior.
10515
10516@item -fmodulo-sched
10517@opindex fmodulo-sched
10518Perform swing modulo scheduling immediately before the first scheduling
10519pass.  This pass looks at innermost loops and reorders their
10520instructions by overlapping different iterations.
10521
10522@item -fmodulo-sched-allow-regmoves
10523@opindex fmodulo-sched-allow-regmoves
10524Perform more aggressive SMS-based modulo scheduling with register moves
10525allowed.  By setting this flag certain anti-dependences edges are
10526deleted, which triggers the generation of reg-moves based on the
10527life-range analysis.  This option is effective only with
10528@option{-fmodulo-sched} enabled.
10529
10530@item -fno-branch-count-reg
10531@opindex fno-branch-count-reg
10532@opindex fbranch-count-reg
10533Disable the optimization pass that scans for opportunities to use
10534``decrement and branch'' instructions on a count register instead of
10535instruction sequences that decrement a register, compare it against zero, and
10536then branch based upon the result.  This option is only meaningful on
10537architectures that support such instructions, which include x86, PowerPC,
10538IA-64 and S/390.  Note that the @option{-fno-branch-count-reg} option
10539doesn't remove the decrement and branch instructions from the generated
10540instruction stream introduced by other optimization passes.
10541
10542The default is @option{-fbranch-count-reg} at @option{-O1} and higher,
10543except for @option{-Og}.
10544
10545@item -fno-function-cse
10546@opindex fno-function-cse
10547@opindex ffunction-cse
10548Do not put function addresses in registers; make each instruction that
10549calls a constant function contain the function's address explicitly.
10550
10551This option results in less efficient code, but some strange hacks
10552that alter the assembler output may be confused by the optimizations
10553performed when this option is not used.
10554
10555The default is @option{-ffunction-cse}
10556
10557@item -fno-zero-initialized-in-bss
10558@opindex fno-zero-initialized-in-bss
10559@opindex fzero-initialized-in-bss
10560If the target supports a BSS section, GCC by default puts variables that
10561are initialized to zero into BSS@.  This can save space in the resulting
10562code.
10563
10564This option turns off this behavior because some programs explicitly
10565rely on variables going to the data section---e.g., so that the
10566resulting executable can find the beginning of that section and/or make
10567assumptions based on that.
10568
10569The default is @option{-fzero-initialized-in-bss}.
10570
10571@item -fthread-jumps
10572@opindex fthread-jumps
10573Perform optimizations that check to see if a jump branches to a
10574location where another comparison subsumed by the first is found.  If
10575so, the first branch is redirected to either the destination of the
10576second branch or a point immediately following it, depending on whether
10577the condition is known to be true or false.
10578
10579Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10580
10581@item -fsplit-wide-types
10582@opindex fsplit-wide-types
10583When using a type that occupies multiple registers, such as @code{long
10584long} on a 32-bit system, split the registers apart and allocate them
10585independently.  This normally generates better code for those types,
10586but may make debugging more difficult.
10587
10588Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
10589@option{-Os}.
10590
10591@item -fsplit-wide-types-early
10592@opindex fsplit-wide-types-early
10593Fully split wide types early, instead of very late.
10594This option has no effect unless @option{-fsplit-wide-types} is turned on.
10595
10596This is the default on some targets.
10597
10598@item -fcse-follow-jumps
10599@opindex fcse-follow-jumps
10600In common subexpression elimination (CSE), scan through jump instructions
10601when the target of the jump is not reached by any other path.  For
10602example, when CSE encounters an @code{if} statement with an
10603@code{else} clause, CSE follows the jump when the condition
10604tested is false.
10605
10606Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10607
10608@item -fcse-skip-blocks
10609@opindex fcse-skip-blocks
10610This is similar to @option{-fcse-follow-jumps}, but causes CSE to
10611follow jumps that conditionally skip over blocks.  When CSE
10612encounters a simple @code{if} statement with no else clause,
10613@option{-fcse-skip-blocks} causes CSE to follow the jump around the
10614body of the @code{if}.
10615
10616Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10617
10618@item -frerun-cse-after-loop
10619@opindex frerun-cse-after-loop
10620Re-run common subexpression elimination after loop optimizations are
10621performed.
10622
10623Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10624
10625@item -fgcse
10626@opindex fgcse
10627Perform a global common subexpression elimination pass.
10628This pass also performs global constant and copy propagation.
10629
10630@emph{Note:} When compiling a program using computed gotos, a GCC
10631extension, you may get better run-time performance if you disable
10632the global common subexpression elimination pass by adding
10633@option{-fno-gcse} to the command line.
10634
10635Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10636
10637@item -fgcse-lm
10638@opindex fgcse-lm
10639When @option{-fgcse-lm} is enabled, global common subexpression elimination
10640attempts to move loads that are only killed by stores into themselves.  This
10641allows a loop containing a load/store sequence to be changed to a load outside
10642the loop, and a copy/store within the loop.
10643
10644Enabled by default when @option{-fgcse} is enabled.
10645
10646@item -fgcse-sm
10647@opindex fgcse-sm
10648When @option{-fgcse-sm} is enabled, a store motion pass is run after
10649global common subexpression elimination.  This pass attempts to move
10650stores out of loops.  When used in conjunction with @option{-fgcse-lm},
10651loops containing a load/store sequence can be changed to a load before
10652the loop and a store after the loop.
10653
10654Not enabled at any optimization level.
10655
10656@item -fgcse-las
10657@opindex fgcse-las
10658When @option{-fgcse-las} is enabled, the global common subexpression
10659elimination pass eliminates redundant loads that come after stores to the
10660same memory location (both partial and full redundancies).
10661
10662Not enabled at any optimization level.
10663
10664@item -fgcse-after-reload
10665@opindex fgcse-after-reload
10666When @option{-fgcse-after-reload} is enabled, a redundant load elimination
10667pass is performed after reload.  The purpose of this pass is to clean up
10668redundant spilling.
10669
10670Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10671
10672@item -faggressive-loop-optimizations
10673@opindex faggressive-loop-optimizations
10674This option tells the loop optimizer to use language constraints to
10675derive bounds for the number of iterations of a loop.  This assumes that
10676loop code does not invoke undefined behavior by for example causing signed
10677integer overflows or out-of-bound array accesses.  The bounds for the
10678number of iterations of a loop are used to guide loop unrolling and peeling
10679and loop exit test optimizations.
10680This option is enabled by default.
10681
10682@item -funconstrained-commons
10683@opindex funconstrained-commons
10684This option tells the compiler that variables declared in common blocks
10685(e.g.@: Fortran) may later be overridden with longer trailing arrays. This
10686prevents certain optimizations that depend on knowing the array bounds.
10687
10688@item -fcrossjumping
10689@opindex fcrossjumping
10690Perform cross-jumping transformation.
10691This transformation unifies equivalent code and saves code size.  The
10692resulting code may or may not perform better than without cross-jumping.
10693
10694Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10695
10696@item -fauto-inc-dec
10697@opindex fauto-inc-dec
10698Combine increments or decrements of addresses with memory accesses.
10699This pass is always skipped on architectures that do not have
10700instructions to support this.  Enabled by default at @option{-O} and
10701higher on architectures that support this.
10702
10703@item -fdce
10704@opindex fdce
10705Perform dead code elimination (DCE) on RTL@.
10706Enabled by default at @option{-O} and higher.
10707
10708@item -fdse
10709@opindex fdse
10710Perform dead store elimination (DSE) on RTL@.
10711Enabled by default at @option{-O} and higher.
10712
10713@item -fif-conversion
10714@opindex fif-conversion
10715Attempt to transform conditional jumps into branch-less equivalents.  This
10716includes use of conditional moves, min, max, set flags and abs instructions, and
10717some tricks doable by standard arithmetics.  The use of conditional execution
10718on chips where it is available is controlled by @option{-fif-conversion2}.
10719
10720Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
10721not with @option{-Og}.
10722
10723@item -fif-conversion2
10724@opindex fif-conversion2
10725Use conditional execution (where available) to transform conditional jumps into
10726branch-less equivalents.
10727
10728Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
10729not with @option{-Og}.
10730
10731@item -fdeclone-ctor-dtor
10732@opindex fdeclone-ctor-dtor
10733The C++ ABI requires multiple entry points for constructors and
10734destructors: one for a base subobject, one for a complete object, and
10735one for a virtual destructor that calls operator delete afterwards.
10736For a hierarchy with virtual bases, the base and complete variants are
10737clones, which means two copies of the function.  With this option, the
10738base and complete variants are changed to be thunks that call a common
10739implementation.
10740
10741Enabled by @option{-Os}.
10742
10743@item -fdelete-null-pointer-checks
10744@opindex fdelete-null-pointer-checks
10745Assume that programs cannot safely dereference null pointers, and that
10746no code or data element resides at address zero.
10747This option enables simple constant
10748folding optimizations at all optimization levels.  In addition, other
10749optimization passes in GCC use this flag to control global dataflow
10750analyses that eliminate useless checks for null pointers; these assume
10751that a memory access to address zero always results in a trap, so
10752that if a pointer is checked after it has already been dereferenced,
10753it cannot be null.
10754
10755Note however that in some environments this assumption is not true.
10756Use @option{-fno-delete-null-pointer-checks} to disable this optimization
10757for programs that depend on that behavior.
10758
10759This option is enabled by default on most targets.  On Nios II ELF, it
10760defaults to off.  On AVR, CR16, and MSP430, this option is completely disabled.
10761
10762Passes that use the dataflow information
10763are enabled independently at different optimization levels.
10764
10765@item -fdevirtualize
10766@opindex fdevirtualize
10767Attempt to convert calls to virtual functions to direct calls.  This
10768is done both within a procedure and interprocedurally as part of
10769indirect inlining (@option{-findirect-inlining}) and interprocedural constant
10770propagation (@option{-fipa-cp}).
10771Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10772
10773@item -fdevirtualize-speculatively
10774@opindex fdevirtualize-speculatively
10775Attempt to convert calls to virtual functions to speculative direct calls.
10776Based on the analysis of the type inheritance graph, determine for a given call
10777the set of likely targets. If the set is small, preferably of size 1, change
10778the call into a conditional deciding between direct and indirect calls.  The
10779speculative calls enable more optimizations, such as inlining.  When they seem
10780useless after further optimization, they are converted back into original form.
10781
10782@item -fdevirtualize-at-ltrans
10783@opindex fdevirtualize-at-ltrans
10784Stream extra information needed for aggressive devirtualization when running
10785the link-time optimizer in local transformation mode.
10786This option enables more devirtualization but
10787significantly increases the size of streamed data. For this reason it is
10788disabled by default.
10789
10790@item -fexpensive-optimizations
10791@opindex fexpensive-optimizations
10792Perform a number of minor optimizations that are relatively expensive.
10793
10794Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10795
10796@item -free
10797@opindex free
10798Attempt to remove redundant extension instructions.  This is especially
10799helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
10800registers after writing to their lower 32-bit half.
10801
10802Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
10803@option{-O3}, @option{-Os}.
10804
10805@item -fno-lifetime-dse
10806@opindex fno-lifetime-dse
10807@opindex flifetime-dse
10808In C++ the value of an object is only affected by changes within its
10809lifetime: when the constructor begins, the object has an indeterminate
10810value, and any changes during the lifetime of the object are dead when
10811the object is destroyed.  Normally dead store elimination will take
10812advantage of this; if your code relies on the value of the object
10813storage persisting beyond the lifetime of the object, you can use this
10814flag to disable this optimization.  To preserve stores before the
10815constructor starts (e.g.@: because your operator new clears the object
10816storage) but still treat the object as dead after the destructor, you
10817can use @option{-flifetime-dse=1}.  The default behavior can be
10818explicitly selected with @option{-flifetime-dse=2}.
10819@option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
10820
10821@item -flive-range-shrinkage
10822@opindex flive-range-shrinkage
10823Attempt to decrease register pressure through register live range
10824shrinkage.  This is helpful for fast processors with small or moderate
10825size register sets.
10826
10827@item -fira-algorithm=@var{algorithm}
10828@opindex fira-algorithm
10829Use the specified coloring algorithm for the integrated register
10830allocator.  The @var{algorithm} argument can be @samp{priority}, which
10831specifies Chow's priority coloring, or @samp{CB}, which specifies
10832Chaitin-Briggs coloring.  Chaitin-Briggs coloring is not implemented
10833for all architectures, but for those targets that do support it, it is
10834the default because it generates better code.
10835
10836@item -fira-region=@var{region}
10837@opindex fira-region
10838Use specified regions for the integrated register allocator.  The
10839@var{region} argument should be one of the following:
10840
10841@table @samp
10842
10843@item all
10844Use all loops as register allocation regions.
10845This can give the best results for machines with a small and/or
10846irregular register set.
10847
10848@item mixed
10849Use all loops except for loops with small register pressure
10850as the regions.  This value usually gives
10851the best results in most cases and for most architectures,
10852and is enabled by default when compiling with optimization for speed
10853(@option{-O}, @option{-O2}, @dots{}).
10854
10855@item one
10856Use all functions as a single region.
10857This typically results in the smallest code size, and is enabled by default for
10858@option{-Os} or @option{-O0}.
10859
10860@end table
10861
10862@item -fira-hoist-pressure
10863@opindex fira-hoist-pressure
10864Use IRA to evaluate register pressure in the code hoisting pass for
10865decisions to hoist expressions.  This option usually results in smaller
10866code, but it can slow the compiler down.
10867
10868This option is enabled at level @option{-Os} for all targets.
10869
10870@item -fira-loop-pressure
10871@opindex fira-loop-pressure
10872Use IRA to evaluate register pressure in loops for decisions to move
10873loop invariants.  This option usually results in generation
10874of faster and smaller code on machines with large register files (>= 32
10875registers), but it can slow the compiler down.
10876
10877This option is enabled at level @option{-O3} for some targets.
10878
10879@item -fno-ira-share-save-slots
10880@opindex fno-ira-share-save-slots
10881@opindex fira-share-save-slots
10882Disable sharing of stack slots used for saving call-used hard
10883registers living through a call.  Each hard register gets a
10884separate stack slot, and as a result function stack frames are
10885larger.
10886
10887@item -fno-ira-share-spill-slots
10888@opindex fno-ira-share-spill-slots
10889@opindex fira-share-spill-slots
10890Disable sharing of stack slots allocated for pseudo-registers.  Each
10891pseudo-register that does not get a hard register gets a separate
10892stack slot, and as a result function stack frames are larger.
10893
10894@item -flra-remat
10895@opindex flra-remat
10896Enable CFG-sensitive rematerialization in LRA.  Instead of loading
10897values of spilled pseudos, LRA tries to rematerialize (recalculate)
10898values if it is profitable.
10899
10900Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10901
10902@item -fdelayed-branch
10903@opindex fdelayed-branch
10904If supported for the target machine, attempt to reorder instructions
10905to exploit instruction slots available after delayed branch
10906instructions.
10907
10908Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os},
10909but not at @option{-Og}.
10910
10911@item -fschedule-insns
10912@opindex fschedule-insns
10913If supported for the target machine, attempt to reorder instructions to
10914eliminate execution stalls due to required data being unavailable.  This
10915helps machines that have slow floating point or memory load instructions
10916by allowing other instructions to be issued until the result of the load
10917or floating-point instruction is required.
10918
10919Enabled at levels @option{-O2}, @option{-O3}.
10920
10921@item -fschedule-insns2
10922@opindex fschedule-insns2
10923Similar to @option{-fschedule-insns}, but requests an additional pass of
10924instruction scheduling after register allocation has been done.  This is
10925especially useful on machines with a relatively small number of
10926registers and where memory load instructions take more than one cycle.
10927
10928Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10929
10930@item -fno-sched-interblock
10931@opindex fno-sched-interblock
10932@opindex fsched-interblock
10933Disable instruction scheduling across basic blocks, which
10934is normally enabled when scheduling before register allocation, i.e.@:
10935with @option{-fschedule-insns} or at @option{-O2} or higher.
10936
10937@item -fno-sched-spec
10938@opindex fno-sched-spec
10939@opindex fsched-spec
10940Disable speculative motion of non-load instructions, which
10941is normally enabled when scheduling before register allocation, i.e.@:
10942with @option{-fschedule-insns} or at @option{-O2} or higher.
10943
10944@item -fsched-pressure
10945@opindex fsched-pressure
10946Enable register pressure sensitive insn scheduling before register
10947allocation.  This only makes sense when scheduling before register
10948allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
10949@option{-O2} or higher.  Usage of this option can improve the
10950generated code and decrease its size by preventing register pressure
10951increase above the number of available hard registers and subsequent
10952spills in register allocation.
10953
10954@item -fsched-spec-load
10955@opindex fsched-spec-load
10956Allow speculative motion of some load instructions.  This only makes
10957sense when scheduling before register allocation, i.e.@: with
10958@option{-fschedule-insns} or at @option{-O2} or higher.
10959
10960@item -fsched-spec-load-dangerous
10961@opindex fsched-spec-load-dangerous
10962Allow speculative motion of more load instructions.  This only makes
10963sense when scheduling before register allocation, i.e.@: with
10964@option{-fschedule-insns} or at @option{-O2} or higher.
10965
10966@item -fsched-stalled-insns
10967@itemx -fsched-stalled-insns=@var{n}
10968@opindex fsched-stalled-insns
10969Define how many insns (if any) can be moved prematurely from the queue
10970of stalled insns into the ready list during the second scheduling pass.
10971@option{-fno-sched-stalled-insns} means that no insns are moved
10972prematurely, @option{-fsched-stalled-insns=0} means there is no limit
10973on how many queued insns can be moved prematurely.
10974@option{-fsched-stalled-insns} without a value is equivalent to
10975@option{-fsched-stalled-insns=1}.
10976
10977@item -fsched-stalled-insns-dep
10978@itemx -fsched-stalled-insns-dep=@var{n}
10979@opindex fsched-stalled-insns-dep
10980Define how many insn groups (cycles) are examined for a dependency
10981on a stalled insn that is a candidate for premature removal from the queue
10982of stalled insns.  This has an effect only during the second scheduling pass,
10983and only if @option{-fsched-stalled-insns} is used.
10984@option{-fno-sched-stalled-insns-dep} is equivalent to
10985@option{-fsched-stalled-insns-dep=0}.
10986@option{-fsched-stalled-insns-dep} without a value is equivalent to
10987@option{-fsched-stalled-insns-dep=1}.
10988
10989@item -fsched2-use-superblocks
10990@opindex fsched2-use-superblocks
10991When scheduling after register allocation, use superblock scheduling.
10992This allows motion across basic block boundaries,
10993resulting in faster schedules.  This option is experimental, as not all machine
10994descriptions used by GCC model the CPU closely enough to avoid unreliable
10995results from the algorithm.
10996
10997This only makes sense when scheduling after register allocation, i.e.@: with
10998@option{-fschedule-insns2} or at @option{-O2} or higher.
10999
11000@item -fsched-group-heuristic
11001@opindex fsched-group-heuristic
11002Enable the group heuristic in the scheduler.  This heuristic favors
11003the instruction that belongs to a schedule group.  This is enabled
11004by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
11005or @option{-fschedule-insns2} or at @option{-O2} or higher.
11006
11007@item -fsched-critical-path-heuristic
11008@opindex fsched-critical-path-heuristic
11009Enable the critical-path heuristic in the scheduler.  This heuristic favors
11010instructions on the critical path.  This is enabled by default when
11011scheduling is enabled, i.e.@: with @option{-fschedule-insns}
11012or @option{-fschedule-insns2} or at @option{-O2} or higher.
11013
11014@item -fsched-spec-insn-heuristic
11015@opindex fsched-spec-insn-heuristic
11016Enable the speculative instruction heuristic in the scheduler.  This
11017heuristic favors speculative instructions with greater dependency weakness.
11018This is enabled by default when scheduling is enabled, i.e.@:
11019with @option{-fschedule-insns} or @option{-fschedule-insns2}
11020or at @option{-O2} or higher.
11021
11022@item -fsched-rank-heuristic
11023@opindex fsched-rank-heuristic
11024Enable the rank heuristic in the scheduler.  This heuristic favors
11025the instruction belonging to a basic block with greater size or frequency.
11026This is enabled by default when scheduling is enabled, i.e.@:
11027with @option{-fschedule-insns} or @option{-fschedule-insns2} or
11028at @option{-O2} or higher.
11029
11030@item -fsched-last-insn-heuristic
11031@opindex fsched-last-insn-heuristic
11032Enable the last-instruction heuristic in the scheduler.  This heuristic
11033favors the instruction that is less dependent on the last instruction
11034scheduled.  This is enabled by default when scheduling is enabled,
11035i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
11036at @option{-O2} or higher.
11037
11038@item -fsched-dep-count-heuristic
11039@opindex fsched-dep-count-heuristic
11040Enable the dependent-count heuristic in the scheduler.  This heuristic
11041favors the instruction that has more instructions depending on it.
11042This is enabled by default when scheduling is enabled, i.e.@:
11043with @option{-fschedule-insns} or @option{-fschedule-insns2} or
11044at @option{-O2} or higher.
11045
11046@item -freschedule-modulo-scheduled-loops
11047@opindex freschedule-modulo-scheduled-loops
11048Modulo scheduling is performed before traditional scheduling.  If a loop
11049is modulo scheduled, later scheduling passes may change its schedule.
11050Use this option to control that behavior.
11051
11052@item -fselective-scheduling
11053@opindex fselective-scheduling
11054Schedule instructions using selective scheduling algorithm.  Selective
11055scheduling runs instead of the first scheduler pass.
11056
11057@item -fselective-scheduling2
11058@opindex fselective-scheduling2
11059Schedule instructions using selective scheduling algorithm.  Selective
11060scheduling runs instead of the second scheduler pass.
11061
11062@item -fsel-sched-pipelining
11063@opindex fsel-sched-pipelining
11064Enable software pipelining of innermost loops during selective scheduling.
11065This option has no effect unless one of @option{-fselective-scheduling} or
11066@option{-fselective-scheduling2} is turned on.
11067
11068@item -fsel-sched-pipelining-outer-loops
11069@opindex fsel-sched-pipelining-outer-loops
11070When pipelining loops during selective scheduling, also pipeline outer loops.
11071This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
11072
11073@item -fsemantic-interposition
11074@opindex fsemantic-interposition
11075Some object formats, like ELF, allow interposing of symbols by the
11076dynamic linker.
11077This means that for symbols exported from the DSO, the compiler cannot perform
11078interprocedural propagation, inlining and other optimizations in anticipation
11079that the function or variable in question may change. While this feature is
11080useful, for example, to rewrite memory allocation functions by a debugging
11081implementation, it is expensive in the terms of code quality.
11082With @option{-fno-semantic-interposition} the compiler assumes that
11083if interposition happens for functions the overwriting function will have
11084precisely the same semantics (and side effects).
11085Similarly if interposition happens
11086for variables, the constructor of the variable will be the same. The flag
11087has no effect for functions explicitly declared inline
11088(where it is never allowed for interposition to change semantics)
11089and for symbols explicitly declared weak.
11090
11091@item -fshrink-wrap
11092@opindex fshrink-wrap
11093Emit function prologues only before parts of the function that need it,
11094rather than at the top of the function.  This flag is enabled by default at
11095@option{-O} and higher.
11096
11097@item -fshrink-wrap-separate
11098@opindex fshrink-wrap-separate
11099Shrink-wrap separate parts of the prologue and epilogue separately, so that
11100those parts are only executed when needed.
11101This option is on by default, but has no effect unless @option{-fshrink-wrap}
11102is also turned on and the target supports this.
11103
11104@item -fcaller-saves
11105@opindex fcaller-saves
11106Enable allocation of values to registers that are clobbered by
11107function calls, by emitting extra instructions to save and restore the
11108registers around such calls.  Such allocation is done only when it
11109seems to result in better code.
11110
11111This option is always enabled by default on certain machines, usually
11112those which have no call-preserved registers to use instead.
11113
11114Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11115
11116@item -fcombine-stack-adjustments
11117@opindex fcombine-stack-adjustments
11118Tracks stack adjustments (pushes and pops) and stack memory references
11119and then tries to find ways to combine them.
11120
11121Enabled by default at @option{-O1} and higher.
11122
11123@item -fipa-ra
11124@opindex fipa-ra
11125Use caller save registers for allocation if those registers are not used by
11126any called function.  In that case it is not necessary to save and restore
11127them around calls.  This is only possible if called functions are part of
11128same compilation unit as current function and they are compiled before it.
11129
11130Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
11131is disabled if generated code will be instrumented for profiling
11132(@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
11133exactly (this happens on targets that do not expose prologues
11134and epilogues in RTL).
11135
11136@item -fconserve-stack
11137@opindex fconserve-stack
11138Attempt to minimize stack usage.  The compiler attempts to use less
11139stack space, even if that makes the program slower.  This option
11140implies setting the @option{large-stack-frame} parameter to 100
11141and the @option{large-stack-frame-growth} parameter to 400.
11142
11143@item -ftree-reassoc
11144@opindex ftree-reassoc
11145Perform reassociation on trees.  This flag is enabled by default
11146at @option{-O} and higher.
11147
11148@item -fcode-hoisting
11149@opindex fcode-hoisting
11150Perform code hoisting.  Code hoisting tries to move the
11151evaluation of expressions executed on all paths to the function exit
11152as early as possible.  This is especially useful as a code size
11153optimization, but it often helps for code speed as well.
11154This flag is enabled by default at @option{-O2} and higher.
11155
11156@item -ftree-pre
11157@opindex ftree-pre
11158Perform partial redundancy elimination (PRE) on trees.  This flag is
11159enabled by default at @option{-O2} and @option{-O3}.
11160
11161@item -ftree-partial-pre
11162@opindex ftree-partial-pre
11163Make partial redundancy elimination (PRE) more aggressive.  This flag is
11164enabled by default at @option{-O3}.
11165
11166@item -ftree-forwprop
11167@opindex ftree-forwprop
11168Perform forward propagation on trees.  This flag is enabled by default
11169at @option{-O} and higher.
11170
11171@item -ftree-fre
11172@opindex ftree-fre
11173Perform full redundancy elimination (FRE) on trees.  The difference
11174between FRE and PRE is that FRE only considers expressions
11175that are computed on all paths leading to the redundant computation.
11176This analysis is faster than PRE, though it exposes fewer redundancies.
11177This flag is enabled by default at @option{-O} and higher.
11178
11179@item -ftree-phiprop
11180@opindex ftree-phiprop
11181Perform hoisting of loads from conditional pointers on trees.  This
11182pass is enabled by default at @option{-O} and higher.
11183
11184@item -fhoist-adjacent-loads
11185@opindex fhoist-adjacent-loads
11186Speculatively hoist loads from both branches of an if-then-else if the
11187loads are from adjacent locations in the same structure and the target
11188architecture has a conditional move instruction.  This flag is enabled
11189by default at @option{-O2} and higher.
11190
11191@item -ftree-copy-prop
11192@opindex ftree-copy-prop
11193Perform copy propagation on trees.  This pass eliminates unnecessary
11194copy operations.  This flag is enabled by default at @option{-O} and
11195higher.
11196
11197@item -fipa-pure-const
11198@opindex fipa-pure-const
11199Discover which functions are pure or constant.
11200Enabled by default at @option{-O} and higher.
11201
11202@item -fipa-reference
11203@opindex fipa-reference
11204Discover which static variables do not escape the
11205compilation unit.
11206Enabled by default at @option{-O} and higher.
11207
11208@item -fipa-reference-addressable
11209@opindex fipa-reference-addressable
11210Discover read-only, write-only and non-addressable static variables.
11211Enabled by default at @option{-O} and higher.
11212
11213@item -fipa-stack-alignment
11214@opindex fipa-stack-alignment
11215Reduce stack alignment on call sites if possible.
11216Enabled by default.
11217
11218@item -fipa-pta
11219@opindex fipa-pta
11220Perform interprocedural pointer analysis and interprocedural modification
11221and reference analysis.  This option can cause excessive memory and
11222compile-time usage on large compilation units.  It is not enabled by
11223default at any optimization level.
11224
11225@item -fipa-profile
11226@opindex fipa-profile
11227Perform interprocedural profile propagation.  The functions called only from
11228cold functions are marked as cold. Also functions executed once (such as
11229@code{cold}, @code{noreturn}, static constructors or destructors) are
11230identified. Cold functions and loop less parts of functions executed once are
11231then optimized for size.
11232Enabled by default at @option{-O} and higher.
11233
11234@item -fipa-modref
11235@opindex fipa-modref
11236Perform interprocedural mod/ref analysis.  This optimization analyzes the side
11237effects of functions (memory locations that are modified or referenced) and
11238enables better optimization across the function call boundary.  This flag is
11239enabled by default at @option{-O} and higher.
11240
11241@item -fipa-cp
11242@opindex fipa-cp
11243Perform interprocedural constant propagation.
11244This optimization analyzes the program to determine when values passed
11245to functions are constants and then optimizes accordingly.
11246This optimization can substantially increase performance
11247if the application has constants passed to functions.
11248This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
11249It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11250
11251@item -fipa-cp-clone
11252@opindex fipa-cp-clone
11253Perform function cloning to make interprocedural constant propagation stronger.
11254When enabled, interprocedural constant propagation performs function cloning
11255when externally visible function can be called with constant arguments.
11256Because this optimization can create multiple copies of functions,
11257it may significantly increase code size
11258(see @option{--param ipa-cp-unit-growth=@var{value}}).
11259This flag is enabled by default at @option{-O3}.
11260It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11261
11262@item -fipa-bit-cp
11263@opindex fipa-bit-cp
11264When enabled, perform interprocedural bitwise constant
11265propagation. This flag is enabled by default at @option{-O2} and
11266by @option{-fprofile-use} and @option{-fauto-profile}.
11267It requires that @option{-fipa-cp} is enabled.
11268
11269@item -fipa-vrp
11270@opindex fipa-vrp
11271When enabled, perform interprocedural propagation of value
11272ranges. This flag is enabled by default at @option{-O2}. It requires
11273that @option{-fipa-cp} is enabled.
11274
11275@item -fipa-icf
11276@opindex fipa-icf
11277Perform Identical Code Folding for functions and read-only variables.
11278The optimization reduces code size and may disturb unwind stacks by replacing
11279a function by equivalent one with a different name. The optimization works
11280more effectively with link-time optimization enabled.
11281
11282Although the behavior is similar to the Gold Linker's ICF optimization, GCC ICF
11283works on different levels and thus the optimizations are not same - there are
11284equivalences that are found only by GCC and equivalences found only by Gold.
11285
11286This flag is enabled by default at @option{-O2} and @option{-Os}.
11287
11288@item -flive-patching=@var{level}
11289@opindex flive-patching
11290Control GCC's optimizations to produce output suitable for live-patching.
11291
11292If the compiler's optimization uses a function's body or information extracted
11293from its body to optimize/change another function, the latter is called an
11294impacted function of the former.  If a function is patched, its impacted
11295functions should be patched too.
11296
11297The impacted functions are determined by the compiler's interprocedural
11298optimizations.  For example, a caller is impacted when inlining a function
11299into its caller,
11300cloning a function and changing its caller to call this new clone,
11301or extracting a function's pureness/constness information to optimize
11302its direct or indirect callers, etc.
11303
11304Usually, the more IPA optimizations enabled, the larger the number of
11305impacted functions for each function.  In order to control the number of
11306impacted functions and more easily compute the list of impacted function,
11307IPA optimizations can be partially enabled at two different levels.
11308
11309The @var{level} argument should be one of the following:
11310
11311@table @samp
11312
11313@item inline-clone
11314
11315Only enable inlining and cloning optimizations, which includes inlining,
11316cloning, interprocedural scalar replacement of aggregates and partial inlining.
11317As a result, when patching a function, all its callers and its clones'
11318callers are impacted, therefore need to be patched as well.
11319
11320@option{-flive-patching=inline-clone} disables the following optimization flags:
11321@gccoptlist{-fwhole-program  -fipa-pta  -fipa-reference  -fipa-ra @gol
11322-fipa-icf  -fipa-icf-functions  -fipa-icf-variables @gol
11323-fipa-bit-cp  -fipa-vrp  -fipa-pure-const  -fipa-reference-addressable @gol
11324-fipa-stack-alignment -fipa-modref}
11325
11326@item inline-only-static
11327
11328Only enable inlining of static functions.
11329As a result, when patching a static function, all its callers are impacted
11330and so need to be patched as well.
11331
11332In addition to all the flags that @option{-flive-patching=inline-clone}
11333disables,
11334@option{-flive-patching=inline-only-static} disables the following additional
11335optimization flags:
11336@gccoptlist{-fipa-cp-clone  -fipa-sra  -fpartial-inlining  -fipa-cp}
11337
11338@end table
11339
11340When @option{-flive-patching} is specified without any value, the default value
11341is @var{inline-clone}.
11342
11343This flag is disabled by default.
11344
11345Note that @option{-flive-patching} is not supported with link-time optimization
11346(@option{-flto}).
11347
11348@item -fisolate-erroneous-paths-dereference
11349@opindex fisolate-erroneous-paths-dereference
11350Detect paths that trigger erroneous or undefined behavior due to
11351dereferencing a null pointer.  Isolate those paths from the main control
11352flow and turn the statement with erroneous or undefined behavior into a trap.
11353This flag is enabled by default at @option{-O2} and higher and depends on
11354@option{-fdelete-null-pointer-checks} also being enabled.
11355
11356@item -fisolate-erroneous-paths-attribute
11357@opindex fisolate-erroneous-paths-attribute
11358Detect paths that trigger erroneous or undefined behavior due to a null value
11359being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
11360attribute.  Isolate those paths from the main control flow and turn the
11361statement with erroneous or undefined behavior into a trap.  This is not
11362currently enabled, but may be enabled by @option{-O2} in the future.
11363
11364@item -ftree-sink
11365@opindex ftree-sink
11366Perform forward store motion on trees.  This flag is
11367enabled by default at @option{-O} and higher.
11368
11369@item -ftree-bit-ccp
11370@opindex ftree-bit-ccp
11371Perform sparse conditional bit constant propagation on trees and propagate
11372pointer alignment information.
11373This pass only operates on local scalar variables and is enabled by default
11374at @option{-O1} and higher, except for @option{-Og}.
11375It requires that @option{-ftree-ccp} is enabled.
11376
11377@item -ftree-ccp
11378@opindex ftree-ccp
11379Perform sparse conditional constant propagation (CCP) on trees.  This
11380pass only operates on local scalar variables and is enabled by default
11381at @option{-O} and higher.
11382
11383@item -fssa-backprop
11384@opindex fssa-backprop
11385Propagate information about uses of a value up the definition chain
11386in order to simplify the definitions.  For example, this pass strips
11387sign operations if the sign of a value never matters.  The flag is
11388enabled by default at @option{-O} and higher.
11389
11390@item -fssa-phiopt
11391@opindex fssa-phiopt
11392Perform pattern matching on SSA PHI nodes to optimize conditional
11393code.  This pass is enabled by default at @option{-O1} and higher,
11394except for @option{-Og}.
11395
11396@item -ftree-switch-conversion
11397@opindex ftree-switch-conversion
11398Perform conversion of simple initializations in a switch to
11399initializations from a scalar array.  This flag is enabled by default
11400at @option{-O2} and higher.
11401
11402@item -ftree-tail-merge
11403@opindex ftree-tail-merge
11404Look for identical code sequences.  When found, replace one with a jump to the
11405other.  This optimization is known as tail merging or cross jumping.  This flag
11406is enabled by default at @option{-O2} and higher.  The compilation time
11407in this pass can
11408be limited using @option{max-tail-merge-comparisons} parameter and
11409@option{max-tail-merge-iterations} parameter.
11410
11411@item -ftree-dce
11412@opindex ftree-dce
11413Perform dead code elimination (DCE) on trees.  This flag is enabled by
11414default at @option{-O} and higher.
11415
11416@item -ftree-builtin-call-dce
11417@opindex ftree-builtin-call-dce
11418Perform conditional dead code elimination (DCE) for calls to built-in functions
11419that may set @code{errno} but are otherwise free of side effects.  This flag is
11420enabled by default at @option{-O2} and higher if @option{-Os} is not also
11421specified.
11422
11423@item -ffinite-loops
11424@opindex ffinite-loops
11425@opindex fno-finite-loops
11426Assume that a loop with an exit will eventually take the exit and not loop
11427indefinitely.  This allows the compiler to remove loops that otherwise have
11428no side-effects, not considering eventual endless looping as such.
11429
11430This option is enabled by default at @option{-O2} for C++ with -std=c++11
11431or higher.
11432
11433@item -ftree-dominator-opts
11434@opindex ftree-dominator-opts
11435Perform a variety of simple scalar cleanups (constant/copy
11436propagation, redundancy elimination, range propagation and expression
11437simplification) based on a dominator tree traversal.  This also
11438performs jump threading (to reduce jumps to jumps). This flag is
11439enabled by default at @option{-O} and higher.
11440
11441@item -ftree-dse
11442@opindex ftree-dse
11443Perform dead store elimination (DSE) on trees.  A dead store is a store into
11444a memory location that is later overwritten by another store without
11445any intervening loads.  In this case the earlier store can be deleted.  This
11446flag is enabled by default at @option{-O} and higher.
11447
11448@item -ftree-ch
11449@opindex ftree-ch
11450Perform loop header copying on trees.  This is beneficial since it increases
11451effectiveness of code motion optimizations.  It also saves one jump.  This flag
11452is enabled by default at @option{-O} and higher.  It is not enabled
11453for @option{-Os}, since it usually increases code size.
11454
11455@item -ftree-loop-optimize
11456@opindex ftree-loop-optimize
11457Perform loop optimizations on trees.  This flag is enabled by default
11458at @option{-O} and higher.
11459
11460@item -ftree-loop-linear
11461@itemx -floop-strip-mine
11462@itemx -floop-block
11463@opindex ftree-loop-linear
11464@opindex floop-strip-mine
11465@opindex floop-block
11466Perform loop nest optimizations.  Same as
11467@option{-floop-nest-optimize}.  To use this code transformation, GCC has
11468to be configured with @option{--with-isl} to enable the Graphite loop
11469transformation infrastructure.
11470
11471@item -fgraphite-identity
11472@opindex fgraphite-identity
11473Enable the identity transformation for graphite.  For every SCoP we generate
11474the polyhedral representation and transform it back to gimple.  Using
11475@option{-fgraphite-identity} we can check the costs or benefits of the
11476GIMPLE -> GRAPHITE -> GIMPLE transformation.  Some minimal optimizations
11477are also performed by the code generator isl, like index splitting and
11478dead code elimination in loops.
11479
11480@item -floop-nest-optimize
11481@opindex floop-nest-optimize
11482Enable the isl based loop nest optimizer.  This is a generic loop nest
11483optimizer based on the Pluto optimization algorithms.  It calculates a loop
11484structure optimized for data-locality and parallelism.  This option
11485is experimental.
11486
11487@item -floop-parallelize-all
11488@opindex floop-parallelize-all
11489Use the Graphite data dependence analysis to identify loops that can
11490be parallelized.  Parallelize all the loops that can be analyzed to
11491not contain loop carried dependences without checking that it is
11492profitable to parallelize the loops.
11493
11494@item -ftree-coalesce-vars
11495@opindex ftree-coalesce-vars
11496While transforming the program out of the SSA representation, attempt to
11497reduce copying by coalescing versions of different user-defined
11498variables, instead of just compiler temporaries.  This may severely
11499limit the ability to debug an optimized program compiled with
11500@option{-fno-var-tracking-assignments}.  In the negated form, this flag
11501prevents SSA coalescing of user variables.  This option is enabled by
11502default if optimization is enabled, and it does very little otherwise.
11503
11504@item -ftree-loop-if-convert
11505@opindex ftree-loop-if-convert
11506Attempt to transform conditional jumps in the innermost loops to
11507branch-less equivalents.  The intent is to remove control-flow from
11508the innermost loops in order to improve the ability of the
11509vectorization pass to handle these loops.  This is enabled by default
11510if vectorization is enabled.
11511
11512@item -ftree-loop-distribution
11513@opindex ftree-loop-distribution
11514Perform loop distribution.  This flag can improve cache performance on
11515big loop bodies and allow further loop optimizations, like
11516parallelization or vectorization, to take place.  For example, the loop
11517@smallexample
11518DO I = 1, N
11519  A(I) = B(I) + C
11520  D(I) = E(I) * F
11521ENDDO
11522@end smallexample
11523is transformed to
11524@smallexample
11525DO I = 1, N
11526   A(I) = B(I) + C
11527ENDDO
11528DO I = 1, N
11529   D(I) = E(I) * F
11530ENDDO
11531@end smallexample
11532This flag is enabled by default at @option{-O3}.
11533It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11534
11535@item -ftree-loop-distribute-patterns
11536@opindex ftree-loop-distribute-patterns
11537Perform loop distribution of patterns that can be code generated with
11538calls to a library.  This flag is enabled by default at @option{-O2} and
11539higher, and by @option{-fprofile-use} and @option{-fauto-profile}.
11540
11541This pass distributes the initialization loops and generates a call to
11542memset zero.  For example, the loop
11543@smallexample
11544DO I = 1, N
11545  A(I) = 0
11546  B(I) = A(I) + I
11547ENDDO
11548@end smallexample
11549is transformed to
11550@smallexample
11551DO I = 1, N
11552   A(I) = 0
11553ENDDO
11554DO I = 1, N
11555   B(I) = A(I) + I
11556ENDDO
11557@end smallexample
11558and the initialization loop is transformed into a call to memset zero.
11559This flag is enabled by default at @option{-O3}.
11560It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11561
11562@item -floop-interchange
11563@opindex floop-interchange
11564Perform loop interchange outside of graphite.  This flag can improve cache
11565performance on loop nest and allow further loop optimizations, like
11566vectorization, to take place.  For example, the loop
11567@smallexample
11568for (int i = 0; i < N; i++)
11569  for (int j = 0; j < N; j++)
11570    for (int k = 0; k < N; k++)
11571      c[i][j] = c[i][j] + a[i][k]*b[k][j];
11572@end smallexample
11573is transformed to
11574@smallexample
11575for (int i = 0; i < N; i++)
11576  for (int k = 0; k < N; k++)
11577    for (int j = 0; j < N; j++)
11578      c[i][j] = c[i][j] + a[i][k]*b[k][j];
11579@end smallexample
11580This flag is enabled by default at @option{-O3}.
11581It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11582
11583@item -floop-unroll-and-jam
11584@opindex floop-unroll-and-jam
11585Apply unroll and jam transformations on feasible loops.  In a loop
11586nest this unrolls the outer loop by some factor and fuses the resulting
11587multiple inner loops.  This flag is enabled by default at @option{-O3}.
11588It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11589
11590@item -ftree-loop-im
11591@opindex ftree-loop-im
11592Perform loop invariant motion on trees.  This pass moves only invariants that
11593are hard to handle at RTL level (function calls, operations that expand to
11594nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
11595operands of conditions that are invariant out of the loop, so that we can use
11596just trivial invariantness analysis in loop unswitching.  The pass also includes
11597store motion.
11598
11599@item -ftree-loop-ivcanon
11600@opindex ftree-loop-ivcanon
11601Create a canonical counter for number of iterations in loops for which
11602determining number of iterations requires complicated analysis.  Later
11603optimizations then may determine the number easily.  Useful especially
11604in connection with unrolling.
11605
11606@item -ftree-scev-cprop
11607@opindex ftree-scev-cprop
11608Perform final value replacement.  If a variable is modified in a loop
11609in such a way that its value when exiting the loop can be determined using
11610only its initial value and the number of loop iterations, replace uses of
11611the final value by such a computation, provided it is sufficiently cheap.
11612This reduces data dependencies and may allow further simplifications.
11613Enabled by default at @option{-O} and higher.
11614
11615@item -fivopts
11616@opindex fivopts
11617Perform induction variable optimizations (strength reduction, induction
11618variable merging and induction variable elimination) on trees.
11619
11620@item -ftree-parallelize-loops=n
11621@opindex ftree-parallelize-loops
11622Parallelize loops, i.e., split their iteration space to run in n threads.
11623This is only possible for loops whose iterations are independent
11624and can be arbitrarily reordered.  The optimization is only
11625profitable on multiprocessor machines, for loops that are CPU-intensive,
11626rather than constrained e.g.@: by memory bandwidth.  This option
11627implies @option{-pthread}, and thus is only supported on targets
11628that have support for @option{-pthread}.
11629
11630@item -ftree-pta
11631@opindex ftree-pta
11632Perform function-local points-to analysis on trees.  This flag is
11633enabled by default at @option{-O1} and higher, except for @option{-Og}.
11634
11635@item -ftree-sra
11636@opindex ftree-sra
11637Perform scalar replacement of aggregates.  This pass replaces structure
11638references with scalars to prevent committing structures to memory too
11639early.  This flag is enabled by default at @option{-O1} and higher,
11640except for @option{-Og}.
11641
11642@item -fstore-merging
11643@opindex fstore-merging
11644Perform merging of narrow stores to consecutive memory addresses.  This pass
11645merges contiguous stores of immediate values narrower than a word into fewer
11646wider stores to reduce the number of instructions.  This is enabled by default
11647at @option{-O2} and higher as well as @option{-Os}.
11648
11649@item -ftree-ter
11650@opindex ftree-ter
11651Perform temporary expression replacement during the SSA->normal phase.  Single
11652use/single def temporaries are replaced at their use location with their
11653defining expression.  This results in non-GIMPLE code, but gives the expanders
11654much more complex trees to work on resulting in better RTL generation.  This is
11655enabled by default at @option{-O} and higher.
11656
11657@item -ftree-slsr
11658@opindex ftree-slsr
11659Perform straight-line strength reduction on trees.  This recognizes related
11660expressions involving multiplications and replaces them by less expensive
11661calculations when possible.  This is enabled by default at @option{-O} and
11662higher.
11663
11664@item -ftree-vectorize
11665@opindex ftree-vectorize
11666Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
11667and @option{-ftree-slp-vectorize} if not explicitly specified.
11668
11669@item -ftree-loop-vectorize
11670@opindex ftree-loop-vectorize
11671Perform loop vectorization on trees. This flag is enabled by default at
11672@option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
11673and @option{-fauto-profile}.
11674
11675@item -ftree-slp-vectorize
11676@opindex ftree-slp-vectorize
11677Perform basic block vectorization on trees. This flag is enabled by default at
11678@option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
11679and @option{-fauto-profile}.
11680
11681@item -fvect-cost-model=@var{model}
11682@opindex fvect-cost-model
11683Alter the cost model used for vectorization.  The @var{model} argument
11684should be one of @samp{unlimited}, @samp{dynamic}, @samp{cheap} or
11685@samp{very-cheap}.
11686With the @samp{unlimited} model the vectorized code-path is assumed
11687to be profitable while with the @samp{dynamic} model a runtime check
11688guards the vectorized code-path to enable it only for iteration
11689counts that will likely execute faster than when executing the original
11690scalar loop.  The @samp{cheap} model disables vectorization of
11691loops where doing so would be cost prohibitive for example due to
11692required runtime checks for data dependence or alignment but otherwise
11693is equal to the @samp{dynamic} model.  The @samp{very-cheap} model only
11694allows vectorization if the vector code would entirely replace the
11695scalar code that is being vectorized.  For example, if each iteration
11696of a vectorized loop would only be able to handle exactly four iterations
11697of the scalar loop, the @samp{very-cheap} model would only allow
11698vectorization if the scalar iteration count is known to be a multiple
11699of four.
11700
11701The default cost model depends on other optimization flags and is
11702either @samp{dynamic} or @samp{cheap}.
11703
11704@item -fsimd-cost-model=@var{model}
11705@opindex fsimd-cost-model
11706Alter the cost model used for vectorization of loops marked with the OpenMP
11707simd directive.  The @var{model} argument should be one of
11708@samp{unlimited}, @samp{dynamic}, @samp{cheap}.  All values of @var{model}
11709have the same meaning as described in @option{-fvect-cost-model} and by
11710default a cost model defined with @option{-fvect-cost-model} is used.
11711
11712@item -ftree-vrp
11713@opindex ftree-vrp
11714Perform Value Range Propagation on trees.  This is similar to the
11715constant propagation pass, but instead of values, ranges of values are
11716propagated.  This allows the optimizers to remove unnecessary range
11717checks like array bound checks and null pointer checks.  This is
11718enabled by default at @option{-O2} and higher.  Null pointer check
11719elimination is only done if @option{-fdelete-null-pointer-checks} is
11720enabled.
11721
11722@item -fsplit-paths
11723@opindex fsplit-paths
11724Split paths leading to loop backedges.  This can improve dead code
11725elimination and common subexpression elimination.  This is enabled by
11726default at @option{-O3} and above.
11727
11728@item -fsplit-ivs-in-unroller
11729@opindex fsplit-ivs-in-unroller
11730Enables expression of values of induction variables in later iterations
11731of the unrolled loop using the value in the first iteration.  This breaks
11732long dependency chains, thus improving efficiency of the scheduling passes.
11733
11734A combination of @option{-fweb} and CSE is often sufficient to obtain the
11735same effect.  However, that is not reliable in cases where the loop body
11736is more complicated than a single basic block.  It also does not work at all
11737on some architectures due to restrictions in the CSE pass.
11738
11739This optimization is enabled by default.
11740
11741@item -fvariable-expansion-in-unroller
11742@opindex fvariable-expansion-in-unroller
11743With this option, the compiler creates multiple copies of some
11744local variables when unrolling a loop, which can result in superior code.
11745
11746This optimization is enabled by default for PowerPC targets, but disabled
11747by default otherwise.
11748
11749@item -fpartial-inlining
11750@opindex fpartial-inlining
11751Inline parts of functions.  This option has any effect only
11752when inlining itself is turned on by the @option{-finline-functions}
11753or @option{-finline-small-functions} options.
11754
11755Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11756
11757@item -fpredictive-commoning
11758@opindex fpredictive-commoning
11759Perform predictive commoning optimization, i.e., reusing computations
11760(especially memory loads and stores) performed in previous
11761iterations of loops.
11762
11763This option is enabled at level @option{-O3}.
11764It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11765
11766@item -fprefetch-loop-arrays
11767@opindex fprefetch-loop-arrays
11768If supported by the target machine, generate instructions to prefetch
11769memory to improve the performance of loops that access large arrays.
11770
11771This option may generate better or worse code; results are highly
11772dependent on the structure of loops within the source code.
11773
11774Disabled at level @option{-Os}.
11775
11776@item -fno-printf-return-value
11777@opindex fno-printf-return-value
11778@opindex fprintf-return-value
11779Do not substitute constants for known return value of formatted output
11780functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
11781@code{vsnprintf} (but not @code{printf} of @code{fprintf}).  This
11782transformation allows GCC to optimize or even eliminate branches based
11783on the known return value of these functions called with arguments that
11784are either constant, or whose values are known to be in a range that
11785makes determining the exact return value possible.  For example, when
11786@option{-fprintf-return-value} is in effect, both the branch and the
11787body of the @code{if} statement (but not the call to @code{snprint})
11788can be optimized away when @code{i} is a 32-bit or smaller integer
11789because the return value is guaranteed to be at most 8.
11790
11791@smallexample
11792char buf[9];
11793if (snprintf (buf, "%08x", i) >= sizeof buf)
11794  @dots{}
11795@end smallexample
11796
11797The @option{-fprintf-return-value} option relies on other optimizations
11798and yields best results with @option{-O2} and above.  It works in tandem
11799with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
11800options.  The @option{-fprintf-return-value} option is enabled by default.
11801
11802@item -fno-peephole
11803@itemx -fno-peephole2
11804@opindex fno-peephole
11805@opindex fpeephole
11806@opindex fno-peephole2
11807@opindex fpeephole2
11808Disable any machine-specific peephole optimizations.  The difference
11809between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
11810are implemented in the compiler; some targets use one, some use the
11811other, a few use both.
11812
11813@option{-fpeephole} is enabled by default.
11814@option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11815
11816@item -fno-guess-branch-probability
11817@opindex fno-guess-branch-probability
11818@opindex fguess-branch-probability
11819Do not guess branch probabilities using heuristics.
11820
11821GCC uses heuristics to guess branch probabilities if they are
11822not provided by profiling feedback (@option{-fprofile-arcs}).  These
11823heuristics are based on the control flow graph.  If some branch probabilities
11824are specified by @code{__builtin_expect}, then the heuristics are
11825used to guess branch probabilities for the rest of the control flow graph,
11826taking the @code{__builtin_expect} info into account.  The interactions
11827between the heuristics and @code{__builtin_expect} can be complex, and in
11828some cases, it may be useful to disable the heuristics so that the effects
11829of @code{__builtin_expect} are easier to understand.
11830
11831It is also possible to specify expected probability of the expression
11832with @code{__builtin_expect_with_probability} built-in function.
11833
11834The default is @option{-fguess-branch-probability} at levels
11835@option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
11836
11837@item -freorder-blocks
11838@opindex freorder-blocks
11839Reorder basic blocks in the compiled function in order to reduce number of
11840taken branches and improve code locality.
11841
11842Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
11843
11844@item -freorder-blocks-algorithm=@var{algorithm}
11845@opindex freorder-blocks-algorithm
11846Use the specified algorithm for basic block reordering.  The
11847@var{algorithm} argument can be @samp{simple}, which does not increase
11848code size (except sometimes due to secondary effects like alignment),
11849or @samp{stc}, the ``software trace cache'' algorithm, which tries to
11850put all often executed code together, minimizing the number of branches
11851executed by making extra copies of code.
11852
11853The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
11854@samp{stc} at levels @option{-O2}, @option{-O3}.
11855
11856@item -freorder-blocks-and-partition
11857@opindex freorder-blocks-and-partition
11858In addition to reordering basic blocks in the compiled function, in order
11859to reduce number of taken branches, partitions hot and cold basic blocks
11860into separate sections of the assembly and @file{.o} files, to improve
11861paging and cache locality performance.
11862
11863This optimization is automatically turned off in the presence of
11864exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
11865section attribute and on any architecture that does not support named
11866sections.  When @option{-fsplit-stack} is used this option is not
11867enabled by default (to avoid linker errors), but may be enabled
11868explicitly (if using a working linker).
11869
11870Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
11871
11872@item -freorder-functions
11873@opindex freorder-functions
11874Reorder functions in the object file in order to
11875improve code locality.  This is implemented by using special
11876subsections @code{.text.hot} for most frequently executed functions and
11877@code{.text.unlikely} for unlikely executed functions.  Reordering is done by
11878the linker so object file format must support named sections and linker must
11879place them in a reasonable way.
11880
11881This option isn't effective unless you either provide profile feedback
11882(see @option{-fprofile-arcs} for details) or manually annotate functions with
11883@code{hot} or @code{cold} attributes (@pxref{Common Function Attributes}).
11884
11885Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11886
11887@item -fstrict-aliasing
11888@opindex fstrict-aliasing
11889Allow the compiler to assume the strictest aliasing rules applicable to
11890the language being compiled.  For C (and C++), this activates
11891optimizations based on the type of expressions.  In particular, an
11892object of one type is assumed never to reside at the same address as an
11893object of a different type, unless the types are almost the same.  For
11894example, an @code{unsigned int} can alias an @code{int}, but not a
11895@code{void*} or a @code{double}.  A character type may alias any other
11896type.
11897
11898@anchor{Type-punning}Pay special attention to code like this:
11899@smallexample
11900union a_union @{
11901  int i;
11902  double d;
11903@};
11904
11905int f() @{
11906  union a_union t;
11907  t.d = 3.0;
11908  return t.i;
11909@}
11910@end smallexample
11911The practice of reading from a different union member than the one most
11912recently written to (called ``type-punning'') is common.  Even with
11913@option{-fstrict-aliasing}, type-punning is allowed, provided the memory
11914is accessed through the union type.  So, the code above works as
11915expected.  @xref{Structures unions enumerations and bit-fields
11916implementation}.  However, this code might not:
11917@smallexample
11918int f() @{
11919  union a_union t;
11920  int* ip;
11921  t.d = 3.0;
11922  ip = &t.i;
11923  return *ip;
11924@}
11925@end smallexample
11926
11927Similarly, access by taking the address, casting the resulting pointer
11928and dereferencing the result has undefined behavior, even if the cast
11929uses a union type, e.g.:
11930@smallexample
11931int f() @{
11932  double d = 3.0;
11933  return ((union a_union *) &d)->i;
11934@}
11935@end smallexample
11936
11937The @option{-fstrict-aliasing} option is enabled at levels
11938@option{-O2}, @option{-O3}, @option{-Os}.
11939
11940@item -falign-functions
11941@itemx -falign-functions=@var{n}
11942@itemx -falign-functions=@var{n}:@var{m}
11943@itemx -falign-functions=@var{n}:@var{m}:@var{n2}
11944@itemx -falign-functions=@var{n}:@var{m}:@var{n2}:@var{m2}
11945@opindex falign-functions
11946Align the start of functions to the next power-of-two greater than or
11947equal to @var{n}, skipping up to @var{m}-1 bytes.  This ensures that at
11948least the first @var{m} bytes of the function can be fetched by the CPU
11949without crossing an @var{n}-byte alignment boundary.
11950
11951If @var{m} is not specified, it defaults to @var{n}.
11952
11953Examples: @option{-falign-functions=32} aligns functions to the next
1195432-byte boundary, @option{-falign-functions=24} aligns to the next
1195532-byte boundary only if this can be done by skipping 23 bytes or less,
11956@option{-falign-functions=32:7} aligns to the next
1195732-byte boundary only if this can be done by skipping 6 bytes or less.
11958
11959The second pair of @var{n2}:@var{m2} values allows you to specify
11960a secondary alignment: @option{-falign-functions=64:7:32:3} aligns to
11961the next 64-byte boundary if this can be done by skipping 6 bytes or less,
11962otherwise aligns to the next 32-byte boundary if this can be done
11963by skipping 2 bytes or less.
11964If @var{m2} is not specified, it defaults to @var{n2}.
11965
11966Some assemblers only support this flag when @var{n} is a power of two;
11967in that case, it is rounded up.
11968
11969@option{-fno-align-functions} and @option{-falign-functions=1} are
11970equivalent and mean that functions are not aligned.
11971
11972If @var{n} is not specified or is zero, use a machine-dependent default.
11973The maximum allowed @var{n} option value is 65536.
11974
11975Enabled at levels @option{-O2}, @option{-O3}.
11976
11977@item -flimit-function-alignment
11978If this option is enabled, the compiler tries to avoid unnecessarily
11979overaligning functions. It attempts to instruct the assembler to align
11980by the amount specified by @option{-falign-functions}, but not to
11981skip more bytes than the size of the function.
11982
11983@item -falign-labels
11984@itemx -falign-labels=@var{n}
11985@itemx -falign-labels=@var{n}:@var{m}
11986@itemx -falign-labels=@var{n}:@var{m}:@var{n2}
11987@itemx -falign-labels=@var{n}:@var{m}:@var{n2}:@var{m2}
11988@opindex falign-labels
11989Align all branch targets to a power-of-two boundary.
11990
11991Parameters of this option are analogous to the @option{-falign-functions} option.
11992@option{-fno-align-labels} and @option{-falign-labels=1} are
11993equivalent and mean that labels are not aligned.
11994
11995If @option{-falign-loops} or @option{-falign-jumps} are applicable and
11996are greater than this value, then their values are used instead.
11997
11998If @var{n} is not specified or is zero, use a machine-dependent default
11999which is very likely to be @samp{1}, meaning no alignment.
12000The maximum allowed @var{n} option value is 65536.
12001
12002Enabled at levels @option{-O2}, @option{-O3}.
12003
12004@item -falign-loops
12005@itemx -falign-loops=@var{n}
12006@itemx -falign-loops=@var{n}:@var{m}
12007@itemx -falign-loops=@var{n}:@var{m}:@var{n2}
12008@itemx -falign-loops=@var{n}:@var{m}:@var{n2}:@var{m2}
12009@opindex falign-loops
12010Align loops to a power-of-two boundary.  If the loops are executed
12011many times, this makes up for any execution of the dummy padding
12012instructions.
12013
12014If @option{-falign-labels} is greater than this value, then its value
12015is used instead.
12016
12017Parameters of this option are analogous to the @option{-falign-functions} option.
12018@option{-fno-align-loops} and @option{-falign-loops=1} are
12019equivalent and mean that loops are not aligned.
12020The maximum allowed @var{n} option value is 65536.
12021
12022If @var{n} is not specified or is zero, use a machine-dependent default.
12023
12024Enabled at levels @option{-O2}, @option{-O3}.
12025
12026@item -falign-jumps
12027@itemx -falign-jumps=@var{n}
12028@itemx -falign-jumps=@var{n}:@var{m}
12029@itemx -falign-jumps=@var{n}:@var{m}:@var{n2}
12030@itemx -falign-jumps=@var{n}:@var{m}:@var{n2}:@var{m2}
12031@opindex falign-jumps
12032Align branch targets to a power-of-two boundary, for branch targets
12033where the targets can only be reached by jumping.  In this case,
12034no dummy operations need be executed.
12035
12036If @option{-falign-labels} is greater than this value, then its value
12037is used instead.
12038
12039Parameters of this option are analogous to the @option{-falign-functions} option.
12040@option{-fno-align-jumps} and @option{-falign-jumps=1} are
12041equivalent and mean that loops are not aligned.
12042
12043If @var{n} is not specified or is zero, use a machine-dependent default.
12044The maximum allowed @var{n} option value is 65536.
12045
12046Enabled at levels @option{-O2}, @option{-O3}.
12047
12048@item -fno-allocation-dce
12049@opindex fno-allocation-dce
12050Do not remove unused C++ allocations in dead code elimination.
12051
12052@item -fallow-store-data-races
12053@opindex fallow-store-data-races
12054Allow the compiler to perform optimizations that may introduce new data races
12055on stores, without proving that the variable cannot be concurrently accessed
12056by other threads.  Does not affect optimization of local data.  It is safe to
12057use this option if it is known that global data will not be accessed by
12058multiple threads.
12059
12060Examples of optimizations enabled by @option{-fallow-store-data-races} include
12061hoisting or if-conversions that may cause a value that was already in memory
12062to be re-written with that same value.  Such re-writing is safe in a single
12063threaded context but may be unsafe in a multi-threaded context.  Note that on
12064some processors, if-conversions may be required in order to enable
12065vectorization.
12066
12067Enabled at level @option{-Ofast}.
12068
12069@item -funit-at-a-time
12070@opindex funit-at-a-time
12071This option is left for compatibility reasons. @option{-funit-at-a-time}
12072has no effect, while @option{-fno-unit-at-a-time} implies
12073@option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
12074
12075Enabled by default.
12076
12077@item -fno-toplevel-reorder
12078@opindex fno-toplevel-reorder
12079@opindex ftoplevel-reorder
12080Do not reorder top-level functions, variables, and @code{asm}
12081statements.  Output them in the same order that they appear in the
12082input file.  When this option is used, unreferenced static variables
12083are not removed.  This option is intended to support existing code
12084that relies on a particular ordering.  For new code, it is better to
12085use attributes when possible.
12086
12087@option{-ftoplevel-reorder} is the default at @option{-O1} and higher, and
12088also at @option{-O0} if @option{-fsection-anchors} is explicitly requested.
12089Additionally @option{-fno-toplevel-reorder} implies
12090@option{-fno-section-anchors}.
12091
12092@item -fweb
12093@opindex fweb
12094Constructs webs as commonly used for register allocation purposes and assign
12095each web individual pseudo register.  This allows the register allocation pass
12096to operate on pseudos directly, but also strengthens several other optimization
12097passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
12098however, make debugging impossible, since variables no longer stay in a
12099``home register''.
12100
12101Enabled by default with @option{-funroll-loops}.
12102
12103@item -fwhole-program
12104@opindex fwhole-program
12105Assume that the current compilation unit represents the whole program being
12106compiled.  All public functions and variables with the exception of @code{main}
12107and those merged by attribute @code{externally_visible} become static functions
12108and in effect are optimized more aggressively by interprocedural optimizers.
12109
12110This option should not be used in combination with @option{-flto}.
12111Instead relying on a linker plugin should provide safer and more precise
12112information.
12113
12114@item -flto[=@var{n}]
12115@opindex flto
12116This option runs the standard link-time optimizer.  When invoked
12117with source code, it generates GIMPLE (one of GCC's internal
12118representations) and writes it to special ELF sections in the object
12119file.  When the object files are linked together, all the function
12120bodies are read from these ELF sections and instantiated as if they
12121had been part of the same translation unit.
12122
12123To use the link-time optimizer, @option{-flto} and optimization
12124options should be specified at compile time and during the final link.
12125It is recommended that you compile all the files participating in the
12126same link with the same options and also specify those options at
12127link time.
12128For example:
12129
12130@smallexample
12131gcc -c -O2 -flto foo.c
12132gcc -c -O2 -flto bar.c
12133gcc -o myprog -flto -O2 foo.o bar.o
12134@end smallexample
12135
12136The first two invocations to GCC save a bytecode representation
12137of GIMPLE into special ELF sections inside @file{foo.o} and
12138@file{bar.o}.  The final invocation reads the GIMPLE bytecode from
12139@file{foo.o} and @file{bar.o}, merges the two files into a single
12140internal image, and compiles the result as usual.  Since both
12141@file{foo.o} and @file{bar.o} are merged into a single image, this
12142causes all the interprocedural analyses and optimizations in GCC to
12143work across the two files as if they were a single one.  This means,
12144for example, that the inliner is able to inline functions in
12145@file{bar.o} into functions in @file{foo.o} and vice-versa.
12146
12147Another (simpler) way to enable link-time optimization is:
12148
12149@smallexample
12150gcc -o myprog -flto -O2 foo.c bar.c
12151@end smallexample
12152
12153The above generates bytecode for @file{foo.c} and @file{bar.c},
12154merges them together into a single GIMPLE representation and optimizes
12155them as usual to produce @file{myprog}.
12156
12157The important thing to keep in mind is that to enable link-time
12158optimizations you need to use the GCC driver to perform the link step.
12159GCC automatically performs link-time optimization if any of the
12160objects involved were compiled with the @option{-flto} command-line option.
12161You can always override
12162the automatic decision to do link-time optimization
12163by passing @option{-fno-lto} to the link command.
12164
12165To make whole program optimization effective, it is necessary to make
12166certain whole program assumptions.  The compiler needs to know
12167what functions and variables can be accessed by libraries and runtime
12168outside of the link-time optimized unit.  When supported by the linker,
12169the linker plugin (see @option{-fuse-linker-plugin}) passes information
12170to the compiler about used and externally visible symbols.  When
12171the linker plugin is not available, @option{-fwhole-program} should be
12172used to allow the compiler to make these assumptions, which leads
12173to more aggressive optimization decisions.
12174
12175When a file is compiled with @option{-flto} without
12176@option{-fuse-linker-plugin}, the generated object file is larger than
12177a regular object file because it contains GIMPLE bytecodes and the usual
12178final code (see @option{-ffat-lto-objects}).  This means that
12179object files with LTO information can be linked as normal object
12180files; if @option{-fno-lto} is passed to the linker, no
12181interprocedural optimizations are applied.  Note that when
12182@option{-fno-fat-lto-objects} is enabled the compile stage is faster
12183but you cannot perform a regular, non-LTO link on them.
12184
12185When producing the final binary, GCC only
12186applies link-time optimizations to those files that contain bytecode.
12187Therefore, you can mix and match object files and libraries with
12188GIMPLE bytecodes and final object code.  GCC automatically selects
12189which files to optimize in LTO mode and which files to link without
12190further processing.
12191
12192Generally, options specified at link time override those
12193specified at compile time, although in some cases GCC attempts to infer
12194link-time options from the settings used to compile the input files.
12195
12196If you do not specify an optimization level option @option{-O} at
12197link time, then GCC uses the highest optimization level
12198used when compiling the object files.  Note that it is generally
12199ineffective to specify an optimization level option only at link time and
12200not at compile time, for two reasons.  First, compiling without
12201optimization suppresses compiler passes that gather information
12202needed for effective optimization at link time.  Second, some early
12203optimization passes can be performed only at compile time and
12204not at link time.
12205
12206There are some code generation flags preserved by GCC when
12207generating bytecodes, as they need to be used during the final link.
12208Currently, the following options and their settings are taken from
12209the first object file that explicitly specifies them:
12210@option{-fcommon}, @option{-fexceptions}, @option{-fnon-call-exceptions},
12211@option{-fgnu-tm} and all the @option{-m} target flags.
12212
12213The following options @option{-fPIC}, @option{-fpic}, @option{-fpie} and
12214@option{-fPIE} are combined based on the following scheme:
12215
12216@smallexample
12217@option{-fPIC} + @option{-fpic} = @option{-fpic}
12218@option{-fPIC} + @option{-fno-pic} = @option{-fno-pic}
12219@option{-fpic/-fPIC} + (no option) = (no option)
12220@option{-fPIC} + @option{-fPIE} = @option{-fPIE}
12221@option{-fpic} + @option{-fPIE} = @option{-fpie}
12222@option{-fPIC/-fpic} + @option{-fpie} = @option{-fpie}
12223@end smallexample
12224
12225Certain ABI-changing flags are required to match in all compilation units,
12226and trying to override this at link time with a conflicting value
12227is ignored.  This includes options such as @option{-freg-struct-return}
12228and @option{-fpcc-struct-return}.
12229
12230Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
12231@option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
12232are passed through to the link stage and merged conservatively for
12233conflicting translation units.  Specifically
12234@option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
12235precedence; and for example @option{-ffp-contract=off} takes precedence
12236over @option{-ffp-contract=fast}.  You can override them at link time.
12237
12238Diagnostic options such as @option{-Wstringop-overflow} are passed
12239through to the link stage and their setting matches that of the
12240compile-step at function granularity.  Note that this matters only
12241for diagnostics emitted during optimization.  Note that code
12242transforms such as inlining can lead to warnings being enabled
12243or disabled for regions if code not consistent with the setting
12244at compile time.
12245
12246When you need to pass options to the assembler via @option{-Wa} or
12247@option{-Xassembler} make sure to either compile such translation
12248units with @option{-fno-lto} or consistently use the same assembler
12249options on all translation units.  You can alternatively also
12250specify assembler options at LTO link time.
12251
12252To enable debug info generation you need to supply @option{-g} at
12253compile time.  If any of the input files at link time were built
12254with debug info generation enabled the link will enable debug info
12255generation as well.  Any elaborate debug info settings
12256like the dwarf level @option{-gdwarf-5} need to be explicitly repeated
12257at the linker command line and mixing different settings in different
12258translation units is discouraged.
12259
12260If LTO encounters objects with C linkage declared with incompatible
12261types in separate translation units to be linked together (undefined
12262behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
12263issued.  The behavior is still undefined at run time.  Similar
12264diagnostics may be raised for other languages.
12265
12266Another feature of LTO is that it is possible to apply interprocedural
12267optimizations on files written in different languages:
12268
12269@smallexample
12270gcc -c -flto foo.c
12271g++ -c -flto bar.cc
12272gfortran -c -flto baz.f90
12273g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
12274@end smallexample
12275
12276Notice that the final link is done with @command{g++} to get the C++
12277runtime libraries and @option{-lgfortran} is added to get the Fortran
12278runtime libraries.  In general, when mixing languages in LTO mode, you
12279should use the same link command options as when mixing languages in a
12280regular (non-LTO) compilation.
12281
12282If object files containing GIMPLE bytecode are stored in a library archive, say
12283@file{libfoo.a}, it is possible to extract and use them in an LTO link if you
12284are using a linker with plugin support.  To create static libraries suitable
12285for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
12286and @command{ranlib};
12287to show the symbols of object files with GIMPLE bytecode, use
12288@command{gcc-nm}.  Those commands require that @command{ar}, @command{ranlib}
12289and @command{nm} have been compiled with plugin support.  At link time, use the
12290flag @option{-fuse-linker-plugin} to ensure that the library participates in
12291the LTO optimization process:
12292
12293@smallexample
12294gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
12295@end smallexample
12296
12297With the linker plugin enabled, the linker extracts the needed
12298GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
12299to make them part of the aggregated GIMPLE image to be optimized.
12300
12301If you are not using a linker with plugin support and/or do not
12302enable the linker plugin, then the objects inside @file{libfoo.a}
12303are extracted and linked as usual, but they do not participate
12304in the LTO optimization process.  In order to make a static library suitable
12305for both LTO optimization and usual linkage, compile its object files with
12306@option{-flto} @option{-ffat-lto-objects}.
12307
12308Link-time optimizations do not require the presence of the whole program to
12309operate.  If the program does not require any symbols to be exported, it is
12310possible to combine @option{-flto} and @option{-fwhole-program} to allow
12311the interprocedural optimizers to use more aggressive assumptions which may
12312lead to improved optimization opportunities.
12313Use of @option{-fwhole-program} is not needed when linker plugin is
12314active (see @option{-fuse-linker-plugin}).
12315
12316The current implementation of LTO makes no
12317attempt to generate bytecode that is portable between different
12318types of hosts.  The bytecode files are versioned and there is a
12319strict version check, so bytecode files generated in one version of
12320GCC do not work with an older or newer version of GCC.
12321
12322Link-time optimization does not work well with generation of debugging
12323information on systems other than those using a combination of ELF and
12324DWARF.
12325
12326If you specify the optional @var{n}, the optimization and code
12327generation done at link time is executed in parallel using @var{n}
12328parallel jobs by utilizing an installed @command{make} program.  The
12329environment variable @env{MAKE} may be used to override the program
12330used.
12331
12332You can also specify @option{-flto=jobserver} to use GNU make's
12333job server mode to determine the number of parallel jobs. This
12334is useful when the Makefile calling GCC is already executing in parallel.
12335You must prepend a @samp{+} to the command recipe in the parent Makefile
12336for this to work.  This option likely only works if @env{MAKE} is
12337GNU make.  Even without the option value, GCC tries to automatically
12338detect a running GNU make's job server.
12339
12340Use @option{-flto=auto} to use GNU make's job server, if available,
12341or otherwise fall back to autodetection of the number of CPU threads
12342present in your system.
12343
12344@item -flto-partition=@var{alg}
12345@opindex flto-partition
12346Specify the partitioning algorithm used by the link-time optimizer.
12347The value is either @samp{1to1} to specify a partitioning mirroring
12348the original source files or @samp{balanced} to specify partitioning
12349into equally sized chunks (whenever possible) or @samp{max} to create
12350new partition for every symbol where possible.  Specifying @samp{none}
12351as an algorithm disables partitioning and streaming completely.
12352The default value is @samp{balanced}. While @samp{1to1} can be used
12353as an workaround for various code ordering issues, the @samp{max}
12354partitioning is intended for internal testing only.
12355The value @samp{one} specifies that exactly one partition should be
12356used while the value @samp{none} bypasses partitioning and executes
12357the link-time optimization step directly from the WPA phase.
12358
12359@item -flto-compression-level=@var{n}
12360@opindex flto-compression-level
12361This option specifies the level of compression used for intermediate
12362language written to LTO object files, and is only meaningful in
12363conjunction with LTO mode (@option{-flto}).  GCC currently supports two
12364LTO compression algorithms. For zstd, valid values are 0 (no compression)
12365to 19 (maximum compression), while zlib supports values from 0 to 9.
12366Values outside this range are clamped to either minimum or maximum
12367of the supported values.  If the option is not given,
12368a default balanced compression setting is used.
12369
12370@item -fuse-linker-plugin
12371@opindex fuse-linker-plugin
12372Enables the use of a linker plugin during link-time optimization.  This
12373option relies on plugin support in the linker, which is available in gold
12374or in GNU ld 2.21 or newer.
12375
12376This option enables the extraction of object files with GIMPLE bytecode out
12377of library archives. This improves the quality of optimization by exposing
12378more code to the link-time optimizer.  This information specifies what
12379symbols can be accessed externally (by non-LTO object or during dynamic
12380linking).  Resulting code quality improvements on binaries (and shared
12381libraries that use hidden visibility) are similar to @option{-fwhole-program}.
12382See @option{-flto} for a description of the effect of this flag and how to
12383use it.
12384
12385This option is enabled by default when LTO support in GCC is enabled
12386and GCC was configured for use with
12387a linker supporting plugins (GNU ld 2.21 or newer or gold).
12388
12389@item -ffat-lto-objects
12390@opindex ffat-lto-objects
12391Fat LTO objects are object files that contain both the intermediate language
12392and the object code. This makes them usable for both LTO linking and normal
12393linking. This option is effective only when compiling with @option{-flto}
12394and is ignored at link time.
12395
12396@option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
12397requires the complete toolchain to be aware of LTO. It requires a linker with
12398linker plugin support for basic functionality.  Additionally,
12399@command{nm}, @command{ar} and @command{ranlib}
12400need to support linker plugins to allow a full-featured build environment
12401(capable of building static libraries etc).  GCC provides the @command{gcc-ar},
12402@command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
12403to these tools. With non fat LTO makefiles need to be modified to use them.
12404
12405Note that modern binutils provide plugin auto-load mechanism.
12406Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
12407effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
12408@command{gcc-ranlib}).
12409
12410The default is @option{-fno-fat-lto-objects} on targets with linker plugin
12411support.
12412
12413@item -fcompare-elim
12414@opindex fcompare-elim
12415After register allocation and post-register allocation instruction splitting,
12416identify arithmetic instructions that compute processor flags similar to a
12417comparison operation based on that arithmetic.  If possible, eliminate the
12418explicit comparison operation.
12419
12420This pass only applies to certain targets that cannot explicitly represent
12421the comparison operation before register allocation is complete.
12422
12423Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
12424
12425@item -fcprop-registers
12426@opindex fcprop-registers
12427After register allocation and post-register allocation instruction splitting,
12428perform a copy-propagation pass to try to reduce scheduling dependencies
12429and occasionally eliminate the copy.
12430
12431Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
12432
12433@item -fprofile-correction
12434@opindex fprofile-correction
12435Profiles collected using an instrumented binary for multi-threaded programs may
12436be inconsistent due to missed counter updates. When this option is specified,
12437GCC uses heuristics to correct or smooth out such inconsistencies. By
12438default, GCC emits an error message when an inconsistent profile is detected.
12439
12440This option is enabled by @option{-fauto-profile}.
12441
12442@item -fprofile-partial-training
12443@opindex fprofile-partial-training
12444With @code{-fprofile-use} all portions of programs not executed during train
12445run are optimized agressively for size rather than speed.  In some cases it is
12446not practical to train all possible hot paths in the program. (For
12447example, program may contain functions specific for a given hardware and
12448trianing may not cover all hardware configurations program is run on.)  With
12449@code{-fprofile-partial-training} profile feedback will be ignored for all
12450functions not executed during the train run leading them to be optimized as if
12451they were compiled without profile feedback. This leads to better performance
12452when train run is not representative but also leads to significantly bigger
12453code.
12454
12455@item -fprofile-use
12456@itemx -fprofile-use=@var{path}
12457@opindex fprofile-use
12458Enable profile feedback-directed optimizations,
12459and the following optimizations, many of which
12460are generally profitable only with profile feedback available:
12461
12462@gccoptlist{-fbranch-probabilities  -fprofile-values @gol
12463-funroll-loops  -fpeel-loops  -ftracer  -fvpt @gol
12464-finline-functions  -fipa-cp  -fipa-cp-clone  -fipa-bit-cp @gol
12465-fpredictive-commoning  -fsplit-loops  -funswitch-loops @gol
12466-fgcse-after-reload  -ftree-loop-vectorize  -ftree-slp-vectorize @gol
12467-fvect-cost-model=dynamic  -ftree-loop-distribute-patterns @gol
12468-fprofile-reorder-functions}
12469
12470Before you can use this option, you must first generate profiling information.
12471@xref{Instrumentation Options}, for information about the
12472@option{-fprofile-generate} option.
12473
12474By default, GCC emits an error message if the feedback profiles do not
12475match the source code.  This error can be turned into a warning by using
12476@option{-Wno-error=coverage-mismatch}.  Note this may result in poorly
12477optimized code.  Additionally, by default, GCC also emits a warning message if
12478the feedback profiles do not exist (see @option{-Wmissing-profile}).
12479
12480If @var{path} is specified, GCC looks at the @var{path} to find
12481the profile feedback data files. See @option{-fprofile-dir}.
12482
12483@item -fauto-profile
12484@itemx -fauto-profile=@var{path}
12485@opindex fauto-profile
12486Enable sampling-based feedback-directed optimizations,
12487and the following optimizations,
12488many of which are generally profitable only with profile feedback available:
12489
12490@gccoptlist{-fbranch-probabilities  -fprofile-values @gol
12491-funroll-loops  -fpeel-loops  -ftracer  -fvpt @gol
12492-finline-functions  -fipa-cp  -fipa-cp-clone  -fipa-bit-cp @gol
12493-fpredictive-commoning  -fsplit-loops  -funswitch-loops @gol
12494-fgcse-after-reload  -ftree-loop-vectorize  -ftree-slp-vectorize @gol
12495-fvect-cost-model=dynamic  -ftree-loop-distribute-patterns @gol
12496-fprofile-correction}
12497
12498@var{path} is the name of a file containing AutoFDO profile information.
12499If omitted, it defaults to @file{fbdata.afdo} in the current directory.
12500
12501Producing an AutoFDO profile data file requires running your program
12502with the @command{perf} utility on a supported GNU/Linux target system.
12503For more information, see @uref{https://perf.wiki.kernel.org/}.
12504
12505E.g.
12506@smallexample
12507perf record -e br_inst_retired:near_taken -b -o perf.data \
12508    -- your_program
12509@end smallexample
12510
12511Then use the @command{create_gcov} tool to convert the raw profile data
12512to a format that can be used by GCC.@  You must also supply the
12513unstripped binary for your program to this tool.
12514See @uref{https://github.com/google/autofdo}.
12515
12516E.g.
12517@smallexample
12518create_gcov --binary=your_program.unstripped --profile=perf.data \
12519    --gcov=profile.afdo
12520@end smallexample
12521@end table
12522
12523The following options control compiler behavior regarding floating-point
12524arithmetic.  These options trade off between speed and
12525correctness.  All must be specifically enabled.
12526
12527@table @gcctabopt
12528@item -ffloat-store
12529@opindex ffloat-store
12530Do not store floating-point variables in registers, and inhibit other
12531options that might change whether a floating-point value is taken from a
12532register or memory.
12533
12534@cindex floating-point precision
12535This option prevents undesirable excess precision on machines such as
12536the 68000 where the floating registers (of the 68881) keep more
12537precision than a @code{double} is supposed to have.  Similarly for the
12538x86 architecture.  For most programs, the excess precision does only
12539good, but a few programs rely on the precise definition of IEEE floating
12540point.  Use @option{-ffloat-store} for such programs, after modifying
12541them to store all pertinent intermediate computations into variables.
12542
12543@item -fexcess-precision=@var{style}
12544@opindex fexcess-precision
12545This option allows further control over excess precision on machines
12546where floating-point operations occur in a format with more precision or
12547range than the IEEE standard and interchange floating-point types.  By
12548default, @option{-fexcess-precision=fast} is in effect; this means that
12549operations may be carried out in a wider precision than the types specified
12550in the source if that would result in faster code, and it is unpredictable
12551when rounding to the types specified in the source code takes place.
12552When compiling C, if @option{-fexcess-precision=standard} is specified then
12553excess precision follows the rules specified in ISO C99; in particular,
12554both casts and assignments cause values to be rounded to their
12555semantic types (whereas @option{-ffloat-store} only affects
12556assignments).  This option is enabled by default for C if a strict
12557conformance option such as @option{-std=c99} is used.
12558@option{-ffast-math} enables @option{-fexcess-precision=fast} by default
12559regardless of whether a strict conformance option is used.
12560
12561@opindex mfpmath
12562@option{-fexcess-precision=standard} is not implemented for languages
12563other than C.  On the x86, it has no effect if @option{-mfpmath=sse}
12564or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
12565semantics apply without excess precision, and in the latter, rounding
12566is unpredictable.
12567
12568@item -ffast-math
12569@opindex ffast-math
12570Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
12571@option{-ffinite-math-only}, @option{-fno-rounding-math},
12572@option{-fno-signaling-nans}, @option{-fcx-limited-range} and
12573@option{-fexcess-precision=fast}.
12574
12575This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
12576
12577This option is not turned on by any @option{-O} option besides
12578@option{-Ofast} since it can result in incorrect output for programs
12579that depend on an exact implementation of IEEE or ISO rules/specifications
12580for math functions. It may, however, yield faster code for programs
12581that do not require the guarantees of these specifications.
12582
12583@item -fno-math-errno
12584@opindex fno-math-errno
12585@opindex fmath-errno
12586Do not set @code{errno} after calling math functions that are executed
12587with a single instruction, e.g., @code{sqrt}.  A program that relies on
12588IEEE exceptions for math error handling may want to use this flag
12589for speed while maintaining IEEE arithmetic compatibility.
12590
12591This option is not turned on by any @option{-O} option since
12592it can result in incorrect output for programs that depend on
12593an exact implementation of IEEE or ISO rules/specifications for
12594math functions. It may, however, yield faster code for programs
12595that do not require the guarantees of these specifications.
12596
12597The default is @option{-fmath-errno}.
12598
12599On Darwin systems, the math library never sets @code{errno}.  There is
12600therefore no reason for the compiler to consider the possibility that
12601it might, and @option{-fno-math-errno} is the default.
12602
12603@item -funsafe-math-optimizations
12604@opindex funsafe-math-optimizations
12605
12606Allow optimizations for floating-point arithmetic that (a) assume
12607that arguments and results are valid and (b) may violate IEEE or
12608ANSI standards.  When used at link time, it may include libraries
12609or startup files that change the default FPU control word or other
12610similar optimizations.
12611
12612This option is not turned on by any @option{-O} option since
12613it can result in incorrect output for programs that depend on
12614an exact implementation of IEEE or ISO rules/specifications for
12615math functions. It may, however, yield faster code for programs
12616that do not require the guarantees of these specifications.
12617Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
12618@option{-fassociative-math} and @option{-freciprocal-math}.
12619
12620The default is @option{-fno-unsafe-math-optimizations}.
12621
12622@item -fassociative-math
12623@opindex fassociative-math
12624
12625Allow re-association of operands in series of floating-point operations.
12626This violates the ISO C and C++ language standard by possibly changing
12627computation result.  NOTE: re-ordering may change the sign of zero as
12628well as ignore NaNs and inhibit or create underflow or overflow (and
12629thus cannot be used on code that relies on rounding behavior like
12630@code{(x + 2**52) - 2**52}.  May also reorder floating-point comparisons
12631and thus may not be used when ordered comparisons are required.
12632This option requires that both @option{-fno-signed-zeros} and
12633@option{-fno-trapping-math} be in effect.  Moreover, it doesn't make
12634much sense with @option{-frounding-math}. For Fortran the option
12635is automatically enabled when both @option{-fno-signed-zeros} and
12636@option{-fno-trapping-math} are in effect.
12637
12638The default is @option{-fno-associative-math}.
12639
12640@item -freciprocal-math
12641@opindex freciprocal-math
12642
12643Allow the reciprocal of a value to be used instead of dividing by
12644the value if this enables optimizations.  For example @code{x / y}
12645can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
12646is subject to common subexpression elimination.  Note that this loses
12647precision and increases the number of flops operating on the value.
12648
12649The default is @option{-fno-reciprocal-math}.
12650
12651@item -ffinite-math-only
12652@opindex ffinite-math-only
12653Allow optimizations for floating-point arithmetic that assume
12654that arguments and results are not NaNs or +-Infs.
12655
12656This option is not turned on by any @option{-O} option since
12657it can result in incorrect output for programs that depend on
12658an exact implementation of IEEE or ISO rules/specifications for
12659math functions. It may, however, yield faster code for programs
12660that do not require the guarantees of these specifications.
12661
12662The default is @option{-fno-finite-math-only}.
12663
12664@item -fno-signed-zeros
12665@opindex fno-signed-zeros
12666@opindex fsigned-zeros
12667Allow optimizations for floating-point arithmetic that ignore the
12668signedness of zero.  IEEE arithmetic specifies the behavior of
12669distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
12670of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
12671This option implies that the sign of a zero result isn't significant.
12672
12673The default is @option{-fsigned-zeros}.
12674
12675@item -fno-trapping-math
12676@opindex fno-trapping-math
12677@opindex ftrapping-math
12678Compile code assuming that floating-point operations cannot generate
12679user-visible traps.  These traps include division by zero, overflow,
12680underflow, inexact result and invalid operation.  This option requires
12681that @option{-fno-signaling-nans} be in effect.  Setting this option may
12682allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
12683
12684This option should never be turned on by any @option{-O} option since
12685it can result in incorrect output for programs that depend on
12686an exact implementation of IEEE or ISO rules/specifications for
12687math functions.
12688
12689The default is @option{-ftrapping-math}.
12690
12691@item -frounding-math
12692@opindex frounding-math
12693Disable transformations and optimizations that assume default floating-point
12694rounding behavior.  This is round-to-zero for all floating point
12695to integer conversions, and round-to-nearest for all other arithmetic
12696truncations.  This option should be specified for programs that change
12697the FP rounding mode dynamically, or that may be executed with a
12698non-default rounding mode.  This option disables constant folding of
12699floating-point expressions at compile time (which may be affected by
12700rounding mode) and arithmetic transformations that are unsafe in the
12701presence of sign-dependent rounding modes.
12702
12703The default is @option{-fno-rounding-math}.
12704
12705This option is experimental and does not currently guarantee to
12706disable all GCC optimizations that are affected by rounding mode.
12707Future versions of GCC may provide finer control of this setting
12708using C99's @code{FENV_ACCESS} pragma.  This command-line option
12709will be used to specify the default state for @code{FENV_ACCESS}.
12710
12711@item -fsignaling-nans
12712@opindex fsignaling-nans
12713Compile code assuming that IEEE signaling NaNs may generate user-visible
12714traps during floating-point operations.  Setting this option disables
12715optimizations that may change the number of exceptions visible with
12716signaling NaNs.  This option implies @option{-ftrapping-math}.
12717
12718This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
12719be defined.
12720
12721The default is @option{-fno-signaling-nans}.
12722
12723This option is experimental and does not currently guarantee to
12724disable all GCC optimizations that affect signaling NaN behavior.
12725
12726@item -fno-fp-int-builtin-inexact
12727@opindex fno-fp-int-builtin-inexact
12728@opindex ffp-int-builtin-inexact
12729Do not allow the built-in functions @code{ceil}, @code{floor},
12730@code{round} and @code{trunc}, and their @code{float} and @code{long
12731double} variants, to generate code that raises the ``inexact''
12732floating-point exception for noninteger arguments.  ISO C99 and C11
12733allow these functions to raise the ``inexact'' exception, but ISO/IEC
12734TS 18661-1:2014, the C bindings to IEEE 754-2008, as integrated into
12735ISO C2X, does not allow these functions to do so.
12736
12737The default is @option{-ffp-int-builtin-inexact}, allowing the
12738exception to be raised, unless C2X or a later C standard is selected.
12739This option does nothing unless @option{-ftrapping-math} is in effect.
12740
12741Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
12742generate a call to a library function then the ``inexact'' exception
12743may be raised if the library implementation does not follow TS 18661.
12744
12745@item -fsingle-precision-constant
12746@opindex fsingle-precision-constant
12747Treat floating-point constants as single precision instead of
12748implicitly converting them to double-precision constants.
12749
12750@item -fcx-limited-range
12751@opindex fcx-limited-range
12752When enabled, this option states that a range reduction step is not
12753needed when performing complex division.  Also, there is no checking
12754whether the result of a complex multiplication or division is @code{NaN
12755+ I*NaN}, with an attempt to rescue the situation in that case.  The
12756default is @option{-fno-cx-limited-range}, but is enabled by
12757@option{-ffast-math}.
12758
12759This option controls the default setting of the ISO C99
12760@code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
12761all languages.
12762
12763@item -fcx-fortran-rules
12764@opindex fcx-fortran-rules
12765Complex multiplication and division follow Fortran rules.  Range
12766reduction is done as part of complex division, but there is no checking
12767whether the result of a complex multiplication or division is @code{NaN
12768+ I*NaN}, with an attempt to rescue the situation in that case.
12769
12770The default is @option{-fno-cx-fortran-rules}.
12771
12772@end table
12773
12774The following options control optimizations that may improve
12775performance, but are not enabled by any @option{-O} options.  This
12776section includes experimental options that may produce broken code.
12777
12778@table @gcctabopt
12779@item -fbranch-probabilities
12780@opindex fbranch-probabilities
12781After running a program compiled with @option{-fprofile-arcs}
12782(@pxref{Instrumentation Options}),
12783you can compile it a second time using
12784@option{-fbranch-probabilities}, to improve optimizations based on
12785the number of times each branch was taken.  When a program
12786compiled with @option{-fprofile-arcs} exits, it saves arc execution
12787counts to a file called @file{@var{sourcename}.gcda} for each source
12788file.  The information in this data file is very dependent on the
12789structure of the generated code, so you must use the same source code
12790and the same optimization options for both compilations.
12791
12792With @option{-fbranch-probabilities}, GCC puts a
12793@samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
12794These can be used to improve optimization.  Currently, they are only
12795used in one place: in @file{reorg.c}, instead of guessing which path a
12796branch is most likely to take, the @samp{REG_BR_PROB} values are used to
12797exactly determine which path is taken more often.
12798
12799Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12800
12801@item -fprofile-values
12802@opindex fprofile-values
12803If combined with @option{-fprofile-arcs}, it adds code so that some
12804data about values of expressions in the program is gathered.
12805
12806With @option{-fbranch-probabilities}, it reads back the data gathered
12807from profiling values of expressions for usage in optimizations.
12808
12809Enabled by @option{-fprofile-generate}, @option{-fprofile-use}, and
12810@option{-fauto-profile}.
12811
12812@item -fprofile-reorder-functions
12813@opindex fprofile-reorder-functions
12814Function reordering based on profile instrumentation collects
12815first time of execution of a function and orders these functions
12816in ascending order.
12817
12818Enabled with @option{-fprofile-use}.
12819
12820@item -fvpt
12821@opindex fvpt
12822If combined with @option{-fprofile-arcs}, this option instructs the compiler
12823to add code to gather information about values of expressions.
12824
12825With @option{-fbranch-probabilities}, it reads back the data gathered
12826and actually performs the optimizations based on them.
12827Currently the optimizations include specialization of division operations
12828using the knowledge about the value of the denominator.
12829
12830Enabled with @option{-fprofile-use} and @option{-fauto-profile}.
12831
12832@item -frename-registers
12833@opindex frename-registers
12834Attempt to avoid false dependencies in scheduled code by making use
12835of registers left over after register allocation.  This optimization
12836most benefits processors with lots of registers.  Depending on the
12837debug information format adopted by the target, however, it can
12838make debugging impossible, since variables no longer stay in
12839a ``home register''.
12840
12841Enabled by default with @option{-funroll-loops}.
12842
12843@item -fschedule-fusion
12844@opindex fschedule-fusion
12845Performs a target dependent pass over the instruction stream to schedule
12846instructions of same type together because target machine can execute them
12847more efficiently if they are adjacent to each other in the instruction flow.
12848
12849Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
12850
12851@item -ftracer
12852@opindex ftracer
12853Perform tail duplication to enlarge superblock size.  This transformation
12854simplifies the control flow of the function allowing other optimizations to do
12855a better job.
12856
12857Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12858
12859@item -funroll-loops
12860@opindex funroll-loops
12861Unroll loops whose number of iterations can be determined at compile time or
12862upon entry to the loop.  @option{-funroll-loops} implies
12863@option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
12864It also turns on complete loop peeling (i.e.@: complete removal of loops with
12865a small constant number of iterations).  This option makes code larger, and may
12866or may not make it run faster.
12867
12868Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12869
12870@item -funroll-all-loops
12871@opindex funroll-all-loops
12872Unroll all loops, even if their number of iterations is uncertain when
12873the loop is entered.  This usually makes programs run more slowly.
12874@option{-funroll-all-loops} implies the same options as
12875@option{-funroll-loops}.
12876
12877@item -fpeel-loops
12878@opindex fpeel-loops
12879Peels loops for which there is enough information that they do not
12880roll much (from profile feedback or static analysis).  It also turns on
12881complete loop peeling (i.e.@: complete removal of loops with small constant
12882number of iterations).
12883
12884Enabled by @option{-O3}, @option{-fprofile-use}, and @option{-fauto-profile}.
12885
12886@item -fmove-loop-invariants
12887@opindex fmove-loop-invariants
12888Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
12889at level @option{-O1} and higher, except for @option{-Og}.
12890
12891@item -fsplit-loops
12892@opindex fsplit-loops
12893Split a loop into two if it contains a condition that's always true
12894for one side of the iteration space and false for the other.
12895
12896Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12897
12898@item -funswitch-loops
12899@opindex funswitch-loops
12900Move branches with loop invariant conditions out of the loop, with duplicates
12901of the loop on both branches (modified according to result of the condition).
12902
12903Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12904
12905@item -fversion-loops-for-strides
12906@opindex fversion-loops-for-strides
12907If a loop iterates over an array with a variable stride, create another
12908version of the loop that assumes the stride is always one.  For example:
12909
12910@smallexample
12911for (int i = 0; i < n; ++i)
12912  x[i * stride] = @dots{};
12913@end smallexample
12914
12915becomes:
12916
12917@smallexample
12918if (stride == 1)
12919  for (int i = 0; i < n; ++i)
12920    x[i] = @dots{};
12921else
12922  for (int i = 0; i < n; ++i)
12923    x[i * stride] = @dots{};
12924@end smallexample
12925
12926This is particularly useful for assumed-shape arrays in Fortran where
12927(for example) it allows better vectorization assuming contiguous accesses.
12928This flag is enabled by default at @option{-O3}.
12929It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12930
12931@item -ffunction-sections
12932@itemx -fdata-sections
12933@opindex ffunction-sections
12934@opindex fdata-sections
12935Place each function or data item into its own section in the output
12936file if the target supports arbitrary sections.  The name of the
12937function or the name of the data item determines the section's name
12938in the output file.
12939
12940Use these options on systems where the linker can perform optimizations to
12941improve locality of reference in the instruction space.  Most systems using the
12942ELF object format have linkers with such optimizations.  On AIX, the linker
12943rearranges sections (CSECTs) based on the call graph.  The performance impact
12944varies.
12945
12946Together with a linker garbage collection (linker @option{--gc-sections}
12947option) these options may lead to smaller statically-linked executables (after
12948stripping).
12949
12950On ELF/DWARF systems these options do not degenerate the quality of the debug
12951information.  There could be issues with other object files/debug info formats.
12952
12953Only use these options when there are significant benefits from doing so.  When
12954you specify these options, the assembler and linker create larger object and
12955executable files and are also slower.  These options affect code generation.
12956They prevent optimizations by the compiler and assembler using relative
12957locations inside a translation unit since the locations are unknown until
12958link time.  An example of such an optimization is relaxing calls to short call
12959instructions.
12960
12961@item -fstdarg-opt
12962@opindex fstdarg-opt
12963Optimize the prologue of variadic argument functions with respect to usage of
12964those arguments.
12965
12966@item -fsection-anchors
12967@opindex fsection-anchors
12968Try to reduce the number of symbolic address calculations by using
12969shared ``anchor'' symbols to address nearby objects.  This transformation
12970can help to reduce the number of GOT entries and GOT accesses on some
12971targets.
12972
12973For example, the implementation of the following function @code{foo}:
12974
12975@smallexample
12976static int a, b, c;
12977int foo (void) @{ return a + b + c; @}
12978@end smallexample
12979
12980@noindent
12981usually calculates the addresses of all three variables, but if you
12982compile it with @option{-fsection-anchors}, it accesses the variables
12983from a common anchor point instead.  The effect is similar to the
12984following pseudocode (which isn't valid C):
12985
12986@smallexample
12987int foo (void)
12988@{
12989  register int *xr = &x;
12990  return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
12991@}
12992@end smallexample
12993
12994Not all targets support this option.
12995
12996@item -fzero-call-used-regs=@var{choice}
12997@opindex fzero-call-used-regs
12998Zero call-used registers at function return to increase program
12999security by either mitigating Return-Oriented Programming (ROP)
13000attacks or preventing information leakage through registers.
13001
13002The possible values of @var{choice} are the same as for the
13003@code{zero_call_used_regs} attribute (@pxref{Function Attributes}).
13004The default is @samp{skip}.
13005
13006You can control this behavior for a specific function by using the function
13007attribute @code{zero_call_used_regs} (@pxref{Function Attributes}).
13008
13009@item --param @var{name}=@var{value}
13010@opindex param
13011In some places, GCC uses various constants to control the amount of
13012optimization that is done.  For example, GCC does not inline functions
13013that contain more than a certain number of instructions.  You can
13014control some of these constants on the command line using the
13015@option{--param} option.
13016
13017The names of specific parameters, and the meaning of the values, are
13018tied to the internals of the compiler, and are subject to change
13019without notice in future releases.
13020
13021In order to get minimal, maximal and default value of a parameter,
13022one can use @option{--help=param -Q} options.
13023
13024In each case, the @var{value} is an integer.  The following choices
13025of @var{name} are recognized for all targets:
13026
13027@table @gcctabopt
13028@item predictable-branch-outcome
13029When branch is predicted to be taken with probability lower than this threshold
13030(in percent), then it is considered well predictable.
13031
13032@item max-rtl-if-conversion-insns
13033RTL if-conversion tries to remove conditional branches around a block and
13034replace them with conditionally executed instructions.  This parameter
13035gives the maximum number of instructions in a block which should be
13036considered for if-conversion.  The compiler will
13037also use other heuristics to decide whether if-conversion is likely to be
13038profitable.
13039
13040@item max-rtl-if-conversion-predictable-cost
13041RTL if-conversion will try to remove conditional branches around a block
13042and replace them with conditionally executed instructions.  These parameters
13043give the maximum permissible cost for the sequence that would be generated
13044by if-conversion depending on whether the branch is statically determined
13045to be predictable or not.  The units for this parameter are the same as
13046those for the GCC internal seq_cost metric.  The compiler will try to
13047provide a reasonable default for this parameter using the BRANCH_COST
13048target macro.
13049
13050@item max-crossjump-edges
13051The maximum number of incoming edges to consider for cross-jumping.
13052The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
13053the number of edges incoming to each block.  Increasing values mean
13054more aggressive optimization, making the compilation time increase with
13055probably small improvement in executable size.
13056
13057@item min-crossjump-insns
13058The minimum number of instructions that must be matched at the end
13059of two blocks before cross-jumping is performed on them.  This
13060value is ignored in the case where all instructions in the block being
13061cross-jumped from are matched.
13062
13063@item max-grow-copy-bb-insns
13064The maximum code size expansion factor when copying basic blocks
13065instead of jumping.  The expansion is relative to a jump instruction.
13066
13067@item max-goto-duplication-insns
13068The maximum number of instructions to duplicate to a block that jumps
13069to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
13070passes, GCC factors computed gotos early in the compilation process,
13071and unfactors them as late as possible.  Only computed jumps at the
13072end of a basic blocks with no more than max-goto-duplication-insns are
13073unfactored.
13074
13075@item max-delay-slot-insn-search
13076The maximum number of instructions to consider when looking for an
13077instruction to fill a delay slot.  If more than this arbitrary number of
13078instructions are searched, the time savings from filling the delay slot
13079are minimal, so stop searching.  Increasing values mean more
13080aggressive optimization, making the compilation time increase with probably
13081small improvement in execution time.
13082
13083@item max-delay-slot-live-search
13084When trying to fill delay slots, the maximum number of instructions to
13085consider when searching for a block with valid live register
13086information.  Increasing this arbitrarily chosen value means more
13087aggressive optimization, increasing the compilation time.  This parameter
13088should be removed when the delay slot code is rewritten to maintain the
13089control-flow graph.
13090
13091@item max-gcse-memory
13092The approximate maximum amount of memory in @code{kB} that can be allocated in
13093order to perform the global common subexpression elimination
13094optimization.  If more memory than specified is required, the
13095optimization is not done.
13096
13097@item max-gcse-insertion-ratio
13098If the ratio of expression insertions to deletions is larger than this value
13099for any expression, then RTL PRE inserts or removes the expression and thus
13100leaves partially redundant computations in the instruction stream.
13101
13102@item max-pending-list-length
13103The maximum number of pending dependencies scheduling allows
13104before flushing the current state and starting over.  Large functions
13105with few branches or calls can create excessively large lists which
13106needlessly consume memory and resources.
13107
13108@item max-modulo-backtrack-attempts
13109The maximum number of backtrack attempts the scheduler should make
13110when modulo scheduling a loop.  Larger values can exponentially increase
13111compilation time.
13112
13113@item max-inline-insns-single
13114Several parameters control the tree inliner used in GCC@.  This number sets the
13115maximum number of instructions (counted in GCC's internal representation) in a
13116single function that the tree inliner considers for inlining.  This only
13117affects functions declared inline and methods implemented in a class
13118declaration (C++).
13119
13120
13121@item max-inline-insns-auto
13122When you use @option{-finline-functions} (included in @option{-O3}),
13123a lot of functions that would otherwise not be considered for inlining
13124by the compiler are investigated.  To those functions, a different
13125(more restrictive) limit compared to functions declared inline can
13126be applied (@option{--param max-inline-insns-auto}).
13127
13128@item max-inline-insns-small
13129This is bound applied to calls which are considered relevant with
13130@option{-finline-small-functions}.
13131
13132@item max-inline-insns-size
13133This is bound applied to calls which are optimized for size. Small growth
13134may be desirable to anticipate optimization oppurtunities exposed by inlining.
13135
13136@item uninlined-function-insns
13137Number of instructions accounted by inliner for function overhead such as
13138function prologue and epilogue.
13139
13140@item uninlined-function-time
13141Extra time accounted by inliner for function overhead such as time needed to
13142execute function prologue and epilogue
13143
13144@item inline-heuristics-hint-percent
13145The scale (in percents) applied to @option{inline-insns-single},
13146@option{inline-insns-single-O2}, @option{inline-insns-auto}
13147when inline heuristics hints that inlining is
13148very profitable (will enable later optimizations).
13149
13150@item uninlined-thunk-insns
13151@item uninlined-thunk-time
13152Same as @option{--param uninlined-function-insns} and
13153@option{--param uninlined-function-time} but applied to function thunks
13154
13155@item inline-min-speedup
13156When estimated performance improvement of caller + callee runtime exceeds this
13157threshold (in percent), the function can be inlined regardless of the limit on
13158@option{--param max-inline-insns-single} and @option{--param
13159max-inline-insns-auto}.
13160
13161@item large-function-insns
13162The limit specifying really large functions.  For functions larger than this
13163limit after inlining, inlining is constrained by
13164@option{--param large-function-growth}.  This parameter is useful primarily
13165to avoid extreme compilation time caused by non-linear algorithms used by the
13166back end.
13167
13168@item large-function-growth
13169Specifies maximal growth of large function caused by inlining in percents.
13170For example, parameter value 100 limits large function growth to 2.0 times
13171the original size.
13172
13173@item large-unit-insns
13174The limit specifying large translation unit.  Growth caused by inlining of
13175units larger than this limit is limited by @option{--param inline-unit-growth}.
13176For small units this might be too tight.
13177For example, consider a unit consisting of function A
13178that is inline and B that just calls A three times.  If B is small relative to
13179A, the growth of unit is 300\% and yet such inlining is very sane.  For very
13180large units consisting of small inlineable functions, however, the overall unit
13181growth limit is needed to avoid exponential explosion of code size.  Thus for
13182smaller units, the size is increased to @option{--param large-unit-insns}
13183before applying @option{--param inline-unit-growth}.
13184
13185@item lazy-modules
13186Maximum number of concurrently open C++ module files when lazy loading.
13187
13188@item inline-unit-growth
13189Specifies maximal overall growth of the compilation unit caused by inlining.
13190For example, parameter value 20 limits unit growth to 1.2 times the original
13191size. Cold functions (either marked cold via an attribute or by profile
13192feedback) are not accounted into the unit size.
13193
13194@item ipa-cp-unit-growth
13195Specifies maximal overall growth of the compilation unit caused by
13196interprocedural constant propagation.  For example, parameter value 10 limits
13197unit growth to 1.1 times the original size.
13198
13199@item ipa-cp-large-unit-insns
13200The size of translation unit that IPA-CP pass considers large.
13201
13202@item large-stack-frame
13203The limit specifying large stack frames.  While inlining the algorithm is trying
13204to not grow past this limit too much.
13205
13206@item large-stack-frame-growth
13207Specifies maximal growth of large stack frames caused by inlining in percents.
13208For example, parameter value 1000 limits large stack frame growth to 11 times
13209the original size.
13210
13211@item max-inline-insns-recursive
13212@itemx max-inline-insns-recursive-auto
13213Specifies the maximum number of instructions an out-of-line copy of a
13214self-recursive inline
13215function can grow into by performing recursive inlining.
13216
13217@option{--param max-inline-insns-recursive} applies to functions
13218declared inline.
13219For functions not declared inline, recursive inlining
13220happens only when @option{-finline-functions} (included in @option{-O3}) is
13221enabled; @option{--param max-inline-insns-recursive-auto} applies instead.
13222
13223@item max-inline-recursive-depth
13224@itemx max-inline-recursive-depth-auto
13225Specifies the maximum recursion depth used for recursive inlining.
13226
13227@option{--param max-inline-recursive-depth} applies to functions
13228declared inline.  For functions not declared inline, recursive inlining
13229happens only when @option{-finline-functions} (included in @option{-O3}) is
13230enabled; @option{--param max-inline-recursive-depth-auto} applies instead.
13231
13232@item min-inline-recursive-probability
13233Recursive inlining is profitable only for function having deep recursion
13234in average and can hurt for function having little recursion depth by
13235increasing the prologue size or complexity of function body to other
13236optimizers.
13237
13238When profile feedback is available (see @option{-fprofile-generate}) the actual
13239recursion depth can be guessed from the probability that function recurses
13240via a given call expression.  This parameter limits inlining only to call
13241expressions whose probability exceeds the given threshold (in percents).
13242
13243@item early-inlining-insns
13244Specify growth that the early inliner can make.  In effect it increases
13245the amount of inlining for code having a large abstraction penalty.
13246
13247@item max-early-inliner-iterations
13248Limit of iterations of the early inliner.  This basically bounds
13249the number of nested indirect calls the early inliner can resolve.
13250Deeper chains are still handled by late inlining.
13251
13252@item comdat-sharing-probability
13253Probability (in percent) that C++ inline function with comdat visibility
13254are shared across multiple compilation units.
13255
13256@item modref-max-bases
13257@item modref-max-refs
13258@item modref-max-accesses
13259Specifies the maximal number of base pointers, references and accesses stored
13260for a single function by mod/ref analysis.
13261
13262@item modref-max-tests
13263Specifies the maxmal number of tests alias oracle can perform to disambiguate
13264memory locations using the mod/ref information.  This parameter ought to be
13265bigger than @option{--param modref-max-bases} and @option{--param
13266modref-max-refs}.
13267
13268@item modref-max-depth
13269Specifies the maximum depth of DFS walk used by modref escape analysis.
13270Setting to 0 disables the analysis completely.
13271
13272@item modref-max-escape-points
13273Specifies the maximum number of escape points tracked by modref per SSA-name.
13274
13275@item profile-func-internal-id
13276A parameter to control whether to use function internal id in profile
13277database lookup. If the value is 0, the compiler uses an id that
13278is based on function assembler name and filename, which makes old profile
13279data more tolerant to source changes such as function reordering etc.
13280
13281@item min-vect-loop-bound
13282The minimum number of iterations under which loops are not vectorized
13283when @option{-ftree-vectorize} is used.  The number of iterations after
13284vectorization needs to be greater than the value specified by this option
13285to allow vectorization.
13286
13287@item gcse-cost-distance-ratio
13288Scaling factor in calculation of maximum distance an expression
13289can be moved by GCSE optimizations.  This is currently supported only in the
13290code hoisting pass.  The bigger the ratio, the more aggressive code hoisting
13291is with simple expressions, i.e., the expressions that have cost
13292less than @option{gcse-unrestricted-cost}.  Specifying 0 disables
13293hoisting of simple expressions.
13294
13295@item gcse-unrestricted-cost
13296Cost, roughly measured as the cost of a single typical machine
13297instruction, at which GCSE optimizations do not constrain
13298the distance an expression can travel.  This is currently
13299supported only in the code hoisting pass.  The lesser the cost,
13300the more aggressive code hoisting is.  Specifying 0
13301allows all expressions to travel unrestricted distances.
13302
13303@item max-hoist-depth
13304The depth of search in the dominator tree for expressions to hoist.
13305This is used to avoid quadratic behavior in hoisting algorithm.
13306The value of 0 does not limit on the search, but may slow down compilation
13307of huge functions.
13308
13309@item max-tail-merge-comparisons
13310The maximum amount of similar bbs to compare a bb with.  This is used to
13311avoid quadratic behavior in tree tail merging.
13312
13313@item max-tail-merge-iterations
13314The maximum amount of iterations of the pass over the function.  This is used to
13315limit compilation time in tree tail merging.
13316
13317@item store-merging-allow-unaligned
13318Allow the store merging pass to introduce unaligned stores if it is legal to
13319do so.
13320
13321@item max-stores-to-merge
13322The maximum number of stores to attempt to merge into wider stores in the store
13323merging pass.
13324
13325@item max-store-chains-to-track
13326The maximum number of store chains to track at the same time in the attempt
13327to merge them into wider stores in the store merging pass.
13328
13329@item max-stores-to-track
13330The maximum number of stores to track at the same time in the attemt to
13331to merge them into wider stores in the store merging pass.
13332
13333@item max-unrolled-insns
13334The maximum number of instructions that a loop may have to be unrolled.
13335If a loop is unrolled, this parameter also determines how many times
13336the loop code is unrolled.
13337
13338@item max-average-unrolled-insns
13339The maximum number of instructions biased by probabilities of their execution
13340that a loop may have to be unrolled.  If a loop is unrolled,
13341this parameter also determines how many times the loop code is unrolled.
13342
13343@item max-unroll-times
13344The maximum number of unrollings of a single loop.
13345
13346@item max-peeled-insns
13347The maximum number of instructions that a loop may have to be peeled.
13348If a loop is peeled, this parameter also determines how many times
13349the loop code is peeled.
13350
13351@item max-peel-times
13352The maximum number of peelings of a single loop.
13353
13354@item max-peel-branches
13355The maximum number of branches on the hot path through the peeled sequence.
13356
13357@item max-completely-peeled-insns
13358The maximum number of insns of a completely peeled loop.
13359
13360@item max-completely-peel-times
13361The maximum number of iterations of a loop to be suitable for complete peeling.
13362
13363@item max-completely-peel-loop-nest-depth
13364The maximum depth of a loop nest suitable for complete peeling.
13365
13366@item max-unswitch-insns
13367The maximum number of insns of an unswitched loop.
13368
13369@item max-unswitch-level
13370The maximum number of branches unswitched in a single loop.
13371
13372@item lim-expensive
13373The minimum cost of an expensive expression in the loop invariant motion.
13374
13375@item min-loop-cond-split-prob
13376When FDO profile information is available, @option{min-loop-cond-split-prob}
13377specifies minimum threshold for probability of semi-invariant condition
13378statement to trigger loop split.
13379
13380@item iv-consider-all-candidates-bound
13381Bound on number of candidates for induction variables, below which
13382all candidates are considered for each use in induction variable
13383optimizations.  If there are more candidates than this,
13384only the most relevant ones are considered to avoid quadratic time complexity.
13385
13386@item iv-max-considered-uses
13387The induction variable optimizations give up on loops that contain more
13388induction variable uses.
13389
13390@item iv-always-prune-cand-set-bound
13391If the number of candidates in the set is smaller than this value,
13392always try to remove unnecessary ivs from the set
13393when adding a new one.
13394
13395@item avg-loop-niter
13396Average number of iterations of a loop.
13397
13398@item dse-max-object-size
13399Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
13400Larger values may result in larger compilation times.
13401
13402@item dse-max-alias-queries-per-store
13403Maximum number of queries into the alias oracle per store.
13404Larger values result in larger compilation times and may result in more
13405removed dead stores.
13406
13407@item scev-max-expr-size
13408Bound on size of expressions used in the scalar evolutions analyzer.
13409Large expressions slow the analyzer.
13410
13411@item scev-max-expr-complexity
13412Bound on the complexity of the expressions in the scalar evolutions analyzer.
13413Complex expressions slow the analyzer.
13414
13415@item max-tree-if-conversion-phi-args
13416Maximum number of arguments in a PHI supported by TREE if conversion
13417unless the loop is marked with simd pragma.
13418
13419@item vect-max-version-for-alignment-checks
13420The maximum number of run-time checks that can be performed when
13421doing loop versioning for alignment in the vectorizer.
13422
13423@item vect-max-version-for-alias-checks
13424The maximum number of run-time checks that can be performed when
13425doing loop versioning for alias in the vectorizer.
13426
13427@item vect-max-peeling-for-alignment
13428The maximum number of loop peels to enhance access alignment
13429for vectorizer. Value -1 means no limit.
13430
13431@item max-iterations-to-track
13432The maximum number of iterations of a loop the brute-force algorithm
13433for analysis of the number of iterations of the loop tries to evaluate.
13434
13435@item hot-bb-count-fraction
13436The denominator n of fraction 1/n of the maximal execution count of a
13437basic block in the entire program that a basic block needs to at least
13438have in order to be considered hot.  The default is 10000, which means
13439that a basic block is considered hot if its execution count is greater
13440than 1/10000 of the maximal execution count.  0 means that it is never
13441considered hot.  Used in non-LTO mode.
13442
13443@item hot-bb-count-ws-permille
13444The number of most executed permilles, ranging from 0 to 1000, of the
13445profiled execution of the entire program to which the execution count
13446of a basic block must be part of in order to be considered hot.  The
13447default is 990, which means that a basic block is considered hot if
13448its execution count contributes to the upper 990 permilles, or 99.0%,
13449of the profiled execution of the entire program.  0 means that it is
13450never considered hot.  Used in LTO mode.
13451
13452@item hot-bb-frequency-fraction
13453The denominator n of fraction 1/n of the execution frequency of the
13454entry block of a function that a basic block of this function needs
13455to at least have in order to be considered hot.  The default is 1000,
13456which means that a basic block is considered hot in a function if it
13457is executed more frequently than 1/1000 of the frequency of the entry
13458block of the function.  0 means that it is never considered hot.
13459
13460@item unlikely-bb-count-fraction
13461The denominator n of fraction 1/n of the number of profiled runs of
13462the entire program below which the execution count of a basic block
13463must be in order for the basic block to be considered unlikely executed.
13464The default is 20, which means that a basic block is considered unlikely
13465executed if it is executed in fewer than 1/20, or 5%, of the runs of
13466the program.  0 means that it is always considered unlikely executed.
13467
13468@item max-predicted-iterations
13469The maximum number of loop iterations we predict statically.  This is useful
13470in cases where a function contains a single loop with known bound and
13471another loop with unknown bound.
13472The known number of iterations is predicted correctly, while
13473the unknown number of iterations average to roughly 10.  This means that the
13474loop without bounds appears artificially cold relative to the other one.
13475
13476@item builtin-expect-probability
13477Control the probability of the expression having the specified value. This
13478parameter takes a percentage (i.e.@: 0 ... 100) as input.
13479
13480@item builtin-string-cmp-inline-length
13481The maximum length of a constant string for a builtin string cmp call
13482eligible for inlining.
13483
13484@item align-threshold
13485
13486Select fraction of the maximal frequency of executions of a basic block in
13487a function to align the basic block.
13488
13489@item align-loop-iterations
13490
13491A loop expected to iterate at least the selected number of iterations is
13492aligned.
13493
13494@item tracer-dynamic-coverage
13495@itemx tracer-dynamic-coverage-feedback
13496
13497This value is used to limit superblock formation once the given percentage of
13498executed instructions is covered.  This limits unnecessary code size
13499expansion.
13500
13501The @option{tracer-dynamic-coverage-feedback} parameter
13502is used only when profile
13503feedback is available.  The real profiles (as opposed to statically estimated
13504ones) are much less balanced allowing the threshold to be larger value.
13505
13506@item tracer-max-code-growth
13507Stop tail duplication once code growth has reached given percentage.  This is
13508a rather artificial limit, as most of the duplicates are eliminated later in
13509cross jumping, so it may be set to much higher values than is the desired code
13510growth.
13511
13512@item tracer-min-branch-ratio
13513
13514Stop reverse growth when the reverse probability of best edge is less than this
13515threshold (in percent).
13516
13517@item tracer-min-branch-probability
13518@itemx tracer-min-branch-probability-feedback
13519
13520Stop forward growth if the best edge has probability lower than this
13521threshold.
13522
13523Similarly to @option{tracer-dynamic-coverage} two parameters are
13524provided.  @option{tracer-min-branch-probability-feedback} is used for
13525compilation with profile feedback and @option{tracer-min-branch-probability}
13526compilation without.  The value for compilation with profile feedback
13527needs to be more conservative (higher) in order to make tracer
13528effective.
13529
13530@item stack-clash-protection-guard-size
13531Specify the size of the operating system provided stack guard as
135322 raised to @var{num} bytes.  Higher values may reduce the
13533number of explicit probes, but a value larger than the operating system
13534provided guard will leave code vulnerable to stack clash style attacks.
13535
13536@item stack-clash-protection-probe-interval
13537Stack clash protection involves probing stack space as it is allocated.  This
13538param controls the maximum distance between probes into the stack as 2 raised
13539to @var{num} bytes.  Higher values may reduce the number of explicit probes, but a value
13540larger than the operating system provided guard will leave code vulnerable to
13541stack clash style attacks.
13542
13543@item max-cse-path-length
13544
13545The maximum number of basic blocks on path that CSE considers.
13546
13547@item max-cse-insns
13548The maximum number of instructions CSE processes before flushing.
13549
13550@item ggc-min-expand
13551
13552GCC uses a garbage collector to manage its own memory allocation.  This
13553parameter specifies the minimum percentage by which the garbage
13554collector's heap should be allowed to expand between collections.
13555Tuning this may improve compilation speed; it has no effect on code
13556generation.
13557
13558The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
13559RAM >= 1GB@.  If @code{getrlimit} is available, the notion of ``RAM'' is
13560the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
13561GCC is not able to calculate RAM on a particular platform, the lower
13562bound of 30% is used.  Setting this parameter and
13563@option{ggc-min-heapsize} to zero causes a full collection to occur at
13564every opportunity.  This is extremely slow, but can be useful for
13565debugging.
13566
13567@item ggc-min-heapsize
13568
13569Minimum size of the garbage collector's heap before it begins bothering
13570to collect garbage.  The first collection occurs after the heap expands
13571by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
13572tuning this may improve compilation speed, and has no effect on code
13573generation.
13574
13575The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
13576tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
13577with a lower bound of 4096 (four megabytes) and an upper bound of
13578131072 (128 megabytes).  If GCC is not able to calculate RAM on a
13579particular platform, the lower bound is used.  Setting this parameter
13580very large effectively disables garbage collection.  Setting this
13581parameter and @option{ggc-min-expand} to zero causes a full collection
13582to occur at every opportunity.
13583
13584@item max-reload-search-insns
13585The maximum number of instruction reload should look backward for equivalent
13586register.  Increasing values mean more aggressive optimization, making the
13587compilation time increase with probably slightly better performance.
13588
13589@item max-cselib-memory-locations
13590The maximum number of memory locations cselib should take into account.
13591Increasing values mean more aggressive optimization, making the compilation time
13592increase with probably slightly better performance.
13593
13594@item max-sched-ready-insns
13595The maximum number of instructions ready to be issued the scheduler should
13596consider at any given time during the first scheduling pass.  Increasing
13597values mean more thorough searches, making the compilation time increase
13598with probably little benefit.
13599
13600@item max-sched-region-blocks
13601The maximum number of blocks in a region to be considered for
13602interblock scheduling.
13603
13604@item max-pipeline-region-blocks
13605The maximum number of blocks in a region to be considered for
13606pipelining in the selective scheduler.
13607
13608@item max-sched-region-insns
13609The maximum number of insns in a region to be considered for
13610interblock scheduling.
13611
13612@item max-pipeline-region-insns
13613The maximum number of insns in a region to be considered for
13614pipelining in the selective scheduler.
13615
13616@item min-spec-prob
13617The minimum probability (in percents) of reaching a source block
13618for interblock speculative scheduling.
13619
13620@item max-sched-extend-regions-iters
13621The maximum number of iterations through CFG to extend regions.
13622A value of 0 disables region extensions.
13623
13624@item max-sched-insn-conflict-delay
13625The maximum conflict delay for an insn to be considered for speculative motion.
13626
13627@item sched-spec-prob-cutoff
13628The minimal probability of speculation success (in percents), so that
13629speculative insns are scheduled.
13630
13631@item sched-state-edge-prob-cutoff
13632The minimum probability an edge must have for the scheduler to save its
13633state across it.
13634
13635@item sched-mem-true-dep-cost
13636Minimal distance (in CPU cycles) between store and load targeting same
13637memory locations.
13638
13639@item selsched-max-lookahead
13640The maximum size of the lookahead window of selective scheduling.  It is a
13641depth of search for available instructions.
13642
13643@item selsched-max-sched-times
13644The maximum number of times that an instruction is scheduled during
13645selective scheduling.  This is the limit on the number of iterations
13646through which the instruction may be pipelined.
13647
13648@item selsched-insns-to-rename
13649The maximum number of best instructions in the ready list that are considered
13650for renaming in the selective scheduler.
13651
13652@item sms-min-sc
13653The minimum value of stage count that swing modulo scheduler
13654generates.
13655
13656@item max-last-value-rtl
13657The maximum size measured as number of RTLs that can be recorded in an expression
13658in combiner for a pseudo register as last known value of that register.
13659
13660@item max-combine-insns
13661The maximum number of instructions the RTL combiner tries to combine.
13662
13663@item integer-share-limit
13664Small integer constants can use a shared data structure, reducing the
13665compiler's memory usage and increasing its speed.  This sets the maximum
13666value of a shared integer constant.
13667
13668@item ssp-buffer-size
13669The minimum size of buffers (i.e.@: arrays) that receive stack smashing
13670protection when @option{-fstack-protection} is used.
13671
13672@item min-size-for-stack-sharing
13673The minimum size of variables taking part in stack slot sharing when not
13674optimizing.
13675
13676@item max-jump-thread-duplication-stmts
13677Maximum number of statements allowed in a block that needs to be
13678duplicated when threading jumps.
13679
13680@item max-fields-for-field-sensitive
13681Maximum number of fields in a structure treated in
13682a field sensitive manner during pointer analysis.
13683
13684@item prefetch-latency
13685Estimate on average number of instructions that are executed before
13686prefetch finishes.  The distance prefetched ahead is proportional
13687to this constant.  Increasing this number may also lead to less
13688streams being prefetched (see @option{simultaneous-prefetches}).
13689
13690@item simultaneous-prefetches
13691Maximum number of prefetches that can run at the same time.
13692
13693@item l1-cache-line-size
13694The size of cache line in L1 data cache, in bytes.
13695
13696@item l1-cache-size
13697The size of L1 data cache, in kilobytes.
13698
13699@item l2-cache-size
13700The size of L2 data cache, in kilobytes.
13701
13702@item prefetch-dynamic-strides
13703Whether the loop array prefetch pass should issue software prefetch hints
13704for strides that are non-constant.  In some cases this may be
13705beneficial, though the fact the stride is non-constant may make it
13706hard to predict when there is clear benefit to issuing these hints.
13707
13708Set to 1 if the prefetch hints should be issued for non-constant
13709strides.  Set to 0 if prefetch hints should be issued only for strides that
13710are known to be constant and below @option{prefetch-minimum-stride}.
13711
13712@item prefetch-minimum-stride
13713Minimum constant stride, in bytes, to start using prefetch hints for.  If
13714the stride is less than this threshold, prefetch hints will not be issued.
13715
13716This setting is useful for processors that have hardware prefetchers, in
13717which case there may be conflicts between the hardware prefetchers and
13718the software prefetchers.  If the hardware prefetchers have a maximum
13719stride they can handle, it should be used here to improve the use of
13720software prefetchers.
13721
13722A value of -1 means we don't have a threshold and therefore
13723prefetch hints can be issued for any constant stride.
13724
13725This setting is only useful for strides that are known and constant.
13726
13727@item loop-interchange-max-num-stmts
13728The maximum number of stmts in a loop to be interchanged.
13729
13730@item loop-interchange-stride-ratio
13731The minimum ratio between stride of two loops for interchange to be profitable.
13732
13733@item min-insn-to-prefetch-ratio
13734The minimum ratio between the number of instructions and the
13735number of prefetches to enable prefetching in a loop.
13736
13737@item prefetch-min-insn-to-mem-ratio
13738The minimum ratio between the number of instructions and the
13739number of memory references to enable prefetching in a loop.
13740
13741@item use-canonical-types
13742Whether the compiler should use the ``canonical'' type system.
13743Should always be 1, which uses a more efficient internal
13744mechanism for comparing types in C++ and Objective-C++.  However, if
13745bugs in the canonical type system are causing compilation failures,
13746set this value to 0 to disable canonical types.
13747
13748@item switch-conversion-max-branch-ratio
13749Switch initialization conversion refuses to create arrays that are
13750bigger than @option{switch-conversion-max-branch-ratio} times the number of
13751branches in the switch.
13752
13753@item max-partial-antic-length
13754Maximum length of the partial antic set computed during the tree
13755partial redundancy elimination optimization (@option{-ftree-pre}) when
13756optimizing at @option{-O3} and above.  For some sorts of source code
13757the enhanced partial redundancy elimination optimization can run away,
13758consuming all of the memory available on the host machine.  This
13759parameter sets a limit on the length of the sets that are computed,
13760which prevents the runaway behavior.  Setting a value of 0 for
13761this parameter allows an unlimited set length.
13762
13763@item rpo-vn-max-loop-depth
13764Maximum loop depth that is value-numbered optimistically.
13765When the limit hits the innermost
13766@var{rpo-vn-max-loop-depth} loops and the outermost loop in the
13767loop nest are value-numbered optimistically and the remaining ones not.
13768
13769@item sccvn-max-alias-queries-per-access
13770Maximum number of alias-oracle queries we perform when looking for
13771redundancies for loads and stores.  If this limit is hit the search
13772is aborted and the load or store is not considered redundant.  The
13773number of queries is algorithmically limited to the number of
13774stores on all paths from the load to the function entry.
13775
13776@item ira-max-loops-num
13777IRA uses regional register allocation by default.  If a function
13778contains more loops than the number given by this parameter, only at most
13779the given number of the most frequently-executed loops form regions
13780for regional register allocation.
13781
13782@item ira-max-conflict-table-size
13783Although IRA uses a sophisticated algorithm to compress the conflict
13784table, the table can still require excessive amounts of memory for
13785huge functions.  If the conflict table for a function could be more
13786than the size in MB given by this parameter, the register allocator
13787instead uses a faster, simpler, and lower-quality
13788algorithm that does not require building a pseudo-register conflict table.
13789
13790@item ira-loop-reserved-regs
13791IRA can be used to evaluate more accurate register pressure in loops
13792for decisions to move loop invariants (see @option{-O3}).  The number
13793of available registers reserved for some other purposes is given
13794by this parameter.  Default of the parameter
13795is the best found from numerous experiments.
13796
13797@item lra-inheritance-ebb-probability-cutoff
13798LRA tries to reuse values reloaded in registers in subsequent insns.
13799This optimization is called inheritance.  EBB is used as a region to
13800do this optimization.  The parameter defines a minimal fall-through
13801edge probability in percentage used to add BB to inheritance EBB in
13802LRA.  The default value was chosen
13803from numerous runs of SPEC2000 on x86-64.
13804
13805@item loop-invariant-max-bbs-in-loop
13806Loop invariant motion can be very expensive, both in compilation time and
13807in amount of needed compile-time memory, with very large loops.  Loops
13808with more basic blocks than this parameter won't have loop invariant
13809motion optimization performed on them.
13810
13811@item loop-max-datarefs-for-datadeps
13812Building data dependencies is expensive for very large loops.  This
13813parameter limits the number of data references in loops that are
13814considered for data dependence analysis.  These large loops are no
13815handled by the optimizations using loop data dependencies.
13816
13817@item max-vartrack-size
13818Sets a maximum number of hash table slots to use during variable
13819tracking dataflow analysis of any function.  If this limit is exceeded
13820with variable tracking at assignments enabled, analysis for that
13821function is retried without it, after removing all debug insns from
13822the function.  If the limit is exceeded even without debug insns, var
13823tracking analysis is completely disabled for the function.  Setting
13824the parameter to zero makes it unlimited.
13825
13826@item max-vartrack-expr-depth
13827Sets a maximum number of recursion levels when attempting to map
13828variable names or debug temporaries to value expressions.  This trades
13829compilation time for more complete debug information.  If this is set too
13830low, value expressions that are available and could be represented in
13831debug information may end up not being used; setting this higher may
13832enable the compiler to find more complex debug expressions, but compile
13833time and memory use may grow.
13834
13835@item max-debug-marker-count
13836Sets a threshold on the number of debug markers (e.g.@: begin stmt
13837markers) to avoid complexity explosion at inlining or expanding to RTL.
13838If a function has more such gimple stmts than the set limit, such stmts
13839will be dropped from the inlined copy of a function, and from its RTL
13840expansion.
13841
13842@item min-nondebug-insn-uid
13843Use uids starting at this parameter for nondebug insns.  The range below
13844the parameter is reserved exclusively for debug insns created by
13845@option{-fvar-tracking-assignments}, but debug insns may get
13846(non-overlapping) uids above it if the reserved range is exhausted.
13847
13848@item ipa-sra-ptr-growth-factor
13849IPA-SRA replaces a pointer to an aggregate with one or more new
13850parameters only when their cumulative size is less or equal to
13851@option{ipa-sra-ptr-growth-factor} times the size of the original
13852pointer parameter.
13853
13854@item ipa-sra-max-replacements
13855Maximum pieces of an aggregate that IPA-SRA tracks.  As a
13856consequence, it is also the maximum number of replacements of a formal
13857parameter.
13858
13859@item sra-max-scalarization-size-Ospeed
13860@itemx sra-max-scalarization-size-Osize
13861The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
13862replace scalar parts of aggregates with uses of independent scalar
13863variables.  These parameters control the maximum size, in storage units,
13864of aggregate which is considered for replacement when compiling for
13865speed
13866(@option{sra-max-scalarization-size-Ospeed}) or size
13867(@option{sra-max-scalarization-size-Osize}) respectively.
13868
13869@item sra-max-propagations
13870The maximum number of artificial accesses that Scalar Replacement of
13871Aggregates (SRA) will track, per one local variable, in order to
13872facilitate copy propagation.
13873
13874@item tm-max-aggregate-size
13875When making copies of thread-local variables in a transaction, this
13876parameter specifies the size in bytes after which variables are
13877saved with the logging functions as opposed to save/restore code
13878sequence pairs.  This option only applies when using
13879@option{-fgnu-tm}.
13880
13881@item graphite-max-nb-scop-params
13882To avoid exponential effects in the Graphite loop transforms, the
13883number of parameters in a Static Control Part (SCoP) is bounded.
13884A value of zero can be used to lift
13885the bound.  A variable whose value is unknown at compilation time and
13886defined outside a SCoP is a parameter of the SCoP.
13887
13888@item loop-block-tile-size
13889Loop blocking or strip mining transforms, enabled with
13890@option{-floop-block} or @option{-floop-strip-mine}, strip mine each
13891loop in the loop nest by a given number of iterations.  The strip
13892length can be changed using the @option{loop-block-tile-size}
13893parameter.
13894
13895@item ipa-jump-function-lookups
13896Specifies number of statements visited during jump function offset discovery.
13897
13898@item ipa-cp-value-list-size
13899IPA-CP attempts to track all possible values and types passed to a function's
13900parameter in order to propagate them and perform devirtualization.
13901@option{ipa-cp-value-list-size} is the maximum number of values and types it
13902stores per one formal parameter of a function.
13903
13904@item ipa-cp-eval-threshold
13905IPA-CP calculates its own score of cloning profitability heuristics
13906and performs those cloning opportunities with scores that exceed
13907@option{ipa-cp-eval-threshold}.
13908
13909@item ipa-cp-max-recursive-depth
13910Maximum depth of recursive cloning for self-recursive function.
13911
13912@item ipa-cp-min-recursive-probability
13913Recursive cloning only when the probability of call being executed exceeds
13914the parameter.
13915
13916@item ipa-cp-recursion-penalty
13917Percentage penalty the recursive functions will receive when they
13918are evaluated for cloning.
13919
13920@item ipa-cp-single-call-penalty
13921Percentage penalty functions containing a single call to another
13922function will receive when they are evaluated for cloning.
13923
13924@item ipa-max-agg-items
13925IPA-CP is also capable to propagate a number of scalar values passed
13926in an aggregate. @option{ipa-max-agg-items} controls the maximum
13927number of such values per one parameter.
13928
13929@item ipa-cp-loop-hint-bonus
13930When IPA-CP determines that a cloning candidate would make the number
13931of iterations of a loop known, it adds a bonus of
13932@option{ipa-cp-loop-hint-bonus} to the profitability score of
13933the candidate.
13934
13935@item ipa-max-loop-predicates
13936The maximum number of different predicates IPA will use to describe when
13937loops in a function have known properties.
13938
13939@item ipa-max-aa-steps
13940During its analysis of function bodies, IPA-CP employs alias analysis
13941in order to track values pointed to by function parameters.  In order
13942not spend too much time analyzing huge functions, it gives up and
13943consider all memory clobbered after examining
13944@option{ipa-max-aa-steps} statements modifying memory.
13945
13946@item ipa-max-switch-predicate-bounds
13947Maximal number of boundary endpoints of case ranges of switch statement.
13948For switch exceeding this limit, IPA-CP will not construct cloning cost
13949predicate, which is used to estimate cloning benefit, for default case
13950of the switch statement.
13951
13952@item ipa-max-param-expr-ops
13953IPA-CP will analyze conditional statement that references some function
13954parameter to estimate benefit for cloning upon certain constant value.
13955But if number of operations in a parameter expression exceeds
13956@option{ipa-max-param-expr-ops}, the expression is treated as complicated
13957one, and is not handled by IPA analysis.
13958
13959@item lto-partitions
13960Specify desired number of partitions produced during WHOPR compilation.
13961The number of partitions should exceed the number of CPUs used for compilation.
13962
13963@item lto-min-partition
13964Size of minimal partition for WHOPR (in estimated instructions).
13965This prevents expenses of splitting very small programs into too many
13966partitions.
13967
13968@item lto-max-partition
13969Size of max partition for WHOPR (in estimated instructions).
13970to provide an upper bound for individual size of partition.
13971Meant to be used only with balanced partitioning.
13972
13973@item lto-max-streaming-parallelism
13974Maximal number of parallel processes used for LTO streaming.
13975
13976@item cxx-max-namespaces-for-diagnostic-help
13977The maximum number of namespaces to consult for suggestions when C++
13978name lookup fails for an identifier.
13979
13980@item sink-frequency-threshold
13981The maximum relative execution frequency (in percents) of the target block
13982relative to a statement's original block to allow statement sinking of a
13983statement.  Larger numbers result in more aggressive statement sinking.
13984A small positive adjustment is applied for
13985statements with memory operands as those are even more profitable so sink.
13986
13987@item max-stores-to-sink
13988The maximum number of conditional store pairs that can be sunk.  Set to 0
13989if either vectorization (@option{-ftree-vectorize}) or if-conversion
13990(@option{-ftree-loop-if-convert}) is disabled.
13991
13992@item case-values-threshold
13993The smallest number of different values for which it is best to use a
13994jump-table instead of a tree of conditional branches.  If the value is
139950, use the default for the machine.
13996
13997@item jump-table-max-growth-ratio-for-size
13998The maximum code size growth ratio when expanding
13999into a jump table (in percent).  The parameter is used when
14000optimizing for size.
14001
14002@item jump-table-max-growth-ratio-for-speed
14003The maximum code size growth ratio when expanding
14004into a jump table (in percent).  The parameter is used when
14005optimizing for speed.
14006
14007@item tree-reassoc-width
14008Set the maximum number of instructions executed in parallel in
14009reassociated tree. This parameter overrides target dependent
14010heuristics used by default if has non zero value.
14011
14012@item sched-pressure-algorithm
14013Choose between the two available implementations of
14014@option{-fsched-pressure}.  Algorithm 1 is the original implementation
14015and is the more likely to prevent instructions from being reordered.
14016Algorithm 2 was designed to be a compromise between the relatively
14017conservative approach taken by algorithm 1 and the rather aggressive
14018approach taken by the default scheduler.  It relies more heavily on
14019having a regular register file and accurate register pressure classes.
14020See @file{haifa-sched.c} in the GCC sources for more details.
14021
14022The default choice depends on the target.
14023
14024@item max-slsr-cand-scan
14025Set the maximum number of existing candidates that are considered when
14026seeking a basis for a new straight-line strength reduction candidate.
14027
14028@item asan-globals
14029Enable buffer overflow detection for global objects.  This kind
14030of protection is enabled by default if you are using
14031@option{-fsanitize=address} option.
14032To disable global objects protection use @option{--param asan-globals=0}.
14033
14034@item asan-stack
14035Enable buffer overflow detection for stack objects.  This kind of
14036protection is enabled by default when using @option{-fsanitize=address}.
14037To disable stack protection use @option{--param asan-stack=0} option.
14038
14039@item asan-instrument-reads
14040Enable buffer overflow detection for memory reads.  This kind of
14041protection is enabled by default when using @option{-fsanitize=address}.
14042To disable memory reads protection use
14043@option{--param asan-instrument-reads=0}.
14044
14045@item asan-instrument-writes
14046Enable buffer overflow detection for memory writes.  This kind of
14047protection is enabled by default when using @option{-fsanitize=address}.
14048To disable memory writes protection use
14049@option{--param asan-instrument-writes=0} option.
14050
14051@item asan-memintrin
14052Enable detection for built-in functions.  This kind of protection
14053is enabled by default when using @option{-fsanitize=address}.
14054To disable built-in functions protection use
14055@option{--param asan-memintrin=0}.
14056
14057@item asan-use-after-return
14058Enable detection of use-after-return.  This kind of protection
14059is enabled by default when using the @option{-fsanitize=address} option.
14060To disable it use @option{--param asan-use-after-return=0}.
14061
14062Note: By default the check is disabled at run time.  To enable it,
14063add @code{detect_stack_use_after_return=1} to the environment variable
14064@env{ASAN_OPTIONS}.
14065
14066@item asan-instrumentation-with-call-threshold
14067If number of memory accesses in function being instrumented
14068is greater or equal to this number, use callbacks instead of inline checks.
14069E.g. to disable inline code use
14070@option{--param asan-instrumentation-with-call-threshold=0}.
14071
14072@item hwasan-instrument-stack
14073Enable hwasan instrumentation of statically sized stack-allocated variables.
14074This kind of instrumentation is enabled by default when using
14075@option{-fsanitize=hwaddress} and disabled by default when using
14076@option{-fsanitize=kernel-hwaddress}.
14077To disable stack instrumentation use
14078@option{--param hwasan-instrument-stack=0}, and to enable it use
14079@option{--param hwasan-instrument-stack=1}.
14080
14081@item hwasan-random-frame-tag
14082When using stack instrumentation, decide tags for stack variables using a
14083deterministic sequence beginning at a random tag for each frame.  With this
14084parameter unset tags are chosen using the same sequence but beginning from 1.
14085This is enabled by default for @option{-fsanitize=hwaddress} and unavailable
14086for @option{-fsanitize=kernel-hwaddress}.
14087To disable it use @option{--param hwasan-random-frame-tag=0}.
14088
14089@item hwasan-instrument-allocas
14090Enable hwasan instrumentation of dynamically sized stack-allocated variables.
14091This kind of instrumentation is enabled by default when using
14092@option{-fsanitize=hwaddress} and disabled by default when using
14093@option{-fsanitize=kernel-hwaddress}.
14094To disable instrumentation of such variables use
14095@option{--param hwasan-instrument-allocas=0}, and to enable it use
14096@option{--param hwasan-instrument-allocas=1}.
14097
14098@item hwasan-instrument-reads
14099Enable hwasan checks on memory reads.  Instrumentation of reads is enabled by
14100default for both @option{-fsanitize=hwaddress} and
14101@option{-fsanitize=kernel-hwaddress}.
14102To disable checking memory reads use
14103@option{--param hwasan-instrument-reads=0}.
14104
14105@item hwasan-instrument-writes
14106Enable hwasan checks on memory writes.  Instrumentation of writes is enabled by
14107default for both @option{-fsanitize=hwaddress} and
14108@option{-fsanitize=kernel-hwaddress}.
14109To disable checking memory writes use
14110@option{--param hwasan-instrument-writes=0}.
14111
14112@item hwasan-instrument-mem-intrinsics
14113Enable hwasan instrumentation of builtin functions.  Instrumentation of these
14114builtin functions is enabled by default for both @option{-fsanitize=hwaddress}
14115and @option{-fsanitize=kernel-hwaddress}.
14116To disable instrumentation of builtin functions use
14117@option{--param hwasan-instrument-mem-intrinsics=0}.
14118
14119@item use-after-scope-direct-emission-threshold
14120If the size of a local variable in bytes is smaller or equal to this
14121number, directly poison (or unpoison) shadow memory instead of using
14122run-time callbacks.
14123
14124@item tsan-distinguish-volatile
14125Emit special instrumentation for accesses to volatiles.
14126
14127@item tsan-instrument-func-entry-exit
14128Emit instrumentation calls to __tsan_func_entry() and __tsan_func_exit().
14129
14130@item max-fsm-thread-path-insns
14131Maximum number of instructions to copy when duplicating blocks on a
14132finite state automaton jump thread path.
14133
14134@item max-fsm-thread-length
14135Maximum number of basic blocks on a finite state automaton jump thread
14136path.
14137
14138@item max-fsm-thread-paths
14139Maximum number of new jump thread paths to create for a finite state
14140automaton.
14141
14142@item parloops-chunk-size
14143Chunk size of omp schedule for loops parallelized by parloops.
14144
14145@item parloops-schedule
14146Schedule type of omp schedule for loops parallelized by parloops (static,
14147dynamic, guided, auto, runtime).
14148
14149@item parloops-min-per-thread
14150The minimum number of iterations per thread of an innermost parallelized
14151loop for which the parallelized variant is preferred over the single threaded
14152one.  Note that for a parallelized loop nest the
14153minimum number of iterations of the outermost loop per thread is two.
14154
14155@item max-ssa-name-query-depth
14156Maximum depth of recursion when querying properties of SSA names in things
14157like fold routines.  One level of recursion corresponds to following a
14158use-def chain.
14159
14160@item max-speculative-devirt-maydefs
14161The maximum number of may-defs we analyze when looking for a must-def
14162specifying the dynamic type of an object that invokes a virtual call
14163we may be able to devirtualize speculatively.
14164
14165@item max-vrp-switch-assertions
14166The maximum number of assertions to add along the default edge of a switch
14167statement during VRP.
14168
14169@item evrp-mode
14170Specifies the mode Early VRP should operate in.
14171
14172@item unroll-jam-min-percent
14173The minimum percentage of memory references that must be optimized
14174away for the unroll-and-jam transformation to be considered profitable.
14175
14176@item unroll-jam-max-unroll
14177The maximum number of times the outer loop should be unrolled by
14178the unroll-and-jam transformation.
14179
14180@item max-rtl-if-conversion-unpredictable-cost
14181Maximum permissible cost for the sequence that would be generated
14182by the RTL if-conversion pass for a branch that is considered unpredictable.
14183
14184@item max-variable-expansions-in-unroller
14185If @option{-fvariable-expansion-in-unroller} is used, the maximum number
14186of times that an individual variable will be expanded during loop unrolling.
14187
14188@item tracer-min-branch-probability-feedback
14189Stop forward growth if the probability of best edge is less than
14190this threshold (in percent). Used when profile feedback is available.
14191
14192@item partial-inlining-entry-probability
14193Maximum probability of the entry BB of split region
14194(in percent relative to entry BB of the function)
14195to make partial inlining happen.
14196
14197@item max-tracked-strlens
14198Maximum number of strings for which strlen optimization pass will
14199track string lengths.
14200
14201@item gcse-after-reload-partial-fraction
14202The threshold ratio for performing partial redundancy
14203elimination after reload.
14204
14205@item gcse-after-reload-critical-fraction
14206The threshold ratio of critical edges execution count that
14207permit performing redundancy elimination after reload.
14208
14209@item max-loop-header-insns
14210The maximum number of insns in loop header duplicated
14211by the copy loop headers pass.
14212
14213@item vect-epilogues-nomask
14214Enable loop epilogue vectorization using smaller vector size.
14215
14216@item vect-partial-vector-usage
14217Controls when the loop vectorizer considers using partial vector loads
14218and stores as an alternative to falling back to scalar code.  0 stops
14219the vectorizer from ever using partial vector loads and stores.  1 allows
14220partial vector loads and stores if vectorization removes the need for the
14221code to iterate.  2 allows partial vector loads and stores in all loops.
14222The parameter only has an effect on targets that support partial
14223vector loads and stores.
14224
14225@item avoid-fma-max-bits
14226Maximum number of bits for which we avoid creating FMAs.
14227
14228@item sms-loop-average-count-threshold
14229A threshold on the average loop count considered by the swing modulo scheduler.
14230
14231@item sms-dfa-history
14232The number of cycles the swing modulo scheduler considers when checking
14233conflicts using DFA.
14234
14235@item max-inline-insns-recursive-auto
14236The maximum number of instructions non-inline function
14237can grow to via recursive inlining.
14238
14239@item graphite-allow-codegen-errors
14240Whether codegen errors should be ICEs when @option{-fchecking}.
14241
14242@item sms-max-ii-factor
14243A factor for tuning the upper bound that swing modulo scheduler
14244uses for scheduling a loop.
14245
14246@item lra-max-considered-reload-pseudos
14247The max number of reload pseudos which are considered during
14248spilling a non-reload pseudo.
14249
14250@item max-pow-sqrt-depth
14251Maximum depth of sqrt chains to use when synthesizing exponentiation
14252by a real constant.
14253
14254@item max-dse-active-local-stores
14255Maximum number of active local stores in RTL dead store elimination.
14256
14257@item asan-instrument-allocas
14258Enable asan allocas/VLAs protection.
14259
14260@item max-iterations-computation-cost
14261Bound on the cost of an expression to compute the number of iterations.
14262
14263@item max-isl-operations
14264Maximum number of isl operations, 0 means unlimited.
14265
14266@item graphite-max-arrays-per-scop
14267Maximum number of arrays per scop.
14268
14269@item max-vartrack-reverse-op-size
14270Max. size of loc list for which reverse ops should be added.
14271
14272@item tracer-dynamic-coverage-feedback
14273The percentage of function, weighted by execution frequency,
14274that must be covered by trace formation.
14275Used when profile feedback is available.
14276
14277@item max-inline-recursive-depth-auto
14278The maximum depth of recursive inlining for non-inline functions.
14279
14280@item fsm-scale-path-stmts
14281Scale factor to apply to the number of statements in a threading path
14282when comparing to the number of (scaled) blocks.
14283
14284@item fsm-maximum-phi-arguments
14285Maximum number of arguments a PHI may have before the FSM threader
14286will not try to thread through its block.
14287
14288@item uninit-control-dep-attempts
14289Maximum number of nested calls to search for control dependencies
14290during uninitialized variable analysis.
14291
14292@item sra-max-scalarization-size-Osize
14293Maximum size, in storage units, of an aggregate
14294which should be considered for scalarization when compiling for size.
14295
14296@item fsm-scale-path-blocks
14297Scale factor to apply to the number of blocks in a threading path
14298when comparing to the number of (scaled) statements.
14299
14300@item sched-autopref-queue-depth
14301Hardware autoprefetcher scheduler model control flag.
14302Number of lookahead cycles the model looks into; at '
14303' only enable instruction sorting heuristic.
14304
14305@item loop-versioning-max-inner-insns
14306The maximum number of instructions that an inner loop can have
14307before the loop versioning pass considers it too big to copy.
14308
14309@item loop-versioning-max-outer-insns
14310The maximum number of instructions that an outer loop can have
14311before the loop versioning pass considers it too big to copy,
14312discounting any instructions in inner loops that directly benefit
14313from versioning.
14314
14315@item ssa-name-def-chain-limit
14316The maximum number of SSA_NAME assignments to follow in determining
14317a property of a variable such as its value.  This limits the number
14318of iterations or recursive calls GCC performs when optimizing certain
14319statements or when determining their validity prior to issuing
14320diagnostics.
14321
14322@item store-merging-max-size
14323Maximum size of a single store merging region in bytes.
14324
14325@item hash-table-verification-limit
14326The number of elements for which hash table verification is done
14327for each searched element.
14328
14329@item max-find-base-term-values
14330Maximum number of VALUEs handled during a single find_base_term call.
14331
14332@item analyzer-max-enodes-per-program-point
14333The maximum number of exploded nodes per program point within
14334the analyzer, before terminating analysis of that point.
14335
14336@item analyzer-max-constraints
14337The maximum number of constraints per state.
14338
14339@item analyzer-min-snodes-for-call-summary
14340The minimum number of supernodes within a function for the
14341analyzer to consider summarizing its effects at call sites.
14342
14343@item analyzer-max-enodes-for-full-dump
14344The maximum depth of exploded nodes that should appear in a dot dump
14345before switching to a less verbose format.
14346
14347@item analyzer-max-recursion-depth
14348The maximum number of times a callsite can appear in a call stack
14349within the analyzer, before terminating analysis of a call that would
14350recurse deeper.
14351
14352@item analyzer-max-svalue-depth
14353The maximum depth of a symbolic value, before approximating
14354the value as unknown.
14355
14356@item analyzer-max-infeasible-edges
14357The maximum number of infeasible edges to reject before declaring
14358a diagnostic as infeasible.
14359
14360@item gimple-fe-computed-hot-bb-threshold
14361The number of executions of a basic block which is considered hot.
14362The parameter is used only in GIMPLE FE.
14363
14364@item analyzer-bb-explosion-factor
14365The maximum number of 'after supernode' exploded nodes within the analyzer
14366per supernode, before terminating analysis.
14367
14368@item ranger-logical-depth
14369Maximum depth of logical expression evaluation ranger will look through
14370when evaluating outgoing edge ranges.
14371
14372@item openacc-kernels
14373Specify mode of OpenACC `kernels' constructs handling.
14374With @option{--param=openacc-kernels=decompose}, OpenACC `kernels'
14375constructs are decomposed into parts, a sequence of compute
14376constructs, each then handled individually.
14377This is work in progress.
14378With @option{--param=openacc-kernels=parloops}, OpenACC `kernels'
14379constructs are handled by the @samp{parloops} pass, en bloc.
14380This is the current default.
14381
14382@end table
14383
14384The following choices of @var{name} are available on AArch64 targets:
14385
14386@table @gcctabopt
14387@item aarch64-sve-compare-costs
14388When vectorizing for SVE, consider using ``unpacked'' vectors for
14389smaller elements and use the cost model to pick the cheapest approach.
14390Also use the cost model to choose between SVE and Advanced SIMD vectorization.
14391
14392Using unpacked vectors includes storing smaller elements in larger
14393containers and accessing elements with extending loads and truncating
14394stores.
14395
14396@item aarch64-float-recp-precision
14397The number of Newton iterations for calculating the reciprocal for float type.
14398The precision of division is proportional to this param when division
14399approximation is enabled.  The default value is 1.
14400
14401@item aarch64-double-recp-precision
14402The number of Newton iterations for calculating the reciprocal for double type.
14403The precision of division is propotional to this param when division
14404approximation is enabled.  The default value is 2.
14405
14406@item aarch64-autovec-preference
14407Force an ISA selection strategy for auto-vectorization.  Accepts values from
144080 to 4, inclusive.
14409@table @samp
14410@item 0
14411Use the default heuristics.
14412@item 1
14413Use only Advanced SIMD for auto-vectorization.
14414@item 2
14415Use only SVE for auto-vectorization.
14416@item 3
14417Use both Advanced SIMD and SVE.  Prefer Advanced SIMD when the costs are
14418deemed equal.
14419@item 4
14420Use both Advanced SIMD and SVE.  Prefer SVE when the costs are deemed equal.
14421@end table
14422The default value is 0.
14423
14424@item aarch64-loop-vect-issue-rate-niters
14425The tuning for some AArch64 CPUs tries to take both latencies and issue
14426rates into account when deciding whether a loop should be vectorized
14427using SVE, vectorized using Advanced SIMD, or not vectorized at all.
14428If this parameter is set to @var{n}, GCC will not use this heuristic
14429for loops that are known to execute in fewer than @var{n} Advanced
14430SIMD iterations.
14431
14432@end table
14433
14434@end table
14435
14436@node Instrumentation Options
14437@section Program Instrumentation Options
14438@cindex instrumentation options
14439@cindex program instrumentation options
14440@cindex run-time error checking options
14441@cindex profiling options
14442@cindex options, program instrumentation
14443@cindex options, run-time error checking
14444@cindex options, profiling
14445
14446GCC supports a number of command-line options that control adding
14447run-time instrumentation to the code it normally generates.
14448For example, one purpose of instrumentation is collect profiling
14449statistics for use in finding program hot spots, code coverage
14450analysis, or profile-guided optimizations.
14451Another class of program instrumentation is adding run-time checking
14452to detect programming errors like invalid pointer
14453dereferences or out-of-bounds array accesses, as well as deliberately
14454hostile attacks such as stack smashing or C++ vtable hijacking.
14455There is also a general hook which can be used to implement other
14456forms of tracing or function-level instrumentation for debug or
14457program analysis purposes.
14458
14459@table @gcctabopt
14460@cindex @command{prof}
14461@cindex @command{gprof}
14462@item -p
14463@itemx -pg
14464@opindex p
14465@opindex pg
14466Generate extra code to write profile information suitable for the
14467analysis program @command{prof} (for @option{-p}) or @command{gprof}
14468(for @option{-pg}).  You must use this option when compiling
14469the source files you want data about, and you must also use it when
14470linking.
14471
14472You can use the function attribute @code{no_instrument_function} to
14473suppress profiling of individual functions when compiling with these options.
14474@xref{Common Function Attributes}.
14475
14476@item -fprofile-arcs
14477@opindex fprofile-arcs
14478Add code so that program flow @dfn{arcs} are instrumented.  During
14479execution the program records how many times each branch and call is
14480executed and how many times it is taken or returns.  On targets that support
14481constructors with priority support, profiling properly handles constructors,
14482destructors and C++ constructors (and destructors) of classes which are used
14483as a type of a global variable.
14484
14485When the compiled
14486program exits it saves this data to a file called
14487@file{@var{auxname}.gcda} for each source file.  The data may be used for
14488profile-directed optimizations (@option{-fbranch-probabilities}), or for
14489test coverage analysis (@option{-ftest-coverage}).  Each object file's
14490@var{auxname} is generated from the name of the output file, if
14491explicitly specified and it is not the final executable, otherwise it is
14492the basename of the source file.  In both cases any suffix is removed
14493(e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
14494@file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
14495@xref{Cross-profiling}.
14496
14497@cindex @command{gcov}
14498@item --coverage
14499@opindex coverage
14500
14501This option is used to compile and link code instrumented for coverage
14502analysis.  The option is a synonym for @option{-fprofile-arcs}
14503@option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
14504linking).  See the documentation for those options for more details.
14505
14506@itemize
14507
14508@item
14509Compile the source files with @option{-fprofile-arcs} plus optimization
14510and code generation options.  For test coverage analysis, use the
14511additional @option{-ftest-coverage} option.  You do not need to profile
14512every source file in a program.
14513
14514@item
14515Compile the source files additionally with @option{-fprofile-abs-path}
14516to create absolute path names in the @file{.gcno} files.  This allows
14517@command{gcov} to find the correct sources in projects where compilations
14518occur with different working directories.
14519
14520@item
14521Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
14522(the latter implies the former).
14523
14524@item
14525Run the program on a representative workload to generate the arc profile
14526information.  This may be repeated any number of times.  You can run
14527concurrent instances of your program, and provided that the file system
14528supports locking, the data files will be correctly updated.  Unless
14529a strict ISO C dialect option is in effect, @code{fork} calls are
14530detected and correctly handled without double counting.
14531
14532@item
14533For profile-directed optimizations, compile the source files again with
14534the same optimization and code generation options plus
14535@option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
14536Control Optimization}).
14537
14538@item
14539For test coverage analysis, use @command{gcov} to produce human readable
14540information from the @file{.gcno} and @file{.gcda} files.  Refer to the
14541@command{gcov} documentation for further information.
14542
14543@end itemize
14544
14545With @option{-fprofile-arcs}, for each function of your program GCC
14546creates a program flow graph, then finds a spanning tree for the graph.
14547Only arcs that are not on the spanning tree have to be instrumented: the
14548compiler adds code to count the number of times that these arcs are
14549executed.  When an arc is the only exit or only entrance to a block, the
14550instrumentation code can be added to the block; otherwise, a new basic
14551block must be created to hold the instrumentation code.
14552
14553@need 2000
14554@item -ftest-coverage
14555@opindex ftest-coverage
14556Produce a notes file that the @command{gcov} code-coverage utility
14557(@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
14558show program coverage.  Each source file's note file is called
14559@file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
14560above for a description of @var{auxname} and instructions on how to
14561generate test coverage data.  Coverage data matches the source files
14562more closely if you do not optimize.
14563
14564@item -fprofile-abs-path
14565@opindex fprofile-abs-path
14566Automatically convert relative source file names to absolute path names
14567in the @file{.gcno} files.  This allows @command{gcov} to find the correct
14568sources in projects where compilations occur with different working
14569directories.
14570
14571@item -fprofile-dir=@var{path}
14572@opindex fprofile-dir
14573
14574Set the directory to search for the profile data files in to @var{path}.
14575This option affects only the profile data generated by
14576@option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
14577and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
14578and its related options.  Both absolute and relative paths can be used.
14579By default, GCC uses the current directory as @var{path}, thus the
14580profile data file appears in the same directory as the object file.
14581In order to prevent the file name clashing, if the object file name is
14582not an absolute path, we mangle the absolute path of the
14583@file{@var{sourcename}.gcda} file and use it as the file name of a
14584@file{.gcda} file.  See similar option @option{-fprofile-note}.
14585
14586When an executable is run in a massive parallel environment, it is recommended
14587to save profile to different folders.  That can be done with variables
14588in @var{path} that are exported during run-time:
14589
14590@table @gcctabopt
14591
14592@item %p
14593process ID.
14594
14595@item %q@{VAR@}
14596value of environment variable @var{VAR}
14597
14598@end table
14599
14600@item -fprofile-generate
14601@itemx -fprofile-generate=@var{path}
14602@opindex fprofile-generate
14603
14604Enable options usually used for instrumenting application to produce
14605profile useful for later recompilation with profile feedback based
14606optimization.  You must use @option{-fprofile-generate} both when
14607compiling and when linking your program.
14608
14609The following options are enabled:
14610@option{-fprofile-arcs}, @option{-fprofile-values},
14611@option{-finline-functions}, and @option{-fipa-bit-cp}.
14612
14613If @var{path} is specified, GCC looks at the @var{path} to find
14614the profile feedback data files. See @option{-fprofile-dir}.
14615
14616To optimize the program based on the collected profile information, use
14617@option{-fprofile-use}.  @xref{Optimize Options}, for more information.
14618
14619@item -fprofile-info-section
14620@itemx -fprofile-info-section=@var{name}
14621@opindex fprofile-info-section
14622
14623Register the profile information in the specified section instead of using a
14624constructor/destructor.  The section name is @var{name} if it is specified,
14625otherwise the section name defaults to @code{.gcov_info}.  A pointer to the
14626profile information generated by @option{-fprofile-arcs} or
14627@option{-ftest-coverage} is placed in the specified section for each
14628translation unit.  This option disables the profile information registration
14629through a constructor and it disables the profile information processing
14630through a destructor.  This option is not intended to be used in hosted
14631environments such as GNU/Linux.  It targets systems with limited resources
14632which do not support constructors and destructors.  The linker could collect
14633the input sections in a continuous memory block and define start and end
14634symbols.  The runtime support could dump the profiling information registered
14635in this linker set during program termination to a serial line for example.  A
14636GNU linker script example which defines a linker output section follows:
14637
14638@smallexample
14639  .gcov_info      :
14640  @{
14641    PROVIDE (__gcov_info_start = .);
14642    KEEP (*(.gcov_info))
14643    PROVIDE (__gcov_info_end = .);
14644  @}
14645@end smallexample
14646
14647@item -fprofile-note=@var{path}
14648@opindex fprofile-note
14649
14650If @var{path} is specified, GCC saves @file{.gcno} file into @var{path}
14651location.  If you combine the option with multiple source files,
14652the @file{.gcno} file will be overwritten.
14653
14654@item -fprofile-prefix-path=@var{path}
14655@opindex fprofile-prefix-path
14656
14657This option can be used in combination with
14658@option{profile-generate=}@var{profile_dir} and
14659@option{profile-use=}@var{profile_dir} to inform GCC where is the base
14660directory of built source tree.  By default @var{profile_dir} will contain
14661files with mangled absolute paths of all object files in the built project.
14662This is not desirable when directory used to build the instrumented binary
14663differs from the directory used to build the binary optimized with profile
14664feedback because the profile data will not be found during the optimized build.
14665In such setups @option{-fprofile-prefix-path=}@var{path} with @var{path}
14666pointing to the base directory of the build can be used to strip the irrelevant
14667part of the path and keep all file names relative to the main build directory.
14668
14669@item -fprofile-update=@var{method}
14670@opindex fprofile-update
14671
14672Alter the update method for an application instrumented for profile
14673feedback based optimization.  The @var{method} argument should be one of
14674@samp{single}, @samp{atomic} or @samp{prefer-atomic}.
14675The first one is useful for single-threaded applications,
14676while the second one prevents profile corruption by emitting thread-safe code.
14677
14678@strong{Warning:} When an application does not properly join all threads
14679(or creates an detached thread), a profile file can be still corrupted.
14680
14681Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
14682when supported by a target, or to @samp{single} otherwise.  The GCC driver
14683automatically selects @samp{prefer-atomic} when @option{-pthread}
14684is present in the command line.
14685
14686@item -fprofile-filter-files=@var{regex}
14687@opindex fprofile-filter-files
14688
14689Instrument only functions from files whose name matches
14690any of the regular expressions (separated by semi-colons).
14691
14692For example, @option{-fprofile-filter-files=main\.c;module.*\.c} will instrument
14693only @file{main.c} and all C files starting with 'module'.
14694
14695@item -fprofile-exclude-files=@var{regex}
14696@opindex fprofile-exclude-files
14697
14698Instrument only functions from files whose name does not match
14699any of the regular expressions (separated by semi-colons).
14700
14701For example, @option{-fprofile-exclude-files=/usr/.*} will prevent instrumentation
14702of all files that are located in the @file{/usr/} folder.
14703
14704@item -fprofile-reproducible=@r{[}multithreaded@r{|}parallel-runs@r{|}serial@r{]}
14705@opindex fprofile-reproducible
14706Control level of reproducibility of profile gathered by
14707@code{-fprofile-generate}.  This makes it possible to rebuild program
14708with same outcome which is useful, for example, for distribution
14709packages.
14710
14711With @option{-fprofile-reproducible=serial} the profile gathered by
14712@option{-fprofile-generate} is reproducible provided the trained program
14713behaves the same at each invocation of the train run, it is not
14714multi-threaded and profile data streaming is always done in the same
14715order.  Note that profile streaming happens at the end of program run but
14716also before @code{fork} function is invoked.
14717
14718Note that it is quite common that execution counts of some part of
14719programs depends, for example, on length of temporary file names or
14720memory space randomization (that may affect hash-table collision rate).
14721Such non-reproducible part of programs may be annotated by
14722@code{no_instrument_function} function attribute. @command{gcov-dump} with
14723@option{-l} can be used to dump gathered data and verify that they are
14724indeed reproducible.
14725
14726With @option{-fprofile-reproducible=parallel-runs} collected profile
14727stays reproducible regardless the order of streaming of the data into
14728gcda files.  This setting makes it possible to run multiple instances of
14729instrumented program in parallel (such as with @code{make -j}). This
14730reduces quality of gathered data, in particular of indirect call
14731profiling.
14732
14733@item -fsanitize=address
14734@opindex fsanitize=address
14735Enable AddressSanitizer, a fast memory error detector.
14736Memory access instructions are instrumented to detect
14737out-of-bounds and use-after-free bugs.
14738The option enables @option{-fsanitize-address-use-after-scope}.
14739See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
14740more details.  The run-time behavior can be influenced using the
14741@env{ASAN_OPTIONS} environment variable.  When set to @code{help=1},
14742the available options are shown at startup of the instrumented program.  See
14743@url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
14744for a list of supported options.
14745The option cannot be combined with @option{-fsanitize=thread} or
14746@option{-fsanitize=hwaddress}.  Note that the only target
14747@option{-fsanitize=hwaddress} is currently supported on is AArch64.
14748
14749@item -fsanitize=kernel-address
14750@opindex fsanitize=kernel-address
14751Enable AddressSanitizer for Linux kernel.
14752See @uref{https://github.com/google/kasan} for more details.
14753
14754@item -fsanitize=hwaddress
14755@opindex fsanitize=hwaddress
14756Enable Hardware-assisted AddressSanitizer, which uses a hardware ability to
14757ignore the top byte of a pointer to allow the detection of memory errors with
14758a low memory overhead.
14759Memory access instructions are instrumented to detect out-of-bounds and
14760use-after-free bugs.
14761The option enables @option{-fsanitize-address-use-after-scope}.
14762See
14763@uref{https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html}
14764for more details.  The run-time behavior can be influenced using the
14765@env{HWASAN_OPTIONS} environment variable.  When set to @code{help=1},
14766the available options are shown at startup of the instrumented program.
14767The option cannot be combined with @option{-fsanitize=thread} or
14768@option{-fsanitize=address}, and is currently only available on AArch64.
14769
14770@item -fsanitize=kernel-hwaddress
14771@opindex fsanitize=kernel-hwaddress
14772Enable Hardware-assisted AddressSanitizer for compilation of the Linux kernel.
14773Similar to @option{-fsanitize=kernel-address} but using an alternate
14774instrumentation method, and similar to @option{-fsanitize=hwaddress} but with
14775instrumentation differences necessary for compiling the Linux kernel.
14776These differences are to avoid hwasan library initialization calls and to
14777account for the stack pointer having a different value in its top byte.
14778
14779@emph{Note:} This option has different defaults to the @option{-fsanitize=hwaddress}.
14780Instrumenting the stack and alloca calls are not on by default but are still
14781possible by specifying the command-line options
14782@option{--param hwasan-instrument-stack=1} and
14783@option{--param hwasan-instrument-allocas=1} respectively. Using a random frame
14784tag is not implemented for kernel instrumentation.
14785
14786@item -fsanitize=pointer-compare
14787@opindex fsanitize=pointer-compare
14788Instrument comparison operation (<, <=, >, >=) with pointer operands.
14789The option must be combined with either @option{-fsanitize=kernel-address} or
14790@option{-fsanitize=address}
14791The option cannot be combined with @option{-fsanitize=thread}.
14792Note: By default the check is disabled at run time.  To enable it,
14793add @code{detect_invalid_pointer_pairs=2} to the environment variable
14794@env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
14795invalid operation only when both pointers are non-null.
14796
14797@item -fsanitize=pointer-subtract
14798@opindex fsanitize=pointer-subtract
14799Instrument subtraction with pointer operands.
14800The option must be combined with either @option{-fsanitize=kernel-address} or
14801@option{-fsanitize=address}
14802The option cannot be combined with @option{-fsanitize=thread}.
14803Note: By default the check is disabled at run time.  To enable it,
14804add @code{detect_invalid_pointer_pairs=2} to the environment variable
14805@env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
14806invalid operation only when both pointers are non-null.
14807
14808@item -fsanitize=thread
14809@opindex fsanitize=thread
14810Enable ThreadSanitizer, a fast data race detector.
14811Memory access instructions are instrumented to detect
14812data race bugs.  See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
14813details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
14814environment variable; see
14815@url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
14816supported options.
14817The option cannot be combined with @option{-fsanitize=address},
14818@option{-fsanitize=leak}.
14819
14820Note that sanitized atomic builtins cannot throw exceptions when
14821operating on invalid memory addresses with non-call exceptions
14822(@option{-fnon-call-exceptions}).
14823
14824@item -fsanitize=leak
14825@opindex fsanitize=leak
14826Enable LeakSanitizer, a memory leak detector.
14827This option only matters for linking of executables and
14828the executable is linked against a library that overrides @code{malloc}
14829and other allocator functions.  See
14830@uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
14831details.  The run-time behavior can be influenced using the
14832@env{LSAN_OPTIONS} environment variable.
14833The option cannot be combined with @option{-fsanitize=thread}.
14834
14835@item -fsanitize=undefined
14836@opindex fsanitize=undefined
14837Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
14838Various computations are instrumented to detect undefined behavior
14839at runtime.  Current suboptions are:
14840
14841@table @gcctabopt
14842
14843@item -fsanitize=shift
14844@opindex fsanitize=shift
14845This option enables checking that the result of a shift operation is
14846not undefined.  Note that what exactly is considered undefined differs
14847slightly between C and C++, as well as between ISO C90 and C99, etc.
14848This option has two suboptions, @option{-fsanitize=shift-base} and
14849@option{-fsanitize=shift-exponent}.
14850
14851@item -fsanitize=shift-exponent
14852@opindex fsanitize=shift-exponent
14853This option enables checking that the second argument of a shift operation
14854is not negative and is smaller than the precision of the promoted first
14855argument.
14856
14857@item -fsanitize=shift-base
14858@opindex fsanitize=shift-base
14859If the second argument of a shift operation is within range, check that the
14860result of a shift operation is not undefined.  Note that what exactly is
14861considered undefined differs slightly between C and C++, as well as between
14862ISO C90 and C99, etc.
14863
14864@item -fsanitize=integer-divide-by-zero
14865@opindex fsanitize=integer-divide-by-zero
14866Detect integer division by zero as well as @code{INT_MIN / -1} division.
14867
14868@item -fsanitize=unreachable
14869@opindex fsanitize=unreachable
14870With this option, the compiler turns the @code{__builtin_unreachable}
14871call into a diagnostics message call instead.  When reaching the
14872@code{__builtin_unreachable} call, the behavior is undefined.
14873
14874@item -fsanitize=vla-bound
14875@opindex fsanitize=vla-bound
14876This option instructs the compiler to check that the size of a variable
14877length array is positive.
14878
14879@item -fsanitize=null
14880@opindex fsanitize=null
14881This option enables pointer checking.  Particularly, the application
14882built with this option turned on will issue an error message when it
14883tries to dereference a NULL pointer, or if a reference (possibly an
14884rvalue reference) is bound to a NULL pointer, or if a method is invoked
14885on an object pointed by a NULL pointer.
14886
14887@item -fsanitize=return
14888@opindex fsanitize=return
14889This option enables return statement checking.  Programs
14890built with this option turned on will issue an error message
14891when the end of a non-void function is reached without actually
14892returning a value.  This option works in C++ only.
14893
14894@item -fsanitize=signed-integer-overflow
14895@opindex fsanitize=signed-integer-overflow
14896This option enables signed integer overflow checking.  We check that
14897the result of @code{+}, @code{*}, and both unary and binary @code{-}
14898does not overflow in the signed arithmetics.  Note, integer promotion
14899rules must be taken into account.  That is, the following is not an
14900overflow:
14901@smallexample
14902signed char a = SCHAR_MAX;
14903a++;
14904@end smallexample
14905
14906@item -fsanitize=bounds
14907@opindex fsanitize=bounds
14908This option enables instrumentation of array bounds.  Various out of bounds
14909accesses are detected.  Flexible array members, flexible array member-like
14910arrays, and initializers of variables with static storage are not instrumented.
14911
14912@item -fsanitize=bounds-strict
14913@opindex fsanitize=bounds-strict
14914This option enables strict instrumentation of array bounds.  Most out of bounds
14915accesses are detected, including flexible array members and flexible array
14916member-like arrays.  Initializers of variables with static storage are not
14917instrumented.
14918
14919@item -fsanitize=alignment
14920@opindex fsanitize=alignment
14921
14922This option enables checking of alignment of pointers when they are
14923dereferenced, or when a reference is bound to insufficiently aligned target,
14924or when a method or constructor is invoked on insufficiently aligned object.
14925
14926@item -fsanitize=object-size
14927@opindex fsanitize=object-size
14928This option enables instrumentation of memory references using the
14929@code{__builtin_object_size} function.  Various out of bounds pointer
14930accesses are detected.
14931
14932@item -fsanitize=float-divide-by-zero
14933@opindex fsanitize=float-divide-by-zero
14934Detect floating-point division by zero.  Unlike other similar options,
14935@option{-fsanitize=float-divide-by-zero} is not enabled by
14936@option{-fsanitize=undefined}, since floating-point division by zero can
14937be a legitimate way of obtaining infinities and NaNs.
14938
14939@item -fsanitize=float-cast-overflow
14940@opindex fsanitize=float-cast-overflow
14941This option enables floating-point type to integer conversion checking.
14942We check that the result of the conversion does not overflow.
14943Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
14944not enabled by @option{-fsanitize=undefined}.
14945This option does not work well with @code{FE_INVALID} exceptions enabled.
14946
14947@item -fsanitize=nonnull-attribute
14948@opindex fsanitize=nonnull-attribute
14949
14950This option enables instrumentation of calls, checking whether null values
14951are not passed to arguments marked as requiring a non-null value by the
14952@code{nonnull} function attribute.
14953
14954@item -fsanitize=returns-nonnull-attribute
14955@opindex fsanitize=returns-nonnull-attribute
14956
14957This option enables instrumentation of return statements in functions
14958marked with @code{returns_nonnull} function attribute, to detect returning
14959of null values from such functions.
14960
14961@item -fsanitize=bool
14962@opindex fsanitize=bool
14963
14964This option enables instrumentation of loads from bool.  If a value other
14965than 0/1 is loaded, a run-time error is issued.
14966
14967@item -fsanitize=enum
14968@opindex fsanitize=enum
14969
14970This option enables instrumentation of loads from an enum type.  If
14971a value outside the range of values for the enum type is loaded,
14972a run-time error is issued.
14973
14974@item -fsanitize=vptr
14975@opindex fsanitize=vptr
14976
14977This option enables instrumentation of C++ member function calls, member
14978accesses and some conversions between pointers to base and derived classes,
14979to verify the referenced object has the correct dynamic type.
14980
14981@item -fsanitize=pointer-overflow
14982@opindex fsanitize=pointer-overflow
14983
14984This option enables instrumentation of pointer arithmetics.  If the pointer
14985arithmetics overflows, a run-time error is issued.
14986
14987@item -fsanitize=builtin
14988@opindex fsanitize=builtin
14989
14990This option enables instrumentation of arguments to selected builtin
14991functions.  If an invalid value is passed to such arguments, a run-time
14992error is issued.  E.g.@ passing 0 as the argument to @code{__builtin_ctz}
14993or @code{__builtin_clz} invokes undefined behavior and is diagnosed
14994by this option.
14995
14996@end table
14997
14998While @option{-ftrapv} causes traps for signed overflows to be emitted,
14999@option{-fsanitize=undefined} gives a diagnostic message.
15000This currently works only for the C family of languages.
15001
15002@item -fno-sanitize=all
15003@opindex fno-sanitize=all
15004
15005This option disables all previously enabled sanitizers.
15006@option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
15007together.
15008
15009@item -fasan-shadow-offset=@var{number}
15010@opindex fasan-shadow-offset
15011This option forces GCC to use custom shadow offset in AddressSanitizer checks.
15012It is useful for experimenting with different shadow memory layouts in
15013Kernel AddressSanitizer.
15014
15015@item -fsanitize-sections=@var{s1},@var{s2},...
15016@opindex fsanitize-sections
15017Sanitize global variables in selected user-defined sections.  @var{si} may
15018contain wildcards.
15019
15020@item -fsanitize-recover@r{[}=@var{opts}@r{]}
15021@opindex fsanitize-recover
15022@opindex fno-sanitize-recover
15023@option{-fsanitize-recover=} controls error recovery mode for sanitizers
15024mentioned in comma-separated list of @var{opts}.  Enabling this option
15025for a sanitizer component causes it to attempt to continue
15026running the program as if no error happened.  This means multiple
15027runtime errors can be reported in a single program run, and the exit
15028code of the program may indicate success even when errors
15029have been reported.  The @option{-fno-sanitize-recover=} option
15030can be used to alter
15031this behavior: only the first detected error is reported
15032and program then exits with a non-zero exit code.
15033
15034Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
15035except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
15036@option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
15037@option{-fsanitize=bounds-strict},
15038@option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
15039For these sanitizers error recovery is turned on by default,
15040except @option{-fsanitize=address}, for which this feature is experimental.
15041@option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
15042accepted, the former enables recovery for all sanitizers that support it,
15043the latter disables recovery for all sanitizers that support it.
15044
15045Even if a recovery mode is turned on the compiler side, it needs to be also
15046enabled on the runtime library side, otherwise the failures are still fatal.
15047The runtime library defaults to @code{halt_on_error=0} for
15048ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
15049AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
15050setting the @code{halt_on_error} flag in the corresponding environment variable.
15051
15052Syntax without an explicit @var{opts} parameter is deprecated.  It is
15053equivalent to specifying an @var{opts} list of:
15054
15055@smallexample
15056undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
15057@end smallexample
15058
15059@item -fsanitize-address-use-after-scope
15060@opindex fsanitize-address-use-after-scope
15061Enable sanitization of local variables to detect use-after-scope bugs.
15062The option sets @option{-fstack-reuse} to @samp{none}.
15063
15064@item -fsanitize-undefined-trap-on-error
15065@opindex fsanitize-undefined-trap-on-error
15066The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
15067report undefined behavior using @code{__builtin_trap} rather than
15068a @code{libubsan} library routine.  The advantage of this is that the
15069@code{libubsan} library is not needed and is not linked in, so this
15070is usable even in freestanding environments.
15071
15072@item -fsanitize-coverage=trace-pc
15073@opindex fsanitize-coverage=trace-pc
15074Enable coverage-guided fuzzing code instrumentation.
15075Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
15076
15077@item -fsanitize-coverage=trace-cmp
15078@opindex fsanitize-coverage=trace-cmp
15079Enable dataflow guided fuzzing code instrumentation.
15080Inserts a call to @code{__sanitizer_cov_trace_cmp1},
15081@code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
15082@code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
15083variable or @code{__sanitizer_cov_trace_const_cmp1},
15084@code{__sanitizer_cov_trace_const_cmp2},
15085@code{__sanitizer_cov_trace_const_cmp4} or
15086@code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
15087operand constant, @code{__sanitizer_cov_trace_cmpf} or
15088@code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
15089@code{__sanitizer_cov_trace_switch} for switch statements.
15090
15091@item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{|}check@r{]}
15092@opindex fcf-protection
15093Enable code instrumentation of control-flow transfers to increase
15094program security by checking that target addresses of control-flow
15095transfer instructions (such as indirect function call, function return,
15096indirect jump) are valid.  This prevents diverting the flow of control
15097to an unexpected target.  This is intended to protect against such
15098threats as Return-oriented Programming (ROP), and similarly
15099call/jmp-oriented programming (COP/JOP).
15100
15101The value @code{branch} tells the compiler to implement checking of
15102validity of control-flow transfer at the point of indirect branch
15103instructions, i.e.@: call/jmp instructions.  The value @code{return}
15104implements checking of validity at the point of returning from a
15105function.  The value @code{full} is an alias for specifying both
15106@code{branch} and @code{return}. The value @code{none} turns off
15107instrumentation.
15108
15109The value @code{check} is used for the final link with link-time
15110optimization (LTO).  An error is issued if LTO object files are
15111compiled with different @option{-fcf-protection} values.  The
15112value @code{check} is ignored at the compile time.
15113
15114The macro @code{__CET__} is defined when @option{-fcf-protection} is
15115used.  The first bit of @code{__CET__} is set to 1 for the value
15116@code{branch} and the second bit of @code{__CET__} is set to 1 for
15117the @code{return}.
15118
15119You can also use the @code{nocf_check} attribute to identify
15120which functions and calls should be skipped from instrumentation
15121(@pxref{Function Attributes}).
15122
15123Currently the x86 GNU/Linux target provides an implementation based
15124on Intel Control-flow Enforcement Technology (CET).
15125
15126@item -fstack-protector
15127@opindex fstack-protector
15128Emit extra code to check for buffer overflows, such as stack smashing
15129attacks.  This is done by adding a guard variable to functions with
15130vulnerable objects.  This includes functions that call @code{alloca}, and
15131functions with buffers larger than or equal to 8 bytes.  The guards are
15132initialized when a function is entered and then checked when the function
15133exits.  If a guard check fails, an error message is printed and the program
15134exits.  Only variables that are actually allocated on the stack are
15135considered, optimized away variables or variables allocated in registers
15136don't count.
15137
15138@item -fstack-protector-all
15139@opindex fstack-protector-all
15140Like @option{-fstack-protector} except that all functions are protected.
15141
15142@item -fstack-protector-strong
15143@opindex fstack-protector-strong
15144Like @option{-fstack-protector} but includes additional functions to
15145be protected --- those that have local array definitions, or have
15146references to local frame addresses.  Only variables that are actually
15147allocated on the stack are considered, optimized away variables or variables
15148allocated in registers don't count.
15149
15150@item -fstack-protector-explicit
15151@opindex fstack-protector-explicit
15152Like @option{-fstack-protector} but only protects those functions which
15153have the @code{stack_protect} attribute.
15154
15155@item -fstack-check
15156@opindex fstack-check
15157Generate code to verify that you do not go beyond the boundary of the
15158stack.  You should specify this flag if you are running in an
15159environment with multiple threads, but you only rarely need to specify it in
15160a single-threaded environment since stack overflow is automatically
15161detected on nearly all systems if there is only one stack.
15162
15163Note that this switch does not actually cause checking to be done; the
15164operating system or the language runtime must do that.  The switch causes
15165generation of code to ensure that they see the stack being extended.
15166
15167You can additionally specify a string parameter: @samp{no} means no
15168checking, @samp{generic} means force the use of old-style checking,
15169@samp{specific} means use the best checking method and is equivalent
15170to bare @option{-fstack-check}.
15171
15172Old-style checking is a generic mechanism that requires no specific
15173target support in the compiler but comes with the following drawbacks:
15174
15175@enumerate
15176@item
15177Modified allocation strategy for large objects: they are always
15178allocated dynamically if their size exceeds a fixed threshold.  Note this
15179may change the semantics of some code.
15180
15181@item
15182Fixed limit on the size of the static frame of functions: when it is
15183topped by a particular function, stack checking is not reliable and
15184a warning is issued by the compiler.
15185
15186@item
15187Inefficiency: because of both the modified allocation strategy and the
15188generic implementation, code performance is hampered.
15189@end enumerate
15190
15191Note that old-style stack checking is also the fallback method for
15192@samp{specific} if no target support has been added in the compiler.
15193
15194@samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
15195and stack overflows.  @samp{specific} is an excellent choice when compiling
15196Ada code.  It is not generally sufficient to protect against stack-clash
15197attacks.  To protect against those you want @samp{-fstack-clash-protection}.
15198
15199@item -fstack-clash-protection
15200@opindex fstack-clash-protection
15201Generate code to prevent stack clash style attacks.  When this option is
15202enabled, the compiler will only allocate one page of stack space at a time
15203and each page is accessed immediately after allocation.  Thus, it prevents
15204allocations from jumping over any stack guard page provided by the
15205operating system.
15206
15207Most targets do not fully support stack clash protection.  However, on
15208those targets @option{-fstack-clash-protection} will protect dynamic stack
15209allocations.  @option{-fstack-clash-protection} may also provide limited
15210protection for static stack allocations if the target supports
15211@option{-fstack-check=specific}.
15212
15213@item -fstack-limit-register=@var{reg}
15214@itemx -fstack-limit-symbol=@var{sym}
15215@itemx -fno-stack-limit
15216@opindex fstack-limit-register
15217@opindex fstack-limit-symbol
15218@opindex fno-stack-limit
15219Generate code to ensure that the stack does not grow beyond a certain value,
15220either the value of a register or the address of a symbol.  If a larger
15221stack is required, a signal is raised at run time.  For most targets,
15222the signal is raised before the stack overruns the boundary, so
15223it is possible to catch the signal without taking special precautions.
15224
15225For instance, if the stack starts at absolute address @samp{0x80000000}
15226and grows downwards, you can use the flags
15227@option{-fstack-limit-symbol=__stack_limit} and
15228@option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
15229of 128KB@.  Note that this may only work with the GNU linker.
15230
15231You can locally override stack limit checking by using the
15232@code{no_stack_limit} function attribute (@pxref{Function Attributes}).
15233
15234@item -fsplit-stack
15235@opindex fsplit-stack
15236Generate code to automatically split the stack before it overflows.
15237The resulting program has a discontiguous stack which can only
15238overflow if the program is unable to allocate any more memory.  This
15239is most useful when running threaded programs, as it is no longer
15240necessary to calculate a good stack size to use for each thread.  This
15241is currently only implemented for the x86 targets running
15242GNU/Linux.
15243
15244When code compiled with @option{-fsplit-stack} calls code compiled
15245without @option{-fsplit-stack}, there may not be much stack space
15246available for the latter code to run.  If compiling all code,
15247including library code, with @option{-fsplit-stack} is not an option,
15248then the linker can fix up these calls so that the code compiled
15249without @option{-fsplit-stack} always has a large stack.  Support for
15250this is implemented in the gold linker in GNU binutils release 2.21
15251and later.
15252
15253@item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
15254@opindex fvtable-verify
15255This option is only available when compiling C++ code.
15256It turns on (or off, if using @option{-fvtable-verify=none}) the security
15257feature that verifies at run time, for every virtual call, that
15258the vtable pointer through which the call is made is valid for the type of
15259the object, and has not been corrupted or overwritten.  If an invalid vtable
15260pointer is detected at run time, an error is reported and execution of the
15261program is immediately halted.
15262
15263This option causes run-time data structures to be built at program startup,
15264which are used for verifying the vtable pointers.
15265The options @samp{std} and @samp{preinit}
15266control the timing of when these data structures are built.  In both cases the
15267data structures are built before execution reaches @code{main}.  Using
15268@option{-fvtable-verify=std} causes the data structures to be built after
15269shared libraries have been loaded and initialized.
15270@option{-fvtable-verify=preinit} causes them to be built before shared
15271libraries have been loaded and initialized.
15272
15273If this option appears multiple times in the command line with different
15274values specified, @samp{none} takes highest priority over both @samp{std} and
15275@samp{preinit}; @samp{preinit} takes priority over @samp{std}.
15276
15277@item -fvtv-debug
15278@opindex fvtv-debug
15279When used in conjunction with @option{-fvtable-verify=std} or
15280@option{-fvtable-verify=preinit}, causes debug versions of the
15281runtime functions for the vtable verification feature to be called.
15282This flag also causes the compiler to log information about which
15283vtable pointers it finds for each class.
15284This information is written to a file named @file{vtv_set_ptr_data.log}
15285in the directory named by the environment variable @env{VTV_LOGS_DIR}
15286if that is defined or the current working directory otherwise.
15287
15288Note:  This feature @emph{appends} data to the log file. If you want a fresh log
15289file, be sure to delete any existing one.
15290
15291@item -fvtv-counts
15292@opindex fvtv-counts
15293This is a debugging flag.  When used in conjunction with
15294@option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
15295causes the compiler to keep track of the total number of virtual calls
15296it encounters and the number of verifications it inserts.  It also
15297counts the number of calls to certain run-time library functions
15298that it inserts and logs this information for each compilation unit.
15299The compiler writes this information to a file named
15300@file{vtv_count_data.log} in the directory named by the environment
15301variable @env{VTV_LOGS_DIR} if that is defined or the current working
15302directory otherwise.  It also counts the size of the vtable pointer sets
15303for each class, and writes this information to @file{vtv_class_set_sizes.log}
15304in the same directory.
15305
15306Note:  This feature @emph{appends} data to the log files.  To get fresh log
15307files, be sure to delete any existing ones.
15308
15309@item -finstrument-functions
15310@opindex finstrument-functions
15311Generate instrumentation calls for entry and exit to functions.  Just
15312after function entry and just before function exit, the following
15313profiling functions are called with the address of the current
15314function and its call site.  (On some platforms,
15315@code{__builtin_return_address} does not work beyond the current
15316function, so the call site information may not be available to the
15317profiling functions otherwise.)
15318
15319@smallexample
15320void __cyg_profile_func_enter (void *this_fn,
15321                               void *call_site);
15322void __cyg_profile_func_exit  (void *this_fn,
15323                               void *call_site);
15324@end smallexample
15325
15326The first argument is the address of the start of the current function,
15327which may be looked up exactly in the symbol table.
15328
15329This instrumentation is also done for functions expanded inline in other
15330functions.  The profiling calls indicate where, conceptually, the
15331inline function is entered and exited.  This means that addressable
15332versions of such functions must be available.  If all your uses of a
15333function are expanded inline, this may mean an additional expansion of
15334code size.  If you use @code{extern inline} in your C code, an
15335addressable version of such functions must be provided.  (This is
15336normally the case anyway, but if you get lucky and the optimizer always
15337expands the functions inline, you might have gotten away without
15338providing static copies.)
15339
15340A function may be given the attribute @code{no_instrument_function}, in
15341which case this instrumentation is not done.  This can be used, for
15342example, for the profiling functions listed above, high-priority
15343interrupt routines, and any functions from which the profiling functions
15344cannot safely be called (perhaps signal handlers, if the profiling
15345routines generate output or allocate memory).
15346@xref{Common Function Attributes}.
15347
15348@item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
15349@opindex finstrument-functions-exclude-file-list
15350
15351Set the list of functions that are excluded from instrumentation (see
15352the description of @option{-finstrument-functions}).  If the file that
15353contains a function definition matches with one of @var{file}, then
15354that function is not instrumented.  The match is done on substrings:
15355if the @var{file} parameter is a substring of the file name, it is
15356considered to be a match.
15357
15358For example:
15359
15360@smallexample
15361-finstrument-functions-exclude-file-list=/bits/stl,include/sys
15362@end smallexample
15363
15364@noindent
15365excludes any inline function defined in files whose pathnames
15366contain @file{/bits/stl} or @file{include/sys}.
15367
15368If, for some reason, you want to include letter @samp{,} in one of
15369@var{sym}, write @samp{\,}. For example,
15370@option{-finstrument-functions-exclude-file-list='\,\,tmp'}
15371(note the single quote surrounding the option).
15372
15373@item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
15374@opindex finstrument-functions-exclude-function-list
15375
15376This is similar to @option{-finstrument-functions-exclude-file-list},
15377but this option sets the list of function names to be excluded from
15378instrumentation.  The function name to be matched is its user-visible
15379name, such as @code{vector<int> blah(const vector<int> &)}, not the
15380internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}).  The
15381match is done on substrings: if the @var{sym} parameter is a substring
15382of the function name, it is considered to be a match.  For C99 and C++
15383extended identifiers, the function name must be given in UTF-8, not
15384using universal character names.
15385
15386@item -fpatchable-function-entry=@var{N}[,@var{M}]
15387@opindex fpatchable-function-entry
15388Generate @var{N} NOPs right at the beginning
15389of each function, with the function entry point before the @var{M}th NOP.
15390If @var{M} is omitted, it defaults to @code{0} so the
15391function entry points to the address just at the first NOP.
15392The NOP instructions reserve extra space which can be used to patch in
15393any desired instrumentation at run time, provided that the code segment
15394is writable.  The amount of space is controllable indirectly via
15395the number of NOPs; the NOP instruction used corresponds to the instruction
15396emitted by the internal GCC back-end interface @code{gen_nop}.  This behavior
15397is target-specific and may also depend on the architecture variant and/or
15398other compilation options.
15399
15400For run-time identification, the starting addresses of these areas,
15401which correspond to their respective function entries minus @var{M},
15402are additionally collected in the @code{__patchable_function_entries}
15403section of the resulting binary.
15404
15405Note that the value of @code{__attribute__ ((patchable_function_entry
15406(N,M)))} takes precedence over command-line option
15407@option{-fpatchable-function-entry=N,M}.  This can be used to increase
15408the area size or to remove it completely on a single function.
15409If @code{N=0}, no pad location is recorded.
15410
15411The NOP instructions are inserted at---and maybe before, depending on
15412@var{M}---the function entry address, even before the prologue.
15413
15414The maximum value of @var{N} and @var{M} is 65535.
15415@end table
15416
15417
15418@node Preprocessor Options
15419@section Options Controlling the Preprocessor
15420@cindex preprocessor options
15421@cindex options, preprocessor
15422
15423These options control the C preprocessor, which is run on each C source
15424file before actual compilation.
15425
15426If you use the @option{-E} option, nothing is done except preprocessing.
15427Some of these options make sense only together with @option{-E} because
15428they cause the preprocessor output to be unsuitable for actual
15429compilation.
15430
15431In addition to the options listed here, there are a number of options
15432to control search paths for include files documented in
15433@ref{Directory Options}.
15434Options to control preprocessor diagnostics are listed in
15435@ref{Warning Options}.
15436
15437@table @gcctabopt
15438@include cppopts.texi
15439
15440@item -Wp,@var{option}
15441@opindex Wp
15442You can use @option{-Wp,@var{option}} to bypass the compiler driver
15443and pass @var{option} directly through to the preprocessor.  If
15444@var{option} contains commas, it is split into multiple options at the
15445commas.  However, many options are modified, translated or interpreted
15446by the compiler driver before being passed to the preprocessor, and
15447@option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
15448interface is undocumented and subject to change, so whenever possible
15449you should avoid using @option{-Wp} and let the driver handle the
15450options instead.
15451
15452@item -Xpreprocessor @var{option}
15453@opindex Xpreprocessor
15454Pass @var{option} as an option to the preprocessor.  You can use this to
15455supply system-specific preprocessor options that GCC does not
15456recognize.
15457
15458If you want to pass an option that takes an argument, you must use
15459@option{-Xpreprocessor} twice, once for the option and once for the argument.
15460
15461@item -no-integrated-cpp
15462@opindex no-integrated-cpp
15463Perform preprocessing as a separate pass before compilation.
15464By default, GCC performs preprocessing as an integrated part of
15465input tokenization and parsing.
15466If this option is provided, the appropriate language front end
15467(@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
15468and Objective-C, respectively) is instead invoked twice,
15469once for preprocessing only and once for actual compilation
15470of the preprocessed input.
15471This option may be useful in conjunction with the @option{-B} or
15472@option{-wrapper} options to specify an alternate preprocessor or
15473perform additional processing of the program source between
15474normal preprocessing and compilation.
15475
15476@item -flarge-source-files
15477@opindex flarge-source-files
15478Adjust GCC to expect large source files, at the expense of slower
15479compilation and higher memory usage.
15480
15481Specifically, GCC normally tracks both column numbers and line numbers
15482within source files and it normally prints both of these numbers in
15483diagnostics.  However, once it has processed a certain number of source
15484lines, it stops tracking column numbers and only tracks line numbers.
15485This means that diagnostics for later lines do not include column numbers.
15486It also means that options like @option{-Wmisleading-indentation} cease to work
15487at that point, although the compiler prints a note if this happens.
15488Passing @option{-flarge-source-files} significantly increases the number
15489of source lines that GCC can process before it stops tracking columns.
15490
15491@end table
15492
15493@node Assembler Options
15494@section Passing Options to the Assembler
15495
15496@c prevent bad page break with this line
15497You can pass options to the assembler.
15498
15499@table @gcctabopt
15500@item -Wa,@var{option}
15501@opindex Wa
15502Pass @var{option} as an option to the assembler.  If @var{option}
15503contains commas, it is split into multiple options at the commas.
15504
15505@item -Xassembler @var{option}
15506@opindex Xassembler
15507Pass @var{option} as an option to the assembler.  You can use this to
15508supply system-specific assembler options that GCC does not
15509recognize.
15510
15511If you want to pass an option that takes an argument, you must use
15512@option{-Xassembler} twice, once for the option and once for the argument.
15513
15514@end table
15515
15516@node Link Options
15517@section Options for Linking
15518@cindex link options
15519@cindex options, linking
15520
15521These options come into play when the compiler links object files into
15522an executable output file.  They are meaningless if the compiler is
15523not doing a link step.
15524
15525@table @gcctabopt
15526@cindex file names
15527@item @var{object-file-name}
15528A file name that does not end in a special recognized suffix is
15529considered to name an object file or library.  (Object files are
15530distinguished from libraries by the linker according to the file
15531contents.)  If linking is done, these object files are used as input
15532to the linker.
15533
15534@item -c
15535@itemx -S
15536@itemx -E
15537@opindex c
15538@opindex S
15539@opindex E
15540If any of these options is used, then the linker is not run, and
15541object file names should not be used as arguments.  @xref{Overall
15542Options}.
15543
15544@item -flinker-output=@var{type}
15545@opindex flinker-output
15546This option controls code generation of the link-time optimizer.  By
15547default the linker output is automatically determined by the linker
15548plugin.  For debugging the compiler and if incremental linking with a
15549non-LTO object file is desired, it may be useful to control the type
15550manually.
15551
15552If @var{type} is @samp{exec}, code generation produces a static
15553binary. In this case @option{-fpic} and @option{-fpie} are both
15554disabled.
15555
15556If @var{type} is @samp{dyn}, code generation produces a shared
15557library.  In this case @option{-fpic} or @option{-fPIC} is preserved,
15558but not enabled automatically.  This allows to build shared libraries
15559without position-independent code on architectures where this is
15560possible, i.e.@: on x86.
15561
15562If @var{type} is @samp{pie}, code generation produces an @option{-fpie}
15563executable. This results in similar optimizations as @samp{exec}
15564except that @option{-fpie} is not disabled if specified at compilation
15565time.
15566
15567If @var{type} is @samp{rel}, the compiler assumes that incremental linking is
15568done.  The sections containing intermediate code for link-time optimization are
15569merged, pre-optimized, and output to the resulting object file. In addition, if
15570@option{-ffat-lto-objects} is specified, binary code is produced for future
15571non-LTO linking. The object file produced by incremental linking is smaller
15572than a static library produced from the same object files.  At link time the
15573result of incremental linking also loads faster than a static
15574library assuming that the majority of objects in the library are used.
15575
15576Finally @samp{nolto-rel} configures the compiler for incremental linking where
15577code generation is forced, a final binary is produced, and the intermediate
15578code for later link-time optimization is stripped. When multiple object files
15579are linked together the resulting code is better optimized than with
15580link-time optimizations disabled (for example, cross-module inlining
15581happens), but most of benefits of whole program optimizations are lost.
15582
15583During the incremental link (by @option{-r}) the linker plugin defaults to
15584@option{rel}. With current interfaces to GNU Binutils it is however not
15585possible to incrementally link LTO objects and non-LTO objects into a single
15586mixed object file.  If any of object files in incremental link cannot
15587be used for link-time optimization, the linker plugin issues a warning and
15588uses @samp{nolto-rel}. To maintain whole program optimization, it is
15589recommended to link such objects into static library instead. Alternatively it
15590is possible to use H.J. Lu's binutils with support for mixed objects.
15591
15592@item -fuse-ld=bfd
15593@opindex fuse-ld=bfd
15594Use the @command{bfd} linker instead of the default linker.
15595
15596@item -fuse-ld=gold
15597@opindex fuse-ld=gold
15598Use the @command{gold} linker instead of the default linker.
15599
15600@item -fuse-ld=lld
15601@opindex fuse-ld=lld
15602Use the LLVM @command{lld} linker instead of the default linker.
15603
15604@cindex Libraries
15605@item -l@var{library}
15606@itemx -l @var{library}
15607@opindex l
15608Search the library named @var{library} when linking.  (The second
15609alternative with the library as a separate argument is only for
15610POSIX compliance and is not recommended.)
15611
15612The @option{-l} option is passed directly to the linker by GCC.  Refer
15613to your linker documentation for exact details.  The general
15614description below applies to the GNU linker.
15615
15616The linker searches a standard list of directories for the library.
15617The directories searched include several standard system directories
15618plus any that you specify with @option{-L}.
15619
15620Static libraries are archives of object files, and have file names
15621like @file{lib@var{library}.a}.  Some targets also support shared
15622libraries, which typically have names like @file{lib@var{library}.so}.
15623If both static and shared libraries are found, the linker gives
15624preference to linking with the shared library unless the
15625@option{-static} option is used.
15626
15627It makes a difference where in the command you write this option; the
15628linker searches and processes libraries and object files in the order they
15629are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
15630after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
15631to functions in @samp{z}, those functions may not be loaded.
15632
15633@item -lobjc
15634@opindex lobjc
15635You need this special case of the @option{-l} option in order to
15636link an Objective-C or Objective-C++ program.
15637
15638@item -nostartfiles
15639@opindex nostartfiles
15640Do not use the standard system startup files when linking.
15641The standard system libraries are used normally, unless @option{-nostdlib},
15642@option{-nolibc}, or @option{-nodefaultlibs} is used.
15643
15644@item -nodefaultlibs
15645@opindex nodefaultlibs
15646Do not use the standard system libraries when linking.
15647Only the libraries you specify are passed to the linker, and options
15648specifying linkage of the system libraries, such as @option{-static-libgcc}
15649or @option{-shared-libgcc}, are ignored.
15650The standard startup files are used normally, unless @option{-nostartfiles}
15651is used.
15652
15653The compiler may generate calls to @code{memcmp},
15654@code{memset}, @code{memcpy} and @code{memmove}.
15655These entries are usually resolved by entries in
15656libc.  These entry points should be supplied through some other
15657mechanism when this option is specified.
15658
15659@item -nolibc
15660@opindex nolibc
15661Do not use the C library or system libraries tightly coupled with it when
15662linking.  Still link with the startup files, @file{libgcc} or toolchain
15663provided language support libraries such as @file{libgnat}, @file{libgfortran}
15664or @file{libstdc++} unless options preventing their inclusion are used as
15665well.  This typically removes @option{-lc} from the link command line, as well
15666as system libraries that normally go with it and become meaningless when
15667absence of a C library is assumed, for example @option{-lpthread} or
15668@option{-lm} in some configurations.  This is intended for bare-board
15669targets when there is indeed no C library available.
15670
15671@item -nostdlib
15672@opindex nostdlib
15673Do not use the standard system startup files or libraries when linking.
15674No startup files and only the libraries you specify are passed to
15675the linker, and options specifying linkage of the system libraries, such as
15676@option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
15677
15678The compiler may generate calls to @code{memcmp}, @code{memset},
15679@code{memcpy} and @code{memmove}.
15680These entries are usually resolved by entries in
15681libc.  These entry points should be supplied through some other
15682mechanism when this option is specified.
15683
15684@cindex @option{-lgcc}, use with @option{-nostdlib}
15685@cindex @option{-nostdlib} and unresolved references
15686@cindex unresolved references and @option{-nostdlib}
15687@cindex @option{-lgcc}, use with @option{-nodefaultlibs}
15688@cindex @option{-nodefaultlibs} and unresolved references
15689@cindex unresolved references and @option{-nodefaultlibs}
15690One of the standard libraries bypassed by @option{-nostdlib} and
15691@option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
15692which GCC uses to overcome shortcomings of particular machines, or special
15693needs for some languages.
15694(@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
15695Collection (GCC) Internals},
15696for more discussion of @file{libgcc.a}.)
15697In most cases, you need @file{libgcc.a} even when you want to avoid
15698other standard libraries.  In other words, when you specify @option{-nostdlib}
15699or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
15700This ensures that you have no unresolved references to internal GCC
15701library subroutines.
15702(An example of such an internal subroutine is @code{__main}, used to ensure C++
15703constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
15704GNU Compiler Collection (GCC) Internals}.)
15705
15706@item -e @var{entry}
15707@itemx --entry=@var{entry}
15708@opindex e
15709@opindex entry
15710
15711Specify that the program entry point is @var{entry}.  The argument is
15712interpreted by the linker; the GNU linker accepts either a symbol name
15713or an address.
15714
15715@item -pie
15716@opindex pie
15717Produce a dynamically linked position independent executable on targets
15718that support it.  For predictable results, you must also specify the same
15719set of options used for compilation (@option{-fpie}, @option{-fPIE},
15720or model suboptions) when you specify this linker option.
15721
15722@item -no-pie
15723@opindex no-pie
15724Don't produce a dynamically linked position independent executable.
15725
15726@item -static-pie
15727@opindex static-pie
15728Produce a static position independent executable on targets that support
15729it.  A static position independent executable is similar to a static
15730executable, but can be loaded at any address without a dynamic linker.
15731For predictable results, you must also specify the same set of options
15732used for compilation (@option{-fpie}, @option{-fPIE}, or model
15733suboptions) when you specify this linker option.
15734
15735@item -pthread
15736@opindex pthread
15737Link with the POSIX threads library.  This option is supported on
15738GNU/Linux targets, most other Unix derivatives, and also on
15739x86 Cygwin and MinGW targets.  On some targets this option also sets
15740flags for the preprocessor, so it should be used consistently for both
15741compilation and linking.
15742
15743@item -r
15744@opindex r
15745Produce a relocatable object as output.  This is also known as partial
15746linking.
15747
15748@item -rdynamic
15749@opindex rdynamic
15750Pass the flag @option{-export-dynamic} to the ELF linker, on targets
15751that support it. This instructs the linker to add all symbols, not
15752only used ones, to the dynamic symbol table. This option is needed
15753for some uses of @code{dlopen} or to allow obtaining backtraces
15754from within a program.
15755
15756@item -s
15757@opindex s
15758Remove all symbol table and relocation information from the executable.
15759
15760@item -static
15761@opindex static
15762On systems that support dynamic linking, this overrides @option{-pie}
15763and prevents linking with the shared libraries.  On other systems, this
15764option has no effect.
15765
15766@item -shared
15767@opindex shared
15768Produce a shared object which can then be linked with other objects to
15769form an executable.  Not all systems support this option.  For predictable
15770results, you must also specify the same set of options used for compilation
15771(@option{-fpic}, @option{-fPIC}, or model suboptions) when
15772you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
15773needs to build supplementary stub code for constructors to work.  On
15774multi-libbed systems, @samp{gcc -shared} must select the correct support
15775libraries to link against.  Failing to supply the correct flags may lead
15776to subtle defects.  Supplying them in cases where they are not necessary
15777is innocuous.}
15778
15779@item -shared-libgcc
15780@itemx -static-libgcc
15781@opindex shared-libgcc
15782@opindex static-libgcc
15783On systems that provide @file{libgcc} as a shared library, these options
15784force the use of either the shared or static version, respectively.
15785If no shared version of @file{libgcc} was built when the compiler was
15786configured, these options have no effect.
15787
15788There are several situations in which an application should use the
15789shared @file{libgcc} instead of the static version.  The most common
15790of these is when the application wishes to throw and catch exceptions
15791across different shared libraries.  In that case, each of the libraries
15792as well as the application itself should use the shared @file{libgcc}.
15793
15794Therefore, the G++ driver automatically adds @option{-shared-libgcc}
15795whenever you build a shared library or a main executable, because C++
15796programs typically use exceptions, so this is the right thing to do.
15797
15798If, instead, you use the GCC driver to create shared libraries, you may
15799find that they are not always linked with the shared @file{libgcc}.
15800If GCC finds, at its configuration time, that you have a non-GNU linker
15801or a GNU linker that does not support option @option{--eh-frame-hdr},
15802it links the shared version of @file{libgcc} into shared libraries
15803by default.  Otherwise, it takes advantage of the linker and optimizes
15804away the linking with the shared version of @file{libgcc}, linking with
15805the static version of libgcc by default.  This allows exceptions to
15806propagate through such shared libraries, without incurring relocation
15807costs at library load time.
15808
15809However, if a library or main executable is supposed to throw or catch
15810exceptions, you must link it using the G++ driver, or using the option
15811@option{-shared-libgcc}, such that it is linked with the shared
15812@file{libgcc}.
15813
15814@item -static-libasan
15815@opindex static-libasan
15816When the @option{-fsanitize=address} option is used to link a program,
15817the GCC driver automatically links against @option{libasan}.  If
15818@file{libasan} is available as a shared library, and the @option{-static}
15819option is not used, then this links against the shared version of
15820@file{libasan}.  The @option{-static-libasan} option directs the GCC
15821driver to link @file{libasan} statically, without necessarily linking
15822other libraries statically.
15823
15824@item -static-libtsan
15825@opindex static-libtsan
15826When the @option{-fsanitize=thread} option is used to link a program,
15827the GCC driver automatically links against @option{libtsan}.  If
15828@file{libtsan} is available as a shared library, and the @option{-static}
15829option is not used, then this links against the shared version of
15830@file{libtsan}.  The @option{-static-libtsan} option directs the GCC
15831driver to link @file{libtsan} statically, without necessarily linking
15832other libraries statically.
15833
15834@item -static-liblsan
15835@opindex static-liblsan
15836When the @option{-fsanitize=leak} option is used to link a program,
15837the GCC driver automatically links against @option{liblsan}.  If
15838@file{liblsan} is available as a shared library, and the @option{-static}
15839option is not used, then this links against the shared version of
15840@file{liblsan}.  The @option{-static-liblsan} option directs the GCC
15841driver to link @file{liblsan} statically, without necessarily linking
15842other libraries statically.
15843
15844@item -static-libubsan
15845@opindex static-libubsan
15846When the @option{-fsanitize=undefined} option is used to link a program,
15847the GCC driver automatically links against @option{libubsan}.  If
15848@file{libubsan} is available as a shared library, and the @option{-static}
15849option is not used, then this links against the shared version of
15850@file{libubsan}.  The @option{-static-libubsan} option directs the GCC
15851driver to link @file{libubsan} statically, without necessarily linking
15852other libraries statically.
15853
15854@item -static-libstdc++
15855@opindex static-libstdc++
15856When the @command{g++} program is used to link a C++ program, it
15857normally automatically links against @option{libstdc++}.  If
15858@file{libstdc++} is available as a shared library, and the
15859@option{-static} option is not used, then this links against the
15860shared version of @file{libstdc++}.  That is normally fine.  However, it
15861is sometimes useful to freeze the version of @file{libstdc++} used by
15862the program without going all the way to a fully static link.  The
15863@option{-static-libstdc++} option directs the @command{g++} driver to
15864link @file{libstdc++} statically, without necessarily linking other
15865libraries statically.
15866
15867@item -symbolic
15868@opindex symbolic
15869Bind references to global symbols when building a shared object.  Warn
15870about any unresolved references (unless overridden by the link editor
15871option @option{-Xlinker -z -Xlinker defs}).  Only a few systems support
15872this option.
15873
15874@item -T @var{script}
15875@opindex T
15876@cindex linker script
15877Use @var{script} as the linker script.  This option is supported by most
15878systems using the GNU linker.  On some targets, such as bare-board
15879targets without an operating system, the @option{-T} option may be required
15880when linking to avoid references to undefined symbols.
15881
15882@item -Xlinker @var{option}
15883@opindex Xlinker
15884Pass @var{option} as an option to the linker.  You can use this to
15885supply system-specific linker options that GCC does not recognize.
15886
15887If you want to pass an option that takes a separate argument, you must use
15888@option{-Xlinker} twice, once for the option and once for the argument.
15889For example, to pass @option{-assert definitions}, you must write
15890@option{-Xlinker -assert -Xlinker definitions}.  It does not work to write
15891@option{-Xlinker "-assert definitions"}, because this passes the entire
15892string as a single argument, which is not what the linker expects.
15893
15894When using the GNU linker, it is usually more convenient to pass
15895arguments to linker options using the @option{@var{option}=@var{value}}
15896syntax than as separate arguments.  For example, you can specify
15897@option{-Xlinker -Map=output.map} rather than
15898@option{-Xlinker -Map -Xlinker output.map}.  Other linkers may not support
15899this syntax for command-line options.
15900
15901@item -Wl,@var{option}
15902@opindex Wl
15903Pass @var{option} as an option to the linker.  If @var{option} contains
15904commas, it is split into multiple options at the commas.  You can use this
15905syntax to pass an argument to the option.
15906For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
15907linker.  When using the GNU linker, you can also get the same effect with
15908@option{-Wl,-Map=output.map}.
15909
15910@item -u @var{symbol}
15911@opindex u
15912Pretend the symbol @var{symbol} is undefined, to force linking of
15913library modules to define it.  You can use @option{-u} multiple times with
15914different symbols to force loading of additional library modules.
15915
15916@item -z @var{keyword}
15917@opindex z
15918@option{-z} is passed directly on to the linker along with the keyword
15919@var{keyword}. See the section in the documentation of your linker for
15920permitted values and their meanings.
15921@end table
15922
15923@node Directory Options
15924@section Options for Directory Search
15925@cindex directory options
15926@cindex options, directory search
15927@cindex search path
15928
15929These options specify directories to search for header files, for
15930libraries and for parts of the compiler:
15931
15932@table @gcctabopt
15933@include cppdiropts.texi
15934
15935@item -iplugindir=@var{dir}
15936@opindex iplugindir=
15937Set the directory to search for plugins that are passed
15938by @option{-fplugin=@var{name}} instead of
15939@option{-fplugin=@var{path}/@var{name}.so}.  This option is not meant
15940to be used by the user, but only passed by the driver.
15941
15942@item -L@var{dir}
15943@opindex L
15944Add directory @var{dir} to the list of directories to be searched
15945for @option{-l}.
15946
15947@item -B@var{prefix}
15948@opindex B
15949This option specifies where to find the executables, libraries,
15950include files, and data files of the compiler itself.
15951
15952The compiler driver program runs one or more of the subprograms
15953@command{cpp}, @command{cc1}, @command{as} and @command{ld}.  It tries
15954@var{prefix} as a prefix for each program it tries to run, both with and
15955without @samp{@var{machine}/@var{version}/} for the corresponding target
15956machine and compiler version.
15957
15958For each subprogram to be run, the compiler driver first tries the
15959@option{-B} prefix, if any.  If that name is not found, or if @option{-B}
15960is not specified, the driver tries two standard prefixes,
15961@file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
15962those results in a file name that is found, the unmodified program
15963name is searched for using the directories specified in your
15964@env{PATH} environment variable.
15965
15966The compiler checks to see if the path provided by @option{-B}
15967refers to a directory, and if necessary it adds a directory
15968separator character at the end of the path.
15969
15970@option{-B} prefixes that effectively specify directory names also apply
15971to libraries in the linker, because the compiler translates these
15972options into @option{-L} options for the linker.  They also apply to
15973include files in the preprocessor, because the compiler translates these
15974options into @option{-isystem} options for the preprocessor.  In this case,
15975the compiler appends @samp{include} to the prefix.
15976
15977The runtime support file @file{libgcc.a} can also be searched for using
15978the @option{-B} prefix, if needed.  If it is not found there, the two
15979standard prefixes above are tried, and that is all.  The file is left
15980out of the link if it is not found by those means.
15981
15982Another way to specify a prefix much like the @option{-B} prefix is to use
15983the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
15984Variables}.
15985
15986As a special kludge, if the path provided by @option{-B} is
15987@file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
159889, then it is replaced by @file{[dir/]include}.  This is to help
15989with boot-strapping the compiler.
15990
15991@item -no-canonical-prefixes
15992@opindex no-canonical-prefixes
15993Do not expand any symbolic links, resolve references to @samp{/../}
15994or @samp{/./}, or make the path absolute when generating a relative
15995prefix.
15996
15997@item --sysroot=@var{dir}
15998@opindex sysroot
15999Use @var{dir} as the logical root directory for headers and libraries.
16000For example, if the compiler normally searches for headers in
16001@file{/usr/include} and libraries in @file{/usr/lib}, it instead
16002searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
16003
16004If you use both this option and the @option{-isysroot} option, then
16005the @option{--sysroot} option applies to libraries, but the
16006@option{-isysroot} option applies to header files.
16007
16008The GNU linker (beginning with version 2.16) has the necessary support
16009for this option.  If your linker does not support this option, the
16010header file aspect of @option{--sysroot} still works, but the
16011library aspect does not.
16012
16013@item --no-sysroot-suffix
16014@opindex no-sysroot-suffix
16015For some targets, a suffix is added to the root directory specified
16016with @option{--sysroot}, depending on the other options used, so that
16017headers may for example be found in
16018@file{@var{dir}/@var{suffix}/usr/include} instead of
16019@file{@var{dir}/usr/include}.  This option disables the addition of
16020such a suffix.
16021
16022@end table
16023
16024@node Code Gen Options
16025@section Options for Code Generation Conventions
16026@cindex code generation conventions
16027@cindex options, code generation
16028@cindex run-time options
16029
16030These machine-independent options control the interface conventions
16031used in code generation.
16032
16033Most of them have both positive and negative forms; the negative form
16034of @option{-ffoo} is @option{-fno-foo}.  In the table below, only
16035one of the forms is listed---the one that is not the default.  You
16036can figure out the other form by either removing @samp{no-} or adding
16037it.
16038
16039@table @gcctabopt
16040@item -fstack-reuse=@var{reuse-level}
16041@opindex fstack_reuse
16042This option controls stack space reuse for user declared local/auto variables
16043and compiler generated temporaries.  @var{reuse_level} can be @samp{all},
16044@samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
16045local variables and temporaries, @samp{named_vars} enables the reuse only for
16046user defined local variables with names, and @samp{none} disables stack reuse
16047completely. The default value is @samp{all}. The option is needed when the
16048program extends the lifetime of a scoped local variable or a compiler generated
16049temporary beyond the end point defined by the language.  When a lifetime of
16050a variable ends, and if the variable lives in memory, the optimizing compiler
16051has the freedom to reuse its stack space with other temporaries or scoped
16052local variables whose live range does not overlap with it. Legacy code extending
16053local lifetime is likely to break with the stack reuse optimization.
16054
16055For example,
16056
16057@smallexample
16058   int *p;
16059   @{
16060     int local1;
16061
16062     p = &local1;
16063     local1 = 10;
16064     ....
16065   @}
16066   @{
16067      int local2;
16068      local2 = 20;
16069      ...
16070   @}
16071
16072   if (*p == 10)  // out of scope use of local1
16073     @{
16074
16075     @}
16076@end smallexample
16077
16078Another example:
16079@smallexample
16080
16081   struct A
16082   @{
16083       A(int k) : i(k), j(k) @{ @}
16084       int i;
16085       int j;
16086   @};
16087
16088   A *ap;
16089
16090   void foo(const A& ar)
16091   @{
16092      ap = &ar;
16093   @}
16094
16095   void bar()
16096   @{
16097      foo(A(10)); // temp object's lifetime ends when foo returns
16098
16099      @{
16100        A a(20);
16101        ....
16102      @}
16103      ap->i+= 10;  // ap references out of scope temp whose space
16104                   // is reused with a. What is the value of ap->i?
16105   @}
16106
16107@end smallexample
16108
16109The lifetime of a compiler generated temporary is well defined by the C++
16110standard. When a lifetime of a temporary ends, and if the temporary lives
16111in memory, the optimizing compiler has the freedom to reuse its stack
16112space with other temporaries or scoped local variables whose live range
16113does not overlap with it. However some of the legacy code relies on
16114the behavior of older compilers in which temporaries' stack space is
16115not reused, the aggressive stack reuse can lead to runtime errors. This
16116option is used to control the temporary stack reuse optimization.
16117
16118@item -ftrapv
16119@opindex ftrapv
16120This option generates traps for signed overflow on addition, subtraction,
16121multiplication operations.
16122The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
16123@option{-ftrapv} @option{-fwrapv} on the command-line results in
16124@option{-fwrapv} being effective.  Note that only active options override, so
16125using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
16126results in @option{-ftrapv} being effective.
16127
16128@item -fwrapv
16129@opindex fwrapv
16130This option instructs the compiler to assume that signed arithmetic
16131overflow of addition, subtraction and multiplication wraps around
16132using twos-complement representation.  This flag enables some optimizations
16133and disables others.
16134The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
16135@option{-ftrapv} @option{-fwrapv} on the command-line results in
16136@option{-fwrapv} being effective.  Note that only active options override, so
16137using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
16138results in @option{-ftrapv} being effective.
16139
16140@item -fwrapv-pointer
16141@opindex fwrapv-pointer
16142This option instructs the compiler to assume that pointer arithmetic
16143overflow on addition and subtraction wraps around using twos-complement
16144representation.  This flag disables some optimizations which assume
16145pointer overflow is invalid.
16146
16147@item -fstrict-overflow
16148@opindex fstrict-overflow
16149This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
16150negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
16151
16152@item -fexceptions
16153@opindex fexceptions
16154Enable exception handling.  Generates extra code needed to propagate
16155exceptions.  For some targets, this implies GCC generates frame
16156unwind information for all functions, which can produce significant data
16157size overhead, although it does not affect execution.  If you do not
16158specify this option, GCC enables it by default for languages like
16159C++ that normally require exception handling, and disables it for
16160languages like C that do not normally require it.  However, you may need
16161to enable this option when compiling C code that needs to interoperate
16162properly with exception handlers written in C++.  You may also wish to
16163disable this option if you are compiling older C++ programs that don't
16164use exception handling.
16165
16166@item -fnon-call-exceptions
16167@opindex fnon-call-exceptions
16168Generate code that allows trapping instructions to throw exceptions.
16169Note that this requires platform-specific runtime support that does
16170not exist everywhere.  Moreover, it only allows @emph{trapping}
16171instructions to throw exceptions, i.e.@: memory references or floating-point
16172instructions.  It does not allow exceptions to be thrown from
16173arbitrary signal handlers such as @code{SIGALRM}.
16174
16175@item -fdelete-dead-exceptions
16176@opindex fdelete-dead-exceptions
16177Consider that instructions that may throw exceptions but don't otherwise
16178contribute to the execution of the program can be optimized away.
16179This option is enabled by default for the Ada compiler, as permitted by
16180the Ada language specification.
16181Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
16182
16183@item -funwind-tables
16184@opindex funwind-tables
16185Similar to @option{-fexceptions}, except that it just generates any needed
16186static data, but does not affect the generated code in any other way.
16187You normally do not need to enable this option; instead, a language processor
16188that needs this handling enables it on your behalf.
16189
16190@item -fasynchronous-unwind-tables
16191@opindex fasynchronous-unwind-tables
16192Generate unwind table in DWARF format, if supported by target machine.  The
16193table is exact at each instruction boundary, so it can be used for stack
16194unwinding from asynchronous events (such as debugger or garbage collector).
16195
16196@item -fno-gnu-unique
16197@opindex fno-gnu-unique
16198@opindex fgnu-unique
16199On systems with recent GNU assembler and C library, the C++ compiler
16200uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
16201of template static data members and static local variables in inline
16202functions are unique even in the presence of @code{RTLD_LOCAL}; this
16203is necessary to avoid problems with a library used by two different
16204@code{RTLD_LOCAL} plugins depending on a definition in one of them and
16205therefore disagreeing with the other one about the binding of the
16206symbol.  But this causes @code{dlclose} to be ignored for affected
16207DSOs; if your program relies on reinitialization of a DSO via
16208@code{dlclose} and @code{dlopen}, you can use
16209@option{-fno-gnu-unique}.
16210
16211@item -fpcc-struct-return
16212@opindex fpcc-struct-return
16213Return ``short'' @code{struct} and @code{union} values in memory like
16214longer ones, rather than in registers.  This convention is less
16215efficient, but it has the advantage of allowing intercallability between
16216GCC-compiled files and files compiled with other compilers, particularly
16217the Portable C Compiler (pcc).
16218
16219The precise convention for returning structures in memory depends
16220on the target configuration macros.
16221
16222Short structures and unions are those whose size and alignment match
16223that of some integer type.
16224
16225@strong{Warning:} code compiled with the @option{-fpcc-struct-return}
16226switch is not binary compatible with code compiled with the
16227@option{-freg-struct-return} switch.
16228Use it to conform to a non-default application binary interface.
16229
16230@item -freg-struct-return
16231@opindex freg-struct-return
16232Return @code{struct} and @code{union} values in registers when possible.
16233This is more efficient for small structures than
16234@option{-fpcc-struct-return}.
16235
16236If you specify neither @option{-fpcc-struct-return} nor
16237@option{-freg-struct-return}, GCC defaults to whichever convention is
16238standard for the target.  If there is no standard convention, GCC
16239defaults to @option{-fpcc-struct-return}, except on targets where GCC is
16240the principal compiler.  In those cases, we can choose the standard, and
16241we chose the more efficient register return alternative.
16242
16243@strong{Warning:} code compiled with the @option{-freg-struct-return}
16244switch is not binary compatible with code compiled with the
16245@option{-fpcc-struct-return} switch.
16246Use it to conform to a non-default application binary interface.
16247
16248@item -fshort-enums
16249@opindex fshort-enums
16250Allocate to an @code{enum} type only as many bytes as it needs for the
16251declared range of possible values.  Specifically, the @code{enum} type
16252is equivalent to the smallest integer type that has enough room.
16253
16254@strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
16255code that is not binary compatible with code generated without that switch.
16256Use it to conform to a non-default application binary interface.
16257
16258@item -fshort-wchar
16259@opindex fshort-wchar
16260Override the underlying type for @code{wchar_t} to be @code{short
16261unsigned int} instead of the default for the target.  This option is
16262useful for building programs to run under WINE@.
16263
16264@strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
16265code that is not binary compatible with code generated without that switch.
16266Use it to conform to a non-default application binary interface.
16267
16268@item -fcommon
16269@opindex fcommon
16270@opindex fno-common
16271@cindex tentative definitions
16272In C code, this option controls the placement of global variables
16273defined without an initializer, known as @dfn{tentative definitions}
16274in the C standard.  Tentative definitions are distinct from declarations
16275of a variable with the @code{extern} keyword, which do not allocate storage.
16276
16277The default is @option{-fno-common}, which specifies that the compiler places
16278uninitialized global variables in the BSS section of the object file.
16279This inhibits the merging of tentative definitions by the linker so you get a
16280multiple-definition error if the same variable is accidentally defined in more
16281than one compilation unit.
16282
16283The @option{-fcommon} places uninitialized global variables in a common block.
16284This allows the linker to resolve all tentative definitions of the same variable
16285in different compilation units to the same object, or to a non-tentative
16286definition.  This behavior is inconsistent with C++, and on many targets implies
16287a speed and code size penalty on global variable references.  It is mainly
16288useful to enable legacy code to link without errors.
16289
16290@item -fno-ident
16291@opindex fno-ident
16292@opindex fident
16293Ignore the @code{#ident} directive.
16294
16295@item -finhibit-size-directive
16296@opindex finhibit-size-directive
16297Don't output a @code{.size} assembler directive, or anything else that
16298would cause trouble if the function is split in the middle, and the
16299two halves are placed at locations far apart in memory.  This option is
16300used when compiling @file{crtstuff.c}; you should not need to use it
16301for anything else.
16302
16303@item -fverbose-asm
16304@opindex fverbose-asm
16305Put extra commentary information in the generated assembly code to
16306make it more readable.  This option is generally only of use to those
16307who actually need to read the generated assembly code (perhaps while
16308debugging the compiler itself).
16309
16310@option{-fno-verbose-asm}, the default, causes the
16311extra information to be omitted and is useful when comparing two assembler
16312files.
16313
16314The added comments include:
16315
16316@itemize @bullet
16317
16318@item
16319information on the compiler version and command-line options,
16320
16321@item
16322the source code lines associated with the assembly instructions,
16323in the form FILENAME:LINENUMBER:CONTENT OF LINE,
16324
16325@item
16326hints on which high-level expressions correspond to
16327the various assembly instruction operands.
16328
16329@end itemize
16330
16331For example, given this C source file:
16332
16333@smallexample
16334int test (int n)
16335@{
16336  int i;
16337  int total = 0;
16338
16339  for (i = 0; i < n; i++)
16340    total += i * i;
16341
16342  return total;
16343@}
16344@end smallexample
16345
16346compiling to (x86_64) assembly via @option{-S} and emitting the result
16347direct to stdout via @option{-o} @option{-}
16348
16349@smallexample
16350gcc -S test.c -fverbose-asm -Os -o -
16351@end smallexample
16352
16353gives output similar to this:
16354
16355@smallexample
16356	.file	"test.c"
16357# GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
16358  [...snip...]
16359# options passed:
16360  [...snip...]
16361
16362	.text
16363	.globl	test
16364	.type	test, @@function
16365test:
16366.LFB0:
16367	.cfi_startproc
16368# test.c:4:   int total = 0;
16369	xorl	%eax, %eax	# <retval>
16370# test.c:6:   for (i = 0; i < n; i++)
16371	xorl	%edx, %edx	# i
16372.L2:
16373# test.c:6:   for (i = 0; i < n; i++)
16374	cmpl	%edi, %edx	# n, i
16375	jge	.L5	#,
16376# test.c:7:     total += i * i;
16377	movl	%edx, %ecx	# i, tmp92
16378	imull	%edx, %ecx	# i, tmp92
16379# test.c:6:   for (i = 0; i < n; i++)
16380	incl	%edx	# i
16381# test.c:7:     total += i * i;
16382	addl	%ecx, %eax	# tmp92, <retval>
16383	jmp	.L2	#
16384.L5:
16385# test.c:10: @}
16386	ret
16387	.cfi_endproc
16388.LFE0:
16389	.size	test, .-test
16390	.ident	"GCC: (GNU) 7.0.0 20160809 (experimental)"
16391	.section	.note.GNU-stack,"",@@progbits
16392@end smallexample
16393
16394The comments are intended for humans rather than machines and hence the
16395precise format of the comments is subject to change.
16396
16397@item -frecord-gcc-switches
16398@opindex frecord-gcc-switches
16399This switch causes the command line used to invoke the
16400compiler to be recorded into the object file that is being created.
16401This switch is only implemented on some targets and the exact format
16402of the recording is target and binary file format dependent, but it
16403usually takes the form of a section containing ASCII text.  This
16404switch is related to the @option{-fverbose-asm} switch, but that
16405switch only records information in the assembler output file as
16406comments, so it never reaches the object file.
16407See also @option{-grecord-gcc-switches} for another
16408way of storing compiler options into the object file.
16409
16410@item -fpic
16411@opindex fpic
16412@cindex global offset table
16413@cindex PIC
16414Generate position-independent code (PIC) suitable for use in a shared
16415library, if supported for the target machine.  Such code accesses all
16416constant addresses through a global offset table (GOT)@.  The dynamic
16417loader resolves the GOT entries when the program starts (the dynamic
16418loader is not part of GCC; it is part of the operating system).  If
16419the GOT size for the linked executable exceeds a machine-specific
16420maximum size, you get an error message from the linker indicating that
16421@option{-fpic} does not work; in that case, recompile with @option{-fPIC}
16422instead.  (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
16423on the m68k and RS/6000.  The x86 has no such limit.)
16424
16425Position-independent code requires special support, and therefore works
16426only on certain machines.  For the x86, GCC supports PIC for System V
16427but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
16428position-independent.
16429
16430When this flag is set, the macros @code{__pic__} and @code{__PIC__}
16431are defined to 1.
16432
16433@item -fPIC
16434@opindex fPIC
16435If supported for the target machine, emit position-independent code,
16436suitable for dynamic linking and avoiding any limit on the size of the
16437global offset table.  This option makes a difference on AArch64, m68k,
16438PowerPC and SPARC@.
16439
16440Position-independent code requires special support, and therefore works
16441only on certain machines.
16442
16443When this flag is set, the macros @code{__pic__} and @code{__PIC__}
16444are defined to 2.
16445
16446@item -fpie
16447@itemx -fPIE
16448@opindex fpie
16449@opindex fPIE
16450These options are similar to @option{-fpic} and @option{-fPIC}, but the
16451generated position-independent code can be only linked into executables.
16452Usually these options are used to compile code that will be linked using
16453the @option{-pie} GCC option.
16454
16455@option{-fpie} and @option{-fPIE} both define the macros
16456@code{__pie__} and @code{__PIE__}.  The macros have the value 1
16457for @option{-fpie} and 2 for @option{-fPIE}.
16458
16459@item -fno-plt
16460@opindex fno-plt
16461@opindex fplt
16462Do not use the PLT for external function calls in position-independent code.
16463Instead, load the callee address at call sites from the GOT and branch to it.
16464This leads to more efficient code by eliminating PLT stubs and exposing
16465GOT loads to optimizations.  On architectures such as 32-bit x86 where
16466PLT stubs expect the GOT pointer in a specific register, this gives more
16467register allocation freedom to the compiler.
16468Lazy binding requires use of the PLT;
16469with @option{-fno-plt} all external symbols are resolved at load time.
16470
16471Alternatively, the function attribute @code{noplt} can be used to avoid calls
16472through the PLT for specific external functions.
16473
16474In position-dependent code, a few targets also convert calls to
16475functions that are marked to not use the PLT to use the GOT instead.
16476
16477@item -fno-jump-tables
16478@opindex fno-jump-tables
16479@opindex fjump-tables
16480Do not use jump tables for switch statements even where it would be
16481more efficient than other code generation strategies.  This option is
16482of use in conjunction with @option{-fpic} or @option{-fPIC} for
16483building code that forms part of a dynamic linker and cannot
16484reference the address of a jump table.  On some targets, jump tables
16485do not require a GOT and this option is not needed.
16486
16487@item -fno-bit-tests
16488@opindex fno-bit-tests
16489@opindex fbit-tests
16490Do not use bit tests for switch statements even where it would be
16491more efficient than other code generation strategies.
16492
16493@item -ffixed-@var{reg}
16494@opindex ffixed
16495Treat the register named @var{reg} as a fixed register; generated code
16496should never refer to it (except perhaps as a stack pointer, frame
16497pointer or in some other fixed role).
16498
16499@var{reg} must be the name of a register.  The register names accepted
16500are machine-specific and are defined in the @code{REGISTER_NAMES}
16501macro in the machine description macro file.
16502
16503This flag does not have a negative form, because it specifies a
16504three-way choice.
16505
16506@item -fcall-used-@var{reg}
16507@opindex fcall-used
16508Treat the register named @var{reg} as an allocable register that is
16509clobbered by function calls.  It may be allocated for temporaries or
16510variables that do not live across a call.  Functions compiled this way
16511do not save and restore the register @var{reg}.
16512
16513It is an error to use this flag with the frame pointer or stack pointer.
16514Use of this flag for other registers that have fixed pervasive roles in
16515the machine's execution model produces disastrous results.
16516
16517This flag does not have a negative form, because it specifies a
16518three-way choice.
16519
16520@item -fcall-saved-@var{reg}
16521@opindex fcall-saved
16522Treat the register named @var{reg} as an allocable register saved by
16523functions.  It may be allocated even for temporaries or variables that
16524live across a call.  Functions compiled this way save and restore
16525the register @var{reg} if they use it.
16526
16527It is an error to use this flag with the frame pointer or stack pointer.
16528Use of this flag for other registers that have fixed pervasive roles in
16529the machine's execution model produces disastrous results.
16530
16531A different sort of disaster results from the use of this flag for
16532a register in which function values may be returned.
16533
16534This flag does not have a negative form, because it specifies a
16535three-way choice.
16536
16537@item -fpack-struct[=@var{n}]
16538@opindex fpack-struct
16539Without a value specified, pack all structure members together without
16540holes.  When a value is specified (which must be a small power of two), pack
16541structure members according to this value, representing the maximum
16542alignment (that is, objects with default alignment requirements larger than
16543this are output potentially unaligned at the next fitting location.
16544
16545@strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
16546code that is not binary compatible with code generated without that switch.
16547Additionally, it makes the code suboptimal.
16548Use it to conform to a non-default application binary interface.
16549
16550@item -fleading-underscore
16551@opindex fleading-underscore
16552This option and its counterpart, @option{-fno-leading-underscore}, forcibly
16553change the way C symbols are represented in the object file.  One use
16554is to help link with legacy assembly code.
16555
16556@strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
16557generate code that is not binary compatible with code generated without that
16558switch.  Use it to conform to a non-default application binary interface.
16559Not all targets provide complete support for this switch.
16560
16561@item -ftls-model=@var{model}
16562@opindex ftls-model
16563Alter the thread-local storage model to be used (@pxref{Thread-Local}).
16564The @var{model} argument should be one of @samp{global-dynamic},
16565@samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
16566Note that the choice is subject to optimization: the compiler may use
16567a more efficient model for symbols not visible outside of the translation
16568unit, or if @option{-fpic} is not given on the command line.
16569
16570The default without @option{-fpic} is @samp{initial-exec}; with
16571@option{-fpic} the default is @samp{global-dynamic}.
16572
16573@item -ftrampolines
16574@opindex ftrampolines
16575For targets that normally need trampolines for nested functions, always
16576generate them instead of using descriptors.  Otherwise, for targets that
16577do not need them, like for example HP-PA or IA-64, do nothing.
16578
16579A trampoline is a small piece of code that is created at run time on the
16580stack when the address of a nested function is taken, and is used to call
16581the nested function indirectly.  Therefore, it requires the stack to be
16582made executable in order for the program to work properly.
16583
16584@option{-fno-trampolines} is enabled by default on a language by language
16585basis to let the compiler avoid generating them, if it computes that this
16586is safe, and replace them with descriptors.  Descriptors are made up of data
16587only, but the generated code must be prepared to deal with them.  As of this
16588writing, @option{-fno-trampolines} is enabled by default only for Ada.
16589
16590Moreover, code compiled with @option{-ftrampolines} and code compiled with
16591@option{-fno-trampolines} are not binary compatible if nested functions are
16592present.  This option must therefore be used on a program-wide basis and be
16593manipulated with extreme care.
16594
16595@item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
16596@opindex fvisibility
16597Set the default ELF image symbol visibility to the specified option---all
16598symbols are marked with this unless overridden within the code.
16599Using this feature can very substantially improve linking and
16600load times of shared object libraries, produce more optimized
16601code, provide near-perfect API export and prevent symbol clashes.
16602It is @strong{strongly} recommended that you use this in any shared objects
16603you distribute.
16604
16605Despite the nomenclature, @samp{default} always means public; i.e.,
16606available to be linked against from outside the shared object.
16607@samp{protected} and @samp{internal} are pretty useless in real-world
16608usage so the only other commonly used option is @samp{hidden}.
16609The default if @option{-fvisibility} isn't specified is
16610@samp{default}, i.e., make every symbol public.
16611
16612A good explanation of the benefits offered by ensuring ELF
16613symbols have the correct visibility is given by ``How To Write
16614Shared Libraries'' by Ulrich Drepper (which can be found at
16615@w{@uref{https://www.akkadia.org/drepper/}})---however a superior
16616solution made possible by this option to marking things hidden when
16617the default is public is to make the default hidden and mark things
16618public.  This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
16619and @code{__attribute__ ((visibility("default")))} instead of
16620@code{__declspec(dllexport)} you get almost identical semantics with
16621identical syntax.  This is a great boon to those working with
16622cross-platform projects.
16623
16624For those adding visibility support to existing code, you may find
16625@code{#pragma GCC visibility} of use.  This works by you enclosing
16626the declarations you wish to set visibility for with (for example)
16627@code{#pragma GCC visibility push(hidden)} and
16628@code{#pragma GCC visibility pop}.
16629Bear in mind that symbol visibility should be viewed @strong{as
16630part of the API interface contract} and thus all new code should
16631always specify visibility when it is not the default; i.e., declarations
16632only for use within the local DSO should @strong{always} be marked explicitly
16633as hidden as so to avoid PLT indirection overheads---making this
16634abundantly clear also aids readability and self-documentation of the code.
16635Note that due to ISO C++ specification requirements, @code{operator new} and
16636@code{operator delete} must always be of default visibility.
16637
16638Be aware that headers from outside your project, in particular system
16639headers and headers from any other library you use, may not be
16640expecting to be compiled with visibility other than the default.  You
16641may need to explicitly say @code{#pragma GCC visibility push(default)}
16642before including any such headers.
16643
16644@code{extern} declarations are not affected by @option{-fvisibility}, so
16645a lot of code can be recompiled with @option{-fvisibility=hidden} with
16646no modifications.  However, this means that calls to @code{extern}
16647functions with no explicit visibility use the PLT, so it is more
16648effective to use @code{__attribute ((visibility))} and/or
16649@code{#pragma GCC visibility} to tell the compiler which @code{extern}
16650declarations should be treated as hidden.
16651
16652Note that @option{-fvisibility} does affect C++ vague linkage
16653entities. This means that, for instance, an exception class that is
16654be thrown between DSOs must be explicitly marked with default
16655visibility so that the @samp{type_info} nodes are unified between
16656the DSOs.
16657
16658An overview of these techniques, their benefits and how to use them
16659is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
16660
16661@item -fstrict-volatile-bitfields
16662@opindex fstrict-volatile-bitfields
16663This option should be used if accesses to volatile bit-fields (or other
16664structure fields, although the compiler usually honors those types
16665anyway) should use a single access of the width of the
16666field's type, aligned to a natural alignment if possible.  For
16667example, targets with memory-mapped peripheral registers might require
16668all such accesses to be 16 bits wide; with this flag you can
16669declare all peripheral bit-fields as @code{unsigned short} (assuming short
16670is 16 bits on these targets) to force GCC to use 16-bit accesses
16671instead of, perhaps, a more efficient 32-bit access.
16672
16673If this option is disabled, the compiler uses the most efficient
16674instruction.  In the previous example, that might be a 32-bit load
16675instruction, even though that accesses bytes that do not contain
16676any portion of the bit-field, or memory-mapped registers unrelated to
16677the one being updated.
16678
16679In some cases, such as when the @code{packed} attribute is applied to a
16680structure field, it may not be possible to access the field with a single
16681read or write that is correctly aligned for the target machine.  In this
16682case GCC falls back to generating multiple accesses rather than code that
16683will fault or truncate the result at run time.
16684
16685Note:  Due to restrictions of the C/C++11 memory model, write accesses are
16686not allowed to touch non bit-field members.  It is therefore recommended
16687to define all bits of the field's type as bit-field members.
16688
16689The default value of this option is determined by the application binary
16690interface for the target processor.
16691
16692@item -fsync-libcalls
16693@opindex fsync-libcalls
16694This option controls whether any out-of-line instance of the @code{__sync}
16695family of functions may be used to implement the C++11 @code{__atomic}
16696family of functions.
16697
16698The default value of this option is enabled, thus the only useful form
16699of the option is @option{-fno-sync-libcalls}.  This option is used in
16700the implementation of the @file{libatomic} runtime library.
16701
16702@end table
16703
16704@node Developer Options
16705@section GCC Developer Options
16706@cindex developer options
16707@cindex debugging GCC
16708@cindex debug dump options
16709@cindex dump options
16710@cindex compilation statistics
16711
16712This section describes command-line options that are primarily of
16713interest to GCC developers, including options to support compiler
16714testing and investigation of compiler bugs and compile-time
16715performance problems.  This includes options that produce debug dumps
16716at various points in the compilation; that print statistics such as
16717memory use and execution time; and that print information about GCC's
16718configuration, such as where it searches for libraries.  You should
16719rarely need to use any of these options for ordinary compilation and
16720linking tasks.
16721
16722Many developer options that cause GCC to dump output to a file take an
16723optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
16724or @samp{-} to dump to standard output, and @samp{stderr} for standard
16725error.
16726
16727If @samp{=@var{filename}} is omitted, a default dump file name is
16728constructed by concatenating the base dump file name, a pass number,
16729phase letter, and pass name.  The base dump file name is the name of
16730output file produced by the compiler if explicitly specified and not
16731an executable; otherwise it is the source file name.
16732The pass number is determined by the order passes are registered with
16733the compiler's pass manager.
16734This is generally the same as the order of execution, but passes
16735registered by plugins, target-specific passes, or passes that are
16736otherwise registered late are numbered higher than the pass named
16737@samp{final}, even if they are executed earlier.  The phase letter is
16738one of @samp{i} (inter-procedural analysis), @samp{l}
16739(language-specific), @samp{r} (RTL), or @samp{t} (tree).
16740The files are created in the directory of the output file.
16741
16742@table @gcctabopt
16743
16744@item -fcallgraph-info
16745@itemx -fcallgraph-info=@var{MARKERS}
16746@opindex fcallgraph-info
16747Makes the compiler output callgraph information for the program, on a
16748per-object-file basis.  The information is generated in the common VCG
16749format.  It can be decorated with additional, per-node and/or per-edge
16750information, if a list of comma-separated markers is additionally
16751specified.  When the @code{su} marker is specified, the callgraph is
16752decorated with stack usage information; it is equivalent to
16753@option{-fstack-usage}.  When the @code{da} marker is specified, the
16754callgraph is decorated with information about dynamically allocated
16755objects.
16756
16757When compiling with @option{-flto}, no callgraph information is output
16758along with the object file.  At LTO link time, @option{-fcallgraph-info}
16759may generate multiple callgraph information files next to intermediate
16760LTO output files.
16761
16762@item -d@var{letters}
16763@itemx -fdump-rtl-@var{pass}
16764@itemx -fdump-rtl-@var{pass}=@var{filename}
16765@opindex d
16766@opindex fdump-rtl-@var{pass}
16767Says to make debugging dumps during compilation at times specified by
16768@var{letters}.  This is used for debugging the RTL-based passes of the
16769compiler.
16770
16771Some @option{-d@var{letters}} switches have different meaning when
16772@option{-E} is used for preprocessing.  @xref{Preprocessor Options},
16773for information about preprocessor-specific dump options.
16774
16775Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
16776@option{-d} option @var{letters}.  Here are the possible
16777letters for use in @var{pass} and @var{letters}, and their meanings:
16778
16779@table @gcctabopt
16780
16781@item -fdump-rtl-alignments
16782@opindex fdump-rtl-alignments
16783Dump after branch alignments have been computed.
16784
16785@item -fdump-rtl-asmcons
16786@opindex fdump-rtl-asmcons
16787Dump after fixing rtl statements that have unsatisfied in/out constraints.
16788
16789@item -fdump-rtl-auto_inc_dec
16790@opindex fdump-rtl-auto_inc_dec
16791Dump after auto-inc-dec discovery.  This pass is only run on
16792architectures that have auto inc or auto dec instructions.
16793
16794@item -fdump-rtl-barriers
16795@opindex fdump-rtl-barriers
16796Dump after cleaning up the barrier instructions.
16797
16798@item -fdump-rtl-bbpart
16799@opindex fdump-rtl-bbpart
16800Dump after partitioning hot and cold basic blocks.
16801
16802@item -fdump-rtl-bbro
16803@opindex fdump-rtl-bbro
16804Dump after block reordering.
16805
16806@item -fdump-rtl-btl1
16807@itemx -fdump-rtl-btl2
16808@opindex fdump-rtl-btl2
16809@opindex fdump-rtl-btl2
16810@option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
16811after the two branch
16812target load optimization passes.
16813
16814@item -fdump-rtl-bypass
16815@opindex fdump-rtl-bypass
16816Dump after jump bypassing and control flow optimizations.
16817
16818@item -fdump-rtl-combine
16819@opindex fdump-rtl-combine
16820Dump after the RTL instruction combination pass.
16821
16822@item -fdump-rtl-compgotos
16823@opindex fdump-rtl-compgotos
16824Dump after duplicating the computed gotos.
16825
16826@item -fdump-rtl-ce1
16827@itemx -fdump-rtl-ce2
16828@itemx -fdump-rtl-ce3
16829@opindex fdump-rtl-ce1
16830@opindex fdump-rtl-ce2
16831@opindex fdump-rtl-ce3
16832@option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
16833@option{-fdump-rtl-ce3} enable dumping after the three
16834if conversion passes.
16835
16836@item -fdump-rtl-cprop_hardreg
16837@opindex fdump-rtl-cprop_hardreg
16838Dump after hard register copy propagation.
16839
16840@item -fdump-rtl-csa
16841@opindex fdump-rtl-csa
16842Dump after combining stack adjustments.
16843
16844@item -fdump-rtl-cse1
16845@itemx -fdump-rtl-cse2
16846@opindex fdump-rtl-cse1
16847@opindex fdump-rtl-cse2
16848@option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
16849the two common subexpression elimination passes.
16850
16851@item -fdump-rtl-dce
16852@opindex fdump-rtl-dce
16853Dump after the standalone dead code elimination passes.
16854
16855@item -fdump-rtl-dbr
16856@opindex fdump-rtl-dbr
16857Dump after delayed branch scheduling.
16858
16859@item -fdump-rtl-dce1
16860@itemx -fdump-rtl-dce2
16861@opindex fdump-rtl-dce1
16862@opindex fdump-rtl-dce2
16863@option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
16864the two dead store elimination passes.
16865
16866@item -fdump-rtl-eh
16867@opindex fdump-rtl-eh
16868Dump after finalization of EH handling code.
16869
16870@item -fdump-rtl-eh_ranges
16871@opindex fdump-rtl-eh_ranges
16872Dump after conversion of EH handling range regions.
16873
16874@item -fdump-rtl-expand
16875@opindex fdump-rtl-expand
16876Dump after RTL generation.
16877
16878@item -fdump-rtl-fwprop1
16879@itemx -fdump-rtl-fwprop2
16880@opindex fdump-rtl-fwprop1
16881@opindex fdump-rtl-fwprop2
16882@option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
16883dumping after the two forward propagation passes.
16884
16885@item -fdump-rtl-gcse1
16886@itemx -fdump-rtl-gcse2
16887@opindex fdump-rtl-gcse1
16888@opindex fdump-rtl-gcse2
16889@option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
16890after global common subexpression elimination.
16891
16892@item -fdump-rtl-init-regs
16893@opindex fdump-rtl-init-regs
16894Dump after the initialization of the registers.
16895
16896@item -fdump-rtl-initvals
16897@opindex fdump-rtl-initvals
16898Dump after the computation of the initial value sets.
16899
16900@item -fdump-rtl-into_cfglayout
16901@opindex fdump-rtl-into_cfglayout
16902Dump after converting to cfglayout mode.
16903
16904@item -fdump-rtl-ira
16905@opindex fdump-rtl-ira
16906Dump after iterated register allocation.
16907
16908@item -fdump-rtl-jump
16909@opindex fdump-rtl-jump
16910Dump after the second jump optimization.
16911
16912@item -fdump-rtl-loop2
16913@opindex fdump-rtl-loop2
16914@option{-fdump-rtl-loop2} enables dumping after the rtl
16915loop optimization passes.
16916
16917@item -fdump-rtl-mach
16918@opindex fdump-rtl-mach
16919Dump after performing the machine dependent reorganization pass, if that
16920pass exists.
16921
16922@item -fdump-rtl-mode_sw
16923@opindex fdump-rtl-mode_sw
16924Dump after removing redundant mode switches.
16925
16926@item -fdump-rtl-rnreg
16927@opindex fdump-rtl-rnreg
16928Dump after register renumbering.
16929
16930@item -fdump-rtl-outof_cfglayout
16931@opindex fdump-rtl-outof_cfglayout
16932Dump after converting from cfglayout mode.
16933
16934@item -fdump-rtl-peephole2
16935@opindex fdump-rtl-peephole2
16936Dump after the peephole pass.
16937
16938@item -fdump-rtl-postreload
16939@opindex fdump-rtl-postreload
16940Dump after post-reload optimizations.
16941
16942@item -fdump-rtl-pro_and_epilogue
16943@opindex fdump-rtl-pro_and_epilogue
16944Dump after generating the function prologues and epilogues.
16945
16946@item -fdump-rtl-sched1
16947@itemx -fdump-rtl-sched2
16948@opindex fdump-rtl-sched1
16949@opindex fdump-rtl-sched2
16950@option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
16951after the basic block scheduling passes.
16952
16953@item -fdump-rtl-ree
16954@opindex fdump-rtl-ree
16955Dump after sign/zero extension elimination.
16956
16957@item -fdump-rtl-seqabstr
16958@opindex fdump-rtl-seqabstr
16959Dump after common sequence discovery.
16960
16961@item -fdump-rtl-shorten
16962@opindex fdump-rtl-shorten
16963Dump after shortening branches.
16964
16965@item -fdump-rtl-sibling
16966@opindex fdump-rtl-sibling
16967Dump after sibling call optimizations.
16968
16969@item -fdump-rtl-split1
16970@itemx -fdump-rtl-split2
16971@itemx -fdump-rtl-split3
16972@itemx -fdump-rtl-split4
16973@itemx -fdump-rtl-split5
16974@opindex fdump-rtl-split1
16975@opindex fdump-rtl-split2
16976@opindex fdump-rtl-split3
16977@opindex fdump-rtl-split4
16978@opindex fdump-rtl-split5
16979These options enable dumping after five rounds of
16980instruction splitting.
16981
16982@item -fdump-rtl-sms
16983@opindex fdump-rtl-sms
16984Dump after modulo scheduling.  This pass is only run on some
16985architectures.
16986
16987@item -fdump-rtl-stack
16988@opindex fdump-rtl-stack
16989Dump after conversion from GCC's ``flat register file'' registers to the
16990x87's stack-like registers.  This pass is only run on x86 variants.
16991
16992@item -fdump-rtl-subreg1
16993@itemx -fdump-rtl-subreg2
16994@opindex fdump-rtl-subreg1
16995@opindex fdump-rtl-subreg2
16996@option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
16997the two subreg expansion passes.
16998
16999@item -fdump-rtl-unshare
17000@opindex fdump-rtl-unshare
17001Dump after all rtl has been unshared.
17002
17003@item -fdump-rtl-vartrack
17004@opindex fdump-rtl-vartrack
17005Dump after variable tracking.
17006
17007@item -fdump-rtl-vregs
17008@opindex fdump-rtl-vregs
17009Dump after converting virtual registers to hard registers.
17010
17011@item -fdump-rtl-web
17012@opindex fdump-rtl-web
17013Dump after live range splitting.
17014
17015@item -fdump-rtl-regclass
17016@itemx -fdump-rtl-subregs_of_mode_init
17017@itemx -fdump-rtl-subregs_of_mode_finish
17018@itemx -fdump-rtl-dfinit
17019@itemx -fdump-rtl-dfinish
17020@opindex fdump-rtl-regclass
17021@opindex fdump-rtl-subregs_of_mode_init
17022@opindex fdump-rtl-subregs_of_mode_finish
17023@opindex fdump-rtl-dfinit
17024@opindex fdump-rtl-dfinish
17025These dumps are defined but always produce empty files.
17026
17027@item -da
17028@itemx -fdump-rtl-all
17029@opindex da
17030@opindex fdump-rtl-all
17031Produce all the dumps listed above.
17032
17033@item -dA
17034@opindex dA
17035Annotate the assembler output with miscellaneous debugging information.
17036
17037@item -dD
17038@opindex dD
17039Dump all macro definitions, at the end of preprocessing, in addition to
17040normal output.
17041
17042@item -dH
17043@opindex dH
17044Produce a core dump whenever an error occurs.
17045
17046@item -dp
17047@opindex dp
17048Annotate the assembler output with a comment indicating which
17049pattern and alternative is used.  The length and cost of each instruction are
17050also printed.
17051
17052@item -dP
17053@opindex dP
17054Dump the RTL in the assembler output as a comment before each instruction.
17055Also turns on @option{-dp} annotation.
17056
17057@item -dx
17058@opindex dx
17059Just generate RTL for a function instead of compiling it.  Usually used
17060with @option{-fdump-rtl-expand}.
17061@end table
17062
17063@item -fdump-debug
17064@opindex fdump-debug
17065Dump debugging information generated during the debug
17066generation phase.
17067
17068@item -fdump-earlydebug
17069@opindex fdump-earlydebug
17070Dump debugging information generated during the early debug
17071generation phase.
17072
17073@item -fdump-noaddr
17074@opindex fdump-noaddr
17075When doing debugging dumps, suppress address output.  This makes it more
17076feasible to use diff on debugging dumps for compiler invocations with
17077different compiler binaries and/or different
17078text / bss / data / heap / stack / dso start locations.
17079
17080@item -freport-bug
17081@opindex freport-bug
17082Collect and dump debug information into a temporary file if an
17083internal compiler error (ICE) occurs.
17084
17085@item -fdump-unnumbered
17086@opindex fdump-unnumbered
17087When doing debugging dumps, suppress instruction numbers and address output.
17088This makes it more feasible to use diff on debugging dumps for compiler
17089invocations with different options, in particular with and without
17090@option{-g}.
17091
17092@item -fdump-unnumbered-links
17093@opindex fdump-unnumbered-links
17094When doing debugging dumps (see @option{-d} option above), suppress
17095instruction numbers for the links to the previous and next instructions
17096in a sequence.
17097
17098@item -fdump-ipa-@var{switch}
17099@itemx -fdump-ipa-@var{switch}-@var{options}
17100@opindex fdump-ipa
17101Control the dumping at various stages of inter-procedural analysis
17102language tree to a file.  The file name is generated by appending a
17103switch specific suffix to the source file name, and the file is created
17104in the same directory as the output file.  The following dumps are
17105possible:
17106
17107@table @samp
17108@item all
17109Enables all inter-procedural analysis dumps.
17110
17111@item cgraph
17112Dumps information about call-graph optimization, unused function removal,
17113and inlining decisions.
17114
17115@item inline
17116Dump after function inlining.
17117
17118@end table
17119
17120Additionally, the options @option{-optimized}, @option{-missed},
17121@option{-note}, and @option{-all} can be provided, with the same meaning
17122as for @option{-fopt-info}, defaulting to @option{-optimized}.
17123
17124For example, @option{-fdump-ipa-inline-optimized-missed} will emit
17125information on callsites that were inlined, along with callsites
17126that were not inlined.
17127
17128By default, the dump will contain messages about successful
17129optimizations (equivalent to @option{-optimized}) together with
17130low-level details about the analysis.
17131
17132@item -fdump-lang
17133@opindex fdump-lang
17134Dump language-specific information.  The file name is made by appending
17135@file{.lang} to the source file name.
17136
17137@item -fdump-lang-all
17138@itemx -fdump-lang-@var{switch}
17139@itemx -fdump-lang-@var{switch}-@var{options}
17140@itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
17141@opindex fdump-lang-all
17142@opindex fdump-lang
17143Control the dumping of language-specific information.  The @var{options}
17144and @var{filename} portions behave as described in the
17145@option{-fdump-tree} option.  The following @var{switch} values are
17146accepted:
17147
17148@table @samp
17149@item all
17150
17151Enable all language-specific dumps.
17152
17153@item class
17154Dump class hierarchy information.  Virtual table information is emitted
17155unless '@option{slim}' is specified.  This option is applicable to C++ only.
17156
17157@item module
17158Dump module information.  Options @option{lineno} (locations),
17159@option{graph} (reachability), @option{blocks} (clusters),
17160@option{uid} (serialization), @option{alias} (mergeable),
17161@option{asmname} (Elrond), @option{eh} (mapper) & @option{vops}
17162(macros) may provide additional information.  This option is
17163applicable to C++ only.
17164
17165@item raw
17166Dump the raw internal tree data.  This option is applicable to C++ only.
17167
17168@end table
17169
17170@item -fdump-passes
17171@opindex fdump-passes
17172Print on @file{stderr} the list of optimization passes that are turned
17173on and off by the current command-line options.
17174
17175@item -fdump-statistics-@var{option}
17176@opindex fdump-statistics
17177Enable and control dumping of pass statistics in a separate file.  The
17178file name is generated by appending a suffix ending in
17179@samp{.statistics} to the source file name, and the file is created in
17180the same directory as the output file.  If the @samp{-@var{option}}
17181form is used, @samp{-stats} causes counters to be summed over the
17182whole compilation unit while @samp{-details} dumps every event as
17183the passes generate them.  The default with no option is to sum
17184counters for each function compiled.
17185
17186@item -fdump-tree-all
17187@itemx -fdump-tree-@var{switch}
17188@itemx -fdump-tree-@var{switch}-@var{options}
17189@itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
17190@opindex fdump-tree-all
17191@opindex fdump-tree
17192Control the dumping at various stages of processing the intermediate
17193language tree to a file.  If the @samp{-@var{options}}
17194form is used, @var{options} is a list of @samp{-} separated options
17195which control the details of the dump.  Not all options are applicable
17196to all dumps; those that are not meaningful are ignored.  The
17197following options are available
17198
17199@table @samp
17200@item address
17201Print the address of each node.  Usually this is not meaningful as it
17202changes according to the environment and source file.  Its primary use
17203is for tying up a dump file with a debug environment.
17204@item asmname
17205If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
17206in the dump instead of @code{DECL_NAME}.  Its primary use is ease of
17207use working backward from mangled names in the assembly file.
17208@item slim
17209When dumping front-end intermediate representations, inhibit dumping
17210of members of a scope or body of a function merely because that scope
17211has been reached.  Only dump such items when they are directly reachable
17212by some other path.
17213
17214When dumping pretty-printed trees, this option inhibits dumping the
17215bodies of control structures.
17216
17217When dumping RTL, print the RTL in slim (condensed) form instead of
17218the default LISP-like representation.
17219@item raw
17220Print a raw representation of the tree.  By default, trees are
17221pretty-printed into a C-like representation.
17222@item details
17223Enable more detailed dumps (not honored by every dump option). Also
17224include information from the optimization passes.
17225@item stats
17226Enable dumping various statistics about the pass (not honored by every dump
17227option).
17228@item blocks
17229Enable showing basic block boundaries (disabled in raw dumps).
17230@item graph
17231For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
17232dump a representation of the control flow graph suitable for viewing with
17233GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}.  Each function in
17234the file is pretty-printed as a subgraph, so that GraphViz can render them
17235all in a single plot.
17236
17237This option currently only works for RTL dumps, and the RTL is always
17238dumped in slim form.
17239@item vops
17240Enable showing virtual operands for every statement.
17241@item lineno
17242Enable showing line numbers for statements.
17243@item uid
17244Enable showing the unique ID (@code{DECL_UID}) for each variable.
17245@item verbose
17246Enable showing the tree dump for each statement.
17247@item eh
17248Enable showing the EH region number holding each statement.
17249@item scev
17250Enable showing scalar evolution analysis details.
17251@item optimized
17252Enable showing optimization information (only available in certain
17253passes).
17254@item missed
17255Enable showing missed optimization information (only available in certain
17256passes).
17257@item note
17258Enable other detailed optimization information (only available in
17259certain passes).
17260@item all
17261Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
17262and @option{lineno}.
17263@item optall
17264Turn on all optimization options, i.e., @option{optimized},
17265@option{missed}, and @option{note}.
17266@end table
17267
17268To determine what tree dumps are available or find the dump for a pass
17269of interest follow the steps below.
17270
17271@enumerate
17272@item
17273Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
17274look for a code that corresponds to the pass you are interested in.
17275For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
17276@code{tree-vrp2} correspond to the three Value Range Propagation passes.
17277The number at the end distinguishes distinct invocations of the same pass.
17278@item
17279To enable the creation of the dump file, append the pass code to
17280the @option{-fdump-} option prefix and invoke GCC with it.  For example,
17281to enable the dump from the Early Value Range Propagation pass, invoke
17282GCC with the @option{-fdump-tree-evrp} option.  Optionally, you may
17283specify the name of the dump file.  If you don't specify one, GCC
17284creates as described below.
17285@item
17286Find the pass dump in a file whose name is composed of three components
17287separated by a period: the name of the source file GCC was invoked to
17288compile, a numeric suffix indicating the pass number followed by the
17289letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
17290and finally the pass code.  For example, the Early VRP pass dump might
17291be in a file named @file{myfile.c.038t.evrp} in the current working
17292directory.  Note that the numeric codes are not stable and may change
17293from one version of GCC to another.
17294@end enumerate
17295
17296@item -fopt-info
17297@itemx -fopt-info-@var{options}
17298@itemx -fopt-info-@var{options}=@var{filename}
17299@opindex fopt-info
17300Controls optimization dumps from various optimization passes. If the
17301@samp{-@var{options}} form is used, @var{options} is a list of
17302@samp{-} separated option keywords to select the dump details and
17303optimizations.
17304
17305The @var{options} can be divided into three groups:
17306@enumerate
17307@item
17308options describing what kinds of messages should be emitted,
17309@item
17310options describing the verbosity of the dump, and
17311@item
17312options describing which optimizations should be included.
17313@end enumerate
17314The options from each group can be freely mixed as they are
17315non-overlapping. However, in case of any conflicts,
17316the later options override the earlier options on the command
17317line.
17318
17319The following options control which kinds of messages should be emitted:
17320
17321@table @samp
17322@item optimized
17323Print information when an optimization is successfully applied. It is
17324up to a pass to decide which information is relevant. For example, the
17325vectorizer passes print the source location of loops which are
17326successfully vectorized.
17327@item missed
17328Print information about missed optimizations. Individual passes
17329control which information to include in the output.
17330@item note
17331Print verbose information about optimizations, such as certain
17332transformations, more detailed messages about decisions etc.
17333@item all
17334Print detailed optimization information. This includes
17335@samp{optimized}, @samp{missed}, and @samp{note}.
17336@end table
17337
17338The following option controls the dump verbosity:
17339
17340@table @samp
17341@item internals
17342By default, only ``high-level'' messages are emitted. This option enables
17343additional, more detailed, messages, which are likely to only be of interest
17344to GCC developers.
17345@end table
17346
17347One or more of the following option keywords can be used to describe a
17348group of optimizations:
17349
17350@table @samp
17351@item ipa
17352Enable dumps from all interprocedural optimizations.
17353@item loop
17354Enable dumps from all loop optimizations.
17355@item inline
17356Enable dumps from all inlining optimizations.
17357@item omp
17358Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
17359@item vec
17360Enable dumps from all vectorization optimizations.
17361@item optall
17362Enable dumps from all optimizations. This is a superset of
17363the optimization groups listed above.
17364@end table
17365
17366If @var{options} is
17367omitted, it defaults to @samp{optimized-optall}, which means to dump messages
17368about successful optimizations from all the passes, omitting messages
17369that are treated as ``internals''.
17370
17371If the @var{filename} is provided, then the dumps from all the
17372applicable optimizations are concatenated into the @var{filename}.
17373Otherwise the dump is output onto @file{stderr}. Though multiple
17374@option{-fopt-info} options are accepted, only one of them can include
17375a @var{filename}. If other filenames are provided then all but the
17376first such option are ignored.
17377
17378Note that the output @var{filename} is overwritten
17379in case of multiple translation units. If a combined output from
17380multiple translation units is desired, @file{stderr} should be used
17381instead.
17382
17383In the following example, the optimization info is output to
17384@file{stderr}:
17385
17386@smallexample
17387gcc -O3 -fopt-info
17388@end smallexample
17389
17390This example:
17391@smallexample
17392gcc -O3 -fopt-info-missed=missed.all
17393@end smallexample
17394
17395@noindent
17396outputs missed optimization report from all the passes into
17397@file{missed.all}, and this one:
17398
17399@smallexample
17400gcc -O2 -ftree-vectorize -fopt-info-vec-missed
17401@end smallexample
17402
17403@noindent
17404prints information about missed optimization opportunities from
17405vectorization passes on @file{stderr}.
17406Note that @option{-fopt-info-vec-missed} is equivalent to
17407@option{-fopt-info-missed-vec}.  The order of the optimization group
17408names and message types listed after @option{-fopt-info} does not matter.
17409
17410As another example,
17411@smallexample
17412gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
17413@end smallexample
17414
17415@noindent
17416outputs information about missed optimizations as well as
17417optimized locations from all the inlining passes into
17418@file{inline.txt}.
17419
17420Finally, consider:
17421
17422@smallexample
17423gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
17424@end smallexample
17425
17426@noindent
17427Here the two output filenames @file{vec.miss} and @file{loop.opt} are
17428in conflict since only one output file is allowed. In this case, only
17429the first option takes effect and the subsequent options are
17430ignored. Thus only @file{vec.miss} is produced which contains
17431dumps from the vectorizer about missed opportunities.
17432
17433@item -fsave-optimization-record
17434@opindex fsave-optimization-record
17435Write a SRCFILE.opt-record.json.gz file detailing what optimizations
17436were performed, for those optimizations that support @option{-fopt-info}.
17437
17438This option is experimental and the format of the data within the
17439compressed JSON file is subject to change.
17440
17441It is roughly equivalent to a machine-readable version of
17442@option{-fopt-info-all}, as a collection of messages with source file,
17443line number and column number, with the following additional data for
17444each message:
17445
17446@itemize @bullet
17447
17448@item
17449the execution count of the code being optimized, along with metadata about
17450whether this was from actual profile data, or just an estimate, allowing
17451consumers to prioritize messages by code hotness,
17452
17453@item
17454the function name of the code being optimized, where applicable,
17455
17456@item
17457the ``inlining chain'' for the code being optimized, so that when
17458a function is inlined into several different places (which might
17459themselves be inlined), the reader can distinguish between the copies,
17460
17461@item
17462objects identifying those parts of the message that refer to expressions,
17463statements or symbol-table nodes, which of these categories they are, and,
17464when available, their source code location,
17465
17466@item
17467the GCC pass that emitted the message, and
17468
17469@item
17470the location in GCC's own code from which the message was emitted
17471
17472@end itemize
17473
17474Additionally, some messages are logically nested within other
17475messages, reflecting implementation details of the optimization
17476passes.
17477
17478@item -fsched-verbose=@var{n}
17479@opindex fsched-verbose
17480On targets that use instruction scheduling, this option controls the
17481amount of debugging output the scheduler prints to the dump files.
17482
17483For @var{n} greater than zero, @option{-fsched-verbose} outputs the
17484same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
17485For @var{n} greater than one, it also output basic block probabilities,
17486detailed ready list information and unit/insn info.  For @var{n} greater
17487than two, it includes RTL at abort point, control-flow and regions info.
17488And for @var{n} over four, @option{-fsched-verbose} also includes
17489dependence info.
17490
17491
17492
17493@item -fenable-@var{kind}-@var{pass}
17494@itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
17495@opindex fdisable-
17496@opindex fenable-
17497
17498This is a set of options that are used to explicitly disable/enable
17499optimization passes.  These options are intended for use for debugging GCC.
17500Compiler users should use regular options for enabling/disabling
17501passes instead.
17502
17503@table @gcctabopt
17504
17505@item -fdisable-ipa-@var{pass}
17506Disable IPA pass @var{pass}. @var{pass} is the pass name.  If the same pass is
17507statically invoked in the compiler multiple times, the pass name should be
17508appended with a sequential number starting from 1.
17509
17510@item -fdisable-rtl-@var{pass}
17511@itemx -fdisable-rtl-@var{pass}=@var{range-list}
17512Disable RTL pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
17513statically invoked in the compiler multiple times, the pass name should be
17514appended with a sequential number starting from 1.  @var{range-list} is a
17515comma-separated list of function ranges or assembler names.  Each range is a number
17516pair separated by a colon.  The range is inclusive in both ends.  If the range
17517is trivial, the number pair can be simplified as a single number.  If the
17518function's call graph node's @var{uid} falls within one of the specified ranges,
17519the @var{pass} is disabled for that function.  The @var{uid} is shown in the
17520function header of a dump file, and the pass names can be dumped by using
17521option @option{-fdump-passes}.
17522
17523@item -fdisable-tree-@var{pass}
17524@itemx -fdisable-tree-@var{pass}=@var{range-list}
17525Disable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description of
17526option arguments.
17527
17528@item -fenable-ipa-@var{pass}
17529Enable IPA pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
17530statically invoked in the compiler multiple times, the pass name should be
17531appended with a sequential number starting from 1.
17532
17533@item -fenable-rtl-@var{pass}
17534@itemx -fenable-rtl-@var{pass}=@var{range-list}
17535Enable RTL pass @var{pass}.  See @option{-fdisable-rtl} for option argument
17536description and examples.
17537
17538@item -fenable-tree-@var{pass}
17539@itemx -fenable-tree-@var{pass}=@var{range-list}
17540Enable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description
17541of option arguments.
17542
17543@end table
17544
17545Here are some examples showing uses of these options.
17546
17547@smallexample
17548
17549# disable ccp1 for all functions
17550   -fdisable-tree-ccp1
17551# disable complete unroll for function whose cgraph node uid is 1
17552   -fenable-tree-cunroll=1
17553# disable gcse2 for functions at the following ranges [1,1],
17554# [300,400], and [400,1000]
17555# disable gcse2 for functions foo and foo2
17556   -fdisable-rtl-gcse2=foo,foo2
17557# disable early inlining
17558   -fdisable-tree-einline
17559# disable ipa inlining
17560   -fdisable-ipa-inline
17561# enable tree full unroll
17562   -fenable-tree-unroll
17563
17564@end smallexample
17565
17566@item -fchecking
17567@itemx -fchecking=@var{n}
17568@opindex fchecking
17569@opindex fno-checking
17570Enable internal consistency checking.  The default depends on
17571the compiler configuration.  @option{-fchecking=2} enables further
17572internal consistency checking that might affect code generation.
17573
17574@item -frandom-seed=@var{string}
17575@opindex frandom-seed
17576This option provides a seed that GCC uses in place of
17577random numbers in generating certain symbol names
17578that have to be different in every compiled file.  It is also used to
17579place unique stamps in coverage data files and the object files that
17580produce them.  You can use the @option{-frandom-seed} option to produce
17581reproducibly identical object files.
17582
17583The @var{string} can either be a number (decimal, octal or hex) or an
17584arbitrary string (in which case it's converted to a number by
17585computing CRC32).
17586
17587The @var{string} should be different for every file you compile.
17588
17589@item -save-temps
17590@opindex save-temps
17591Store the usual ``temporary'' intermediate files permanently; name them
17592as auxiliary output files, as specified described under
17593@option{-dumpbase} and @option{-dumpdir}.
17594
17595When used in combination with the @option{-x} command-line option,
17596@option{-save-temps} is sensible enough to avoid overwriting an
17597input source file with the same extension as an intermediate file.
17598The corresponding intermediate file may be obtained by renaming the
17599source file before using @option{-save-temps}.
17600
17601@item -save-temps=cwd
17602@opindex save-temps=cwd
17603Equivalent to @option{-save-temps -dumpdir ./}.
17604
17605@item -save-temps=obj
17606@opindex save-temps=obj
17607Equivalent to @option{-save-temps -dumpdir @file{outdir/}}, where
17608@file{outdir/} is the directory of the output file specified after the
17609@option{-o} option, including any directory separators.  If the
17610@option{-o} option is not used, the @option{-save-temps=obj} switch
17611behaves like @option{-save-temps=cwd}.
17612
17613@item -time@r{[}=@var{file}@r{]}
17614@opindex time
17615Report the CPU time taken by each subprocess in the compilation
17616sequence.  For C source files, this is the compiler proper and assembler
17617(plus the linker if linking is done).
17618
17619Without the specification of an output file, the output looks like this:
17620
17621@smallexample
17622# cc1 0.12 0.01
17623# as 0.00 0.01
17624@end smallexample
17625
17626The first number on each line is the ``user time'', that is time spent
17627executing the program itself.  The second number is ``system time'',
17628time spent executing operating system routines on behalf of the program.
17629Both numbers are in seconds.
17630
17631With the specification of an output file, the output is appended to the
17632named file, and it looks like this:
17633
17634@smallexample
176350.12 0.01 cc1 @var{options}
176360.00 0.01 as @var{options}
17637@end smallexample
17638
17639The ``user time'' and the ``system time'' are moved before the program
17640name, and the options passed to the program are displayed, so that one
17641can later tell what file was being compiled, and with which options.
17642
17643@item -fdump-final-insns@r{[}=@var{file}@r{]}
17644@opindex fdump-final-insns
17645Dump the final internal representation (RTL) to @var{file}.  If the
17646optional argument is omitted (or if @var{file} is @code{.}), the name
17647of the dump file is determined by appending @code{.gkd} to the
17648dump base name, see @option{-dumpbase}.
17649
17650@item -fcompare-debug@r{[}=@var{opts}@r{]}
17651@opindex fcompare-debug
17652@opindex fno-compare-debug
17653If no error occurs during compilation, run the compiler a second time,
17654adding @var{opts} and @option{-fcompare-debug-second} to the arguments
17655passed to the second compilation.  Dump the final internal
17656representation in both compilations, and print an error if they differ.
17657
17658If the equal sign is omitted, the default @option{-gtoggle} is used.
17659
17660The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
17661and nonzero, implicitly enables @option{-fcompare-debug}.  If
17662@env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
17663then it is used for @var{opts}, otherwise the default @option{-gtoggle}
17664is used.
17665
17666@option{-fcompare-debug=}, with the equal sign but without @var{opts},
17667is equivalent to @option{-fno-compare-debug}, which disables the dumping
17668of the final representation and the second compilation, preventing even
17669@env{GCC_COMPARE_DEBUG} from taking effect.
17670
17671To verify full coverage during @option{-fcompare-debug} testing, set
17672@env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
17673which GCC rejects as an invalid option in any actual compilation
17674(rather than preprocessing, assembly or linking).  To get just a
17675warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
17676not overridden} will do.
17677
17678@item -fcompare-debug-second
17679@opindex fcompare-debug-second
17680This option is implicitly passed to the compiler for the second
17681compilation requested by @option{-fcompare-debug}, along with options to
17682silence warnings, and omitting other options that would cause the compiler
17683to produce output to files or to standard output as a side effect.  Dump
17684files and preserved temporary files are renamed so as to contain the
17685@code{.gk} additional extension during the second compilation, to avoid
17686overwriting those generated by the first.
17687
17688When this option is passed to the compiler driver, it causes the
17689@emph{first} compilation to be skipped, which makes it useful for little
17690other than debugging the compiler proper.
17691
17692@item -gtoggle
17693@opindex gtoggle
17694Turn off generation of debug info, if leaving out this option
17695generates it, or turn it on at level 2 otherwise.  The position of this
17696argument in the command line does not matter; it takes effect after all
17697other options are processed, and it does so only once, no matter how
17698many times it is given.  This is mainly intended to be used with
17699@option{-fcompare-debug}.
17700
17701@item -fvar-tracking-assignments-toggle
17702@opindex fvar-tracking-assignments-toggle
17703@opindex fno-var-tracking-assignments-toggle
17704Toggle @option{-fvar-tracking-assignments}, in the same way that
17705@option{-gtoggle} toggles @option{-g}.
17706
17707@item -Q
17708@opindex Q
17709Makes the compiler print out each function name as it is compiled, and
17710print some statistics about each pass when it finishes.
17711
17712@item -ftime-report
17713@opindex ftime-report
17714Makes the compiler print some statistics about the time consumed by each
17715pass when it finishes.
17716
17717@item -ftime-report-details
17718@opindex ftime-report-details
17719Record the time consumed by infrastructure parts separately for each pass.
17720
17721@item -fira-verbose=@var{n}
17722@opindex fira-verbose
17723Control the verbosity of the dump file for the integrated register allocator.
17724The default value is 5.  If the value @var{n} is greater or equal to 10,
17725the dump output is sent to stderr using the same format as @var{n} minus 10.
17726
17727@item -flto-report
17728@opindex flto-report
17729Prints a report with internal details on the workings of the link-time
17730optimizer.  The contents of this report vary from version to version.
17731It is meant to be useful to GCC developers when processing object
17732files in LTO mode (via @option{-flto}).
17733
17734Disabled by default.
17735
17736@item -flto-report-wpa
17737@opindex flto-report-wpa
17738Like @option{-flto-report}, but only print for the WPA phase of link-time
17739optimization.
17740
17741@item -fmem-report
17742@opindex fmem-report
17743Makes the compiler print some statistics about permanent memory
17744allocation when it finishes.
17745
17746@item -fmem-report-wpa
17747@opindex fmem-report-wpa
17748Makes the compiler print some statistics about permanent memory
17749allocation for the WPA phase only.
17750
17751@item -fpre-ipa-mem-report
17752@opindex fpre-ipa-mem-report
17753@item -fpost-ipa-mem-report
17754@opindex fpost-ipa-mem-report
17755Makes the compiler print some statistics about permanent memory
17756allocation before or after interprocedural optimization.
17757
17758@item -fprofile-report
17759@opindex fprofile-report
17760Makes the compiler print some statistics about consistency of the
17761(estimated) profile and effect of individual passes.
17762
17763@item -fstack-usage
17764@opindex fstack-usage
17765Makes the compiler output stack usage information for the program, on a
17766per-function basis.  The filename for the dump is made by appending
17767@file{.su} to the @var{auxname}.  @var{auxname} is generated from the name of
17768the output file, if explicitly specified and it is not an executable,
17769otherwise it is the basename of the source file.  An entry is made up
17770of three fields:
17771
17772@itemize
17773@item
17774The name of the function.
17775@item
17776A number of bytes.
17777@item
17778One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
17779@end itemize
17780
17781The qualifier @code{static} means that the function manipulates the stack
17782statically: a fixed number of bytes are allocated for the frame on function
17783entry and released on function exit; no stack adjustments are otherwise made
17784in the function.  The second field is this fixed number of bytes.
17785
17786The qualifier @code{dynamic} means that the function manipulates the stack
17787dynamically: in addition to the static allocation described above, stack
17788adjustments are made in the body of the function, for example to push/pop
17789arguments around function calls.  If the qualifier @code{bounded} is also
17790present, the amount of these adjustments is bounded at compile time and
17791the second field is an upper bound of the total amount of stack used by
17792the function.  If it is not present, the amount of these adjustments is
17793not bounded at compile time and the second field only represents the
17794bounded part.
17795
17796@item -fstats
17797@opindex fstats
17798Emit statistics about front-end processing at the end of the compilation.
17799This option is supported only by the C++ front end, and
17800the information is generally only useful to the G++ development team.
17801
17802@item -fdbg-cnt-list
17803@opindex fdbg-cnt-list
17804Print the name and the counter upper bound for all debug counters.
17805
17806
17807@item -fdbg-cnt=@var{counter-value-list}
17808@opindex fdbg-cnt
17809Set the internal debug counter lower and upper bound.  @var{counter-value-list}
17810is a comma-separated list of @var{name}:@var{lower_bound1}-@var{upper_bound1}
17811[:@var{lower_bound2}-@var{upper_bound2}...] tuples which sets
17812the name of the counter and list of closed intervals.
17813The @var{lower_bound} is optional and is zero
17814initialized if not set.
17815For example, with @option{-fdbg-cnt=dce:2-4:10-11,tail_call:10},
17816@code{dbg_cnt(dce)} returns true only for second, third, fourth, tenth and
17817eleventh invocation.
17818For @code{dbg_cnt(tail_call)} true is returned for first 10 invocations.
17819
17820@item -print-file-name=@var{library}
17821@opindex print-file-name
17822Print the full absolute name of the library file @var{library} that
17823would be used when linking---and don't do anything else.  With this
17824option, GCC does not compile or link anything; it just prints the
17825file name.
17826
17827@item -print-multi-directory
17828@opindex print-multi-directory
17829Print the directory name corresponding to the multilib selected by any
17830other switches present in the command line.  This directory is supposed
17831to exist in @env{GCC_EXEC_PREFIX}.
17832
17833@item -print-multi-lib
17834@opindex print-multi-lib
17835Print the mapping from multilib directory names to compiler switches
17836that enable them.  The directory name is separated from the switches by
17837@samp{;}, and each switch starts with an @samp{@@} instead of the
17838@samp{-}, without spaces between multiple switches.  This is supposed to
17839ease shell processing.
17840
17841@item -print-multi-os-directory
17842@opindex print-multi-os-directory
17843Print the path to OS libraries for the selected
17844multilib, relative to some @file{lib} subdirectory.  If OS libraries are
17845present in the @file{lib} subdirectory and no multilibs are used, this is
17846usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
17847sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
17848@file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
17849subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
17850
17851@item -print-multiarch
17852@opindex print-multiarch
17853Print the path to OS libraries for the selected multiarch,
17854relative to some @file{lib} subdirectory.
17855
17856@item -print-prog-name=@var{program}
17857@opindex print-prog-name
17858Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
17859
17860@item -print-libgcc-file-name
17861@opindex print-libgcc-file-name
17862Same as @option{-print-file-name=libgcc.a}.
17863
17864This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
17865but you do want to link with @file{libgcc.a}.  You can do:
17866
17867@smallexample
17868gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
17869@end smallexample
17870
17871@item -print-search-dirs
17872@opindex print-search-dirs
17873Print the name of the configured installation directory and a list of
17874program and library directories @command{gcc} searches---and don't do anything else.
17875
17876This is useful when @command{gcc} prints the error message
17877@samp{installation problem, cannot exec cpp0: No such file or directory}.
17878To resolve this you either need to put @file{cpp0} and the other compiler
17879components where @command{gcc} expects to find them, or you can set the environment
17880variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
17881Don't forget the trailing @samp{/}.
17882@xref{Environment Variables}.
17883
17884@item -print-sysroot
17885@opindex print-sysroot
17886Print the target sysroot directory that is used during
17887compilation.  This is the target sysroot specified either at configure
17888time or using the @option{--sysroot} option, possibly with an extra
17889suffix that depends on compilation options.  If no target sysroot is
17890specified, the option prints nothing.
17891
17892@item -print-sysroot-headers-suffix
17893@opindex print-sysroot-headers-suffix
17894Print the suffix added to the target sysroot when searching for
17895headers, or give an error if the compiler is not configured with such
17896a suffix---and don't do anything else.
17897
17898@item -dumpmachine
17899@opindex dumpmachine
17900Print the compiler's target machine (for example,
17901@samp{i686-pc-linux-gnu})---and don't do anything else.
17902
17903@item -dumpversion
17904@opindex dumpversion
17905Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
17906anything else.  This is the compiler version used in filesystem paths and
17907specs. Depending on how the compiler has been configured it can be just
17908a single number (major version), two numbers separated by a dot (major and
17909minor version) or three numbers separated by dots (major, minor and patchlevel
17910version).
17911
17912@item -dumpfullversion
17913@opindex dumpfullversion
17914Print the full compiler version---and don't do anything else. The output is
17915always three numbers separated by dots, major, minor and patchlevel version.
17916
17917@item -dumpspecs
17918@opindex dumpspecs
17919Print the compiler's built-in specs---and don't do anything else.  (This
17920is used when GCC itself is being built.)  @xref{Spec Files}.
17921@end table
17922
17923@node Submodel Options
17924@section Machine-Dependent Options
17925@cindex submodel options
17926@cindex specifying hardware config
17927@cindex hardware models and configurations, specifying
17928@cindex target-dependent options
17929@cindex machine-dependent options
17930
17931Each target machine supported by GCC can have its own options---for
17932example, to allow you to compile for a particular processor variant or
17933ABI, or to control optimizations specific to that machine.  By
17934convention, the names of machine-specific options start with
17935@samp{-m}.
17936
17937Some configurations of the compiler also support additional target-specific
17938options, usually for compatibility with other compilers on the same
17939platform.
17940
17941@c This list is ordered alphanumerically by subsection name.
17942@c It should be the same order and spelling as these options are listed
17943@c in Machine Dependent Options
17944
17945@menu
17946* AArch64 Options::
17947* Adapteva Epiphany Options::
17948* AMD GCN Options::
17949* ARC Options::
17950* ARM Options::
17951* AVR Options::
17952* Blackfin Options::
17953* C6X Options::
17954* CRIS Options::
17955* CR16 Options::
17956* C-SKY Options::
17957* Darwin Options::
17958* DEC Alpha Options::
17959* eBPF Options::
17960* FR30 Options::
17961* FT32 Options::
17962* FRV Options::
17963* GNU/Linux Options::
17964* H8/300 Options::
17965* HPPA Options::
17966* IA-64 Options::
17967* LM32 Options::
17968* M32C Options::
17969* M32R/D Options::
17970* M680x0 Options::
17971* MCore Options::
17972* MeP Options::
17973* MicroBlaze Options::
17974* MIPS Options::
17975* MMIX Options::
17976* MN10300 Options::
17977* Moxie Options::
17978* MSP430 Options::
17979* NDS32 Options::
17980* Nios II Options::
17981* Nvidia PTX Options::
17982* OpenRISC Options::
17983* PDP-11 Options::
17984* picoChip Options::
17985* PowerPC Options::
17986* PRU Options::
17987* RISC-V Options::
17988* RL78 Options::
17989* RS/6000 and PowerPC Options::
17990* RX Options::
17991* S/390 and zSeries Options::
17992* Score Options::
17993* SH Options::
17994* Solaris 2 Options::
17995* SPARC Options::
17996* System V Options::
17997* TILE-Gx Options::
17998* TILEPro Options::
17999* V850 Options::
18000* VAX Options::
18001* Visium Options::
18002* VMS Options::
18003* VxWorks Options::
18004* x86 Options::
18005* x86 Windows Options::
18006* Xstormy16 Options::
18007* Xtensa Options::
18008* zSeries Options::
18009@end menu
18010
18011@node AArch64 Options
18012@subsection AArch64 Options
18013@cindex AArch64 Options
18014
18015These options are defined for AArch64 implementations:
18016
18017@table @gcctabopt
18018
18019@item -mabi=@var{name}
18020@opindex mabi
18021Generate code for the specified data model.  Permissible values
18022are @samp{ilp32} for SysV-like data model where int, long int and pointers
18023are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
18024but long int and pointers are 64 bits.
18025
18026The default depends on the specific target configuration.  Note that
18027the LP64 and ILP32 ABIs are not link-compatible; you must compile your
18028entire program with the same ABI, and link with a compatible set of libraries.
18029
18030@item -mbig-endian
18031@opindex mbig-endian
18032Generate big-endian code.  This is the default when GCC is configured for an
18033@samp{aarch64_be-*-*} target.
18034
18035@item -mgeneral-regs-only
18036@opindex mgeneral-regs-only
18037Generate code which uses only the general-purpose registers.  This will prevent
18038the compiler from using floating-point and Advanced SIMD registers but will not
18039impose any restrictions on the assembler.
18040
18041@item -mlittle-endian
18042@opindex mlittle-endian
18043Generate little-endian code.  This is the default when GCC is configured for an
18044@samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
18045
18046@item -mcmodel=tiny
18047@opindex mcmodel=tiny
18048Generate code for the tiny code model.  The program and its statically defined
18049symbols must be within 1MB of each other.  Programs can be statically or
18050dynamically linked.
18051
18052@item -mcmodel=small
18053@opindex mcmodel=small
18054Generate code for the small code model.  The program and its statically defined
18055symbols must be within 4GB of each other.  Programs can be statically or
18056dynamically linked.  This is the default code model.
18057
18058@item -mcmodel=large
18059@opindex mcmodel=large
18060Generate code for the large code model.  This makes no assumptions about
18061addresses and sizes of sections.  Programs can be statically linked only.  The
18062@option{-mcmodel=large} option is incompatible with @option{-mabi=ilp32},
18063@option{-fpic} and @option{-fPIC}.
18064
18065@item -mstrict-align
18066@itemx -mno-strict-align
18067@opindex mstrict-align
18068@opindex mno-strict-align
18069Avoid or allow generating memory accesses that may not be aligned on a natural
18070object boundary as described in the architecture specification.
18071
18072@item -momit-leaf-frame-pointer
18073@itemx -mno-omit-leaf-frame-pointer
18074@opindex momit-leaf-frame-pointer
18075@opindex mno-omit-leaf-frame-pointer
18076Omit or keep the frame pointer in leaf functions.  The former behavior is the
18077default.
18078
18079@item -mstack-protector-guard=@var{guard}
18080@itemx -mstack-protector-guard-reg=@var{reg}
18081@itemx -mstack-protector-guard-offset=@var{offset}
18082@opindex mstack-protector-guard
18083@opindex mstack-protector-guard-reg
18084@opindex mstack-protector-guard-offset
18085Generate stack protection code using canary at @var{guard}.  Supported
18086locations are @samp{global} for a global canary or @samp{sysreg} for a
18087canary in an appropriate system register.
18088
18089With the latter choice the options
18090@option{-mstack-protector-guard-reg=@var{reg}} and
18091@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
18092which system register to use as base register for reading the canary,
18093and from what offset from that base register. There is no default
18094register or offset as this is entirely for use within the Linux
18095kernel.
18096
18097@item -mtls-dialect=desc
18098@opindex mtls-dialect=desc
18099Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
18100of TLS variables.  This is the default.
18101
18102@item -mtls-dialect=traditional
18103@opindex mtls-dialect=traditional
18104Use traditional TLS as the thread-local storage mechanism for dynamic accesses
18105of TLS variables.
18106
18107@item -mtls-size=@var{size}
18108@opindex mtls-size
18109Specify bit size of immediate TLS offsets.  Valid values are 12, 24, 32, 48.
18110This option requires binutils 2.26 or newer.
18111
18112@item -mfix-cortex-a53-835769
18113@itemx -mno-fix-cortex-a53-835769
18114@opindex mfix-cortex-a53-835769
18115@opindex mno-fix-cortex-a53-835769
18116Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
18117This involves inserting a NOP instruction between memory instructions and
1811864-bit integer multiply-accumulate instructions.
18119
18120@item -mfix-cortex-a53-843419
18121@itemx -mno-fix-cortex-a53-843419
18122@opindex mfix-cortex-a53-843419
18123@opindex mno-fix-cortex-a53-843419
18124Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
18125This erratum workaround is made at link time and this will only pass the
18126corresponding flag to the linker.
18127
18128@item -mlow-precision-recip-sqrt
18129@itemx -mno-low-precision-recip-sqrt
18130@opindex mlow-precision-recip-sqrt
18131@opindex mno-low-precision-recip-sqrt
18132Enable or disable the reciprocal square root approximation.
18133This option only has an effect if @option{-ffast-math} or
18134@option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
18135precision of reciprocal square root results to about 16 bits for
18136single precision and to 32 bits for double precision.
18137
18138@item -mlow-precision-sqrt
18139@itemx -mno-low-precision-sqrt
18140@opindex mlow-precision-sqrt
18141@opindex mno-low-precision-sqrt
18142Enable or disable the square root approximation.
18143This option only has an effect if @option{-ffast-math} or
18144@option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
18145precision of square root results to about 16 bits for
18146single precision and to 32 bits for double precision.
18147If enabled, it implies @option{-mlow-precision-recip-sqrt}.
18148
18149@item -mlow-precision-div
18150@itemx -mno-low-precision-div
18151@opindex mlow-precision-div
18152@opindex mno-low-precision-div
18153Enable or disable the division approximation.
18154This option only has an effect if @option{-ffast-math} or
18155@option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
18156precision of division results to about 16 bits for
18157single precision and to 32 bits for double precision.
18158
18159@item -mtrack-speculation
18160@itemx -mno-track-speculation
18161Enable or disable generation of additional code to track speculative
18162execution through conditional branches.  The tracking state can then
18163be used by the compiler when expanding calls to
18164@code{__builtin_speculation_safe_copy} to permit a more efficient code
18165sequence to be generated.
18166
18167@item -moutline-atomics
18168@itemx -mno-outline-atomics
18169Enable or disable calls to out-of-line helpers to implement atomic operations.
18170These helpers will, at runtime, determine if the LSE instructions from
18171ARMv8.1-A can be used; if not, they will use the load/store-exclusive
18172instructions that are present in the base ARMv8.0 ISA.
18173
18174This option is only applicable when compiling for the base ARMv8.0
18175instruction set.  If using a later revision, e.g. @option{-march=armv8.1-a}
18176or @option{-march=armv8-a+lse}, the ARMv8.1-Atomics instructions will be
18177used directly.  The same applies when using @option{-mcpu=} when the
18178selected cpu supports the @samp{lse} feature.
18179This option is on by default.
18180
18181@item -march=@var{name}
18182@opindex march
18183Specify the name of the target architecture and, optionally, one or
18184more feature modifiers.  This option has the form
18185@option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
18186
18187The table below summarizes the permissible values for @var{arch}
18188and the features that they enable by default:
18189
18190@multitable @columnfractions 0.20 0.20 0.60
18191@headitem @var{arch} value @tab Architecture @tab Includes by default
18192@item @samp{armv8-a} @tab Armv8-A @tab @samp{+fp}, @samp{+simd}
18193@item @samp{armv8.1-a} @tab Armv8.1-A @tab @samp{armv8-a}, @samp{+crc}, @samp{+lse}, @samp{+rdma}
18194@item @samp{armv8.2-a} @tab Armv8.2-A @tab @samp{armv8.1-a}
18195@item @samp{armv8.3-a} @tab Armv8.3-A @tab @samp{armv8.2-a}, @samp{+pauth}
18196@item @samp{armv8.4-a} @tab Armv8.4-A @tab @samp{armv8.3-a}, @samp{+flagm}, @samp{+fp16fml}, @samp{+dotprod}
18197@item @samp{armv8.5-a} @tab Armv8.5-A @tab @samp{armv8.4-a}, @samp{+sb}, @samp{+ssbs}, @samp{+predres}
18198@item @samp{armv8.6-a} @tab Armv8.6-A @tab @samp{armv8.5-a}, @samp{+bf16}, @samp{+i8mm}
18199@item @samp{armv8-r} @tab Armv8-R @tab @samp{armv8-r}
18200@end multitable
18201
18202The value @samp{native} is available on native AArch64 GNU/Linux and
18203causes the compiler to pick the architecture of the host system.  This
18204option has no effect if the compiler is unable to recognize the
18205architecture of the host system,
18206
18207The permissible values for @var{feature} are listed in the sub-section
18208on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
18209Feature Modifiers}.  Where conflicting feature modifiers are
18210specified, the right-most feature is used.
18211
18212GCC uses @var{name} to determine what kind of instructions it can emit
18213when generating assembly code.  If @option{-march} is specified
18214without either of @option{-mtune} or @option{-mcpu} also being
18215specified, the code is tuned to perform well across a range of target
18216processors implementing the target architecture.
18217
18218@item -mtune=@var{name}
18219@opindex mtune
18220Specify the name of the target processor for which GCC should tune the
18221performance of the code.  Permissible values for this option are:
18222@samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
18223@samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
18224@samp{cortex-a76}, @samp{cortex-a76ae}, @samp{cortex-a77},
18225@samp{cortex-a65}, @samp{cortex-a65ae}, @samp{cortex-a34},
18226@samp{cortex-a78}, @samp{cortex-a78ae}, @samp{cortex-a78c},
18227@samp{ares}, @samp{exynos-m1}, @samp{emag}, @samp{falkor},
18228@samp{neoverse-e1}, @samp{neoverse-n1}, @samp{neoverse-n2},
18229@samp{neoverse-v1}, @samp{qdf24xx}, @samp{saphira},
18230@samp{phecda}, @samp{xgene1}, @samp{vulcan}, @samp{octeontx},
18231@samp{octeontx81},  @samp{octeontx83},
18232@samp{octeontx2}, @samp{octeontx2t98}, @samp{octeontx2t96}
18233@samp{octeontx2t93}, @samp{octeontx2f95}, @samp{octeontx2f95n},
18234@samp{octeontx2f95mm},
18235@samp{a64fx},
18236@samp{thunderx}, @samp{thunderxt88},
18237@samp{thunderxt88p1}, @samp{thunderxt81}, @samp{tsv110},
18238@samp{thunderxt83}, @samp{thunderx2t99}, @samp{thunderx3t110}, @samp{zeus},
18239@samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
18240@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
18241@samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55},
18242@samp{cortex-r82}, @samp{cortex-x1}, @samp{native}.
18243
18244The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
18245@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
18246@samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55} specify that GCC
18247should tune for a big.LITTLE system.
18248
18249Additionally on native AArch64 GNU/Linux systems the value
18250@samp{native} tunes performance to the host system.  This option has no effect
18251if the compiler is unable to recognize the processor of the host system.
18252
18253Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
18254are specified, the code is tuned to perform well across a range
18255of target processors.
18256
18257This option cannot be suffixed by feature modifiers.
18258
18259@item -mcpu=@var{name}
18260@opindex mcpu
18261Specify the name of the target processor, optionally suffixed by one
18262or more feature modifiers.  This option has the form
18263@option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
18264the permissible values for @var{cpu} are the same as those available
18265for @option{-mtune}.  The permissible values for @var{feature} are
18266documented in the sub-section on
18267@ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
18268Feature Modifiers}.  Where conflicting feature modifiers are
18269specified, the right-most feature is used.
18270
18271GCC uses @var{name} to determine what kind of instructions it can emit when
18272generating assembly code (as if by @option{-march}) and to determine
18273the target processor for which to tune for performance (as if
18274by @option{-mtune}).  Where this option is used in conjunction
18275with @option{-march} or @option{-mtune}, those options take precedence
18276over the appropriate part of this option.
18277
18278@item -moverride=@var{string}
18279@opindex moverride
18280Override tuning decisions made by the back-end in response to a
18281@option{-mtune=} switch.  The syntax, semantics, and accepted values
18282for @var{string} in this option are not guaranteed to be consistent
18283across releases.
18284
18285This option is only intended to be useful when developing GCC.
18286
18287@item -mverbose-cost-dump
18288@opindex mverbose-cost-dump
18289Enable verbose cost model dumping in the debug dump files.  This option is
18290provided for use in debugging the compiler.
18291
18292@item -mpc-relative-literal-loads
18293@itemx -mno-pc-relative-literal-loads
18294@opindex mpc-relative-literal-loads
18295@opindex mno-pc-relative-literal-loads
18296Enable or disable PC-relative literal loads.  With this option literal pools are
18297accessed using a single instruction and emitted after each function.  This
18298limits the maximum size of functions to 1MB.  This is enabled by default for
18299@option{-mcmodel=tiny}.
18300
18301@item -msign-return-address=@var{scope}
18302@opindex msign-return-address
18303Select the function scope on which return address signing will be applied.
18304Permissible values are @samp{none}, which disables return address signing,
18305@samp{non-leaf}, which enables pointer signing for functions which are not leaf
18306functions, and @samp{all}, which enables pointer signing for all functions.  The
18307default value is @samp{none}. This option has been deprecated by
18308-mbranch-protection.
18309
18310@item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}+@var{b-key}]|@var{bti}
18311@opindex mbranch-protection
18312Select the branch protection features to use.
18313@samp{none} is the default and turns off all types of branch protection.
18314@samp{standard} turns on all types of branch protection features.  If a feature
18315has additional tuning options, then @samp{standard} sets it to its standard
18316level.
18317@samp{pac-ret[+@var{leaf}]} turns on return address signing to its standard
18318level: signing functions that save the return address to memory (non-leaf
18319functions will practically always do this) using the a-key.  The optional
18320argument @samp{leaf} can be used to extend the signing to include leaf
18321functions.  The optional argument @samp{b-key} can be used to sign the functions
18322with the B-key instead of the A-key.
18323@samp{bti} turns on branch target identification mechanism.
18324
18325@item -mharden-sls=@var{opts}
18326@opindex mharden-sls
18327Enable compiler hardening against straight line speculation (SLS).
18328@var{opts} is a comma-separated list of the following options:
18329@table @samp
18330@item retbr
18331@item blr
18332@end table
18333In addition, @samp{-mharden-sls=all} enables all SLS hardening while
18334@samp{-mharden-sls=none} disables all SLS hardening.
18335
18336@item -msve-vector-bits=@var{bits}
18337@opindex msve-vector-bits
18338Specify the number of bits in an SVE vector register.  This option only has
18339an effect when SVE is enabled.
18340
18341GCC supports two forms of SVE code generation: ``vector-length
18342agnostic'' output that works with any size of vector register and
18343``vector-length specific'' output that allows GCC to make assumptions
18344about the vector length when it is useful for optimization reasons.
18345The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
18346@samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
18347Specifying @samp{scalable} selects vector-length agnostic
18348output.  At present @samp{-msve-vector-bits=128} also generates vector-length
18349agnostic output for big-endian targets.  All other values generate
18350vector-length specific code.  The behavior of these values may change
18351in future releases and no value except @samp{scalable} should be
18352relied on for producing code that is portable across different
18353hardware SVE vector lengths.
18354
18355The default is @samp{-msve-vector-bits=scalable}, which produces
18356vector-length agnostic code.
18357@end table
18358
18359@subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
18360@anchor{aarch64-feature-modifiers}
18361@cindex @option{-march} feature modifiers
18362@cindex @option{-mcpu} feature modifiers
18363Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
18364the following and their inverses @option{no@var{feature}}:
18365
18366@table @samp
18367@item crc
18368Enable CRC extension.  This is on by default for
18369@option{-march=armv8.1-a}.
18370@item crypto
18371Enable Crypto extension.  This also enables Advanced SIMD and floating-point
18372instructions.
18373@item fp
18374Enable floating-point instructions.  This is on by default for all possible
18375values for options @option{-march} and @option{-mcpu}.
18376@item simd
18377Enable Advanced SIMD instructions.  This also enables floating-point
18378instructions.  This is on by default for all possible values for options
18379@option{-march} and @option{-mcpu}.
18380@item sve
18381Enable Scalable Vector Extension instructions.  This also enables Advanced
18382SIMD and floating-point instructions.
18383@item lse
18384Enable Large System Extension instructions.  This is on by default for
18385@option{-march=armv8.1-a}.
18386@item rdma
18387Enable Round Double Multiply Accumulate instructions.  This is on by default
18388for @option{-march=armv8.1-a}.
18389@item fp16
18390Enable FP16 extension.  This also enables floating-point instructions.
18391@item fp16fml
18392Enable FP16 fmla extension.  This also enables FP16 extensions and
18393floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
18394
18395@item rcpc
18396Enable the RcPc extension.  This does not change code generation from GCC,
18397but is passed on to the assembler, enabling inline asm statements to use
18398instructions from the RcPc extension.
18399@item dotprod
18400Enable the Dot Product extension.  This also enables Advanced SIMD instructions.
18401@item aes
18402Enable the Armv8-a aes and pmull crypto extension.  This also enables Advanced
18403SIMD instructions.
18404@item sha2
18405Enable the Armv8-a sha2 crypto extension.  This also enables Advanced SIMD instructions.
18406@item sha3
18407Enable the sha512 and sha3 crypto extension.  This also enables Advanced SIMD
18408instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
18409@item sm4
18410Enable the sm3 and sm4 crypto extension.  This also enables Advanced SIMD instructions.
18411Use of this option with architectures prior to Armv8.2-A is not supported.
18412@item profile
18413Enable the Statistical Profiling extension.  This option is only to enable the
18414extension at the assembler level and does not affect code generation.
18415@item rng
18416Enable the Armv8.5-a Random Number instructions.  This option is only to
18417enable the extension at the assembler level and does not affect code
18418generation.
18419@item memtag
18420Enable the Armv8.5-a Memory Tagging Extensions.
18421Use of this option with architectures prior to Armv8.5-A is not supported.
18422@item sb
18423Enable the Armv8-a Speculation Barrier instruction.  This option is only to
18424enable the extension at the assembler level and does not affect code
18425generation.  This option is enabled by default for @option{-march=armv8.5-a}.
18426@item ssbs
18427Enable the Armv8-a Speculative Store Bypass Safe instruction.  This option
18428is only to enable the extension at the assembler level and does not affect code
18429generation.  This option is enabled by default for @option{-march=armv8.5-a}.
18430@item predres
18431Enable the Armv8-a Execution and Data Prediction Restriction instructions.
18432This option is only to enable the extension at the assembler level and does
18433not affect code generation.  This option is enabled by default for
18434@option{-march=armv8.5-a}.
18435@item sve2
18436Enable the Armv8-a Scalable Vector Extension 2.  This also enables SVE
18437instructions.
18438@item sve2-bitperm
18439Enable SVE2 bitperm instructions.  This also enables SVE2 instructions.
18440@item sve2-sm4
18441Enable SVE2 sm4 instructions.  This also enables SVE2 instructions.
18442@item sve2-aes
18443Enable SVE2 aes instructions.  This also enables SVE2 instructions.
18444@item sve2-sha3
18445Enable SVE2 sha3 instructions.  This also enables SVE2 instructions.
18446@item tme
18447Enable the Transactional Memory Extension.
18448@item i8mm
18449Enable 8-bit Integer Matrix Multiply instructions.  This also enables
18450Advanced SIMD and floating-point instructions.  This option is enabled by
18451default for @option{-march=armv8.6-a}.  Use of this option with architectures
18452prior to Armv8.2-A is not supported.
18453@item f32mm
18454Enable 32-bit Floating point Matrix Multiply instructions.  This also enables
18455SVE instructions.  Use of this option with architectures prior to Armv8.2-A is
18456not supported.
18457@item f64mm
18458Enable 64-bit Floating point Matrix Multiply instructions.  This also enables
18459SVE instructions.  Use of this option with architectures prior to Armv8.2-A is
18460not supported.
18461@item bf16
18462Enable brain half-precision floating-point instructions.  This also enables
18463Advanced SIMD and floating-point instructions.  This option is enabled by
18464default for @option{-march=armv8.6-a}.  Use of this option with architectures
18465prior to Armv8.2-A is not supported.
18466@item flagm
18467Enable the Flag Manipulation instructions Extension.
18468@item pauth
18469Enable the Pointer Authentication Extension.
18470
18471@end table
18472
18473Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
18474which implies @option{fp}.
18475Conversely, @option{nofp} implies @option{nosimd}, which implies
18476@option{nocrypto}, @option{noaes} and @option{nosha2}.
18477
18478@node Adapteva Epiphany Options
18479@subsection Adapteva Epiphany Options
18480
18481These @samp{-m} options are defined for Adapteva Epiphany:
18482
18483@table @gcctabopt
18484@item -mhalf-reg-file
18485@opindex mhalf-reg-file
18486Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
18487That allows code to run on hardware variants that lack these registers.
18488
18489@item -mprefer-short-insn-regs
18490@opindex mprefer-short-insn-regs
18491Preferentially allocate registers that allow short instruction generation.
18492This can result in increased instruction count, so this may either reduce or
18493increase overall code size.
18494
18495@item -mbranch-cost=@var{num}
18496@opindex mbranch-cost
18497Set the cost of branches to roughly @var{num} ``simple'' instructions.
18498This cost is only a heuristic and is not guaranteed to produce
18499consistent results across releases.
18500
18501@item -mcmove
18502@opindex mcmove
18503Enable the generation of conditional moves.
18504
18505@item -mnops=@var{num}
18506@opindex mnops
18507Emit @var{num} NOPs before every other generated instruction.
18508
18509@item -mno-soft-cmpsf
18510@opindex mno-soft-cmpsf
18511@opindex msoft-cmpsf
18512For single-precision floating-point comparisons, emit an @code{fsub} instruction
18513and test the flags.  This is faster than a software comparison, but can
18514get incorrect results in the presence of NaNs, or when two different small
18515numbers are compared such that their difference is calculated as zero.
18516The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
18517software comparisons.
18518
18519@item -mstack-offset=@var{num}
18520@opindex mstack-offset
18521Set the offset between the top of the stack and the stack pointer.
18522E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
18523can be used by leaf functions without stack allocation.
18524Values other than @samp{8} or @samp{16} are untested and unlikely to work.
18525Note also that this option changes the ABI; compiling a program with a
18526different stack offset than the libraries have been compiled with
18527generally does not work.
18528This option can be useful if you want to evaluate if a different stack
18529offset would give you better code, but to actually use a different stack
18530offset to build working programs, it is recommended to configure the
18531toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
18532
18533@item -mno-round-nearest
18534@opindex mno-round-nearest
18535@opindex mround-nearest
18536Make the scheduler assume that the rounding mode has been set to
18537truncating.  The default is @option{-mround-nearest}.
18538
18539@item -mlong-calls
18540@opindex mlong-calls
18541If not otherwise specified by an attribute, assume all calls might be beyond
18542the offset range of the @code{b} / @code{bl} instructions, and therefore load the
18543function address into a register before performing a (otherwise direct) call.
18544This is the default.
18545
18546@item -mshort-calls
18547@opindex short-calls
18548If not otherwise specified by an attribute, assume all direct calls are
18549in the range of the @code{b} / @code{bl} instructions, so use these instructions
18550for direct calls.  The default is @option{-mlong-calls}.
18551
18552@item -msmall16
18553@opindex msmall16
18554Assume addresses can be loaded as 16-bit unsigned values.  This does not
18555apply to function addresses for which @option{-mlong-calls} semantics
18556are in effect.
18557
18558@item -mfp-mode=@var{mode}
18559@opindex mfp-mode
18560Set the prevailing mode of the floating-point unit.
18561This determines the floating-point mode that is provided and expected
18562at function call and return time.  Making this mode match the mode you
18563predominantly need at function start can make your programs smaller and
18564faster by avoiding unnecessary mode switches.
18565
18566@var{mode} can be set to one the following values:
18567
18568@table @samp
18569@item caller
18570Any mode at function entry is valid, and retained or restored when
18571the function returns, and when it calls other functions.
18572This mode is useful for compiling libraries or other compilation units
18573you might want to incorporate into different programs with different
18574prevailing FPU modes, and the convenience of being able to use a single
18575object file outweighs the size and speed overhead for any extra
18576mode switching that might be needed, compared with what would be needed
18577with a more specific choice of prevailing FPU mode.
18578
18579@item truncate
18580This is the mode used for floating-point calculations with
18581truncating (i.e.@: round towards zero) rounding mode.  That includes
18582conversion from floating point to integer.
18583
18584@item round-nearest
18585This is the mode used for floating-point calculations with
18586round-to-nearest-or-even rounding mode.
18587
18588@item int
18589This is the mode used to perform integer calculations in the FPU, e.g.@:
18590integer multiply, or integer multiply-and-accumulate.
18591@end table
18592
18593The default is @option{-mfp-mode=caller}
18594
18595@item -mno-split-lohi
18596@itemx -mno-postinc
18597@itemx -mno-postmodify
18598@opindex mno-split-lohi
18599@opindex msplit-lohi
18600@opindex mno-postinc
18601@opindex mpostinc
18602@opindex mno-postmodify
18603@opindex mpostmodify
18604Code generation tweaks that disable, respectively, splitting of 32-bit
18605loads, generation of post-increment addresses, and generation of
18606post-modify addresses.  The defaults are @option{msplit-lohi},
18607@option{-mpost-inc}, and @option{-mpost-modify}.
18608
18609@item -mnovect-double
18610@opindex mno-vect-double
18611@opindex mvect-double
18612Change the preferred SIMD mode to SImode.  The default is
18613@option{-mvect-double}, which uses DImode as preferred SIMD mode.
18614
18615@item -max-vect-align=@var{num}
18616@opindex max-vect-align
18617The maximum alignment for SIMD vector mode types.
18618@var{num} may be 4 or 8.  The default is 8.
18619Note that this is an ABI change, even though many library function
18620interfaces are unaffected if they don't use SIMD vector modes
18621in places that affect size and/or alignment of relevant types.
18622
18623@item -msplit-vecmove-early
18624@opindex msplit-vecmove-early
18625Split vector moves into single word moves before reload.  In theory this
18626can give better register allocation, but so far the reverse seems to be
18627generally the case.
18628
18629@item -m1reg-@var{reg}
18630@opindex m1reg-
18631Specify a register to hold the constant @minus{}1, which makes loading small negative
18632constants and certain bitmasks faster.
18633Allowable values for @var{reg} are @samp{r43} and @samp{r63},
18634which specify use of that register as a fixed register,
18635and @samp{none}, which means that no register is used for this
18636purpose.  The default is @option{-m1reg-none}.
18637
18638@end table
18639
18640@node AMD GCN Options
18641@subsection AMD GCN Options
18642@cindex AMD GCN Options
18643
18644These options are defined specifically for the AMD GCN port.
18645
18646@table @gcctabopt
18647
18648@item -march=@var{gpu}
18649@opindex march
18650@itemx -mtune=@var{gpu}
18651@opindex mtune
18652Set architecture type or tuning for @var{gpu}. Supported values for @var{gpu}
18653are
18654
18655@table @samp
18656@opindex fiji
18657@item fiji
18658Compile for GCN3 Fiji devices (gfx803).
18659
18660@item gfx900
18661Compile for GCN5 Vega 10 devices (gfx900).
18662
18663@item gfx906
18664Compile for GCN5 Vega 20 devices (gfx906).
18665
18666@end table
18667
18668@item -mstack-size=@var{bytes}
18669@opindex mstack-size
18670Specify how many @var{bytes} of stack space will be requested for each GPU
18671thread (wave-front).  Beware that there may be many threads and limited memory
18672available.  The size of the stack allocation may also have an impact on
18673run-time performance.  The default is 32KB when using OpenACC or OpenMP, and
186741MB otherwise.
18675
18676@end table
18677
18678@node ARC Options
18679@subsection ARC Options
18680@cindex ARC options
18681
18682The following options control the architecture variant for which code
18683is being compiled:
18684
18685@c architecture variants
18686@table @gcctabopt
18687
18688@item -mbarrel-shifter
18689@opindex mbarrel-shifter
18690Generate instructions supported by barrel shifter.  This is the default
18691unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
18692
18693@item -mjli-always
18694@opindex mjli-alawys
18695Force to call a function using jli_s instruction.  This option is
18696valid only for ARCv2 architecture.
18697
18698@item -mcpu=@var{cpu}
18699@opindex mcpu
18700Set architecture type, register usage, and instruction scheduling
18701parameters for @var{cpu}.  There are also shortcut alias options
18702available for backward compatibility and convenience.  Supported
18703values for @var{cpu} are
18704
18705@table @samp
18706@opindex mA6
18707@opindex mARC600
18708@item arc600
18709Compile for ARC600.  Aliases: @option{-mA6}, @option{-mARC600}.
18710
18711@item arc601
18712@opindex mARC601
18713Compile for ARC601.  Alias: @option{-mARC601}.
18714
18715@item arc700
18716@opindex mA7
18717@opindex mARC700
18718Compile for ARC700.  Aliases: @option{-mA7}, @option{-mARC700}.
18719This is the default when configured with @option{--with-cpu=arc700}@.
18720
18721@item arcem
18722Compile for ARC EM.
18723
18724@item archs
18725Compile for ARC HS.
18726
18727@item em
18728Compile for ARC EM CPU with no hardware extensions.
18729
18730@item em4
18731Compile for ARC EM4 CPU.
18732
18733@item em4_dmips
18734Compile for ARC EM4 DMIPS CPU.
18735
18736@item em4_fpus
18737Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
18738extension.
18739
18740@item em4_fpuda
18741Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
18742double assist instructions.
18743
18744@item hs
18745Compile for ARC HS CPU with no hardware extensions except the atomic
18746instructions.
18747
18748@item hs34
18749Compile for ARC HS34 CPU.
18750
18751@item hs38
18752Compile for ARC HS38 CPU.
18753
18754@item hs38_linux
18755Compile for ARC HS38 CPU with all hardware extensions on.
18756
18757@item arc600_norm
18758Compile for ARC 600 CPU with @code{norm} instructions enabled.
18759
18760@item arc600_mul32x16
18761Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
18762instructions enabled.
18763
18764@item arc600_mul64
18765Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
18766instructions enabled.
18767
18768@item arc601_norm
18769Compile for ARC 601 CPU with @code{norm} instructions enabled.
18770
18771@item arc601_mul32x16
18772Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
18773instructions enabled.
18774
18775@item arc601_mul64
18776Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
18777instructions enabled.
18778
18779@item nps400
18780Compile for ARC 700 on NPS400 chip.
18781
18782@item em_mini
18783Compile for ARC EM minimalist configuration featuring reduced register
18784set.
18785
18786@end table
18787
18788@item -mdpfp
18789@opindex mdpfp
18790@itemx -mdpfp-compact
18791@opindex mdpfp-compact
18792Generate double-precision FPX instructions, tuned for the compact
18793implementation.
18794
18795@item -mdpfp-fast
18796@opindex mdpfp-fast
18797Generate double-precision FPX instructions, tuned for the fast
18798implementation.
18799
18800@item -mno-dpfp-lrsr
18801@opindex mno-dpfp-lrsr
18802Disable @code{lr} and @code{sr} instructions from using FPX extension
18803aux registers.
18804
18805@item -mea
18806@opindex mea
18807Generate extended arithmetic instructions.  Currently only
18808@code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
18809supported.  Only valid for @option{-mcpu=ARC700}.
18810
18811@item -mno-mpy
18812@opindex mno-mpy
18813@opindex mmpy
18814Do not generate @code{mpy}-family instructions for ARC700.  This option is
18815deprecated.
18816
18817@item -mmul32x16
18818@opindex mmul32x16
18819Generate 32x16-bit multiply and multiply-accumulate instructions.
18820
18821@item -mmul64
18822@opindex mmul64
18823Generate @code{mul64} and @code{mulu64} instructions.
18824Only valid for @option{-mcpu=ARC600}.
18825
18826@item -mnorm
18827@opindex mnorm
18828Generate @code{norm} instructions.  This is the default if @option{-mcpu=ARC700}
18829is in effect.
18830
18831@item -mspfp
18832@opindex mspfp
18833@itemx -mspfp-compact
18834@opindex mspfp-compact
18835Generate single-precision FPX instructions, tuned for the compact
18836implementation.
18837
18838@item -mspfp-fast
18839@opindex mspfp-fast
18840Generate single-precision FPX instructions, tuned for the fast
18841implementation.
18842
18843@item -msimd
18844@opindex msimd
18845Enable generation of ARC SIMD instructions via target-specific
18846builtins.  Only valid for @option{-mcpu=ARC700}.
18847
18848@item -msoft-float
18849@opindex msoft-float
18850This option ignored; it is provided for compatibility purposes only.
18851Software floating-point code is emitted by default, and this default
18852can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
18853@option{-mspfp-fast} for single precision, and @option{-mdpfp},
18854@option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
18855
18856@item -mswap
18857@opindex mswap
18858Generate @code{swap} instructions.
18859
18860@item -matomic
18861@opindex matomic
18862This enables use of the locked load/store conditional extension to implement
18863atomic memory built-in functions.  Not available for ARC 6xx or ARC
18864EM cores.
18865
18866@item -mdiv-rem
18867@opindex mdiv-rem
18868Enable @code{div} and @code{rem} instructions for ARCv2 cores.
18869
18870@item -mcode-density
18871@opindex mcode-density
18872Enable code density instructions for ARC EM.
18873This option is on by default for ARC HS.
18874
18875@item -mll64
18876@opindex mll64
18877Enable double load/store operations for ARC HS cores.
18878
18879@item -mtp-regno=@var{regno}
18880@opindex mtp-regno
18881Specify thread pointer register number.
18882
18883@item -mmpy-option=@var{multo}
18884@opindex mmpy-option
18885Compile ARCv2 code with a multiplier design option.  You can specify
18886the option using either a string or numeric value for @var{multo}.
18887@samp{wlh1} is the default value.  The recognized values are:
18888
18889@table @samp
18890@item 0
18891@itemx none
18892No multiplier available.
18893
18894@item 1
18895@itemx w
1889616x16 multiplier, fully pipelined.
18897The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
18898
18899@item 2
18900@itemx wlh1
1890132x32 multiplier, fully
18902pipelined (1 stage).  The following instructions are additionally
18903enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
18904
18905@item 3
18906@itemx wlh2
1890732x32 multiplier, fully pipelined
18908(2 stages).  The following instructions are additionally enabled: @code{mpy},
18909@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
18910
18911@item 4
18912@itemx wlh3
18913Two 16x16 multipliers, blocking,
18914sequential.  The following instructions are additionally enabled: @code{mpy},
18915@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
18916
18917@item 5
18918@itemx wlh4
18919One 16x16 multiplier, blocking,
18920sequential.  The following instructions are additionally enabled: @code{mpy},
18921@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
18922
18923@item 6
18924@itemx wlh5
18925One 32x4 multiplier, blocking,
18926sequential.  The following instructions are additionally enabled: @code{mpy},
18927@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
18928
18929@item 7
18930@itemx plus_dmpy
18931ARC HS SIMD support.
18932
18933@item 8
18934@itemx plus_macd
18935ARC HS SIMD support.
18936
18937@item 9
18938@itemx plus_qmacw
18939ARC HS SIMD support.
18940
18941@end table
18942
18943This option is only available for ARCv2 cores@.
18944
18945@item -mfpu=@var{fpu}
18946@opindex mfpu
18947Enables support for specific floating-point hardware extensions for ARCv2
18948cores.  Supported values for @var{fpu} are:
18949
18950@table @samp
18951
18952@item fpus
18953Enables support for single-precision floating-point hardware
18954extensions@.
18955
18956@item fpud
18957Enables support for double-precision floating-point hardware
18958extensions.  The single-precision floating-point extension is also
18959enabled.  Not available for ARC EM@.
18960
18961@item fpuda
18962Enables support for double-precision floating-point hardware
18963extensions using double-precision assist instructions.  The single-precision
18964floating-point extension is also enabled.  This option is
18965only available for ARC EM@.
18966
18967@item fpuda_div
18968Enables support for double-precision floating-point hardware
18969extensions using double-precision assist instructions.
18970The single-precision floating-point, square-root, and divide
18971extensions are also enabled.  This option is
18972only available for ARC EM@.
18973
18974@item fpuda_fma
18975Enables support for double-precision floating-point hardware
18976extensions using double-precision assist instructions.
18977The single-precision floating-point and fused multiply and add
18978hardware extensions are also enabled.  This option is
18979only available for ARC EM@.
18980
18981@item fpuda_all
18982Enables support for double-precision floating-point hardware
18983extensions using double-precision assist instructions.
18984All single-precision floating-point hardware extensions are also
18985enabled.  This option is only available for ARC EM@.
18986
18987@item fpus_div
18988Enables support for single-precision floating-point, square-root and divide
18989hardware extensions@.
18990
18991@item fpud_div
18992Enables support for double-precision floating-point, square-root and divide
18993hardware extensions.  This option
18994includes option @samp{fpus_div}. Not available for ARC EM@.
18995
18996@item fpus_fma
18997Enables support for single-precision floating-point and
18998fused multiply and add hardware extensions@.
18999
19000@item fpud_fma
19001Enables support for double-precision floating-point and
19002fused multiply and add hardware extensions.  This option
19003includes option @samp{fpus_fma}.  Not available for ARC EM@.
19004
19005@item fpus_all
19006Enables support for all single-precision floating-point hardware
19007extensions@.
19008
19009@item fpud_all
19010Enables support for all single- and double-precision floating-point
19011hardware extensions.  Not available for ARC EM@.
19012
19013@end table
19014
19015@item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
19016@opindex mirq-ctrl-saved
19017Specifies general-purposes registers that the processor automatically
19018saves/restores on interrupt entry and exit.  @var{register-range} is
19019specified as two registers separated by a dash.  The register range
19020always starts with @code{r0}, the upper limit is @code{fp} register.
19021@var{blink} and @var{lp_count} are optional.  This option is only
19022valid for ARC EM and ARC HS cores.
19023
19024@item -mrgf-banked-regs=@var{number}
19025@opindex mrgf-banked-regs
19026Specifies the number of registers replicated in second register bank
19027on entry to fast interrupt.  Fast interrupts are interrupts with the
19028highest priority level P0.  These interrupts save only PC and STATUS32
19029registers to avoid memory transactions during interrupt entry and exit
19030sequences.  Use this option when you are using fast interrupts in an
19031ARC V2 family processor.  Permitted values are 4, 8, 16, and 32.
19032
19033@item -mlpc-width=@var{width}
19034@opindex mlpc-width
19035Specify the width of the @code{lp_count} register.  Valid values for
19036@var{width} are 8, 16, 20, 24, 28 and 32 bits.  The default width is
19037fixed to 32 bits.  If the width is less than 32, the compiler does not
19038attempt to transform loops in your program to use the zero-delay loop
19039mechanism unless it is known that the @code{lp_count} register can
19040hold the required loop-counter value.  Depending on the width
19041specified, the compiler and run-time library might continue to use the
19042loop mechanism for various needs.  This option defines macro
19043@code{__ARC_LPC_WIDTH__} with the value of @var{width}.
19044
19045@item -mrf16
19046@opindex mrf16
19047This option instructs the compiler to generate code for a 16-entry
19048register file.  This option defines the @code{__ARC_RF16__}
19049preprocessor macro.
19050
19051@item -mbranch-index
19052@opindex mbranch-index
19053Enable use of @code{bi} or @code{bih} instructions to implement jump
19054tables.
19055
19056@end table
19057
19058The following options are passed through to the assembler, and also
19059define preprocessor macro symbols.
19060
19061@c Flags used by the assembler, but for which we define preprocessor
19062@c macro symbols as well.
19063@table @gcctabopt
19064@item -mdsp-packa
19065@opindex mdsp-packa
19066Passed down to the assembler to enable the DSP Pack A extensions.
19067Also sets the preprocessor symbol @code{__Xdsp_packa}.  This option is
19068deprecated.
19069
19070@item -mdvbf
19071@opindex mdvbf
19072Passed down to the assembler to enable the dual Viterbi butterfly
19073extension.  Also sets the preprocessor symbol @code{__Xdvbf}.  This
19074option is deprecated.
19075
19076@c ARC700 4.10 extension instruction
19077@item -mlock
19078@opindex mlock
19079Passed down to the assembler to enable the locked load/store
19080conditional extension.  Also sets the preprocessor symbol
19081@code{__Xlock}.
19082
19083@item -mmac-d16
19084@opindex mmac-d16
19085Passed down to the assembler.  Also sets the preprocessor symbol
19086@code{__Xxmac_d16}.  This option is deprecated.
19087
19088@item -mmac-24
19089@opindex mmac-24
19090Passed down to the assembler.  Also sets the preprocessor symbol
19091@code{__Xxmac_24}.  This option is deprecated.
19092
19093@c ARC700 4.10 extension instruction
19094@item -mrtsc
19095@opindex mrtsc
19096Passed down to the assembler to enable the 64-bit time-stamp counter
19097extension instruction.  Also sets the preprocessor symbol
19098@code{__Xrtsc}.  This option is deprecated.
19099
19100@c ARC700 4.10 extension instruction
19101@item -mswape
19102@opindex mswape
19103Passed down to the assembler to enable the swap byte ordering
19104extension instruction.  Also sets the preprocessor symbol
19105@code{__Xswape}.
19106
19107@item -mtelephony
19108@opindex mtelephony
19109Passed down to the assembler to enable dual- and single-operand
19110instructions for telephony.  Also sets the preprocessor symbol
19111@code{__Xtelephony}.  This option is deprecated.
19112
19113@item -mxy
19114@opindex mxy
19115Passed down to the assembler to enable the XY memory extension.  Also
19116sets the preprocessor symbol @code{__Xxy}.
19117
19118@end table
19119
19120The following options control how the assembly code is annotated:
19121
19122@c Assembly annotation options
19123@table @gcctabopt
19124@item -misize
19125@opindex misize
19126Annotate assembler instructions with estimated addresses.
19127
19128@item -mannotate-align
19129@opindex mannotate-align
19130Explain what alignment considerations lead to the decision to make an
19131instruction short or long.
19132
19133@end table
19134
19135The following options are passed through to the linker:
19136
19137@c options passed through to the linker
19138@table @gcctabopt
19139@item -marclinux
19140@opindex marclinux
19141Passed through to the linker, to specify use of the @code{arclinux} emulation.
19142This option is enabled by default in tool chains built for
19143@w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
19144when profiling is not requested.
19145
19146@item -marclinux_prof
19147@opindex marclinux_prof
19148Passed through to the linker, to specify use of the
19149@code{arclinux_prof} emulation.  This option is enabled by default in
19150tool chains built for @w{@code{arc-linux-uclibc}} and
19151@w{@code{arceb-linux-uclibc}} targets when profiling is requested.
19152
19153@end table
19154
19155The following options control the semantics of generated code:
19156
19157@c semantically relevant code generation options
19158@table @gcctabopt
19159@item -mlong-calls
19160@opindex mlong-calls
19161Generate calls as register indirect calls, thus providing access
19162to the full 32-bit address range.
19163
19164@item -mmedium-calls
19165@opindex mmedium-calls
19166Don't use less than 25-bit addressing range for calls, which is the
19167offset available for an unconditional branch-and-link
19168instruction.  Conditional execution of function calls is suppressed, to
19169allow use of the 25-bit range, rather than the 21-bit range with
19170conditional branch-and-link.  This is the default for tool chains built
19171for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
19172
19173@item -G @var{num}
19174@opindex G
19175Put definitions of externally-visible data in a small data section if
19176that data is no bigger than @var{num} bytes.  The default value of
19177@var{num} is 4 for any ARC configuration, or 8 when we have double
19178load/store operations.
19179
19180@item -mno-sdata
19181@opindex mno-sdata
19182@opindex msdata
19183Do not generate sdata references.  This is the default for tool chains
19184built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
19185targets.
19186
19187@item -mvolatile-cache
19188@opindex mvolatile-cache
19189Use ordinarily cached memory accesses for volatile references.  This is the
19190default.
19191
19192@item -mno-volatile-cache
19193@opindex mno-volatile-cache
19194@opindex mvolatile-cache
19195Enable cache bypass for volatile references.
19196
19197@end table
19198
19199The following options fine tune code generation:
19200@c code generation tuning options
19201@table @gcctabopt
19202@item -malign-call
19203@opindex malign-call
19204Do alignment optimizations for call instructions.
19205
19206@item -mauto-modify-reg
19207@opindex mauto-modify-reg
19208Enable the use of pre/post modify with register displacement.
19209
19210@item -mbbit-peephole
19211@opindex mbbit-peephole
19212Enable bbit peephole2.
19213
19214@item -mno-brcc
19215@opindex mno-brcc
19216This option disables a target-specific pass in @file{arc_reorg} to
19217generate compare-and-branch (@code{br@var{cc}}) instructions.
19218It has no effect on
19219generation of these instructions driven by the combiner pass.
19220
19221@item -mcase-vector-pcrel
19222@opindex mcase-vector-pcrel
19223Use PC-relative switch case tables to enable case table shortening.
19224This is the default for @option{-Os}.
19225
19226@item -mcompact-casesi
19227@opindex mcompact-casesi
19228Enable compact @code{casesi} pattern.  This is the default for @option{-Os},
19229and only available for ARCv1 cores.  This option is deprecated.
19230
19231@item -mno-cond-exec
19232@opindex mno-cond-exec
19233Disable the ARCompact-specific pass to generate conditional
19234execution instructions.
19235
19236Due to delay slot scheduling and interactions between operand numbers,
19237literal sizes, instruction lengths, and the support for conditional execution,
19238the target-independent pass to generate conditional execution is often lacking,
19239so the ARC port has kept a special pass around that tries to find more
19240conditional execution generation opportunities after register allocation,
19241branch shortening, and delay slot scheduling have been done.  This pass
19242generally, but not always, improves performance and code size, at the cost of
19243extra compilation time, which is why there is an option to switch it off.
19244If you have a problem with call instructions exceeding their allowable
19245offset range because they are conditionalized, you should consider using
19246@option{-mmedium-calls} instead.
19247
19248@item -mearly-cbranchsi
19249@opindex mearly-cbranchsi
19250Enable pre-reload use of the @code{cbranchsi} pattern.
19251
19252@item -mexpand-adddi
19253@opindex mexpand-adddi
19254Expand @code{adddi3} and @code{subdi3} at RTL generation time into
19255@code{add.f}, @code{adc} etc.  This option is deprecated.
19256
19257@item -mindexed-loads
19258@opindex mindexed-loads
19259Enable the use of indexed loads.  This can be problematic because some
19260optimizers then assume that indexed stores exist, which is not
19261the case.
19262
19263@item -mlra
19264@opindex mlra
19265Enable Local Register Allocation.  This is still experimental for ARC,
19266so by default the compiler uses standard reload
19267(i.e.@: @option{-mno-lra}).
19268
19269@item -mlra-priority-none
19270@opindex mlra-priority-none
19271Don't indicate any priority for target registers.
19272
19273@item -mlra-priority-compact
19274@opindex mlra-priority-compact
19275Indicate target register priority for r0..r3 / r12..r15.
19276
19277@item -mlra-priority-noncompact
19278@opindex mlra-priority-noncompact
19279Reduce target register priority for r0..r3 / r12..r15.
19280
19281@item -mmillicode
19282@opindex mmillicode
19283When optimizing for size (using @option{-Os}), prologues and epilogues
19284that have to save or restore a large number of registers are often
19285shortened by using call to a special function in libgcc; this is
19286referred to as a @emph{millicode} call.  As these calls can pose
19287performance issues, and/or cause linking issues when linking in a
19288nonstandard way, this option is provided to turn on or off millicode
19289call generation.
19290
19291@item -mcode-density-frame
19292@opindex mcode-density-frame
19293This option enable the compiler to emit @code{enter} and @code{leave}
19294instructions.  These instructions are only valid for CPUs with
19295code-density feature.
19296
19297@item -mmixed-code
19298@opindex mmixed-code
19299Tweak register allocation to help 16-bit instruction generation.
19300This generally has the effect of decreasing the average instruction size
19301while increasing the instruction count.
19302
19303@item -mq-class
19304@opindex mq-class
19305Ths option is deprecated.  Enable @samp{q} instruction alternatives.
19306This is the default for @option{-Os}.
19307
19308@item -mRcq
19309@opindex mRcq
19310Enable @samp{Rcq} constraint handling.
19311Most short code generation depends on this.
19312This is the default.
19313
19314@item -mRcw
19315@opindex mRcw
19316Enable @samp{Rcw} constraint handling.
19317Most ccfsm condexec mostly depends on this.
19318This is the default.
19319
19320@item -msize-level=@var{level}
19321@opindex msize-level
19322Fine-tune size optimization with regards to instruction lengths and alignment.
19323The recognized values for @var{level} are:
19324@table @samp
19325@item 0
19326No size optimization.  This level is deprecated and treated like @samp{1}.
19327
19328@item 1
19329Short instructions are used opportunistically.
19330
19331@item 2
19332In addition, alignment of loops and of code after barriers are dropped.
19333
19334@item 3
19335In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
19336
19337@end table
19338
19339This defaults to @samp{3} when @option{-Os} is in effect.  Otherwise,
19340the behavior when this is not set is equivalent to level @samp{1}.
19341
19342@item -mtune=@var{cpu}
19343@opindex mtune
19344Set instruction scheduling parameters for @var{cpu}, overriding any implied
19345by @option{-mcpu=}.
19346
19347Supported values for @var{cpu} are
19348
19349@table @samp
19350@item ARC600
19351Tune for ARC600 CPU.
19352
19353@item ARC601
19354Tune for ARC601 CPU.
19355
19356@item ARC700
19357Tune for ARC700 CPU with standard multiplier block.
19358
19359@item ARC700-xmac
19360Tune for ARC700 CPU with XMAC block.
19361
19362@item ARC725D
19363Tune for ARC725D CPU.
19364
19365@item ARC750D
19366Tune for ARC750D CPU.
19367
19368@end table
19369
19370@item -mmultcost=@var{num}
19371@opindex mmultcost
19372Cost to assume for a multiply instruction, with @samp{4} being equal to a
19373normal instruction.
19374
19375@item -munalign-prob-threshold=@var{probability}
19376@opindex munalign-prob-threshold
19377Set probability threshold for unaligning branches.
19378When tuning for @samp{ARC700} and optimizing for speed, branches without
19379filled delay slot are preferably emitted unaligned and long, unless
19380profiling indicates that the probability for the branch to be taken
19381is below @var{probability}.  @xref{Cross-profiling}.
19382The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
19383
19384@end table
19385
19386The following options are maintained for backward compatibility, but
19387are now deprecated and will be removed in a future release:
19388
19389@c Deprecated options
19390@table @gcctabopt
19391
19392@item -margonaut
19393@opindex margonaut
19394Obsolete FPX.
19395
19396@item -mbig-endian
19397@opindex mbig-endian
19398@itemx -EB
19399@opindex EB
19400Compile code for big-endian targets.  Use of these options is now
19401deprecated.  Big-endian code is supported by configuring GCC to build
19402@w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
19403for which big endian is the default.
19404
19405@item -mlittle-endian
19406@opindex mlittle-endian
19407@itemx -EL
19408@opindex EL
19409Compile code for little-endian targets.  Use of these options is now
19410deprecated.  Little-endian code is supported by configuring GCC to build
19411@w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
19412for which little endian is the default.
19413
19414@item -mbarrel_shifter
19415@opindex mbarrel_shifter
19416Replaced by @option{-mbarrel-shifter}.
19417
19418@item -mdpfp_compact
19419@opindex mdpfp_compact
19420Replaced by @option{-mdpfp-compact}.
19421
19422@item -mdpfp_fast
19423@opindex mdpfp_fast
19424Replaced by @option{-mdpfp-fast}.
19425
19426@item -mdsp_packa
19427@opindex mdsp_packa
19428Replaced by @option{-mdsp-packa}.
19429
19430@item -mEA
19431@opindex mEA
19432Replaced by @option{-mea}.
19433
19434@item -mmac_24
19435@opindex mmac_24
19436Replaced by @option{-mmac-24}.
19437
19438@item -mmac_d16
19439@opindex mmac_d16
19440Replaced by @option{-mmac-d16}.
19441
19442@item -mspfp_compact
19443@opindex mspfp_compact
19444Replaced by @option{-mspfp-compact}.
19445
19446@item -mspfp_fast
19447@opindex mspfp_fast
19448Replaced by @option{-mspfp-fast}.
19449
19450@item -mtune=@var{cpu}
19451@opindex mtune
19452Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
19453@samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
19454@samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
19455
19456@item -multcost=@var{num}
19457@opindex multcost
19458Replaced by @option{-mmultcost}.
19459
19460@end table
19461
19462@node ARM Options
19463@subsection ARM Options
19464@cindex ARM options
19465
19466These @samp{-m} options are defined for the ARM port:
19467
19468@table @gcctabopt
19469@item -mabi=@var{name}
19470@opindex mabi
19471Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
19472@samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
19473
19474@item -mapcs-frame
19475@opindex mapcs-frame
19476Generate a stack frame that is compliant with the ARM Procedure Call
19477Standard for all functions, even if this is not strictly necessary for
19478correct execution of the code.  Specifying @option{-fomit-frame-pointer}
19479with this option causes the stack frames not to be generated for
19480leaf functions.  The default is @option{-mno-apcs-frame}.
19481This option is deprecated.
19482
19483@item -mapcs
19484@opindex mapcs
19485This is a synonym for @option{-mapcs-frame} and is deprecated.
19486
19487@ignore
19488@c not currently implemented
19489@item -mapcs-stack-check
19490@opindex mapcs-stack-check
19491Generate code to check the amount of stack space available upon entry to
19492every function (that actually uses some stack space).  If there is
19493insufficient space available then either the function
19494@code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
19495called, depending upon the amount of stack space required.  The runtime
19496system is required to provide these functions.  The default is
19497@option{-mno-apcs-stack-check}, since this produces smaller code.
19498
19499@c not currently implemented
19500@item -mapcs-reentrant
19501@opindex mapcs-reentrant
19502Generate reentrant, position-independent code.  The default is
19503@option{-mno-apcs-reentrant}.
19504@end ignore
19505
19506@item -mthumb-interwork
19507@opindex mthumb-interwork
19508Generate code that supports calling between the ARM and Thumb
19509instruction sets.  Without this option, on pre-v5 architectures, the
19510two instruction sets cannot be reliably used inside one program.  The
19511default is @option{-mno-thumb-interwork}, since slightly larger code
19512is generated when @option{-mthumb-interwork} is specified.  In AAPCS
19513configurations this option is meaningless.
19514
19515@item -mno-sched-prolog
19516@opindex mno-sched-prolog
19517@opindex msched-prolog
19518Prevent the reordering of instructions in the function prologue, or the
19519merging of those instruction with the instructions in the function's
19520body.  This means that all functions start with a recognizable set
19521of instructions (or in fact one of a choice from a small set of
19522different function prologues), and this information can be used to
19523locate the start of functions inside an executable piece of code.  The
19524default is @option{-msched-prolog}.
19525
19526@item -mfloat-abi=@var{name}
19527@opindex mfloat-abi
19528Specifies which floating-point ABI to use.  Permissible values
19529are: @samp{soft}, @samp{softfp} and @samp{hard}.
19530
19531Specifying @samp{soft} causes GCC to generate output containing
19532library calls for floating-point operations.
19533@samp{softfp} allows the generation of code using hardware floating-point
19534instructions, but still uses the soft-float calling conventions.
19535@samp{hard} allows generation of floating-point instructions
19536and uses FPU-specific calling conventions.
19537
19538The default depends on the specific target configuration.  Note that
19539the hard-float and soft-float ABIs are not link-compatible; you must
19540compile your entire program with the same ABI, and link with a
19541compatible set of libraries.
19542
19543@item -mgeneral-regs-only
19544@opindex mgeneral-regs-only
19545Generate code which uses only the general-purpose registers.  This will prevent
19546the compiler from using floating-point and Advanced SIMD registers but will not
19547impose any restrictions on the assembler.
19548
19549@item -mlittle-endian
19550@opindex mlittle-endian
19551Generate code for a processor running in little-endian mode.  This is
19552the default for all standard configurations.
19553
19554@item -mbig-endian
19555@opindex mbig-endian
19556Generate code for a processor running in big-endian mode; the default is
19557to compile code for a little-endian processor.
19558
19559@item -mbe8
19560@itemx -mbe32
19561@opindex mbe8
19562When linking a big-endian image select between BE8 and BE32 formats.
19563The option has no effect for little-endian images and is ignored.  The
19564default is dependent on the selected target architecture.  For ARMv6
19565and later architectures the default is BE8, for older architectures
19566the default is BE32.  BE32 format has been deprecated by ARM.
19567
19568@item -march=@var{name}@r{[}+extension@dots{}@r{]}
19569@opindex march
19570This specifies the name of the target ARM architecture.  GCC uses this
19571name to determine what kind of instructions it can emit when generating
19572assembly code.  This option can be used in conjunction with or instead
19573of the @option{-mcpu=} option.
19574
19575Permissible names are:
19576@samp{armv4t},
19577@samp{armv5t}, @samp{armv5te},
19578@samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
19579@samp{armv6z}, @samp{armv6zk},
19580@samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
19581@samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
19582@samp{armv8.4-a},
19583@samp{armv8.5-a},
19584@samp{armv8.6-a},
19585@samp{armv7-r},
19586@samp{armv8-r},
19587@samp{armv6-m}, @samp{armv6s-m},
19588@samp{armv7-m}, @samp{armv7e-m},
19589@samp{armv8-m.base}, @samp{armv8-m.main},
19590@samp{armv8.1-m.main},
19591@samp{iwmmxt} and @samp{iwmmxt2}.
19592
19593Additionally, the following architectures, which lack support for the
19594Thumb execution state, are recognized but support is deprecated: @samp{armv4}.
19595
19596Many of the architectures support extensions.  These can be added by
19597appending @samp{+@var{extension}} to the architecture name.  Extension
19598options are processed in order and capabilities accumulate.  An extension
19599will also enable any necessary base extensions
19600upon which it depends.  For example, the @samp{+crypto} extension
19601will always enable the @samp{+simd} extension.  The exception to the
19602additive construction is for extensions that are prefixed with
19603@samp{+no@dots{}}: these extensions disable the specified option and
19604any other extensions that may depend on the presence of that
19605extension.
19606
19607For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
19608writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
19609entirely disabled by the @samp{+nofp} option that follows it.
19610
19611Most extension names are generically named, but have an effect that is
19612dependent upon the architecture to which it is applied.  For example,
19613the @samp{+simd} option can be applied to both @samp{armv7-a} and
19614@samp{armv8-a} architectures, but will enable the original ARMv7-A
19615Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
19616variant for @samp{armv8-a}.
19617
19618The table below lists the supported extensions for each architecture.
19619Architectures not mentioned do not support any extensions.
19620
19621@table @samp
19622@item armv5te
19623@itemx armv6
19624@itemx armv6j
19625@itemx armv6k
19626@itemx armv6kz
19627@itemx armv6t2
19628@itemx armv6z
19629@itemx armv6zk
19630@table @samp
19631@item +fp
19632The VFPv2 floating-point instructions.  The extension @samp{+vfpv2} can be
19633used as an alias for this extension.
19634
19635@item +nofp
19636Disable the floating-point instructions.
19637@end table
19638
19639@item armv7
19640The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
19641@table @samp
19642@item +fp
19643The VFPv3 floating-point instructions, with 16 double-precision
19644registers.  The extension @samp{+vfpv3-d16} can be used as an alias
19645for this extension.  Note that floating-point is not supported by the
19646base ARMv7-M architecture, but is compatible with both the ARMv7-A and
19647ARMv7-R architectures.
19648
19649@item +nofp
19650Disable the floating-point instructions.
19651@end table
19652
19653@item armv7-a
19654@table @samp
19655@item +mp
19656The multiprocessing extension.
19657
19658@item +sec
19659The security extension.
19660
19661@item +fp
19662The VFPv3 floating-point instructions, with 16 double-precision
19663registers.  The extension @samp{+vfpv3-d16} can be used as an alias
19664for this extension.
19665
19666@item +simd
19667The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
19668The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
19669for this extension.
19670
19671@item +vfpv3
19672The VFPv3 floating-point instructions, with 32 double-precision
19673registers.
19674
19675@item +vfpv3-d16-fp16
19676The VFPv3 floating-point instructions, with 16 double-precision
19677registers and the half-precision floating-point conversion operations.
19678
19679@item +vfpv3-fp16
19680The VFPv3 floating-point instructions, with 32 double-precision
19681registers and the half-precision floating-point conversion operations.
19682
19683@item +vfpv4-d16
19684The VFPv4 floating-point instructions, with 16 double-precision
19685registers.
19686
19687@item +vfpv4
19688The VFPv4 floating-point instructions, with 32 double-precision
19689registers.
19690
19691@item +neon-fp16
19692The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
19693the half-precision floating-point conversion operations.
19694
19695@item +neon-vfpv4
19696The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
19697
19698@item +nosimd
19699Disable the Advanced SIMD instructions (does not disable floating point).
19700
19701@item +nofp
19702Disable the floating-point and Advanced SIMD instructions.
19703@end table
19704
19705@item armv7ve
19706The extended version of the ARMv7-A architecture with support for
19707virtualization.
19708@table @samp
19709@item +fp
19710The VFPv4 floating-point instructions, with 16 double-precision registers.
19711The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
19712
19713@item +simd
19714The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.  The
19715extension @samp{+neon-vfpv4} can be used as an alias for this extension.
19716
19717@item +vfpv3-d16
19718The VFPv3 floating-point instructions, with 16 double-precision
19719registers.
19720
19721@item +vfpv3
19722The VFPv3 floating-point instructions, with 32 double-precision
19723registers.
19724
19725@item +vfpv3-d16-fp16
19726The VFPv3 floating-point instructions, with 16 double-precision
19727registers and the half-precision floating-point conversion operations.
19728
19729@item +vfpv3-fp16
19730The VFPv3 floating-point instructions, with 32 double-precision
19731registers and the half-precision floating-point conversion operations.
19732
19733@item +vfpv4-d16
19734The VFPv4 floating-point instructions, with 16 double-precision
19735registers.
19736
19737@item +vfpv4
19738The VFPv4 floating-point instructions, with 32 double-precision
19739registers.
19740
19741@item +neon
19742The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
19743The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
19744
19745@item +neon-fp16
19746The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
19747the half-precision floating-point conversion operations.
19748
19749@item +nosimd
19750Disable the Advanced SIMD instructions (does not disable floating point).
19751
19752@item +nofp
19753Disable the floating-point and Advanced SIMD instructions.
19754@end table
19755
19756@item armv8-a
19757@table @samp
19758@item +crc
19759The Cyclic Redundancy Check (CRC) instructions.
19760@item +simd
19761The ARMv8-A Advanced SIMD and floating-point instructions.
19762@item +crypto
19763The cryptographic instructions.
19764@item +nocrypto
19765Disable the cryptographic instructions.
19766@item +nofp
19767Disable the floating-point, Advanced SIMD and cryptographic instructions.
19768@item +sb
19769Speculation Barrier Instruction.
19770@item +predres
19771Execution and Data Prediction Restriction Instructions.
19772@end table
19773
19774@item armv8.1-a
19775@table @samp
19776@item +simd
19777The ARMv8.1-A Advanced SIMD and floating-point instructions.
19778
19779@item +crypto
19780The cryptographic instructions.  This also enables the Advanced SIMD and
19781floating-point instructions.
19782
19783@item +nocrypto
19784Disable the cryptographic instructions.
19785
19786@item +nofp
19787Disable the floating-point, Advanced SIMD and cryptographic instructions.
19788
19789@item +sb
19790Speculation Barrier Instruction.
19791
19792@item +predres
19793Execution and Data Prediction Restriction Instructions.
19794@end table
19795
19796@item armv8.2-a
19797@itemx armv8.3-a
19798@table @samp
19799@item +fp16
19800The half-precision floating-point data processing instructions.
19801This also enables the Advanced SIMD and floating-point instructions.
19802
19803@item +fp16fml
19804The half-precision floating-point fmla extension.  This also enables
19805the half-precision floating-point extension and Advanced SIMD and
19806floating-point instructions.
19807
19808@item +simd
19809The ARMv8.1-A Advanced SIMD and floating-point instructions.
19810
19811@item +crypto
19812The cryptographic instructions.  This also enables the Advanced SIMD and
19813floating-point instructions.
19814
19815@item +dotprod
19816Enable the Dot Product extension.  This also enables Advanced SIMD instructions.
19817
19818@item +nocrypto
19819Disable the cryptographic extension.
19820
19821@item +nofp
19822Disable the floating-point, Advanced SIMD and cryptographic instructions.
19823
19824@item +sb
19825Speculation Barrier Instruction.
19826
19827@item +predres
19828Execution and Data Prediction Restriction Instructions.
19829
19830@item +i8mm
198318-bit Integer Matrix Multiply instructions.
19832This also enables Advanced SIMD and floating-point instructions.
19833
19834@item +bf16
19835Brain half-precision floating-point instructions.
19836This also enables Advanced SIMD and floating-point instructions.
19837@end table
19838
19839@item armv8.4-a
19840@table @samp
19841@item +fp16
19842The half-precision floating-point data processing instructions.
19843This also enables the Advanced SIMD and floating-point instructions as well
19844as the Dot Product extension and the half-precision floating-point fmla
19845extension.
19846
19847@item +simd
19848The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
19849Dot Product extension.
19850
19851@item +crypto
19852The cryptographic instructions.  This also enables the Advanced SIMD and
19853floating-point instructions as well as the Dot Product extension.
19854
19855@item +nocrypto
19856Disable the cryptographic extension.
19857
19858@item +nofp
19859Disable the floating-point, Advanced SIMD and cryptographic instructions.
19860
19861@item +sb
19862Speculation Barrier Instruction.
19863
19864@item +predres
19865Execution and Data Prediction Restriction Instructions.
19866
19867@item +i8mm
198688-bit Integer Matrix Multiply instructions.
19869This also enables Advanced SIMD and floating-point instructions.
19870
19871@item +bf16
19872Brain half-precision floating-point instructions.
19873This also enables Advanced SIMD and floating-point instructions.
19874@end table
19875
19876@item armv8.5-a
19877@table @samp
19878@item +fp16
19879The half-precision floating-point data processing instructions.
19880This also enables the Advanced SIMD and floating-point instructions as well
19881as the Dot Product extension and the half-precision floating-point fmla
19882extension.
19883
19884@item +simd
19885The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
19886Dot Product extension.
19887
19888@item +crypto
19889The cryptographic instructions.  This also enables the Advanced SIMD and
19890floating-point instructions as well as the Dot Product extension.
19891
19892@item +nocrypto
19893Disable the cryptographic extension.
19894
19895@item +nofp
19896Disable the floating-point, Advanced SIMD and cryptographic instructions.
19897
19898@item +i8mm
198998-bit Integer Matrix Multiply instructions.
19900This also enables Advanced SIMD and floating-point instructions.
19901
19902@item +bf16
19903Brain half-precision floating-point instructions.
19904This also enables Advanced SIMD and floating-point instructions.
19905@end table
19906
19907@item armv8.6-a
19908@table @samp
19909@item +fp16
19910The half-precision floating-point data processing instructions.
19911This also enables the Advanced SIMD and floating-point instructions as well
19912as the Dot Product extension and the half-precision floating-point fmla
19913extension.
19914
19915@item +simd
19916The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
19917Dot Product extension.
19918
19919@item +crypto
19920The cryptographic instructions.  This also enables the Advanced SIMD and
19921floating-point instructions as well as the Dot Product extension.
19922
19923@item +nocrypto
19924Disable the cryptographic extension.
19925
19926@item +nofp
19927Disable the floating-point, Advanced SIMD and cryptographic instructions.
19928
19929@item +i8mm
199308-bit Integer Matrix Multiply instructions.
19931This also enables Advanced SIMD and floating-point instructions.
19932
19933@item +bf16
19934Brain half-precision floating-point instructions.
19935This also enables Advanced SIMD and floating-point instructions.
19936@end table
19937
19938@item armv7-r
19939@table @samp
19940@item +fp.sp
19941The single-precision VFPv3 floating-point instructions.  The extension
19942@samp{+vfpv3xd} can be used as an alias for this extension.
19943
19944@item +fp
19945The VFPv3 floating-point instructions with 16 double-precision registers.
19946The extension +vfpv3-d16 can be used as an alias for this extension.
19947
19948@item +vfpv3xd-d16-fp16
19949The single-precision VFPv3 floating-point instructions with 16 double-precision
19950registers and the half-precision floating-point conversion operations.
19951
19952@item +vfpv3-d16-fp16
19953The VFPv3 floating-point instructions with 16 double-precision
19954registers and the half-precision floating-point conversion operations.
19955
19956@item +nofp
19957Disable the floating-point extension.
19958
19959@item +idiv
19960The ARM-state integer division instructions.
19961
19962@item +noidiv
19963Disable the ARM-state integer division extension.
19964@end table
19965
19966@item armv7e-m
19967@table @samp
19968@item +fp
19969The single-precision VFPv4 floating-point instructions.
19970
19971@item +fpv5
19972The single-precision FPv5 floating-point instructions.
19973
19974@item +fp.dp
19975The single- and double-precision FPv5 floating-point instructions.
19976
19977@item +nofp
19978Disable the floating-point extensions.
19979@end table
19980
19981@item  armv8.1-m.main
19982@table @samp
19983
19984@item +dsp
19985The DSP instructions.
19986
19987@item +mve
19988The M-Profile Vector Extension (MVE) integer instructions.
19989
19990@item +mve.fp
19991The M-Profile Vector Extension (MVE) integer and single precision
19992floating-point instructions.
19993
19994@item +fp
19995The single-precision floating-point instructions.
19996
19997@item +fp.dp
19998The single- and double-precision floating-point instructions.
19999
20000@item +nofp
20001Disable the floating-point extension.
20002
20003@item +cdecp0, +cdecp1, ... , +cdecp7
20004Enable the Custom Datapath Extension (CDE) on selected coprocessors according
20005to the numbers given in the options in the range 0 to 7.
20006@end table
20007
20008@item  armv8-m.main
20009@table @samp
20010@item +dsp
20011The DSP instructions.
20012
20013@item +nodsp
20014Disable the DSP extension.
20015
20016@item +fp
20017The single-precision floating-point instructions.
20018
20019@item +fp.dp
20020The single- and double-precision floating-point instructions.
20021
20022@item +nofp
20023Disable the floating-point extension.
20024
20025@item +cdecp0, +cdecp1, ... , +cdecp7
20026Enable the Custom Datapath Extension (CDE) on selected coprocessors according
20027to the numbers given in the options in the range 0 to 7.
20028@end table
20029
20030@item armv8-r
20031@table @samp
20032@item +crc
20033The Cyclic Redundancy Check (CRC) instructions.
20034@item +fp.sp
20035The single-precision FPv5 floating-point instructions.
20036@item +simd
20037The ARMv8-A Advanced SIMD and floating-point instructions.
20038@item +crypto
20039The cryptographic instructions.
20040@item +nocrypto
20041Disable the cryptographic instructions.
20042@item +nofp
20043Disable the floating-point, Advanced SIMD and cryptographic instructions.
20044@end table
20045
20046@end table
20047
20048@option{-march=native} causes the compiler to auto-detect the architecture
20049of the build computer.  At present, this feature is only supported on
20050GNU/Linux, and not all architectures are recognized.  If the auto-detect
20051is unsuccessful the option has no effect.
20052
20053@item -mtune=@var{name}
20054@opindex mtune
20055This option specifies the name of the target ARM processor for
20056which GCC should tune the performance of the code.
20057For some ARM implementations better performance can be obtained by using
20058this option.
20059Permissible names are: @samp{arm7tdmi}, @samp{arm7tdmi-s}, @samp{arm710t},
20060@samp{arm720t}, @samp{arm740t}, @samp{strongarm}, @samp{strongarm110},
20061@samp{strongarm1100}, 0@samp{strongarm1110}, @samp{arm8}, @samp{arm810},
20062@samp{arm9}, @samp{arm9e}, @samp{arm920}, @samp{arm920t}, @samp{arm922t},
20063@samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm926ej-s},
20064@samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi}, @samp{arm1020t},
20065@samp{arm1026ej-s}, @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
20066@samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
20067@samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
20068@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
20069@samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
20070@samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
20071@samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
20072@samp{cortex-a76}, @samp{cortex-a76ae}, @samp{cortex-a77},
20073@samp{cortex-a78}, @samp{cortex-a78ae}, @samp{cortex-a78c},
20074@samp{ares}, @samp{cortex-r4}, @samp{cortex-r4f},
20075@samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52},
20076@samp{cortex-m0}, @samp{cortex-m0plus}, @samp{cortex-m1}, @samp{cortex-m3},
20077@samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m23}, @samp{cortex-m33},
20078@samp{cortex-m35p}, @samp{cortex-m55}, @samp{cortex-x1},
20079@samp{cortex-m1.small-multiply}, @samp{cortex-m0.small-multiply},
20080@samp{cortex-m0plus.small-multiply}, @samp{exynos-m1}, @samp{marvell-pj4},
20081@samp{neoverse-n1}, @samp{neoverse-n2}, @samp{neoverse-v1}, @samp{xscale},
20082@samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}, @samp{fa526}, @samp{fa626},
20083@samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te}, @samp{xgene1}.
20084
20085Additionally, this option can specify that GCC should tune the performance
20086of the code for a big.LITTLE system.  Permissible names are:
20087@samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
20088@samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
20089@samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
20090@samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}.
20091
20092@option{-mtune=generic-@var{arch}} specifies that GCC should tune the
20093performance for a blend of processors within architecture @var{arch}.
20094The aim is to generate code that run well on the current most popular
20095processors, balancing between optimizations that benefit some CPUs in the
20096range, and avoiding performance pitfalls of other CPUs.  The effects of
20097this option may change in future GCC versions as CPU models come and go.
20098
20099@option{-mtune} permits the same extension options as @option{-mcpu}, but
20100the extension options do not affect the tuning of the generated code.
20101
20102@option{-mtune=native} causes the compiler to auto-detect the CPU
20103of the build computer.  At present, this feature is only supported on
20104GNU/Linux, and not all architectures are recognized.  If the auto-detect is
20105unsuccessful the option has no effect.
20106
20107@item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
20108@opindex mcpu
20109This specifies the name of the target ARM processor.  GCC uses this name
20110to derive the name of the target ARM architecture (as if specified
20111by @option{-march}) and the ARM processor type for which to tune for
20112performance (as if specified by @option{-mtune}).  Where this option
20113is used in conjunction with @option{-march} or @option{-mtune},
20114those options take precedence over the appropriate part of this option.
20115
20116Many of the supported CPUs implement optional architectural
20117extensions.  Where this is so the architectural extensions are
20118normally enabled by default.  If implementations that lack the
20119extension exist, then the extension syntax can be used to disable
20120those extensions that have been omitted.  For floating-point and
20121Advanced SIMD (Neon) instructions, the settings of the options
20122@option{-mfloat-abi} and @option{-mfpu} must also be considered:
20123floating-point and Advanced SIMD instructions will only be used if
20124@option{-mfloat-abi} is not set to @samp{soft}; and any setting of
20125@option{-mfpu} other than @samp{auto} will override the available
20126floating-point and SIMD extension instructions.
20127
20128For example, @samp{cortex-a9} can be found in three major
20129configurations: integer only, with just a floating-point unit or with
20130floating-point and Advanced SIMD.  The default is to enable all the
20131instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
20132be used to disable just the SIMD or both the SIMD and floating-point
20133instructions respectively.
20134
20135Permissible names for this option are the same as those for
20136@option{-mtune}.
20137
20138The following extension options are common to the listed CPUs:
20139
20140@table @samp
20141@item +nodsp
20142Disable the DSP instructions on @samp{cortex-m33}, @samp{cortex-m35p}.
20143
20144@item  +nofp
20145Disables the floating-point instructions on @samp{arm9e},
20146@samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
20147@samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
20148@samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
20149@samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m33} and @samp{cortex-m35p}.
20150Disables the floating-point and SIMD instructions on
20151@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
20152@samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
20153@samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
20154@samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
20155@samp{cortex-a53} and @samp{cortex-a55}.
20156
20157@item +nofp.dp
20158Disables the double-precision component of the floating-point instructions
20159on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52} and
20160@samp{cortex-m7}.
20161
20162@item +nosimd
20163Disables the SIMD (but not floating-point) instructions on
20164@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
20165and @samp{cortex-a9}.
20166
20167@item +crypto
20168Enables the cryptographic instructions on @samp{cortex-a32},
20169@samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
20170@samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
20171@samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
20172@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
20173@samp{cortex-a75.cortex-a55}.
20174@end table
20175
20176Additionally the @samp{generic-armv7-a} pseudo target defaults to
20177VFPv3 with 16 double-precision registers.  It supports the following
20178extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
20179@samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
20180@samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
20181@samp{neon-fp16}, @samp{neon-vfpv4}.  The meanings are the same as for
20182the extensions to @option{-march=armv7-a}.
20183
20184@option{-mcpu=generic-@var{arch}} is also permissible, and is
20185equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
20186See @option{-mtune} for more information.
20187
20188@option{-mcpu=native} causes the compiler to auto-detect the CPU
20189of the build computer.  At present, this feature is only supported on
20190GNU/Linux, and not all architectures are recognized.  If the auto-detect
20191is unsuccessful the option has no effect.
20192
20193@item -mfpu=@var{name}
20194@opindex mfpu
20195This specifies what floating-point hardware (or hardware emulation) is
20196available on the target.  Permissible names are: @samp{auto}, @samp{vfpv2},
20197@samp{vfpv3},
20198@samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
20199@samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
20200@samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
20201@samp{fpv5-d16}, @samp{fpv5-sp-d16},
20202@samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
20203Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
20204is an alias for @samp{vfpv2}.
20205
20206The setting @samp{auto} is the default and is special.  It causes the
20207compiler to select the floating-point and Advanced SIMD instructions
20208based on the settings of @option{-mcpu} and @option{-march}.
20209
20210If the selected floating-point hardware includes the NEON extension
20211(e.g.@: @option{-mfpu=neon}), note that floating-point
20212operations are not generated by GCC's auto-vectorization pass unless
20213@option{-funsafe-math-optimizations} is also specified.  This is
20214because NEON hardware does not fully implement the IEEE 754 standard for
20215floating-point arithmetic (in particular denormal values are treated as
20216zero), so the use of NEON instructions may lead to a loss of precision.
20217
20218You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
20219
20220@item -mfp16-format=@var{name}
20221@opindex mfp16-format
20222Specify the format of the @code{__fp16} half-precision floating-point type.
20223Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
20224the default is @samp{none}, in which case the @code{__fp16} type is not
20225defined.  @xref{Half-Precision}, for more information.
20226
20227@item -mstructure-size-boundary=@var{n}
20228@opindex mstructure-size-boundary
20229The sizes of all structures and unions are rounded up to a multiple
20230of the number of bits set by this option.  Permissible values are 8, 32
20231and 64.  The default value varies for different toolchains.  For the COFF
20232targeted toolchain the default value is 8.  A value of 64 is only allowed
20233if the underlying ABI supports it.
20234
20235Specifying a larger number can produce faster, more efficient code, but
20236can also increase the size of the program.  Different values are potentially
20237incompatible.  Code compiled with one value cannot necessarily expect to
20238work with code or libraries compiled with another value, if they exchange
20239information using structures or unions.
20240
20241This option is deprecated.
20242
20243@item -mabort-on-noreturn
20244@opindex mabort-on-noreturn
20245Generate a call to the function @code{abort} at the end of a
20246@code{noreturn} function.  It is executed if the function tries to
20247return.
20248
20249@item -mlong-calls
20250@itemx -mno-long-calls
20251@opindex mlong-calls
20252@opindex mno-long-calls
20253Tells the compiler to perform function calls by first loading the
20254address of the function into a register and then performing a subroutine
20255call on this register.  This switch is needed if the target function
20256lies outside of the 64-megabyte addressing range of the offset-based
20257version of subroutine call instruction.
20258
20259Even if this switch is enabled, not all function calls are turned
20260into long calls.  The heuristic is that static functions, functions
20261that have the @code{short_call} attribute, functions that are inside
20262the scope of a @code{#pragma no_long_calls} directive, and functions whose
20263definitions have already been compiled within the current compilation
20264unit are not turned into long calls.  The exceptions to this rule are
20265that weak function definitions, functions with the @code{long_call}
20266attribute or the @code{section} attribute, and functions that are within
20267the scope of a @code{#pragma long_calls} directive are always
20268turned into long calls.
20269
20270This feature is not enabled by default.  Specifying
20271@option{-mno-long-calls} restores the default behavior, as does
20272placing the function calls within the scope of a @code{#pragma
20273long_calls_off} directive.  Note these switches have no effect on how
20274the compiler generates code to handle function calls via function
20275pointers.
20276
20277@item -msingle-pic-base
20278@opindex msingle-pic-base
20279Treat the register used for PIC addressing as read-only, rather than
20280loading it in the prologue for each function.  The runtime system is
20281responsible for initializing this register with an appropriate value
20282before execution begins.
20283
20284@item -mpic-register=@var{reg}
20285@opindex mpic-register
20286Specify the register to be used for PIC addressing.
20287For standard PIC base case, the default is any suitable register
20288determined by compiler.  For single PIC base case, the default is
20289@samp{R9} if target is EABI based or stack-checking is enabled,
20290otherwise the default is @samp{R10}.
20291
20292@item -mpic-data-is-text-relative
20293@opindex mpic-data-is-text-relative
20294Assume that the displacement between the text and data segments is fixed
20295at static link time.  This permits using PC-relative addressing
20296operations to access data known to be in the data segment.  For
20297non-VxWorks RTP targets, this option is enabled by default.  When
20298disabled on such targets, it will enable @option{-msingle-pic-base} by
20299default.
20300
20301@item -mpoke-function-name
20302@opindex mpoke-function-name
20303Write the name of each function into the text section, directly
20304preceding the function prologue.  The generated code is similar to this:
20305
20306@smallexample
20307     t0
20308         .ascii "arm_poke_function_name", 0
20309         .align
20310     t1
20311         .word 0xff000000 + (t1 - t0)
20312     arm_poke_function_name
20313         mov     ip, sp
20314         stmfd   sp!, @{fp, ip, lr, pc@}
20315         sub     fp, ip, #4
20316@end smallexample
20317
20318When performing a stack backtrace, code can inspect the value of
20319@code{pc} stored at @code{fp + 0}.  If the trace function then looks at
20320location @code{pc - 12} and the top 8 bits are set, then we know that
20321there is a function name embedded immediately preceding this location
20322and has length @code{((pc[-3]) & 0xff000000)}.
20323
20324@item -mthumb
20325@itemx -marm
20326@opindex marm
20327@opindex mthumb
20328
20329Select between generating code that executes in ARM and Thumb
20330states.  The default for most configurations is to generate code
20331that executes in ARM state, but the default can be changed by
20332configuring GCC with the @option{--with-mode=}@var{state}
20333configure option.
20334
20335You can also override the ARM and Thumb mode for each function
20336by using the @code{target("thumb")} and @code{target("arm")} function attributes
20337(@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
20338
20339@item -mflip-thumb
20340@opindex mflip-thumb
20341Switch ARM/Thumb modes on alternating functions.
20342This option is provided for regression testing of mixed Thumb/ARM code
20343generation, and is not intended for ordinary use in compiling code.
20344
20345@item -mtpcs-frame
20346@opindex mtpcs-frame
20347Generate a stack frame that is compliant with the Thumb Procedure Call
20348Standard for all non-leaf functions.  (A leaf function is one that does
20349not call any other functions.)  The default is @option{-mno-tpcs-frame}.
20350
20351@item -mtpcs-leaf-frame
20352@opindex mtpcs-leaf-frame
20353Generate a stack frame that is compliant with the Thumb Procedure Call
20354Standard for all leaf functions.  (A leaf function is one that does
20355not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
20356
20357@item -mcallee-super-interworking
20358@opindex mcallee-super-interworking
20359Gives all externally visible functions in the file being compiled an ARM
20360instruction set header which switches to Thumb mode before executing the
20361rest of the function.  This allows these functions to be called from
20362non-interworking code.  This option is not valid in AAPCS configurations
20363because interworking is enabled by default.
20364
20365@item -mcaller-super-interworking
20366@opindex mcaller-super-interworking
20367Allows calls via function pointers (including virtual functions) to
20368execute correctly regardless of whether the target code has been
20369compiled for interworking or not.  There is a small overhead in the cost
20370of executing a function pointer if this option is enabled.  This option
20371is not valid in AAPCS configurations because interworking is enabled
20372by default.
20373
20374@item -mtp=@var{name}
20375@opindex mtp
20376Specify the access model for the thread local storage pointer.  The valid
20377models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
20378@samp{cp15}, which fetches the thread pointer from @code{cp15} directly
20379(supported in the arm6k architecture), and @samp{auto}, which uses the
20380best available method for the selected processor.  The default setting is
20381@samp{auto}.
20382
20383@item -mtls-dialect=@var{dialect}
20384@opindex mtls-dialect
20385Specify the dialect to use for accessing thread local storage.  Two
20386@var{dialect}s are supported---@samp{gnu} and @samp{gnu2}.  The
20387@samp{gnu} dialect selects the original GNU scheme for supporting
20388local and global dynamic TLS models.  The @samp{gnu2} dialect
20389selects the GNU descriptor scheme, which provides better performance
20390for shared libraries.  The GNU descriptor scheme is compatible with
20391the original scheme, but does require new assembler, linker and
20392library support.  Initial and local exec TLS models are unaffected by
20393this option and always use the original scheme.
20394
20395@item -mword-relocations
20396@opindex mword-relocations
20397Only generate absolute relocations on word-sized values (i.e.@: R_ARM_ABS32).
20398This is enabled by default on targets (uClinux, SymbianOS) where the runtime
20399loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
20400is specified. This option conflicts with @option{-mslow-flash-data}.
20401
20402@item -mfix-cortex-m3-ldrd
20403@opindex mfix-cortex-m3-ldrd
20404Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
20405with overlapping destination and base registers are used.  This option avoids
20406generating these instructions.  This option is enabled by default when
20407@option{-mcpu=cortex-m3} is specified.
20408
20409@item -munaligned-access
20410@itemx -mno-unaligned-access
20411@opindex munaligned-access
20412@opindex mno-unaligned-access
20413Enables (or disables) reading and writing of 16- and 32- bit values
20414from addresses that are not 16- or 32- bit aligned.  By default
20415unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
20416ARMv8-M Baseline architectures, and enabled for all other
20417architectures.  If unaligned access is not enabled then words in packed
20418data structures are accessed a byte at a time.
20419
20420The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
20421generated object file to either true or false, depending upon the
20422setting of this option.  If unaligned access is enabled then the
20423preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
20424defined.
20425
20426@item -mneon-for-64bits
20427@opindex mneon-for-64bits
20428This option is deprecated and has no effect.
20429
20430@item -mslow-flash-data
20431@opindex mslow-flash-data
20432Assume loading data from flash is slower than fetching instruction.
20433Therefore literal load is minimized for better performance.
20434This option is only supported when compiling for ARMv7 M-profile and
20435off by default. It conflicts with @option{-mword-relocations}.
20436
20437@item -masm-syntax-unified
20438@opindex masm-syntax-unified
20439Assume inline assembler is using unified asm syntax.  The default is
20440currently off which implies divided syntax.  This option has no impact
20441on Thumb2. However, this may change in future releases of GCC.
20442Divided syntax should be considered deprecated.
20443
20444@item -mrestrict-it
20445@opindex mrestrict-it
20446Restricts generation of IT blocks to conform to the rules of ARMv8-A.
20447IT blocks can only contain a single 16-bit instruction from a select
20448set of instructions. This option is on by default for ARMv8-A Thumb mode.
20449
20450@item -mprint-tune-info
20451@opindex mprint-tune-info
20452Print CPU tuning information as comment in assembler file.  This is
20453an option used only for regression testing of the compiler and not
20454intended for ordinary use in compiling code.  This option is disabled
20455by default.
20456
20457@item -mverbose-cost-dump
20458@opindex mverbose-cost-dump
20459Enable verbose cost model dumping in the debug dump files.  This option is
20460provided for use in debugging the compiler.
20461
20462@item -mpure-code
20463@opindex mpure-code
20464Do not allow constant data to be placed in code sections.
20465Additionally, when compiling for ELF object format give all text sections the
20466ELF processor-specific section attribute @code{SHF_ARM_PURECODE}.  This option
20467is only available when generating non-pic code for M-profile targets.
20468
20469@item -mcmse
20470@opindex mcmse
20471Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
20472Development Tools Engineering Specification", which can be found on
20473@url{https://developer.arm.com/documentation/ecm0359818/latest/}.
20474
20475@item -mfdpic
20476@itemx -mno-fdpic
20477@opindex mfdpic
20478@opindex mno-fdpic
20479Select the FDPIC ABI, which uses 64-bit function descriptors to
20480represent pointers to functions.  When the compiler is configured for
20481@code{arm-*-uclinuxfdpiceabi} targets, this option is on by default
20482and implies @option{-fPIE} if none of the PIC/PIE-related options is
20483provided.  On other targets, it only enables the FDPIC-specific code
20484generation features, and the user should explicitly provide the
20485PIC/PIE-related options as needed.
20486
20487Note that static linking is not supported because it would still
20488involve the dynamic linker when the program self-relocates.  If such
20489behavior is acceptable, use -static and -Wl,-dynamic-linker options.
20490
20491The opposite @option{-mno-fdpic} option is useful (and required) to
20492build the Linux kernel using the same (@code{arm-*-uclinuxfdpiceabi})
20493toolchain as the one used to build the userland programs.
20494
20495@end table
20496
20497@node AVR Options
20498@subsection AVR Options
20499@cindex AVR Options
20500
20501These options are defined for AVR implementations:
20502
20503@table @gcctabopt
20504@item -mmcu=@var{mcu}
20505@opindex mmcu
20506Specify Atmel AVR instruction set architectures (ISA) or MCU type.
20507
20508The default for this option is@tie{}@samp{avr2}.
20509
20510GCC supports the following AVR devices and ISAs:
20511
20512@include avr-mmcu.texi
20513
20514@item -mabsdata
20515@opindex mabsdata
20516
20517Assume that all data in static storage can be accessed by LDS / STS
20518instructions.  This option has only an effect on reduced Tiny devices like
20519ATtiny40.  See also the @code{absdata}
20520@ref{AVR Variable Attributes,variable attribute}.
20521
20522@item -maccumulate-args
20523@opindex maccumulate-args
20524Accumulate outgoing function arguments and acquire/release the needed
20525stack space for outgoing function arguments once in function
20526prologue/epilogue.  Without this option, outgoing arguments are pushed
20527before calling a function and popped afterwards.
20528
20529Popping the arguments after the function call can be expensive on
20530AVR so that accumulating the stack space might lead to smaller
20531executables because arguments need not be removed from the
20532stack after such a function call.
20533
20534This option can lead to reduced code size for functions that perform
20535several calls to functions that get their arguments on the stack like
20536calls to printf-like functions.
20537
20538@item -mbranch-cost=@var{cost}
20539@opindex mbranch-cost
20540Set the branch costs for conditional branch instructions to
20541@var{cost}.  Reasonable values for @var{cost} are small, non-negative
20542integers. The default branch cost is 0.
20543
20544@item -mcall-prologues
20545@opindex mcall-prologues
20546Functions prologues/epilogues are expanded as calls to appropriate
20547subroutines.  Code size is smaller.
20548
20549@item -mdouble=@var{bits}
20550@itemx -mlong-double=@var{bits}
20551@opindex mdouble
20552@opindex mlong-double
20553Set the size (in bits) of the @code{double} or @code{long double} type,
20554respectively.  Possible values for @var{bits} are 32 and 64.
20555Whether or not a specific value for @var{bits} is allowed depends on
20556the @code{--with-double=} and @code{--with-long-double=}
20557@w{@uref{https://gcc.gnu.org/install/configure.html#avr,configure options}},
20558and the same applies for the default values of the options.
20559
20560@item -mgas-isr-prologues
20561@opindex mgas-isr-prologues
20562Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
20563instruction supported by GNU Binutils.
20564If this option is on, the feature can still be disabled for individual
20565ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
20566function attribute.  This feature is activated per default
20567if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
20568and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
20569
20570@item -mint8
20571@opindex mint8
20572Assume @code{int} to be 8-bit integer.  This affects the sizes of all types: a
20573@code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
20574and @code{long long} is 4 bytes.  Please note that this option does not
20575conform to the C standards, but it results in smaller code
20576size.
20577
20578@item -mmain-is-OS_task
20579@opindex mmain-is-OS_task
20580Do not save registers in @code{main}.  The effect is the same like
20581attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
20582to @code{main}. It is activated per default if optimization is on.
20583
20584@item -mn-flash=@var{num}
20585@opindex mn-flash
20586Assume that the flash memory has a size of
20587@var{num} times 64@tie{}KiB.
20588
20589@item -mno-interrupts
20590@opindex mno-interrupts
20591Generated code is not compatible with hardware interrupts.
20592Code size is smaller.
20593
20594@item -mrelax
20595@opindex mrelax
20596Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
20597@code{RCALL} resp.@: @code{RJMP} instruction if applicable.
20598Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
20599the assembler's command line and the @option{--relax} option to the
20600linker's command line.
20601
20602Jump relaxing is performed by the linker because jump offsets are not
20603known before code is located. Therefore, the assembler code generated by the
20604compiler is the same, but the instructions in the executable may
20605differ from instructions in the assembler code.
20606
20607Relaxing must be turned on if linker stubs are needed, see the
20608section on @code{EIND} and linker stubs below.
20609
20610@item -mrmw
20611@opindex mrmw
20612Assume that the device supports the Read-Modify-Write
20613instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
20614
20615@item -mshort-calls
20616@opindex mshort-calls
20617
20618Assume that @code{RJMP} and @code{RCALL} can target the whole
20619program memory.
20620
20621This option is used internally for multilib selection.  It is
20622not an optimization option, and you don't need to set it by hand.
20623
20624@item -msp8
20625@opindex msp8
20626Treat the stack pointer register as an 8-bit register,
20627i.e.@: assume the high byte of the stack pointer is zero.
20628In general, you don't need to set this option by hand.
20629
20630This option is used internally by the compiler to select and
20631build multilibs for architectures @code{avr2} and @code{avr25}.
20632These architectures mix devices with and without @code{SPH}.
20633For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
20634the compiler driver adds or removes this option from the compiler
20635proper's command line, because the compiler then knows if the device
20636or architecture has an 8-bit stack pointer and thus no @code{SPH}
20637register or not.
20638
20639@item -mstrict-X
20640@opindex mstrict-X
20641Use address register @code{X} in a way proposed by the hardware.  This means
20642that @code{X} is only used in indirect, post-increment or
20643pre-decrement addressing.
20644
20645Without this option, the @code{X} register may be used in the same way
20646as @code{Y} or @code{Z} which then is emulated by additional
20647instructions.
20648For example, loading a value with @code{X+const} addressing with a
20649small non-negative @code{const < 64} to a register @var{Rn} is
20650performed as
20651
20652@example
20653adiw r26, const   ; X += const
20654ld   @var{Rn}, X        ; @var{Rn} = *X
20655sbiw r26, const   ; X -= const
20656@end example
20657
20658@item -mtiny-stack
20659@opindex mtiny-stack
20660Only change the lower 8@tie{}bits of the stack pointer.
20661
20662@item -mfract-convert-truncate
20663@opindex mfract-convert-truncate
20664Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
20665
20666@item -nodevicelib
20667@opindex nodevicelib
20668Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
20669
20670@item -nodevicespecs
20671@opindex nodevicespecs
20672Don't add @option{-specs=device-specs/specs-@var{mcu}} to the compiler driver's
20673command line.  The user takes responsibility for supplying the sub-processes
20674like compiler proper, assembler and linker with appropriate command line
20675options.  This means that the user has to supply her private device specs
20676file by means of @option{-specs=@var{path-to-specs-file}}.  There is no
20677more need for option @option{-mmcu=@var{mcu}}.
20678
20679This option can also serve as a replacement for the older way of
20680specifying custom device-specs files that needed @option{-B @var{some-path}} to point to a directory
20681which contains a folder named @code{device-specs} which contains a specs file named
20682@code{specs-@var{mcu}}, where @var{mcu} was specified by @option{-mmcu=@var{mcu}}.
20683
20684@item -Waddr-space-convert
20685@opindex Waddr-space-convert
20686@opindex Wno-addr-space-convert
20687Warn about conversions between address spaces in the case where the
20688resulting address space is not contained in the incoming address space.
20689
20690@item -Wmisspelled-isr
20691@opindex Wmisspelled-isr
20692@opindex Wno-misspelled-isr
20693Warn if the ISR is misspelled, i.e.@: without __vector prefix.
20694Enabled by default.
20695@end table
20696
20697@subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
20698@cindex @code{EIND}
20699Pointers in the implementation are 16@tie{}bits wide.
20700The address of a function or label is represented as word address so
20701that indirect jumps and calls can target any code address in the
20702range of 64@tie{}Ki words.
20703
20704In order to facilitate indirect jump on devices with more than 128@tie{}Ki
20705bytes of program memory space, there is a special function register called
20706@code{EIND} that serves as most significant part of the target address
20707when @code{EICALL} or @code{EIJMP} instructions are used.
20708
20709Indirect jumps and calls on these devices are handled as follows by
20710the compiler and are subject to some limitations:
20711
20712@itemize @bullet
20713
20714@item
20715The compiler never sets @code{EIND}.
20716
20717@item
20718The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
20719instructions or might read @code{EIND} directly in order to emulate an
20720indirect call/jump by means of a @code{RET} instruction.
20721
20722@item
20723The compiler assumes that @code{EIND} never changes during the startup
20724code or during the application. In particular, @code{EIND} is not
20725saved/restored in function or interrupt service routine
20726prologue/epilogue.
20727
20728@item
20729For indirect calls to functions and computed goto, the linker
20730generates @emph{stubs}. Stubs are jump pads sometimes also called
20731@emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
20732The stub contains a direct jump to the desired address.
20733
20734@item
20735Linker relaxation must be turned on so that the linker generates
20736the stubs correctly in all situations. See the compiler option
20737@option{-mrelax} and the linker option @option{--relax}.
20738There are corner cases where the linker is supposed to generate stubs
20739but aborts without relaxation and without a helpful error message.
20740
20741@item
20742The default linker script is arranged for code with @code{EIND = 0}.
20743If code is supposed to work for a setup with @code{EIND != 0}, a custom
20744linker script has to be used in order to place the sections whose
20745name start with @code{.trampolines} into the segment where @code{EIND}
20746points to.
20747
20748@item
20749The startup code from libgcc never sets @code{EIND}.
20750Notice that startup code is a blend of code from libgcc and AVR-LibC.
20751For the impact of AVR-LibC on @code{EIND}, see the
20752@w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
20753
20754@item
20755It is legitimate for user-specific startup code to set up @code{EIND}
20756early, for example by means of initialization code located in
20757section @code{.init3}. Such code runs prior to general startup code
20758that initializes RAM and calls constructors, but after the bit
20759of startup code from AVR-LibC that sets @code{EIND} to the segment
20760where the vector table is located.
20761@example
20762#include <avr/io.h>
20763
20764static void
20765__attribute__((section(".init3"),naked,used,no_instrument_function))
20766init3_set_eind (void)
20767@{
20768  __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
20769                  "out %i0,r24" :: "n" (&EIND) : "r24","memory");
20770@}
20771@end example
20772
20773@noindent
20774The @code{__trampolines_start} symbol is defined in the linker script.
20775
20776@item
20777Stubs are generated automatically by the linker if
20778the following two conditions are met:
20779@itemize @minus
20780
20781@item The address of a label is taken by means of the @code{gs} modifier
20782(short for @emph{generate stubs}) like so:
20783@example
20784LDI r24, lo8(gs(@var{func}))
20785LDI r25, hi8(gs(@var{func}))
20786@end example
20787@item The final location of that label is in a code segment
20788@emph{outside} the segment where the stubs are located.
20789@end itemize
20790
20791@item
20792The compiler emits such @code{gs} modifiers for code labels in the
20793following situations:
20794@itemize @minus
20795@item Taking address of a function or code label.
20796@item Computed goto.
20797@item If prologue-save function is used, see @option{-mcall-prologues}
20798command-line option.
20799@item Switch/case dispatch tables. If you do not want such dispatch
20800tables you can specify the @option{-fno-jump-tables} command-line option.
20801@item C and C++ constructors/destructors called during startup/shutdown.
20802@item If the tools hit a @code{gs()} modifier explained above.
20803@end itemize
20804
20805@item
20806Jumping to non-symbolic addresses like so is @emph{not} supported:
20807
20808@example
20809int main (void)
20810@{
20811    /* Call function at word address 0x2 */
20812    return ((int(*)(void)) 0x2)();
20813@}
20814@end example
20815
20816Instead, a stub has to be set up, i.e.@: the function has to be called
20817through a symbol (@code{func_4} in the example):
20818
20819@example
20820int main (void)
20821@{
20822    extern int func_4 (void);
20823
20824    /* Call function at byte address 0x4 */
20825    return func_4();
20826@}
20827@end example
20828
20829and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
20830Alternatively, @code{func_4} can be defined in the linker script.
20831@end itemize
20832
20833@subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
20834@cindex @code{RAMPD}
20835@cindex @code{RAMPX}
20836@cindex @code{RAMPY}
20837@cindex @code{RAMPZ}
20838Some AVR devices support memories larger than the 64@tie{}KiB range
20839that can be accessed with 16-bit pointers.  To access memory locations
20840outside this 64@tie{}KiB range, the content of a @code{RAMP}
20841register is used as high part of the address:
20842The @code{X}, @code{Y}, @code{Z} address register is concatenated
20843with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
20844register, respectively, to get a wide address. Similarly,
20845@code{RAMPD} is used together with direct addressing.
20846
20847@itemize
20848@item
20849The startup code initializes the @code{RAMP} special function
20850registers with zero.
20851
20852@item
20853If a @ref{AVR Named Address Spaces,named address space} other than
20854generic or @code{__flash} is used, then @code{RAMPZ} is set
20855as needed before the operation.
20856
20857@item
20858If the device supports RAM larger than 64@tie{}KiB and the compiler
20859needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
20860is reset to zero after the operation.
20861
20862@item
20863If the device comes with a specific @code{RAMP} register, the ISR
20864prologue/epilogue saves/restores that SFR and initializes it with
20865zero in case the ISR code might (implicitly) use it.
20866
20867@item
20868RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
20869If you use inline assembler to read from locations outside the
2087016-bit address range and change one of the @code{RAMP} registers,
20871you must reset it to zero after the access.
20872
20873@end itemize
20874
20875@subsubsection AVR Built-in Macros
20876
20877GCC defines several built-in macros so that the user code can test
20878for the presence or absence of features.  Almost any of the following
20879built-in macros are deduced from device capabilities and thus
20880triggered by the @option{-mmcu=} command-line option.
20881
20882For even more AVR-specific built-in macros see
20883@ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
20884
20885@table @code
20886
20887@item __AVR_ARCH__
20888Build-in macro that resolves to a decimal number that identifies the
20889architecture and depends on the @option{-mmcu=@var{mcu}} option.
20890Possible values are:
20891
20892@code{2}, @code{25}, @code{3}, @code{31}, @code{35},
20893@code{4}, @code{5}, @code{51}, @code{6}
20894
20895for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
20896@code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
20897
20898respectively and
20899
20900@code{100},
20901@code{102}, @code{103}, @code{104},
20902@code{105}, @code{106}, @code{107}
20903
20904for @var{mcu}=@code{avrtiny},
20905@code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
20906@code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
20907If @var{mcu} specifies a device, this built-in macro is set
20908accordingly. For example, with @option{-mmcu=atmega8} the macro is
20909defined to @code{4}.
20910
20911@item __AVR_@var{Device}__
20912Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
20913the device's name. For example, @option{-mmcu=atmega8} defines the
20914built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
20915@code{__AVR_ATtiny261A__}, etc.
20916
20917The built-in macros' names follow
20918the scheme @code{__AVR_@var{Device}__} where @var{Device} is
20919the device name as from the AVR user manual. The difference between
20920@var{Device} in the built-in macro and @var{device} in
20921@option{-mmcu=@var{device}} is that the latter is always lowercase.
20922
20923If @var{device} is not a device but only a core architecture like
20924@samp{avr51}, this macro is not defined.
20925
20926@item __AVR_DEVICE_NAME__
20927Setting @option{-mmcu=@var{device}} defines this built-in macro to
20928the device's name. For example, with @option{-mmcu=atmega8} the macro
20929is defined to @code{atmega8}.
20930
20931If @var{device} is not a device but only a core architecture like
20932@samp{avr51}, this macro is not defined.
20933
20934@item __AVR_XMEGA__
20935The device / architecture belongs to the XMEGA family of devices.
20936
20937@item __AVR_HAVE_ELPM__
20938The device has the @code{ELPM} instruction.
20939
20940@item __AVR_HAVE_ELPMX__
20941The device has the @code{ELPM R@var{n},Z} and @code{ELPM
20942R@var{n},Z+} instructions.
20943
20944@item __AVR_HAVE_MOVW__
20945The device has the @code{MOVW} instruction to perform 16-bit
20946register-register moves.
20947
20948@item __AVR_HAVE_LPMX__
20949The device has the @code{LPM R@var{n},Z} and
20950@code{LPM R@var{n},Z+} instructions.
20951
20952@item __AVR_HAVE_MUL__
20953The device has a hardware multiplier.
20954
20955@item __AVR_HAVE_JMP_CALL__
20956The device has the @code{JMP} and @code{CALL} instructions.
20957This is the case for devices with more than 8@tie{}KiB of program
20958memory.
20959
20960@item __AVR_HAVE_EIJMP_EICALL__
20961@itemx __AVR_3_BYTE_PC__
20962The device has the @code{EIJMP} and @code{EICALL} instructions.
20963This is the case for devices with more than 128@tie{}KiB of program memory.
20964This also means that the program counter
20965(PC) is 3@tie{}bytes wide.
20966
20967@item __AVR_2_BYTE_PC__
20968The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
20969with up to 128@tie{}KiB of program memory.
20970
20971@item __AVR_HAVE_8BIT_SP__
20972@itemx __AVR_HAVE_16BIT_SP__
20973The stack pointer (SP) register is treated as 8-bit respectively
2097416-bit register by the compiler.
20975The definition of these macros is affected by @option{-mtiny-stack}.
20976
20977@item __AVR_HAVE_SPH__
20978@itemx __AVR_SP8__
20979The device has the SPH (high part of stack pointer) special function
20980register or has an 8-bit stack pointer, respectively.
20981The definition of these macros is affected by @option{-mmcu=} and
20982in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
20983by @option{-msp8}.
20984
20985@item __AVR_HAVE_RAMPD__
20986@itemx __AVR_HAVE_RAMPX__
20987@itemx __AVR_HAVE_RAMPY__
20988@itemx __AVR_HAVE_RAMPZ__
20989The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
20990@code{RAMPZ} special function register, respectively.
20991
20992@item __NO_INTERRUPTS__
20993This macro reflects the @option{-mno-interrupts} command-line option.
20994
20995@item __AVR_ERRATA_SKIP__
20996@itemx __AVR_ERRATA_SKIP_JMP_CALL__
20997Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
20998instructions because of a hardware erratum.  Skip instructions are
20999@code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
21000The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
21001set.
21002
21003@item __AVR_ISA_RMW__
21004The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
21005
21006@item __AVR_SFR_OFFSET__=@var{offset}
21007Instructions that can address I/O special function registers directly
21008like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
21009address as if addressed by an instruction to access RAM like @code{LD}
21010or @code{STS}. This offset depends on the device architecture and has
21011to be subtracted from the RAM address in order to get the
21012respective I/O@tie{}address.
21013
21014@item __AVR_SHORT_CALLS__
21015The @option{-mshort-calls} command line option is set.
21016
21017@item __AVR_PM_BASE_ADDRESS__=@var{addr}
21018Some devices support reading from flash memory by means of @code{LD*}
21019instructions.  The flash memory is seen in the data address space
21020at an offset of @code{__AVR_PM_BASE_ADDRESS__}.  If this macro
21021is not defined, this feature is not available.  If defined,
21022the address space is linear and there is no need to put
21023@code{.rodata} into RAM.  This is handled by the default linker
21024description file, and is currently available for
21025@code{avrtiny} and @code{avrxmega3}.  Even more convenient,
21026there is no need to use address spaces like @code{__flash} or
21027features like attribute @code{progmem} and @code{pgm_read_*}.
21028
21029@item __WITH_AVRLIBC__
21030The compiler is configured to be used together with AVR-Libc.
21031See the @option{--with-avrlibc} configure option.
21032
21033@item __HAVE_DOUBLE_MULTILIB__
21034Defined if @option{-mdouble=} acts as a multilib option.
21035
21036@item __HAVE_DOUBLE32__
21037@itemx __HAVE_DOUBLE64__
21038Defined if the compiler supports 32-bit double resp. 64-bit double.
21039The actual layout is specified by option @option{-mdouble=}.
21040
21041@item __DEFAULT_DOUBLE__
21042The size in bits of @code{double} if @option{-mdouble=} is not set.
21043To test the layout of @code{double} in a program, use the built-in
21044macro @code{__SIZEOF_DOUBLE__}.
21045
21046@item __HAVE_LONG_DOUBLE32__
21047@itemx __HAVE_LONG_DOUBLE64__
21048@itemx __HAVE_LONG_DOUBLE_MULTILIB__
21049@itemx __DEFAULT_LONG_DOUBLE__
21050Same as above, but for @code{long double} instead of @code{double}.
21051
21052@item __WITH_DOUBLE_COMPARISON__
21053Reflects the @code{--with-double-comparison=@{tristate|bool|libf7@}}
21054@w{@uref{https://gcc.gnu.org/install/configure.html#avr,configure option}}
21055and is defined to @code{2} or @code{3}.
21056
21057@item __WITH_LIBF7_LIBGCC__
21058@itemx __WITH_LIBF7_MATH__
21059@itemx __WITH_LIBF7_MATH_SYMBOLS__
21060Reflects the @code{--with-libf7=@{libgcc|math|math-symbols@}}
21061@w{@uref{https://gcc.gnu.org/install/configure.html#avr,configure option}}.
21062
21063@end table
21064
21065@node Blackfin Options
21066@subsection Blackfin Options
21067@cindex Blackfin Options
21068
21069@table @gcctabopt
21070@item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
21071@opindex mcpu=
21072Specifies the name of the target Blackfin processor.  Currently, @var{cpu}
21073can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
21074@samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
21075@samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
21076@samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
21077@samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
21078@samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
21079@samp{bf561}, @samp{bf592}.
21080
21081The optional @var{sirevision} specifies the silicon revision of the target
21082Blackfin processor.  Any workarounds available for the targeted silicon revision
21083are enabled.  If @var{sirevision} is @samp{none}, no workarounds are enabled.
21084If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
21085are enabled.  The @code{__SILICON_REVISION__} macro is defined to two
21086hexadecimal digits representing the major and minor numbers in the silicon
21087revision.  If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
21088is not defined.  If @var{sirevision} is @samp{any}, the
21089@code{__SILICON_REVISION__} is defined to be @code{0xffff}.
21090If this optional @var{sirevision} is not used, GCC assumes the latest known
21091silicon revision of the targeted Blackfin processor.
21092
21093GCC defines a preprocessor macro for the specified @var{cpu}.
21094For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
21095provided by libgloss to be linked in if @option{-msim} is not given.
21096
21097Without this option, @samp{bf532} is used as the processor by default.
21098
21099Note that support for @samp{bf561} is incomplete.  For @samp{bf561},
21100only the preprocessor macro is defined.
21101
21102@item -msim
21103@opindex msim
21104Specifies that the program will be run on the simulator.  This causes
21105the simulator BSP provided by libgloss to be linked in.  This option
21106has effect only for @samp{bfin-elf} toolchain.
21107Certain other options, such as @option{-mid-shared-library} and
21108@option{-mfdpic}, imply @option{-msim}.
21109
21110@item -momit-leaf-frame-pointer
21111@opindex momit-leaf-frame-pointer
21112Don't keep the frame pointer in a register for leaf functions.  This
21113avoids the instructions to save, set up and restore frame pointers and
21114makes an extra register available in leaf functions.
21115
21116@item -mspecld-anomaly
21117@opindex mspecld-anomaly
21118When enabled, the compiler ensures that the generated code does not
21119contain speculative loads after jump instructions. If this option is used,
21120@code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
21121
21122@item -mno-specld-anomaly
21123@opindex mno-specld-anomaly
21124@opindex mspecld-anomaly
21125Don't generate extra code to prevent speculative loads from occurring.
21126
21127@item -mcsync-anomaly
21128@opindex mcsync-anomaly
21129When enabled, the compiler ensures that the generated code does not
21130contain CSYNC or SSYNC instructions too soon after conditional branches.
21131If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
21132
21133@item -mno-csync-anomaly
21134@opindex mno-csync-anomaly
21135@opindex mcsync-anomaly
21136Don't generate extra code to prevent CSYNC or SSYNC instructions from
21137occurring too soon after a conditional branch.
21138
21139@item -mlow64k
21140@opindex mlow64k
21141When enabled, the compiler is free to take advantage of the knowledge that
21142the entire program fits into the low 64k of memory.
21143
21144@item -mno-low64k
21145@opindex mno-low64k
21146Assume that the program is arbitrarily large.  This is the default.
21147
21148@item -mstack-check-l1
21149@opindex mstack-check-l1
21150Do stack checking using information placed into L1 scratchpad memory by the
21151uClinux kernel.
21152
21153@item -mid-shared-library
21154@opindex mid-shared-library
21155Generate code that supports shared libraries via the library ID method.
21156This allows for execute in place and shared libraries in an environment
21157without virtual memory management.  This option implies @option{-fPIC}.
21158With a @samp{bfin-elf} target, this option implies @option{-msim}.
21159
21160@item -mno-id-shared-library
21161@opindex mno-id-shared-library
21162@opindex mid-shared-library
21163Generate code that doesn't assume ID-based shared libraries are being used.
21164This is the default.
21165
21166@item -mleaf-id-shared-library
21167@opindex mleaf-id-shared-library
21168Generate code that supports shared libraries via the library ID method,
21169but assumes that this library or executable won't link against any other
21170ID shared libraries.  That allows the compiler to use faster code for jumps
21171and calls.
21172
21173@item -mno-leaf-id-shared-library
21174@opindex mno-leaf-id-shared-library
21175@opindex mleaf-id-shared-library
21176Do not assume that the code being compiled won't link against any ID shared
21177libraries.  Slower code is generated for jump and call insns.
21178
21179@item -mshared-library-id=n
21180@opindex mshared-library-id
21181Specifies the identification number of the ID-based shared library being
21182compiled.  Specifying a value of 0 generates more compact code; specifying
21183other values forces the allocation of that number to the current
21184library but is no more space- or time-efficient than omitting this option.
21185
21186@item -msep-data
21187@opindex msep-data
21188Generate code that allows the data segment to be located in a different
21189area of memory from the text segment.  This allows for execute in place in
21190an environment without virtual memory management by eliminating relocations
21191against the text section.
21192
21193@item -mno-sep-data
21194@opindex mno-sep-data
21195@opindex msep-data
21196Generate code that assumes that the data segment follows the text segment.
21197This is the default.
21198
21199@item -mlong-calls
21200@itemx -mno-long-calls
21201@opindex mlong-calls
21202@opindex mno-long-calls
21203Tells the compiler to perform function calls by first loading the
21204address of the function into a register and then performing a subroutine
21205call on this register.  This switch is needed if the target function
21206lies outside of the 24-bit addressing range of the offset-based
21207version of subroutine call instruction.
21208
21209This feature is not enabled by default.  Specifying
21210@option{-mno-long-calls} restores the default behavior.  Note these
21211switches have no effect on how the compiler generates code to handle
21212function calls via function pointers.
21213
21214@item -mfast-fp
21215@opindex mfast-fp
21216Link with the fast floating-point library. This library relaxes some of
21217the IEEE floating-point standard's rules for checking inputs against
21218Not-a-Number (NAN), in the interest of performance.
21219
21220@item -minline-plt
21221@opindex minline-plt
21222Enable inlining of PLT entries in function calls to functions that are
21223not known to bind locally.  It has no effect without @option{-mfdpic}.
21224
21225@item -mmulticore
21226@opindex mmulticore
21227Build a standalone application for multicore Blackfin processors.
21228This option causes proper start files and link scripts supporting
21229multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
21230It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
21231
21232This option can be used with @option{-mcorea} or @option{-mcoreb}, which
21233selects the one-application-per-core programming model.  Without
21234@option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
21235programming model is used. In this model, the main function of Core B
21236should be named as @code{coreb_main}.
21237
21238If this option is not used, the single-core application programming
21239model is used.
21240
21241@item -mcorea
21242@opindex mcorea
21243Build a standalone application for Core A of BF561 when using
21244the one-application-per-core programming model. Proper start files
21245and link scripts are used to support Core A, and the macro
21246@code{__BFIN_COREA} is defined.
21247This option can only be used in conjunction with @option{-mmulticore}.
21248
21249@item -mcoreb
21250@opindex mcoreb
21251Build a standalone application for Core B of BF561 when using
21252the one-application-per-core programming model. Proper start files
21253and link scripts are used to support Core B, and the macro
21254@code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
21255should be used instead of @code{main}.
21256This option can only be used in conjunction with @option{-mmulticore}.
21257
21258@item -msdram
21259@opindex msdram
21260Build a standalone application for SDRAM. Proper start files and
21261link scripts are used to put the application into SDRAM, and the macro
21262@code{__BFIN_SDRAM} is defined.
21263The loader should initialize SDRAM before loading the application.
21264
21265@item -micplb
21266@opindex micplb
21267Assume that ICPLBs are enabled at run time.  This has an effect on certain
21268anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
21269are enabled; for standalone applications the default is off.
21270@end table
21271
21272@node C6X Options
21273@subsection C6X Options
21274@cindex C6X Options
21275
21276@table @gcctabopt
21277@item -march=@var{name}
21278@opindex march
21279This specifies the name of the target architecture.  GCC uses this
21280name to determine what kind of instructions it can emit when generating
21281assembly code.  Permissible names are: @samp{c62x},
21282@samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
21283
21284@item -mbig-endian
21285@opindex mbig-endian
21286Generate code for a big-endian target.
21287
21288@item -mlittle-endian
21289@opindex mlittle-endian
21290Generate code for a little-endian target.  This is the default.
21291
21292@item -msim
21293@opindex msim
21294Choose startup files and linker script suitable for the simulator.
21295
21296@item -msdata=default
21297@opindex msdata=default
21298Put small global and static data in the @code{.neardata} section,
21299which is pointed to by register @code{B14}.  Put small uninitialized
21300global and static data in the @code{.bss} section, which is adjacent
21301to the @code{.neardata} section.  Put small read-only data into the
21302@code{.rodata} section.  The corresponding sections used for large
21303pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
21304
21305@item -msdata=all
21306@opindex msdata=all
21307Put all data, not just small objects, into the sections reserved for
21308small data, and use addressing relative to the @code{B14} register to
21309access them.
21310
21311@item -msdata=none
21312@opindex msdata=none
21313Make no use of the sections reserved for small data, and use absolute
21314addresses to access all data.  Put all initialized global and static
21315data in the @code{.fardata} section, and all uninitialized data in the
21316@code{.far} section.  Put all constant data into the @code{.const}
21317section.
21318@end table
21319
21320@node CRIS Options
21321@subsection CRIS Options
21322@cindex CRIS Options
21323
21324These options are defined specifically for the CRIS ports.
21325
21326@table @gcctabopt
21327@item -march=@var{architecture-type}
21328@itemx -mcpu=@var{architecture-type}
21329@opindex march
21330@opindex mcpu
21331Generate code for the specified architecture.  The choices for
21332@var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
21333respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
21334Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
21335@samp{v10}.
21336
21337@item -mtune=@var{architecture-type}
21338@opindex mtune
21339Tune to @var{architecture-type} everything applicable about the generated
21340code, except for the ABI and the set of available instructions.  The
21341choices for @var{architecture-type} are the same as for
21342@option{-march=@var{architecture-type}}.
21343
21344@item -mmax-stack-frame=@var{n}
21345@opindex mmax-stack-frame
21346Warn when the stack frame of a function exceeds @var{n} bytes.
21347
21348@item -metrax4
21349@itemx -metrax100
21350@opindex metrax4
21351@opindex metrax100
21352The options @option{-metrax4} and @option{-metrax100} are synonyms for
21353@option{-march=v3} and @option{-march=v8} respectively.
21354
21355@item -mmul-bug-workaround
21356@itemx -mno-mul-bug-workaround
21357@opindex mmul-bug-workaround
21358@opindex mno-mul-bug-workaround
21359Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
21360models where it applies.  This option is active by default.
21361
21362@item -mpdebug
21363@opindex mpdebug
21364Enable CRIS-specific verbose debug-related information in the assembly
21365code.  This option also has the effect of turning off the @samp{#NO_APP}
21366formatted-code indicator to the assembler at the beginning of the
21367assembly file.
21368
21369@item -mcc-init
21370@opindex mcc-init
21371Do not use condition-code results from previous instruction; always emit
21372compare and test instructions before use of condition codes.
21373
21374@item -mno-side-effects
21375@opindex mno-side-effects
21376@opindex mside-effects
21377Do not emit instructions with side effects in addressing modes other than
21378post-increment.
21379
21380@item -mstack-align
21381@itemx -mno-stack-align
21382@itemx -mdata-align
21383@itemx -mno-data-align
21384@itemx -mconst-align
21385@itemx -mno-const-align
21386@opindex mstack-align
21387@opindex mno-stack-align
21388@opindex mdata-align
21389@opindex mno-data-align
21390@opindex mconst-align
21391@opindex mno-const-align
21392These options (@samp{no-} options) arrange (eliminate arrangements) for the
21393stack frame, individual data and constants to be aligned for the maximum
21394single data access size for the chosen CPU model.  The default is to
21395arrange for 32-bit alignment.  ABI details such as structure layout are
21396not affected by these options.
21397
21398@item -m32-bit
21399@itemx -m16-bit
21400@itemx -m8-bit
21401@opindex m32-bit
21402@opindex m16-bit
21403@opindex m8-bit
21404Similar to the stack- data- and const-align options above, these options
21405arrange for stack frame, writable data and constants to all be 32-bit,
2140616-bit or 8-bit aligned.  The default is 32-bit alignment.
21407
21408@item -mno-prologue-epilogue
21409@itemx -mprologue-epilogue
21410@opindex mno-prologue-epilogue
21411@opindex mprologue-epilogue
21412With @option{-mno-prologue-epilogue}, the normal function prologue and
21413epilogue which set up the stack frame are omitted and no return
21414instructions or return sequences are generated in the code.  Use this
21415option only together with visual inspection of the compiled code: no
21416warnings or errors are generated when call-saved registers must be saved,
21417or storage for local variables needs to be allocated.
21418
21419@item -mno-gotplt
21420@itemx -mgotplt
21421@opindex mno-gotplt
21422@opindex mgotplt
21423With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
21424instruction sequences that load addresses for functions from the PLT part
21425of the GOT rather than (traditional on other architectures) calls to the
21426PLT@.  The default is @option{-mgotplt}.
21427
21428@item -melf
21429@opindex melf
21430Legacy no-op option only recognized with the cris-axis-elf and
21431cris-axis-linux-gnu targets.
21432
21433@item -mlinux
21434@opindex mlinux
21435Legacy no-op option only recognized with the cris-axis-linux-gnu target.
21436
21437@item -sim
21438@opindex sim
21439This option, recognized for the cris-axis-elf, arranges
21440to link with input-output functions from a simulator library.  Code,
21441initialized data and zero-initialized data are allocated consecutively.
21442
21443@item -sim2
21444@opindex sim2
21445Like @option{-sim}, but pass linker options to locate initialized data at
214460x40000000 and zero-initialized data at 0x80000000.
21447@end table
21448
21449@node CR16 Options
21450@subsection CR16 Options
21451@cindex CR16 Options
21452
21453These options are defined specifically for the CR16 ports.
21454
21455@table @gcctabopt
21456
21457@item -mmac
21458@opindex mmac
21459Enable the use of multiply-accumulate instructions. Disabled by default.
21460
21461@item -mcr16cplus
21462@itemx -mcr16c
21463@opindex mcr16cplus
21464@opindex mcr16c
21465Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
21466is default.
21467
21468@item -msim
21469@opindex msim
21470Links the library libsim.a which is in compatible with simulator. Applicable
21471to ELF compiler only.
21472
21473@item -mint32
21474@opindex mint32
21475Choose integer type as 32-bit wide.
21476
21477@item -mbit-ops
21478@opindex mbit-ops
21479Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
21480
21481@item -mdata-model=@var{model}
21482@opindex mdata-model
21483Choose a data model. The choices for @var{model} are @samp{near},
21484@samp{far} or @samp{medium}. @samp{medium} is default.
21485However, @samp{far} is not valid with @option{-mcr16c}, as the
21486CR16C architecture does not support the far data model.
21487@end table
21488
21489@node C-SKY Options
21490@subsection C-SKY Options
21491@cindex C-SKY Options
21492
21493GCC supports these options when compiling for C-SKY V2 processors.
21494
21495@table @gcctabopt
21496
21497@item -march=@var{arch}
21498@opindex march=
21499Specify the C-SKY target architecture.  Valid values for @var{arch} are:
21500@samp{ck801}, @samp{ck802}, @samp{ck803}, @samp{ck807}, and @samp{ck810}.
21501The default is @samp{ck810}.
21502
21503@item -mcpu=@var{cpu}
21504@opindex mcpu=
21505Specify the C-SKY target processor.  Valid values for @var{cpu} are:
21506@samp{ck801}, @samp{ck801t},
21507@samp{ck802}, @samp{ck802t}, @samp{ck802j},
21508@samp{ck803}, @samp{ck803h}, @samp{ck803t}, @samp{ck803ht},
21509@samp{ck803f}, @samp{ck803fh}, @samp{ck803e}, @samp{ck803eh},
21510@samp{ck803et}, @samp{ck803eht}, @samp{ck803ef}, @samp{ck803efh},
21511@samp{ck803ft}, @samp{ck803eft}, @samp{ck803efht}, @samp{ck803r1},
21512@samp{ck803hr1}, @samp{ck803tr1}, @samp{ck803htr1}, @samp{ck803fr1},
21513@samp{ck803fhr1}, @samp{ck803er1}, @samp{ck803ehr1}, @samp{ck803etr1},
21514@samp{ck803ehtr1}, @samp{ck803efr1}, @samp{ck803efhr1}, @samp{ck803ftr1},
21515@samp{ck803eftr1}, @samp{ck803efhtr1},
21516@samp{ck803s}, @samp{ck803st}, @samp{ck803se}, @samp{ck803sf},
21517@samp{ck803sef}, @samp{ck803seft},
21518@samp{ck807e}, @samp{ck807ef}, @samp{ck807}, @samp{ck807f},
21519@samp{ck810e}, @samp{ck810et}, @samp{ck810ef}, @samp{ck810eft},
21520@samp{ck810}, @samp{ck810v}, @samp{ck810f}, @samp{ck810t}, @samp{ck810fv},
21521@samp{ck810tv}, @samp{ck810ft}, and @samp{ck810ftv}.
21522
21523@item -mbig-endian
21524@opindex mbig-endian
21525@itemx -EB
21526@opindex EB
21527@itemx -mlittle-endian
21528@opindex mlittle-endian
21529@itemx -EL
21530@opindex EL
21531
21532Select big- or little-endian code.  The default is little-endian.
21533
21534@item -mfloat-abi=@var{name}
21535@opindex mfloat-abi
21536Specifies which floating-point ABI to use.  Permissible values
21537are: @samp{soft}, @samp{softfp} and @samp{hard}.
21538
21539Specifying @samp{soft} causes GCC to generate output containing
21540library calls for floating-point operations.
21541@samp{softfp} allows the generation of code using hardware floating-point
21542instructions, but still uses the soft-float calling conventions.
21543@samp{hard} allows generation of floating-point instructions
21544and uses FPU-specific calling conventions.
21545
21546The default depends on the specific target configuration.  Note that
21547the hard-float and soft-float ABIs are not link-compatible; you must
21548compile your entire program with the same ABI, and link with a
21549compatible set of libraries.
21550
21551@item -mhard-float
21552@opindex mhard-float
21553@itemx -msoft-float
21554@opindex msoft-float
21555
21556Select hardware or software floating-point implementations.
21557The default is soft float.
21558
21559@item -mdouble-float
21560@itemx -mno-double-float
21561@opindex mdouble-float
21562When @option{-mhard-float} is in effect, enable generation of
21563double-precision float instructions.  This is the default except
21564when compiling for CK803.
21565
21566@item -mfdivdu
21567@itemx -mno-fdivdu
21568@opindex mfdivdu
21569When @option{-mhard-float} is in effect, enable generation of
21570@code{frecipd}, @code{fsqrtd}, and @code{fdivd} instructions.
21571This is the default except when compiling for CK803.
21572
21573@item -mfpu=@var{fpu}
21574@opindex mfpu=
21575Select the floating-point processor.  This option can only be used with
21576@option{-mhard-float}.
21577Values for @var{fpu} are
21578@samp{fpv2_sf} (equivalent to @samp{-mno-double-float -mno-fdivdu}),
21579@samp{fpv2} (@samp{-mdouble-float -mno-divdu}), and
21580@samp{fpv2_divd} (@samp{-mdouble-float -mdivdu}).
21581
21582@item -melrw
21583@itemx -mno-elrw
21584@opindex melrw
21585Enable the extended @code{lrw} instruction.  This option defaults to on
21586for CK801 and off otherwise.
21587
21588@item -mistack
21589@itemx -mno-istack
21590@opindex mistack
21591Enable interrupt stack instructions; the default is off.
21592
21593The @option{-mistack} option is required to handle the
21594@code{interrupt} and @code{isr} function attributes
21595(@pxref{C-SKY Function Attributes}).
21596
21597@item -mmp
21598@opindex mmp
21599Enable multiprocessor instructions; the default is off.
21600
21601@item -mcp
21602@opindex mcp
21603Enable coprocessor instructions; the default is off.
21604
21605@item -mcache
21606@opindex mcache
21607Enable coprocessor instructions; the default is off.
21608
21609@item -msecurity
21610@opindex msecurity
21611Enable C-SKY security instructions; the default is off.
21612
21613@item -mtrust
21614@opindex mtrust
21615Enable C-SKY trust instructions; the default is off.
21616
21617@item -mdsp
21618@opindex mdsp
21619@itemx -medsp
21620@opindex medsp
21621@itemx -mvdsp
21622@opindex mvdsp
21623Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively.
21624All of these options default to off.
21625
21626@item -mdiv
21627@itemx -mno-div
21628@opindex mdiv
21629Generate divide instructions.  Default is off.
21630
21631@item -msmart
21632@itemx -mno-smart
21633@opindex msmart
21634Generate code for Smart Mode, using only registers numbered 0-7 to allow
21635use of 16-bit instructions.  This option is ignored for CK801 where this
21636is the required behavior, and it defaults to on for CK802.
21637For other targets, the default is off.
21638
21639@item -mhigh-registers
21640@itemx -mno-high-registers
21641@opindex mhigh-registers
21642Generate code using the high registers numbered 16-31.  This option
21643is not supported on CK801, CK802, or CK803, and is enabled by default
21644for other processors.
21645
21646@item -manchor
21647@itemx -mno-anchor
21648@opindex manchor
21649Generate code using global anchor symbol addresses.
21650
21651@item -mpushpop
21652@itemx -mno-pushpop
21653@opindex mpushpop
21654Generate code using @code{push} and @code{pop} instructions.  This option
21655defaults to on.
21656
21657@item -mmultiple-stld
21658@itemx -mstm
21659@itemx -mno-multiple-stld
21660@itemx -mno-stm
21661@opindex mmultiple-stld
21662Generate code using @code{stm} and @code{ldm} instructions.  This option
21663isn't supported on CK801 but is enabled by default on other processors.
21664
21665@item -mconstpool
21666@itemx -mno-constpool
21667@opindex mconstpool
21668Create constant pools in the compiler instead of deferring it to the
21669assembler.  This option is the default and required for correct code
21670generation on CK801 and CK802, and is optional on other processors.
21671
21672@item -mstack-size
21673@item -mno-stack-size
21674@opindex mstack-size
21675Emit @code{.stack_size} directives for each function in the assembly
21676output.  This option defaults to off.
21677
21678@item -mccrt
21679@itemx -mno-ccrt
21680@opindex mccrt
21681Generate code for the C-SKY compiler runtime instead of libgcc.  This
21682option defaults to off.
21683
21684@item -mbranch-cost=@var{n}
21685@opindex mbranch-cost=
21686Set the branch costs to roughly @code{n} instructions.  The default is 1.
21687
21688@item -msched-prolog
21689@itemx -mno-sched-prolog
21690@opindex msched-prolog
21691Permit scheduling of function prologue and epilogue sequences.  Using
21692this option can result in code that is not compliant with the C-SKY V2 ABI
21693prologue requirements and that cannot be debugged or backtraced.
21694It is disabled by default.
21695
21696@item -msim
21697@opindex msim
21698Links the library libsemi.a which is in compatible with simulator. Applicable
21699to ELF compiler only.
21700
21701@end table
21702
21703@node Darwin Options
21704@subsection Darwin Options
21705@cindex Darwin options
21706
21707These options are defined for all architectures running the Darwin operating
21708system.
21709
21710FSF GCC on Darwin does not create ``fat'' object files; it creates
21711an object file for the single architecture that GCC was built to
21712target.  Apple's GCC on Darwin does create ``fat'' files if multiple
21713@option{-arch} options are used; it does so by running the compiler or
21714linker multiple times and joining the results together with
21715@file{lipo}.
21716
21717The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
21718@samp{i686}) is determined by the flags that specify the ISA
21719that GCC is targeting, like @option{-mcpu} or @option{-march}.  The
21720@option{-force_cpusubtype_ALL} option can be used to override this.
21721
21722The Darwin tools vary in their behavior when presented with an ISA
21723mismatch.  The assembler, @file{as}, only permits instructions to
21724be used that are valid for the subtype of the file it is generating,
21725so you cannot put 64-bit instructions in a @samp{ppc750} object file.
21726The linker for shared libraries, @file{/usr/bin/libtool}, fails
21727and prints an error if asked to create a shared library with a less
21728restrictive subtype than its input files (for instance, trying to put
21729a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
21730for executables, @command{ld}, quietly gives the executable the most
21731restrictive subtype of any of its input files.
21732
21733@table @gcctabopt
21734@item -F@var{dir}
21735@opindex F
21736Add the framework directory @var{dir} to the head of the list of
21737directories to be searched for header files.  These directories are
21738interleaved with those specified by @option{-I} options and are
21739scanned in a left-to-right order.
21740
21741A framework directory is a directory with frameworks in it.  A
21742framework is a directory with a @file{Headers} and/or
21743@file{PrivateHeaders} directory contained directly in it that ends
21744in @file{.framework}.  The name of a framework is the name of this
21745directory excluding the @file{.framework}.  Headers associated with
21746the framework are found in one of those two directories, with
21747@file{Headers} being searched first.  A subframework is a framework
21748directory that is in a framework's @file{Frameworks} directory.
21749Includes of subframework headers can only appear in a header of a
21750framework that contains the subframework, or in a sibling subframework
21751header.  Two subframeworks are siblings if they occur in the same
21752framework.  A subframework should not have the same name as a
21753framework; a warning is issued if this is violated.  Currently a
21754subframework cannot have subframeworks; in the future, the mechanism
21755may be extended to support this.  The standard frameworks can be found
21756in @file{/System/Library/Frameworks} and
21757@file{/Library/Frameworks}.  An example include looks like
21758@code{#include <Framework/header.h>}, where @file{Framework} denotes
21759the name of the framework and @file{header.h} is found in the
21760@file{PrivateHeaders} or @file{Headers} directory.
21761
21762@item -iframework@var{dir}
21763@opindex iframework
21764Like @option{-F} except the directory is a treated as a system
21765directory.  The main difference between this @option{-iframework} and
21766@option{-F} is that with @option{-iframework} the compiler does not
21767warn about constructs contained within header files found via
21768@var{dir}.  This option is valid only for the C family of languages.
21769
21770@item -gused
21771@opindex gused
21772Emit debugging information for symbols that are used.  For stabs
21773debugging format, this enables @option{-feliminate-unused-debug-symbols}.
21774This is by default ON@.
21775
21776@item -gfull
21777@opindex gfull
21778Emit debugging information for all symbols and types.
21779
21780@item -mmacosx-version-min=@var{version}
21781The earliest version of MacOS X that this executable will run on
21782is @var{version}.  Typical values of @var{version} include @code{10.1},
21783@code{10.2}, and @code{10.3.9}.
21784
21785If the compiler was built to use the system's headers by default,
21786then the default for this option is the system version on which the
21787compiler is running, otherwise the default is to make choices that
21788are compatible with as many systems and code bases as possible.
21789
21790@item -mkernel
21791@opindex mkernel
21792Enable kernel development mode.  The @option{-mkernel} option sets
21793@option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
21794@option{-fno-exceptions}, @option{-fno-non-call-exceptions},
21795@option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
21796applicable.  This mode also sets @option{-mno-altivec},
21797@option{-msoft-float}, @option{-fno-builtin} and
21798@option{-mlong-branch} for PowerPC targets.
21799
21800@item -mone-byte-bool
21801@opindex mone-byte-bool
21802Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
21803By default @code{sizeof(bool)} is @code{4} when compiling for
21804Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
21805option has no effect on x86.
21806
21807@strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
21808to generate code that is not binary compatible with code generated
21809without that switch.  Using this switch may require recompiling all
21810other modules in a program, including system libraries.  Use this
21811switch to conform to a non-default data model.
21812
21813@item -mfix-and-continue
21814@itemx -ffix-and-continue
21815@itemx -findirect-data
21816@opindex mfix-and-continue
21817@opindex ffix-and-continue
21818@opindex findirect-data
21819Generate code suitable for fast turnaround development, such as to
21820allow GDB to dynamically load @file{.o} files into already-running
21821programs.  @option{-findirect-data} and @option{-ffix-and-continue}
21822are provided for backwards compatibility.
21823
21824@item -all_load
21825@opindex all_load
21826Loads all members of static archive libraries.
21827See man ld(1) for more information.
21828
21829@item -arch_errors_fatal
21830@opindex arch_errors_fatal
21831Cause the errors having to do with files that have the wrong architecture
21832to be fatal.
21833
21834@item -bind_at_load
21835@opindex bind_at_load
21836Causes the output file to be marked such that the dynamic linker will
21837bind all undefined references when the file is loaded or launched.
21838
21839@item -bundle
21840@opindex bundle
21841Produce a Mach-o bundle format file.
21842See man ld(1) for more information.
21843
21844@item -bundle_loader @var{executable}
21845@opindex bundle_loader
21846This option specifies the @var{executable} that will load the build
21847output file being linked.  See man ld(1) for more information.
21848
21849@item -dynamiclib
21850@opindex dynamiclib
21851When passed this option, GCC produces a dynamic library instead of
21852an executable when linking, using the Darwin @file{libtool} command.
21853
21854@item -force_cpusubtype_ALL
21855@opindex force_cpusubtype_ALL
21856This causes GCC's output file to have the @samp{ALL} subtype, instead of
21857one controlled by the @option{-mcpu} or @option{-march} option.
21858
21859@item -allowable_client  @var{client_name}
21860@itemx -client_name
21861@itemx -compatibility_version
21862@itemx -current_version
21863@itemx -dead_strip
21864@itemx -dependency-file
21865@itemx -dylib_file
21866@itemx -dylinker_install_name
21867@itemx -dynamic
21868@itemx -exported_symbols_list
21869@itemx -filelist
21870@need 800
21871@itemx -flat_namespace
21872@itemx -force_flat_namespace
21873@itemx -headerpad_max_install_names
21874@itemx -image_base
21875@itemx -init
21876@itemx -install_name
21877@itemx -keep_private_externs
21878@itemx -multi_module
21879@itemx -multiply_defined
21880@itemx -multiply_defined_unused
21881@need 800
21882@itemx -noall_load
21883@itemx -no_dead_strip_inits_and_terms
21884@itemx -nofixprebinding
21885@itemx -nomultidefs
21886@itemx -noprebind
21887@itemx -noseglinkedit
21888@itemx -pagezero_size
21889@itemx -prebind
21890@itemx -prebind_all_twolevel_modules
21891@itemx -private_bundle
21892@need 800
21893@itemx -read_only_relocs
21894@itemx -sectalign
21895@itemx -sectobjectsymbols
21896@itemx -whyload
21897@itemx -seg1addr
21898@itemx -sectcreate
21899@itemx -sectobjectsymbols
21900@itemx -sectorder
21901@itemx -segaddr
21902@itemx -segs_read_only_addr
21903@need 800
21904@itemx -segs_read_write_addr
21905@itemx -seg_addr_table
21906@itemx -seg_addr_table_filename
21907@itemx -seglinkedit
21908@itemx -segprot
21909@itemx -segs_read_only_addr
21910@itemx -segs_read_write_addr
21911@itemx -single_module
21912@itemx -static
21913@itemx -sub_library
21914@need 800
21915@itemx -sub_umbrella
21916@itemx -twolevel_namespace
21917@itemx -umbrella
21918@itemx -undefined
21919@itemx -unexported_symbols_list
21920@itemx -weak_reference_mismatches
21921@itemx -whatsloaded
21922@opindex allowable_client
21923@opindex client_name
21924@opindex compatibility_version
21925@opindex current_version
21926@opindex dead_strip
21927@opindex dependency-file
21928@opindex dylib_file
21929@opindex dylinker_install_name
21930@opindex dynamic
21931@opindex exported_symbols_list
21932@opindex filelist
21933@opindex flat_namespace
21934@opindex force_flat_namespace
21935@opindex headerpad_max_install_names
21936@opindex image_base
21937@opindex init
21938@opindex install_name
21939@opindex keep_private_externs
21940@opindex multi_module
21941@opindex multiply_defined
21942@opindex multiply_defined_unused
21943@opindex noall_load
21944@opindex no_dead_strip_inits_and_terms
21945@opindex nofixprebinding
21946@opindex nomultidefs
21947@opindex noprebind
21948@opindex noseglinkedit
21949@opindex pagezero_size
21950@opindex prebind
21951@opindex prebind_all_twolevel_modules
21952@opindex private_bundle
21953@opindex read_only_relocs
21954@opindex sectalign
21955@opindex sectobjectsymbols
21956@opindex whyload
21957@opindex seg1addr
21958@opindex sectcreate
21959@opindex sectobjectsymbols
21960@opindex sectorder
21961@opindex segaddr
21962@opindex segs_read_only_addr
21963@opindex segs_read_write_addr
21964@opindex seg_addr_table
21965@opindex seg_addr_table_filename
21966@opindex seglinkedit
21967@opindex segprot
21968@opindex segs_read_only_addr
21969@opindex segs_read_write_addr
21970@opindex single_module
21971@opindex static
21972@opindex sub_library
21973@opindex sub_umbrella
21974@opindex twolevel_namespace
21975@opindex umbrella
21976@opindex undefined
21977@opindex unexported_symbols_list
21978@opindex weak_reference_mismatches
21979@opindex whatsloaded
21980These options are passed to the Darwin linker.  The Darwin linker man page
21981describes them in detail.
21982@end table
21983
21984@node DEC Alpha Options
21985@subsection DEC Alpha Options
21986
21987These @samp{-m} options are defined for the DEC Alpha implementations:
21988
21989@table @gcctabopt
21990@item -mno-soft-float
21991@itemx -msoft-float
21992@opindex mno-soft-float
21993@opindex msoft-float
21994Use (do not use) the hardware floating-point instructions for
21995floating-point operations.  When @option{-msoft-float} is specified,
21996functions in @file{libgcc.a} are used to perform floating-point
21997operations.  Unless they are replaced by routines that emulate the
21998floating-point operations, or compiled in such a way as to call such
21999emulations routines, these routines issue floating-point
22000operations.   If you are compiling for an Alpha without floating-point
22001operations, you must ensure that the library is built so as not to call
22002them.
22003
22004Note that Alpha implementations without floating-point operations are
22005required to have floating-point registers.
22006
22007@item -mfp-reg
22008@itemx -mno-fp-regs
22009@opindex mfp-reg
22010@opindex mno-fp-regs
22011Generate code that uses (does not use) the floating-point register set.
22012@option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
22013register set is not used, floating-point operands are passed in integer
22014registers as if they were integers and floating-point results are passed
22015in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
22016so any function with a floating-point argument or return value called by code
22017compiled with @option{-mno-fp-regs} must also be compiled with that
22018option.
22019
22020A typical use of this option is building a kernel that does not use,
22021and hence need not save and restore, any floating-point registers.
22022
22023@item -mieee
22024@opindex mieee
22025The Alpha architecture implements floating-point hardware optimized for
22026maximum performance.  It is mostly compliant with the IEEE floating-point
22027standard.  However, for full compliance, software assistance is
22028required.  This option generates code fully IEEE-compliant code
22029@emph{except} that the @var{inexact-flag} is not maintained (see below).
22030If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
22031defined during compilation.  The resulting code is less efficient but is
22032able to correctly support denormalized numbers and exceptional IEEE
22033values such as not-a-number and plus/minus infinity.  Other Alpha
22034compilers call this option @option{-ieee_with_no_inexact}.
22035
22036@item -mieee-with-inexact
22037@opindex mieee-with-inexact
22038This is like @option{-mieee} except the generated code also maintains
22039the IEEE @var{inexact-flag}.  Turning on this option causes the
22040generated code to implement fully-compliant IEEE math.  In addition to
22041@code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
22042macro.  On some Alpha implementations the resulting code may execute
22043significantly slower than the code generated by default.  Since there is
22044very little code that depends on the @var{inexact-flag}, you should
22045normally not specify this option.  Other Alpha compilers call this
22046option @option{-ieee_with_inexact}.
22047
22048@item -mfp-trap-mode=@var{trap-mode}
22049@opindex mfp-trap-mode
22050This option controls what floating-point related traps are enabled.
22051Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
22052The trap mode can be set to one of four values:
22053
22054@table @samp
22055@item n
22056This is the default (normal) setting.  The only traps that are enabled
22057are the ones that cannot be disabled in software (e.g., division by zero
22058trap).
22059
22060@item u
22061In addition to the traps enabled by @samp{n}, underflow traps are enabled
22062as well.
22063
22064@item su
22065Like @samp{u}, but the instructions are marked to be safe for software
22066completion (see Alpha architecture manual for details).
22067
22068@item sui
22069Like @samp{su}, but inexact traps are enabled as well.
22070@end table
22071
22072@item -mfp-rounding-mode=@var{rounding-mode}
22073@opindex mfp-rounding-mode
22074Selects the IEEE rounding mode.  Other Alpha compilers call this option
22075@option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
22076of:
22077
22078@table @samp
22079@item n
22080Normal IEEE rounding mode.  Floating-point numbers are rounded towards
22081the nearest machine number or towards the even machine number in case
22082of a tie.
22083
22084@item m
22085Round towards minus infinity.
22086
22087@item c
22088Chopped rounding mode.  Floating-point numbers are rounded towards zero.
22089
22090@item d
22091Dynamic rounding mode.  A field in the floating-point control register
22092(@var{fpcr}, see Alpha architecture reference manual) controls the
22093rounding mode in effect.  The C library initializes this register for
22094rounding towards plus infinity.  Thus, unless your program modifies the
22095@var{fpcr}, @samp{d} corresponds to round towards plus infinity.
22096@end table
22097
22098@item -mtrap-precision=@var{trap-precision}
22099@opindex mtrap-precision
22100In the Alpha architecture, floating-point traps are imprecise.  This
22101means without software assistance it is impossible to recover from a
22102floating trap and program execution normally needs to be terminated.
22103GCC can generate code that can assist operating system trap handlers
22104in determining the exact location that caused a floating-point trap.
22105Depending on the requirements of an application, different levels of
22106precisions can be selected:
22107
22108@table @samp
22109@item p
22110Program precision.  This option is the default and means a trap handler
22111can only identify which program caused a floating-point exception.
22112
22113@item f
22114Function precision.  The trap handler can determine the function that
22115caused a floating-point exception.
22116
22117@item i
22118Instruction precision.  The trap handler can determine the exact
22119instruction that caused a floating-point exception.
22120@end table
22121
22122Other Alpha compilers provide the equivalent options called
22123@option{-scope_safe} and @option{-resumption_safe}.
22124
22125@item -mieee-conformant
22126@opindex mieee-conformant
22127This option marks the generated code as IEEE conformant.  You must not
22128use this option unless you also specify @option{-mtrap-precision=i} and either
22129@option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
22130is to emit the line @samp{.eflag 48} in the function prologue of the
22131generated assembly file.
22132
22133@item -mbuild-constants
22134@opindex mbuild-constants
22135Normally GCC examines a 32- or 64-bit integer constant to
22136see if it can construct it from smaller constants in two or three
22137instructions.  If it cannot, it outputs the constant as a literal and
22138generates code to load it from the data segment at run time.
22139
22140Use this option to require GCC to construct @emph{all} integer constants
22141using code, even if it takes more instructions (the maximum is six).
22142
22143You typically use this option to build a shared library dynamic
22144loader.  Itself a shared library, it must relocate itself in memory
22145before it can find the variables and constants in its own data segment.
22146
22147@item -mbwx
22148@itemx -mno-bwx
22149@itemx -mcix
22150@itemx -mno-cix
22151@itemx -mfix
22152@itemx -mno-fix
22153@itemx -mmax
22154@itemx -mno-max
22155@opindex mbwx
22156@opindex mno-bwx
22157@opindex mcix
22158@opindex mno-cix
22159@opindex mfix
22160@opindex mno-fix
22161@opindex mmax
22162@opindex mno-max
22163Indicate whether GCC should generate code to use the optional BWX,
22164CIX, FIX and MAX instruction sets.  The default is to use the instruction
22165sets supported by the CPU type specified via @option{-mcpu=} option or that
22166of the CPU on which GCC was built if none is specified.
22167
22168@item -mfloat-vax
22169@itemx -mfloat-ieee
22170@opindex mfloat-vax
22171@opindex mfloat-ieee
22172Generate code that uses (does not use) VAX F and G floating-point
22173arithmetic instead of IEEE single and double precision.
22174
22175@item -mexplicit-relocs
22176@itemx -mno-explicit-relocs
22177@opindex mexplicit-relocs
22178@opindex mno-explicit-relocs
22179Older Alpha assemblers provided no way to generate symbol relocations
22180except via assembler macros.  Use of these macros does not allow
22181optimal instruction scheduling.  GNU binutils as of version 2.12
22182supports a new syntax that allows the compiler to explicitly mark
22183which relocations should apply to which instructions.  This option
22184is mostly useful for debugging, as GCC detects the capabilities of
22185the assembler when it is built and sets the default accordingly.
22186
22187@item -msmall-data
22188@itemx -mlarge-data
22189@opindex msmall-data
22190@opindex mlarge-data
22191When @option{-mexplicit-relocs} is in effect, static data is
22192accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
22193is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
22194(the @code{.sdata} and @code{.sbss} sections) and are accessed via
2219516-bit relocations off of the @code{$gp} register.  This limits the
22196size of the small data area to 64KB, but allows the variables to be
22197directly accessed via a single instruction.
22198
22199The default is @option{-mlarge-data}.  With this option the data area
22200is limited to just below 2GB@.  Programs that require more than 2GB of
22201data must use @code{malloc} or @code{mmap} to allocate the data in the
22202heap instead of in the program's data segment.
22203
22204When generating code for shared libraries, @option{-fpic} implies
22205@option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
22206
22207@item -msmall-text
22208@itemx -mlarge-text
22209@opindex msmall-text
22210@opindex mlarge-text
22211When @option{-msmall-text} is used, the compiler assumes that the
22212code of the entire program (or shared library) fits in 4MB, and is
22213thus reachable with a branch instruction.  When @option{-msmall-data}
22214is used, the compiler can assume that all local symbols share the
22215same @code{$gp} value, and thus reduce the number of instructions
22216required for a function call from 4 to 1.
22217
22218The default is @option{-mlarge-text}.
22219
22220@item -mcpu=@var{cpu_type}
22221@opindex mcpu
22222Set the instruction set and instruction scheduling parameters for
22223machine type @var{cpu_type}.  You can specify either the @samp{EV}
22224style name or the corresponding chip number.  GCC supports scheduling
22225parameters for the EV4, EV5 and EV6 family of processors and
22226chooses the default values for the instruction set from the processor
22227you specify.  If you do not specify a processor type, GCC defaults
22228to the processor on which the compiler was built.
22229
22230Supported values for @var{cpu_type} are
22231
22232@table @samp
22233@item ev4
22234@itemx ev45
22235@itemx 21064
22236Schedules as an EV4 and has no instruction set extensions.
22237
22238@item ev5
22239@itemx 21164
22240Schedules as an EV5 and has no instruction set extensions.
22241
22242@item ev56
22243@itemx 21164a
22244Schedules as an EV5 and supports the BWX extension.
22245
22246@item pca56
22247@itemx 21164pc
22248@itemx 21164PC
22249Schedules as an EV5 and supports the BWX and MAX extensions.
22250
22251@item ev6
22252@itemx 21264
22253Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
22254
22255@item ev67
22256@itemx 21264a
22257Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
22258@end table
22259
22260Native toolchains also support the value @samp{native},
22261which selects the best architecture option for the host processor.
22262@option{-mcpu=native} has no effect if GCC does not recognize
22263the processor.
22264
22265@item -mtune=@var{cpu_type}
22266@opindex mtune
22267Set only the instruction scheduling parameters for machine type
22268@var{cpu_type}.  The instruction set is not changed.
22269
22270Native toolchains also support the value @samp{native},
22271which selects the best architecture option for the host processor.
22272@option{-mtune=native} has no effect if GCC does not recognize
22273the processor.
22274
22275@item -mmemory-latency=@var{time}
22276@opindex mmemory-latency
22277Sets the latency the scheduler should assume for typical memory
22278references as seen by the application.  This number is highly
22279dependent on the memory access patterns used by the application
22280and the size of the external cache on the machine.
22281
22282Valid options for @var{time} are
22283
22284@table @samp
22285@item @var{number}
22286A decimal number representing clock cycles.
22287
22288@item L1
22289@itemx L2
22290@itemx L3
22291@itemx main
22292The compiler contains estimates of the number of clock cycles for
22293``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
22294(also called Dcache, Scache, and Bcache), as well as to main memory.
22295Note that L3 is only valid for EV5.
22296
22297@end table
22298@end table
22299
22300@node eBPF Options
22301@subsection eBPF Options
22302@cindex eBPF Options
22303
22304@table @gcctabopt
22305@item -mframe-limit=@var{bytes}
22306This specifies the hard limit for frame sizes, in bytes.  Currently,
22307the value that can be specified should be less than or equal to
22308@samp{32767}.  Defaults to whatever limit is imposed by the version of
22309the Linux kernel targeted.
22310
22311@item -mkernel=@var{version}
22312@opindex mkernel
22313This specifies the minimum version of the kernel that will run the
22314compiled program.  GCC uses this version to determine which
22315instructions to use, what kernel helpers to allow, etc.  Currently,
22316@var{version} can be one of @samp{4.0}, @samp{4.1}, @samp{4.2},
22317@samp{4.3}, @samp{4.4}, @samp{4.5}, @samp{4.6}, @samp{4.7},
22318@samp{4.8}, @samp{4.9}, @samp{4.10}, @samp{4.11}, @samp{4.12},
22319@samp{4.13}, @samp{4.14}, @samp{4.15}, @samp{4.16}, @samp{4.17},
22320@samp{4.18}, @samp{4.19}, @samp{4.20}, @samp{5.0}, @samp{5.1},
22321@samp{5.2}, @samp{latest} and @samp{native}.
22322
22323@item -mbig-endian
22324@opindex mbig-endian
22325Generate code for a big-endian target.
22326
22327@item -mlittle-endian
22328@opindex mlittle-endian
22329Generate code for a little-endian target.  This is the default.
22330
22331@item -mxbpf
22332Generate code for an expanded version of BPF, which relaxes some of
22333the restrictions imposed by the BPF architecture:
22334@itemize @minus
22335@item Save and restore callee-saved registers at function entry and
22336exit, respectively.
22337@end itemize
22338@end table
22339
22340@node FR30 Options
22341@subsection FR30 Options
22342@cindex FR30 Options
22343
22344These options are defined specifically for the FR30 port.
22345
22346@table @gcctabopt
22347
22348@item -msmall-model
22349@opindex msmall-model
22350Use the small address space model.  This can produce smaller code, but
22351it does assume that all symbolic values and addresses fit into a
2235220-bit range.
22353
22354@item -mno-lsim
22355@opindex mno-lsim
22356Assume that runtime support has been provided and so there is no need
22357to include the simulator library (@file{libsim.a}) on the linker
22358command line.
22359
22360@end table
22361
22362@node FT32 Options
22363@subsection FT32 Options
22364@cindex FT32 Options
22365
22366These options are defined specifically for the FT32 port.
22367
22368@table @gcctabopt
22369
22370@item -msim
22371@opindex msim
22372Specifies that the program will be run on the simulator.  This causes
22373an alternate runtime startup and library to be linked.
22374You must not use this option when generating programs that will run on
22375real hardware; you must provide your own runtime library for whatever
22376I/O functions are needed.
22377
22378@item -mlra
22379@opindex mlra
22380Enable Local Register Allocation.  This is still experimental for FT32,
22381so by default the compiler uses standard reload.
22382
22383@item -mnodiv
22384@opindex mnodiv
22385Do not use div and mod instructions.
22386
22387@item -mft32b
22388@opindex mft32b
22389Enable use of the extended instructions of the FT32B processor.
22390
22391@item -mcompress
22392@opindex mcompress
22393Compress all code using the Ft32B code compression scheme.
22394
22395@item -mnopm
22396@opindex  mnopm
22397Do not generate code that reads program memory.
22398
22399@end table
22400
22401@node FRV Options
22402@subsection FRV Options
22403@cindex FRV Options
22404
22405@table @gcctabopt
22406@item -mgpr-32
22407@opindex mgpr-32
22408
22409Only use the first 32 general-purpose registers.
22410
22411@item -mgpr-64
22412@opindex mgpr-64
22413
22414Use all 64 general-purpose registers.
22415
22416@item -mfpr-32
22417@opindex mfpr-32
22418
22419Use only the first 32 floating-point registers.
22420
22421@item -mfpr-64
22422@opindex mfpr-64
22423
22424Use all 64 floating-point registers.
22425
22426@item -mhard-float
22427@opindex mhard-float
22428
22429Use hardware instructions for floating-point operations.
22430
22431@item -msoft-float
22432@opindex msoft-float
22433
22434Use library routines for floating-point operations.
22435
22436@item -malloc-cc
22437@opindex malloc-cc
22438
22439Dynamically allocate condition code registers.
22440
22441@item -mfixed-cc
22442@opindex mfixed-cc
22443
22444Do not try to dynamically allocate condition code registers, only
22445use @code{icc0} and @code{fcc0}.
22446
22447@item -mdword
22448@opindex mdword
22449
22450Change ABI to use double word insns.
22451
22452@item -mno-dword
22453@opindex mno-dword
22454@opindex mdword
22455
22456Do not use double word instructions.
22457
22458@item -mdouble
22459@opindex mdouble
22460
22461Use floating-point double instructions.
22462
22463@item -mno-double
22464@opindex mno-double
22465
22466Do not use floating-point double instructions.
22467
22468@item -mmedia
22469@opindex mmedia
22470
22471Use media instructions.
22472
22473@item -mno-media
22474@opindex mno-media
22475
22476Do not use media instructions.
22477
22478@item -mmuladd
22479@opindex mmuladd
22480
22481Use multiply and add/subtract instructions.
22482
22483@item -mno-muladd
22484@opindex mno-muladd
22485
22486Do not use multiply and add/subtract instructions.
22487
22488@item -mfdpic
22489@opindex mfdpic
22490
22491Select the FDPIC ABI, which uses function descriptors to represent
22492pointers to functions.  Without any PIC/PIE-related options, it
22493implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
22494assumes GOT entries and small data are within a 12-bit range from the
22495GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
22496are computed with 32 bits.
22497With a @samp{bfin-elf} target, this option implies @option{-msim}.
22498
22499@item -minline-plt
22500@opindex minline-plt
22501
22502Enable inlining of PLT entries in function calls to functions that are
22503not known to bind locally.  It has no effect without @option{-mfdpic}.
22504It's enabled by default if optimizing for speed and compiling for
22505shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
22506optimization option such as @option{-O3} or above is present in the
22507command line.
22508
22509@item -mTLS
22510@opindex mTLS
22511
22512Assume a large TLS segment when generating thread-local code.
22513
22514@item -mtls
22515@opindex mtls
22516
22517Do not assume a large TLS segment when generating thread-local code.
22518
22519@item -mgprel-ro
22520@opindex mgprel-ro
22521
22522Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
22523that is known to be in read-only sections.  It's enabled by default,
22524except for @option{-fpic} or @option{-fpie}: even though it may help
22525make the global offset table smaller, it trades 1 instruction for 4.
22526With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
22527one of which may be shared by multiple symbols, and it avoids the need
22528for a GOT entry for the referenced symbol, so it's more likely to be a
22529win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
22530
22531@item -multilib-library-pic
22532@opindex multilib-library-pic
22533
22534Link with the (library, not FD) pic libraries.  It's implied by
22535@option{-mlibrary-pic}, as well as by @option{-fPIC} and
22536@option{-fpic} without @option{-mfdpic}.  You should never have to use
22537it explicitly.
22538
22539@item -mlinked-fp
22540@opindex mlinked-fp
22541
22542Follow the EABI requirement of always creating a frame pointer whenever
22543a stack frame is allocated.  This option is enabled by default and can
22544be disabled with @option{-mno-linked-fp}.
22545
22546@item -mlong-calls
22547@opindex mlong-calls
22548
22549Use indirect addressing to call functions outside the current
22550compilation unit.  This allows the functions to be placed anywhere
22551within the 32-bit address space.
22552
22553@item -malign-labels
22554@opindex malign-labels
22555
22556Try to align labels to an 8-byte boundary by inserting NOPs into the
22557previous packet.  This option only has an effect when VLIW packing
22558is enabled.  It doesn't create new packets; it merely adds NOPs to
22559existing ones.
22560
22561@item -mlibrary-pic
22562@opindex mlibrary-pic
22563
22564Generate position-independent EABI code.
22565
22566@item -macc-4
22567@opindex macc-4
22568
22569Use only the first four media accumulator registers.
22570
22571@item -macc-8
22572@opindex macc-8
22573
22574Use all eight media accumulator registers.
22575
22576@item -mpack
22577@opindex mpack
22578
22579Pack VLIW instructions.
22580
22581@item -mno-pack
22582@opindex mno-pack
22583
22584Do not pack VLIW instructions.
22585
22586@item -mno-eflags
22587@opindex mno-eflags
22588
22589Do not mark ABI switches in e_flags.
22590
22591@item -mcond-move
22592@opindex mcond-move
22593
22594Enable the use of conditional-move instructions (default).
22595
22596This switch is mainly for debugging the compiler and will likely be removed
22597in a future version.
22598
22599@item -mno-cond-move
22600@opindex mno-cond-move
22601
22602Disable the use of conditional-move instructions.
22603
22604This switch is mainly for debugging the compiler and will likely be removed
22605in a future version.
22606
22607@item -mscc
22608@opindex mscc
22609
22610Enable the use of conditional set instructions (default).
22611
22612This switch is mainly for debugging the compiler and will likely be removed
22613in a future version.
22614
22615@item -mno-scc
22616@opindex mno-scc
22617
22618Disable the use of conditional set instructions.
22619
22620This switch is mainly for debugging the compiler and will likely be removed
22621in a future version.
22622
22623@item -mcond-exec
22624@opindex mcond-exec
22625
22626Enable the use of conditional execution (default).
22627
22628This switch is mainly for debugging the compiler and will likely be removed
22629in a future version.
22630
22631@item -mno-cond-exec
22632@opindex mno-cond-exec
22633
22634Disable the use of conditional execution.
22635
22636This switch is mainly for debugging the compiler and will likely be removed
22637in a future version.
22638
22639@item -mvliw-branch
22640@opindex mvliw-branch
22641
22642Run a pass to pack branches into VLIW instructions (default).
22643
22644This switch is mainly for debugging the compiler and will likely be removed
22645in a future version.
22646
22647@item -mno-vliw-branch
22648@opindex mno-vliw-branch
22649
22650Do not run a pass to pack branches into VLIW instructions.
22651
22652This switch is mainly for debugging the compiler and will likely be removed
22653in a future version.
22654
22655@item -mmulti-cond-exec
22656@opindex mmulti-cond-exec
22657
22658Enable optimization of @code{&&} and @code{||} in conditional execution
22659(default).
22660
22661This switch is mainly for debugging the compiler and will likely be removed
22662in a future version.
22663
22664@item -mno-multi-cond-exec
22665@opindex mno-multi-cond-exec
22666
22667Disable optimization of @code{&&} and @code{||} in conditional execution.
22668
22669This switch is mainly for debugging the compiler and will likely be removed
22670in a future version.
22671
22672@item -mnested-cond-exec
22673@opindex mnested-cond-exec
22674
22675Enable nested conditional execution optimizations (default).
22676
22677This switch is mainly for debugging the compiler and will likely be removed
22678in a future version.
22679
22680@item -mno-nested-cond-exec
22681@opindex mno-nested-cond-exec
22682
22683Disable nested conditional execution optimizations.
22684
22685This switch is mainly for debugging the compiler and will likely be removed
22686in a future version.
22687
22688@item -moptimize-membar
22689@opindex moptimize-membar
22690
22691This switch removes redundant @code{membar} instructions from the
22692compiler-generated code.  It is enabled by default.
22693
22694@item -mno-optimize-membar
22695@opindex mno-optimize-membar
22696@opindex moptimize-membar
22697
22698This switch disables the automatic removal of redundant @code{membar}
22699instructions from the generated code.
22700
22701@item -mtomcat-stats
22702@opindex mtomcat-stats
22703
22704Cause gas to print out tomcat statistics.
22705
22706@item -mcpu=@var{cpu}
22707@opindex mcpu
22708
22709Select the processor type for which to generate code.  Possible values are
22710@samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
22711@samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
22712
22713@end table
22714
22715@node GNU/Linux Options
22716@subsection GNU/Linux Options
22717
22718These @samp{-m} options are defined for GNU/Linux targets:
22719
22720@table @gcctabopt
22721@item -mglibc
22722@opindex mglibc
22723Use the GNU C library.  This is the default except
22724on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
22725@samp{*-*-linux-*android*} targets.
22726
22727@item -muclibc
22728@opindex muclibc
22729Use uClibc C library.  This is the default on
22730@samp{*-*-linux-*uclibc*} targets.
22731
22732@item -mmusl
22733@opindex mmusl
22734Use the musl C library.  This is the default on
22735@samp{*-*-linux-*musl*} targets.
22736
22737@item -mbionic
22738@opindex mbionic
22739Use Bionic C library.  This is the default on
22740@samp{*-*-linux-*android*} targets.
22741
22742@item -mandroid
22743@opindex mandroid
22744Compile code compatible with Android platform.  This is the default on
22745@samp{*-*-linux-*android*} targets.
22746
22747When compiling, this option enables @option{-mbionic}, @option{-fPIC},
22748@option{-fno-exceptions} and @option{-fno-rtti} by default.  When linking,
22749this option makes the GCC driver pass Android-specific options to the linker.
22750Finally, this option causes the preprocessor macro @code{__ANDROID__}
22751to be defined.
22752
22753@item -tno-android-cc
22754@opindex tno-android-cc
22755Disable compilation effects of @option{-mandroid}, i.e., do not enable
22756@option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
22757@option{-fno-rtti} by default.
22758
22759@item -tno-android-ld
22760@opindex tno-android-ld
22761Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
22762linking options to the linker.
22763
22764@end table
22765
22766@node H8/300 Options
22767@subsection H8/300 Options
22768
22769These @samp{-m} options are defined for the H8/300 implementations:
22770
22771@table @gcctabopt
22772@item -mrelax
22773@opindex mrelax
22774Shorten some address references at link time, when possible; uses the
22775linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
22776ld, Using ld}, for a fuller description.
22777
22778@item -mh
22779@opindex mh
22780Generate code for the H8/300H@.
22781
22782@item -ms
22783@opindex ms
22784Generate code for the H8S@.
22785
22786@item -mn
22787@opindex mn
22788Generate code for the H8S and H8/300H in the normal mode.  This switch
22789must be used either with @option{-mh} or @option{-ms}.
22790
22791@item -ms2600
22792@opindex ms2600
22793Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
22794
22795@item -mexr
22796@opindex mexr
22797Extended registers are stored on stack before execution of function
22798with monitor attribute. Default option is @option{-mexr}.
22799This option is valid only for H8S targets.
22800
22801@item -mno-exr
22802@opindex mno-exr
22803@opindex mexr
22804Extended registers are not stored on stack before execution of function
22805with monitor attribute. Default option is @option{-mno-exr}.
22806This option is valid only for H8S targets.
22807
22808@item -mint32
22809@opindex mint32
22810Make @code{int} data 32 bits by default.
22811
22812@item -malign-300
22813@opindex malign-300
22814On the H8/300H and H8S, use the same alignment rules as for the H8/300.
22815The default for the H8/300H and H8S is to align longs and floats on
228164-byte boundaries.
22817@option{-malign-300} causes them to be aligned on 2-byte boundaries.
22818This option has no effect on the H8/300.
22819@end table
22820
22821@node HPPA Options
22822@subsection HPPA Options
22823@cindex HPPA Options
22824
22825These @samp{-m} options are defined for the HPPA family of computers:
22826
22827@table @gcctabopt
22828@item -march=@var{architecture-type}
22829@opindex march
22830Generate code for the specified architecture.  The choices for
22831@var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
228321.1, and @samp{2.0} for PA 2.0 processors.  Refer to
22833@file{/usr/lib/sched.models} on an HP-UX system to determine the proper
22834architecture option for your machine.  Code compiled for lower numbered
22835architectures runs on higher numbered architectures, but not the
22836other way around.
22837
22838@item -mpa-risc-1-0
22839@itemx -mpa-risc-1-1
22840@itemx -mpa-risc-2-0
22841@opindex mpa-risc-1-0
22842@opindex mpa-risc-1-1
22843@opindex mpa-risc-2-0
22844Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
22845
22846@item -mcaller-copies
22847@opindex mcaller-copies
22848The caller copies function arguments passed by hidden reference.  This
22849option should be used with care as it is not compatible with the default
2285032-bit runtime.  However, only aggregates larger than eight bytes are
22851passed by hidden reference and the option provides better compatibility
22852with OpenMP.
22853
22854@item -mjump-in-delay
22855@opindex mjump-in-delay
22856This option is ignored and provided for compatibility purposes only.
22857
22858@item -mdisable-fpregs
22859@opindex mdisable-fpregs
22860Prevent floating-point registers from being used in any manner.  This is
22861necessary for compiling kernels that perform lazy context switching of
22862floating-point registers.  If you use this option and attempt to perform
22863floating-point operations, the compiler aborts.
22864
22865@item -mdisable-indexing
22866@opindex mdisable-indexing
22867Prevent the compiler from using indexing address modes.  This avoids some
22868rather obscure problems when compiling MIG generated code under MACH@.
22869
22870@item -mno-space-regs
22871@opindex mno-space-regs
22872@opindex mspace-regs
22873Generate code that assumes the target has no space registers.  This allows
22874GCC to generate faster indirect calls and use unscaled index address modes.
22875
22876Such code is suitable for level 0 PA systems and kernels.
22877
22878@item -mfast-indirect-calls
22879@opindex mfast-indirect-calls
22880Generate code that assumes calls never cross space boundaries.  This
22881allows GCC to emit code that performs faster indirect calls.
22882
22883This option does not work in the presence of shared libraries or nested
22884functions.
22885
22886@item -mfixed-range=@var{register-range}
22887@opindex mfixed-range
22888Generate code treating the given register range as fixed registers.
22889A fixed register is one that the register allocator cannot use.  This is
22890useful when compiling kernel code.  A register range is specified as
22891two registers separated by a dash.  Multiple register ranges can be
22892specified separated by a comma.
22893
22894@item -mlong-load-store
22895@opindex mlong-load-store
22896Generate 3-instruction load and store sequences as sometimes required by
22897the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
22898the HP compilers.
22899
22900@item -mportable-runtime
22901@opindex mportable-runtime
22902Use the portable calling conventions proposed by HP for ELF systems.
22903
22904@item -mgas
22905@opindex mgas
22906Enable the use of assembler directives only GAS understands.
22907
22908@item -mschedule=@var{cpu-type}
22909@opindex mschedule
22910Schedule code according to the constraints for the machine type
22911@var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
22912@samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
22913to @file{/usr/lib/sched.models} on an HP-UX system to determine the
22914proper scheduling option for your machine.  The default scheduling is
22915@samp{8000}.
22916
22917@item -mlinker-opt
22918@opindex mlinker-opt
22919Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
22920debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
22921linkers in which they give bogus error messages when linking some programs.
22922
22923@item -msoft-float
22924@opindex msoft-float
22925Generate output containing library calls for floating point.
22926@strong{Warning:} the requisite libraries are not available for all HPPA
22927targets.  Normally the facilities of the machine's usual C compiler are
22928used, but this cannot be done directly in cross-compilation.  You must make
22929your own arrangements to provide suitable library functions for
22930cross-compilation.
22931
22932@option{-msoft-float} changes the calling convention in the output file;
22933therefore, it is only useful if you compile @emph{all} of a program with
22934this option.  In particular, you need to compile @file{libgcc.a}, the
22935library that comes with GCC, with @option{-msoft-float} in order for
22936this to work.
22937
22938@item -msio
22939@opindex msio
22940Generate the predefine, @code{_SIO}, for server IO@.  The default is
22941@option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
22942@code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
22943options are available under HP-UX and HI-UX@.
22944
22945@item -mgnu-ld
22946@opindex mgnu-ld
22947Use options specific to GNU @command{ld}.
22948This passes @option{-shared} to @command{ld} when
22949building a shared library.  It is the default when GCC is configured,
22950explicitly or implicitly, with the GNU linker.  This option does not
22951affect which @command{ld} is called; it only changes what parameters
22952are passed to that @command{ld}.
22953The @command{ld} that is called is determined by the
22954@option{--with-ld} configure option, GCC's program search path, and
22955finally by the user's @env{PATH}.  The linker used by GCC can be printed
22956using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
22957on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
22958
22959@item -mhp-ld
22960@opindex mhp-ld
22961Use options specific to HP @command{ld}.
22962This passes @option{-b} to @command{ld} when building
22963a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
22964links.  It is the default when GCC is configured, explicitly or
22965implicitly, with the HP linker.  This option does not affect
22966which @command{ld} is called; it only changes what parameters are passed to that
22967@command{ld}.
22968The @command{ld} that is called is determined by the @option{--with-ld}
22969configure option, GCC's program search path, and finally by the user's
22970@env{PATH}.  The linker used by GCC can be printed using @samp{which
22971`gcc -print-prog-name=ld`}.  This option is only available on the 64-bit
22972HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
22973
22974@item -mlong-calls
22975@opindex mno-long-calls
22976@opindex mlong-calls
22977Generate code that uses long call sequences.  This ensures that a call
22978is always able to reach linker generated stubs.  The default is to generate
22979long calls only when the distance from the call site to the beginning
22980of the function or translation unit, as the case may be, exceeds a
22981predefined limit set by the branch type being used.  The limits for
22982normal calls are 7,600,000 and 240,000 bytes, respectively for the
22983PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
22984240,000 bytes.
22985
22986Distances are measured from the beginning of functions when using the
22987@option{-ffunction-sections} option, or when using the @option{-mgas}
22988and @option{-mno-portable-runtime} options together under HP-UX with
22989the SOM linker.
22990
22991It is normally not desirable to use this option as it degrades
22992performance.  However, it may be useful in large applications,
22993particularly when partial linking is used to build the application.
22994
22995The types of long calls used depends on the capabilities of the
22996assembler and linker, and the type of code being generated.  The
22997impact on systems that support long absolute calls, and long pic
22998symbol-difference or pc-relative calls should be relatively small.
22999However, an indirect call is used on 32-bit ELF systems in pic code
23000and it is quite long.
23001
23002@item -munix=@var{unix-std}
23003@opindex march
23004Generate compiler predefines and select a startfile for the specified
23005UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
23006and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
23007is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
2300811.11 and later.  The default values are @samp{93} for HP-UX 10.00,
23009@samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
23010and later.
23011
23012@option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
23013@option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
23014and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
23015@option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
23016@code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
23017@code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
23018
23019It is @emph{important} to note that this option changes the interfaces
23020for various library routines.  It also affects the operational behavior
23021of the C library.  Thus, @emph{extreme} care is needed in using this
23022option.
23023
23024Library code that is intended to operate with more than one UNIX
23025standard must test, set and restore the variable @code{__xpg4_extended_mask}
23026as appropriate.  Most GNU software doesn't provide this capability.
23027
23028@item -nolibdld
23029@opindex nolibdld
23030Suppress the generation of link options to search libdld.sl when the
23031@option{-static} option is specified on HP-UX 10 and later.
23032
23033@item -static
23034@opindex static
23035The HP-UX implementation of setlocale in libc has a dependency on
23036libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
23037when the @option{-static} option is specified, special link options
23038are needed to resolve this dependency.
23039
23040On HP-UX 10 and later, the GCC driver adds the necessary options to
23041link with libdld.sl when the @option{-static} option is specified.
23042This causes the resulting binary to be dynamic.  On the 64-bit port,
23043the linkers generate dynamic binaries by default in any case.  The
23044@option{-nolibdld} option can be used to prevent the GCC driver from
23045adding these link options.
23046
23047@item -threads
23048@opindex threads
23049Add support for multithreading with the @dfn{dce thread} library
23050under HP-UX@.  This option sets flags for both the preprocessor and
23051linker.
23052@end table
23053
23054@node IA-64 Options
23055@subsection IA-64 Options
23056@cindex IA-64 Options
23057
23058These are the @samp{-m} options defined for the Intel IA-64 architecture.
23059
23060@table @gcctabopt
23061@item -mbig-endian
23062@opindex mbig-endian
23063Generate code for a big-endian target.  This is the default for HP-UX@.
23064
23065@item -mlittle-endian
23066@opindex mlittle-endian
23067Generate code for a little-endian target.  This is the default for AIX5
23068and GNU/Linux.
23069
23070@item -mgnu-as
23071@itemx -mno-gnu-as
23072@opindex mgnu-as
23073@opindex mno-gnu-as
23074Generate (or don't) code for the GNU assembler.  This is the default.
23075@c Also, this is the default if the configure option @option{--with-gnu-as}
23076@c is used.
23077
23078@item -mgnu-ld
23079@itemx -mno-gnu-ld
23080@opindex mgnu-ld
23081@opindex mno-gnu-ld
23082Generate (or don't) code for the GNU linker.  This is the default.
23083@c Also, this is the default if the configure option @option{--with-gnu-ld}
23084@c is used.
23085
23086@item -mno-pic
23087@opindex mno-pic
23088Generate code that does not use a global pointer register.  The result
23089is not position independent code, and violates the IA-64 ABI@.
23090
23091@item -mvolatile-asm-stop
23092@itemx -mno-volatile-asm-stop
23093@opindex mvolatile-asm-stop
23094@opindex mno-volatile-asm-stop
23095Generate (or don't) a stop bit immediately before and after volatile asm
23096statements.
23097
23098@item -mregister-names
23099@itemx -mno-register-names
23100@opindex mregister-names
23101@opindex mno-register-names
23102Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
23103the stacked registers.  This may make assembler output more readable.
23104
23105@item -mno-sdata
23106@itemx -msdata
23107@opindex mno-sdata
23108@opindex msdata
23109Disable (or enable) optimizations that use the small data section.  This may
23110be useful for working around optimizer bugs.
23111
23112@item -mconstant-gp
23113@opindex mconstant-gp
23114Generate code that uses a single constant global pointer value.  This is
23115useful when compiling kernel code.
23116
23117@item -mauto-pic
23118@opindex mauto-pic
23119Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
23120This is useful when compiling firmware code.
23121
23122@item -minline-float-divide-min-latency
23123@opindex minline-float-divide-min-latency
23124Generate code for inline divides of floating-point values
23125using the minimum latency algorithm.
23126
23127@item -minline-float-divide-max-throughput
23128@opindex minline-float-divide-max-throughput
23129Generate code for inline divides of floating-point values
23130using the maximum throughput algorithm.
23131
23132@item -mno-inline-float-divide
23133@opindex mno-inline-float-divide
23134Do not generate inline code for divides of floating-point values.
23135
23136@item -minline-int-divide-min-latency
23137@opindex minline-int-divide-min-latency
23138Generate code for inline divides of integer values
23139using the minimum latency algorithm.
23140
23141@item -minline-int-divide-max-throughput
23142@opindex minline-int-divide-max-throughput
23143Generate code for inline divides of integer values
23144using the maximum throughput algorithm.
23145
23146@item -mno-inline-int-divide
23147@opindex mno-inline-int-divide
23148@opindex minline-int-divide
23149Do not generate inline code for divides of integer values.
23150
23151@item -minline-sqrt-min-latency
23152@opindex minline-sqrt-min-latency
23153Generate code for inline square roots
23154using the minimum latency algorithm.
23155
23156@item -minline-sqrt-max-throughput
23157@opindex minline-sqrt-max-throughput
23158Generate code for inline square roots
23159using the maximum throughput algorithm.
23160
23161@item -mno-inline-sqrt
23162@opindex mno-inline-sqrt
23163Do not generate inline code for @code{sqrt}.
23164
23165@item -mfused-madd
23166@itemx -mno-fused-madd
23167@opindex mfused-madd
23168@opindex mno-fused-madd
23169Do (don't) generate code that uses the fused multiply/add or multiply/subtract
23170instructions.  The default is to use these instructions.
23171
23172@item -mno-dwarf2-asm
23173@itemx -mdwarf2-asm
23174@opindex mno-dwarf2-asm
23175@opindex mdwarf2-asm
23176Don't (or do) generate assembler code for the DWARF line number debugging
23177info.  This may be useful when not using the GNU assembler.
23178
23179@item -mearly-stop-bits
23180@itemx -mno-early-stop-bits
23181@opindex mearly-stop-bits
23182@opindex mno-early-stop-bits
23183Allow stop bits to be placed earlier than immediately preceding the
23184instruction that triggered the stop bit.  This can improve instruction
23185scheduling, but does not always do so.
23186
23187@item -mfixed-range=@var{register-range}
23188@opindex mfixed-range
23189Generate code treating the given register range as fixed registers.
23190A fixed register is one that the register allocator cannot use.  This is
23191useful when compiling kernel code.  A register range is specified as
23192two registers separated by a dash.  Multiple register ranges can be
23193specified separated by a comma.
23194
23195@item -mtls-size=@var{tls-size}
23196@opindex mtls-size
23197Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
2319864.
23199
23200@item -mtune=@var{cpu-type}
23201@opindex mtune
23202Tune the instruction scheduling for a particular CPU, Valid values are
23203@samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
23204and @samp{mckinley}.
23205
23206@item -milp32
23207@itemx -mlp64
23208@opindex milp32
23209@opindex mlp64
23210Generate code for a 32-bit or 64-bit environment.
23211The 32-bit environment sets int, long and pointer to 32 bits.
23212The 64-bit environment sets int to 32 bits and long and pointer
23213to 64 bits.  These are HP-UX specific flags.
23214
23215@item -mno-sched-br-data-spec
23216@itemx -msched-br-data-spec
23217@opindex mno-sched-br-data-spec
23218@opindex msched-br-data-spec
23219(Dis/En)able data speculative scheduling before reload.
23220This results in generation of @code{ld.a} instructions and
23221the corresponding check instructions (@code{ld.c} / @code{chk.a}).
23222The default setting is disabled.
23223
23224@item -msched-ar-data-spec
23225@itemx -mno-sched-ar-data-spec
23226@opindex msched-ar-data-spec
23227@opindex mno-sched-ar-data-spec
23228(En/Dis)able data speculative scheduling after reload.
23229This results in generation of @code{ld.a} instructions and
23230the corresponding check instructions (@code{ld.c} / @code{chk.a}).
23231The default setting is enabled.
23232
23233@item -mno-sched-control-spec
23234@itemx -msched-control-spec
23235@opindex mno-sched-control-spec
23236@opindex msched-control-spec
23237(Dis/En)able control speculative scheduling.  This feature is
23238available only during region scheduling (i.e.@: before reload).
23239This results in generation of the @code{ld.s} instructions and
23240the corresponding check instructions @code{chk.s}.
23241The default setting is disabled.
23242
23243@item -msched-br-in-data-spec
23244@itemx -mno-sched-br-in-data-spec
23245@opindex msched-br-in-data-spec
23246@opindex mno-sched-br-in-data-spec
23247(En/Dis)able speculative scheduling of the instructions that
23248are dependent on the data speculative loads before reload.
23249This is effective only with @option{-msched-br-data-spec} enabled.
23250The default setting is enabled.
23251
23252@item -msched-ar-in-data-spec
23253@itemx -mno-sched-ar-in-data-spec
23254@opindex msched-ar-in-data-spec
23255@opindex mno-sched-ar-in-data-spec
23256(En/Dis)able speculative scheduling of the instructions that
23257are dependent on the data speculative loads after reload.
23258This is effective only with @option{-msched-ar-data-spec} enabled.
23259The default setting is enabled.
23260
23261@item -msched-in-control-spec
23262@itemx -mno-sched-in-control-spec
23263@opindex msched-in-control-spec
23264@opindex mno-sched-in-control-spec
23265(En/Dis)able speculative scheduling of the instructions that
23266are dependent on the control speculative loads.
23267This is effective only with @option{-msched-control-spec} enabled.
23268The default setting is enabled.
23269
23270@item -mno-sched-prefer-non-data-spec-insns
23271@itemx -msched-prefer-non-data-spec-insns
23272@opindex mno-sched-prefer-non-data-spec-insns
23273@opindex msched-prefer-non-data-spec-insns
23274If enabled, data-speculative instructions are chosen for schedule
23275only if there are no other choices at the moment.  This makes
23276the use of the data speculation much more conservative.
23277The default setting is disabled.
23278
23279@item -mno-sched-prefer-non-control-spec-insns
23280@itemx -msched-prefer-non-control-spec-insns
23281@opindex mno-sched-prefer-non-control-spec-insns
23282@opindex msched-prefer-non-control-spec-insns
23283If enabled, control-speculative instructions are chosen for schedule
23284only if there are no other choices at the moment.  This makes
23285the use of the control speculation much more conservative.
23286The default setting is disabled.
23287
23288@item -mno-sched-count-spec-in-critical-path
23289@itemx -msched-count-spec-in-critical-path
23290@opindex mno-sched-count-spec-in-critical-path
23291@opindex msched-count-spec-in-critical-path
23292If enabled, speculative dependencies are considered during
23293computation of the instructions priorities.  This makes the use of the
23294speculation a bit more conservative.
23295The default setting is disabled.
23296
23297@item -msched-spec-ldc
23298@opindex msched-spec-ldc
23299Use a simple data speculation check.  This option is on by default.
23300
23301@item -msched-control-spec-ldc
23302@opindex msched-spec-ldc
23303Use a simple check for control speculation.  This option is on by default.
23304
23305@item -msched-stop-bits-after-every-cycle
23306@opindex msched-stop-bits-after-every-cycle
23307Place a stop bit after every cycle when scheduling.  This option is on
23308by default.
23309
23310@item -msched-fp-mem-deps-zero-cost
23311@opindex msched-fp-mem-deps-zero-cost
23312Assume that floating-point stores and loads are not likely to cause a conflict
23313when placed into the same instruction group.  This option is disabled by
23314default.
23315
23316@item -msel-sched-dont-check-control-spec
23317@opindex msel-sched-dont-check-control-spec
23318Generate checks for control speculation in selective scheduling.
23319This flag is disabled by default.
23320
23321@item -msched-max-memory-insns=@var{max-insns}
23322@opindex msched-max-memory-insns
23323Limit on the number of memory insns per instruction group, giving lower
23324priority to subsequent memory insns attempting to schedule in the same
23325instruction group. Frequently useful to prevent cache bank conflicts.
23326The default value is 1.
23327
23328@item -msched-max-memory-insns-hard-limit
23329@opindex msched-max-memory-insns-hard-limit
23330Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
23331disallowing more than that number in an instruction group.
23332Otherwise, the limit is ``soft'', meaning that non-memory operations
23333are preferred when the limit is reached, but memory operations may still
23334be scheduled.
23335
23336@end table
23337
23338@node LM32 Options
23339@subsection LM32 Options
23340@cindex LM32 options
23341
23342These @option{-m} options are defined for the LatticeMico32 architecture:
23343
23344@table @gcctabopt
23345@item -mbarrel-shift-enabled
23346@opindex mbarrel-shift-enabled
23347Enable barrel-shift instructions.
23348
23349@item -mdivide-enabled
23350@opindex mdivide-enabled
23351Enable divide and modulus instructions.
23352
23353@item -mmultiply-enabled
23354@opindex multiply-enabled
23355Enable multiply instructions.
23356
23357@item -msign-extend-enabled
23358@opindex msign-extend-enabled
23359Enable sign extend instructions.
23360
23361@item -muser-enabled
23362@opindex muser-enabled
23363Enable user-defined instructions.
23364
23365@end table
23366
23367@node M32C Options
23368@subsection M32C Options
23369@cindex M32C options
23370
23371@table @gcctabopt
23372@item -mcpu=@var{name}
23373@opindex mcpu=
23374Select the CPU for which code is generated.  @var{name} may be one of
23375@samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
23376/60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
23377the M32C/80 series.
23378
23379@item -msim
23380@opindex msim
23381Specifies that the program will be run on the simulator.  This causes
23382an alternate runtime library to be linked in which supports, for
23383example, file I/O@.  You must not use this option when generating
23384programs that will run on real hardware; you must provide your own
23385runtime library for whatever I/O functions are needed.
23386
23387@item -memregs=@var{number}
23388@opindex memregs=
23389Specifies the number of memory-based pseudo-registers GCC uses
23390during code generation.  These pseudo-registers are used like real
23391registers, so there is a tradeoff between GCC's ability to fit the
23392code into available registers, and the performance penalty of using
23393memory instead of registers.  Note that all modules in a program must
23394be compiled with the same value for this option.  Because of that, you
23395must not use this option with GCC's default runtime libraries.
23396
23397@end table
23398
23399@node M32R/D Options
23400@subsection M32R/D Options
23401@cindex M32R/D options
23402
23403These @option{-m} options are defined for Renesas M32R/D architectures:
23404
23405@table @gcctabopt
23406@item -m32r2
23407@opindex m32r2
23408Generate code for the M32R/2@.
23409
23410@item -m32rx
23411@opindex m32rx
23412Generate code for the M32R/X@.
23413
23414@item -m32r
23415@opindex m32r
23416Generate code for the M32R@.  This is the default.
23417
23418@item -mmodel=small
23419@opindex mmodel=small
23420Assume all objects live in the lower 16MB of memory (so that their addresses
23421can be loaded with the @code{ld24} instruction), and assume all subroutines
23422are reachable with the @code{bl} instruction.
23423This is the default.
23424
23425The addressability of a particular object can be set with the
23426@code{model} attribute.
23427
23428@item -mmodel=medium
23429@opindex mmodel=medium
23430Assume objects may be anywhere in the 32-bit address space (the compiler
23431generates @code{seth/add3} instructions to load their addresses), and
23432assume all subroutines are reachable with the @code{bl} instruction.
23433
23434@item -mmodel=large
23435@opindex mmodel=large
23436Assume objects may be anywhere in the 32-bit address space (the compiler
23437generates @code{seth/add3} instructions to load their addresses), and
23438assume subroutines may not be reachable with the @code{bl} instruction
23439(the compiler generates the much slower @code{seth/add3/jl}
23440instruction sequence).
23441
23442@item -msdata=none
23443@opindex msdata=none
23444Disable use of the small data area.  Variables are put into
23445one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
23446@code{section} attribute has been specified).
23447This is the default.
23448
23449The small data area consists of sections @code{.sdata} and @code{.sbss}.
23450Objects may be explicitly put in the small data area with the
23451@code{section} attribute using one of these sections.
23452
23453@item -msdata=sdata
23454@opindex msdata=sdata
23455Put small global and static data in the small data area, but do not
23456generate special code to reference them.
23457
23458@item -msdata=use
23459@opindex msdata=use
23460Put small global and static data in the small data area, and generate
23461special instructions to reference them.
23462
23463@item -G @var{num}
23464@opindex G
23465@cindex smaller data references
23466Put global and static objects less than or equal to @var{num} bytes
23467into the small data or BSS sections instead of the normal data or BSS
23468sections.  The default value of @var{num} is 8.
23469The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
23470for this option to have any effect.
23471
23472All modules should be compiled with the same @option{-G @var{num}} value.
23473Compiling with different values of @var{num} may or may not work; if it
23474doesn't the linker gives an error message---incorrect code is not
23475generated.
23476
23477@item -mdebug
23478@opindex mdebug
23479Makes the M32R-specific code in the compiler display some statistics
23480that might help in debugging programs.
23481
23482@item -malign-loops
23483@opindex malign-loops
23484Align all loops to a 32-byte boundary.
23485
23486@item -mno-align-loops
23487@opindex mno-align-loops
23488Do not enforce a 32-byte alignment for loops.  This is the default.
23489
23490@item -missue-rate=@var{number}
23491@opindex missue-rate=@var{number}
23492Issue @var{number} instructions per cycle.  @var{number} can only be 1
23493or 2.
23494
23495@item -mbranch-cost=@var{number}
23496@opindex mbranch-cost=@var{number}
23497@var{number} can only be 1 or 2.  If it is 1 then branches are
23498preferred over conditional code, if it is 2, then the opposite applies.
23499
23500@item -mflush-trap=@var{number}
23501@opindex mflush-trap=@var{number}
23502Specifies the trap number to use to flush the cache.  The default is
2350312.  Valid numbers are between 0 and 15 inclusive.
23504
23505@item -mno-flush-trap
23506@opindex mno-flush-trap
23507Specifies that the cache cannot be flushed by using a trap.
23508
23509@item -mflush-func=@var{name}
23510@opindex mflush-func=@var{name}
23511Specifies the name of the operating system function to call to flush
23512the cache.  The default is @samp{_flush_cache}, but a function call
23513is only used if a trap is not available.
23514
23515@item -mno-flush-func
23516@opindex mno-flush-func
23517Indicates that there is no OS function for flushing the cache.
23518
23519@end table
23520
23521@node M680x0 Options
23522@subsection M680x0 Options
23523@cindex M680x0 options
23524
23525These are the @samp{-m} options defined for M680x0 and ColdFire processors.
23526The default settings depend on which architecture was selected when
23527the compiler was configured; the defaults for the most common choices
23528are given below.
23529
23530@table @gcctabopt
23531@item -march=@var{arch}
23532@opindex march
23533Generate code for a specific M680x0 or ColdFire instruction set
23534architecture.  Permissible values of @var{arch} for M680x0
23535architectures are: @samp{68000}, @samp{68010}, @samp{68020},
23536@samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}.  ColdFire
23537architectures are selected according to Freescale's ISA classification
23538and the permissible values are: @samp{isaa}, @samp{isaaplus},
23539@samp{isab} and @samp{isac}.
23540
23541GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
23542code for a ColdFire target.  The @var{arch} in this macro is one of the
23543@option{-march} arguments given above.
23544
23545When used together, @option{-march} and @option{-mtune} select code
23546that runs on a family of similar processors but that is optimized
23547for a particular microarchitecture.
23548
23549@item -mcpu=@var{cpu}
23550@opindex mcpu
23551Generate code for a specific M680x0 or ColdFire processor.
23552The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
23553@samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
23554and @samp{cpu32}.  The ColdFire @var{cpu}s are given by the table
23555below, which also classifies the CPUs into families:
23556
23557@multitable @columnfractions 0.20 0.80
23558@item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
23559@item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
23560@item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
23561@item @samp{5206e} @tab @samp{5206e}
23562@item @samp{5208} @tab @samp{5207} @samp{5208}
23563@item @samp{5211a} @tab @samp{5210a} @samp{5211a}
23564@item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
23565@item @samp{5216} @tab @samp{5214} @samp{5216}
23566@item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
23567@item @samp{5225} @tab @samp{5224} @samp{5225}
23568@item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
23569@item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
23570@item @samp{5249} @tab @samp{5249}
23571@item @samp{5250} @tab @samp{5250}
23572@item @samp{5271} @tab @samp{5270} @samp{5271}
23573@item @samp{5272} @tab @samp{5272}
23574@item @samp{5275} @tab @samp{5274} @samp{5275}
23575@item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
23576@item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
23577@item @samp{5307} @tab @samp{5307}
23578@item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
23579@item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
23580@item @samp{5407} @tab @samp{5407}
23581@item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
23582@end multitable
23583
23584@option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
23585@var{arch} is compatible with @var{cpu}.  Other combinations of
23586@option{-mcpu} and @option{-march} are rejected.
23587
23588GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
23589@var{cpu} is selected.  It also defines @code{__mcf_family_@var{family}},
23590where the value of @var{family} is given by the table above.
23591
23592@item -mtune=@var{tune}
23593@opindex mtune
23594Tune the code for a particular microarchitecture within the
23595constraints set by @option{-march} and @option{-mcpu}.
23596The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
23597@samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
23598and @samp{cpu32}.  The ColdFire microarchitectures
23599are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
23600
23601You can also use @option{-mtune=68020-40} for code that needs
23602to run relatively well on 68020, 68030 and 68040 targets.
23603@option{-mtune=68020-60} is similar but includes 68060 targets
23604as well.  These two options select the same tuning decisions as
23605@option{-m68020-40} and @option{-m68020-60} respectively.
23606
23607GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
23608when tuning for 680x0 architecture @var{arch}.  It also defines
23609@code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
23610option is used.  If GCC is tuning for a range of architectures,
23611as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
23612it defines the macros for every architecture in the range.
23613
23614GCC also defines the macro @code{__m@var{uarch}__} when tuning for
23615ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
23616of the arguments given above.
23617
23618@item -m68000
23619@itemx -mc68000
23620@opindex m68000
23621@opindex mc68000
23622Generate output for a 68000.  This is the default
23623when the compiler is configured for 68000-based systems.
23624It is equivalent to @option{-march=68000}.
23625
23626Use this option for microcontrollers with a 68000 or EC000 core,
23627including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
23628
23629@item -m68010
23630@opindex m68010
23631Generate output for a 68010.  This is the default
23632when the compiler is configured for 68010-based systems.
23633It is equivalent to @option{-march=68010}.
23634
23635@item -m68020
23636@itemx -mc68020
23637@opindex m68020
23638@opindex mc68020
23639Generate output for a 68020.  This is the default
23640when the compiler is configured for 68020-based systems.
23641It is equivalent to @option{-march=68020}.
23642
23643@item -m68030
23644@opindex m68030
23645Generate output for a 68030.  This is the default when the compiler is
23646configured for 68030-based systems.  It is equivalent to
23647@option{-march=68030}.
23648
23649@item -m68040
23650@opindex m68040
23651Generate output for a 68040.  This is the default when the compiler is
23652configured for 68040-based systems.  It is equivalent to
23653@option{-march=68040}.
23654
23655This option inhibits the use of 68881/68882 instructions that have to be
23656emulated by software on the 68040.  Use this option if your 68040 does not
23657have code to emulate those instructions.
23658
23659@item -m68060
23660@opindex m68060
23661Generate output for a 68060.  This is the default when the compiler is
23662configured for 68060-based systems.  It is equivalent to
23663@option{-march=68060}.
23664
23665This option inhibits the use of 68020 and 68881/68882 instructions that
23666have to be emulated by software on the 68060.  Use this option if your 68060
23667does not have code to emulate those instructions.
23668
23669@item -mcpu32
23670@opindex mcpu32
23671Generate output for a CPU32.  This is the default
23672when the compiler is configured for CPU32-based systems.
23673It is equivalent to @option{-march=cpu32}.
23674
23675Use this option for microcontrollers with a
23676CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
2367768336, 68340, 68341, 68349 and 68360.
23678
23679@item -m5200
23680@opindex m5200
23681Generate output for a 520X ColdFire CPU@.  This is the default
23682when the compiler is configured for 520X-based systems.
23683It is equivalent to @option{-mcpu=5206}, and is now deprecated
23684in favor of that option.
23685
23686Use this option for microcontroller with a 5200 core, including
23687the MCF5202, MCF5203, MCF5204 and MCF5206.
23688
23689@item -m5206e
23690@opindex m5206e
23691Generate output for a 5206e ColdFire CPU@.  The option is now
23692deprecated in favor of the equivalent @option{-mcpu=5206e}.
23693
23694@item -m528x
23695@opindex m528x
23696Generate output for a member of the ColdFire 528X family.
23697The option is now deprecated in favor of the equivalent
23698@option{-mcpu=528x}.
23699
23700@item -m5307
23701@opindex m5307
23702Generate output for a ColdFire 5307 CPU@.  The option is now deprecated
23703in favor of the equivalent @option{-mcpu=5307}.
23704
23705@item -m5407
23706@opindex m5407
23707Generate output for a ColdFire 5407 CPU@.  The option is now deprecated
23708in favor of the equivalent @option{-mcpu=5407}.
23709
23710@item -mcfv4e
23711@opindex mcfv4e
23712Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
23713This includes use of hardware floating-point instructions.
23714The option is equivalent to @option{-mcpu=547x}, and is now
23715deprecated in favor of that option.
23716
23717@item -m68020-40
23718@opindex m68020-40
23719Generate output for a 68040, without using any of the new instructions.
23720This results in code that can run relatively efficiently on either a
2372168020/68881 or a 68030 or a 68040.  The generated code does use the
2372268881 instructions that are emulated on the 68040.
23723
23724The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
23725
23726@item -m68020-60
23727@opindex m68020-60
23728Generate output for a 68060, without using any of the new instructions.
23729This results in code that can run relatively efficiently on either a
2373068020/68881 or a 68030 or a 68040.  The generated code does use the
2373168881 instructions that are emulated on the 68060.
23732
23733The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
23734
23735@item -mhard-float
23736@itemx -m68881
23737@opindex mhard-float
23738@opindex m68881
23739Generate floating-point instructions.  This is the default for 68020
23740and above, and for ColdFire devices that have an FPU@.  It defines the
23741macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
23742on ColdFire targets.
23743
23744@item -msoft-float
23745@opindex msoft-float
23746Do not generate floating-point instructions; use library calls instead.
23747This is the default for 68000, 68010, and 68832 targets.  It is also
23748the default for ColdFire devices that have no FPU.
23749
23750@item -mdiv
23751@itemx -mno-div
23752@opindex mdiv
23753@opindex mno-div
23754Generate (do not generate) ColdFire hardware divide and remainder
23755instructions.  If @option{-march} is used without @option{-mcpu},
23756the default is ``on'' for ColdFire architectures and ``off'' for M680x0
23757architectures.  Otherwise, the default is taken from the target CPU
23758(either the default CPU, or the one specified by @option{-mcpu}).  For
23759example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
23760@option{-mcpu=5206e}.
23761
23762GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
23763
23764@item -mshort
23765@opindex mshort
23766Consider type @code{int} to be 16 bits wide, like @code{short int}.
23767Additionally, parameters passed on the stack are also aligned to a
2376816-bit boundary even on targets whose API mandates promotion to 32-bit.
23769
23770@item -mno-short
23771@opindex mno-short
23772Do not consider type @code{int} to be 16 bits wide.  This is the default.
23773
23774@item -mnobitfield
23775@itemx -mno-bitfield
23776@opindex mnobitfield
23777@opindex mno-bitfield
23778Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
23779and @option{-m5200} options imply @w{@option{-mnobitfield}}.
23780
23781@item -mbitfield
23782@opindex mbitfield
23783Do use the bit-field instructions.  The @option{-m68020} option implies
23784@option{-mbitfield}.  This is the default if you use a configuration
23785designed for a 68020.
23786
23787@item -mrtd
23788@opindex mrtd
23789Use a different function-calling convention, in which functions
23790that take a fixed number of arguments return with the @code{rtd}
23791instruction, which pops their arguments while returning.  This
23792saves one instruction in the caller since there is no need to pop
23793the arguments there.
23794
23795This calling convention is incompatible with the one normally
23796used on Unix, so you cannot use it if you need to call libraries
23797compiled with the Unix compiler.
23798
23799Also, you must provide function prototypes for all functions that
23800take variable numbers of arguments (including @code{printf});
23801otherwise incorrect code is generated for calls to those
23802functions.
23803
23804In addition, seriously incorrect code results if you call a
23805function with too many arguments.  (Normally, extra arguments are
23806harmlessly ignored.)
23807
23808The @code{rtd} instruction is supported by the 68010, 68020, 68030,
2380968040, 68060 and CPU32 processors, but not by the 68000 or 5200.
23810
23811The default is @option{-mno-rtd}.
23812
23813@item -malign-int
23814@itemx -mno-align-int
23815@opindex malign-int
23816@opindex mno-align-int
23817Control whether GCC aligns @code{int}, @code{long}, @code{long long},
23818@code{float}, @code{double}, and @code{long double} variables on a 32-bit
23819boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
23820Aligning variables on 32-bit boundaries produces code that runs somewhat
23821faster on processors with 32-bit busses at the expense of more memory.
23822
23823@strong{Warning:} if you use the @option{-malign-int} switch, GCC
23824aligns structures containing the above types differently than
23825most published application binary interface specifications for the m68k.
23826
23827@opindex mpcrel
23828Use the pc-relative addressing mode of the 68000 directly, instead of
23829using a global offset table.  At present, this option implies @option{-fpic},
23830allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
23831not presently supported with @option{-mpcrel}, though this could be supported for
2383268020 and higher processors.
23833
23834@item -mno-strict-align
23835@itemx -mstrict-align
23836@opindex mno-strict-align
23837@opindex mstrict-align
23838Do not (do) assume that unaligned memory references are handled by
23839the system.
23840
23841@item -msep-data
23842Generate code that allows the data segment to be located in a different
23843area of memory from the text segment.  This allows for execute-in-place in
23844an environment without virtual memory management.  This option implies
23845@option{-fPIC}.
23846
23847@item -mno-sep-data
23848Generate code that assumes that the data segment follows the text segment.
23849This is the default.
23850
23851@item -mid-shared-library
23852Generate code that supports shared libraries via the library ID method.
23853This allows for execute-in-place and shared libraries in an environment
23854without virtual memory management.  This option implies @option{-fPIC}.
23855
23856@item -mno-id-shared-library
23857Generate code that doesn't assume ID-based shared libraries are being used.
23858This is the default.
23859
23860@item -mshared-library-id=n
23861Specifies the identification number of the ID-based shared library being
23862compiled.  Specifying a value of 0 generates more compact code; specifying
23863other values forces the allocation of that number to the current
23864library, but is no more space- or time-efficient than omitting this option.
23865
23866@item -mxgot
23867@itemx -mno-xgot
23868@opindex mxgot
23869@opindex mno-xgot
23870When generating position-independent code for ColdFire, generate code
23871that works if the GOT has more than 8192 entries.  This code is
23872larger and slower than code generated without this option.  On M680x0
23873processors, this option is not needed; @option{-fPIC} suffices.
23874
23875GCC normally uses a single instruction to load values from the GOT@.
23876While this is relatively efficient, it only works if the GOT
23877is smaller than about 64k.  Anything larger causes the linker
23878to report an error such as:
23879
23880@cindex relocation truncated to fit (ColdFire)
23881@smallexample
23882relocation truncated to fit: R_68K_GOT16O foobar
23883@end smallexample
23884
23885If this happens, you should recompile your code with @option{-mxgot}.
23886It should then work with very large GOTs.  However, code generated with
23887@option{-mxgot} is less efficient, since it takes 4 instructions to fetch
23888the value of a global symbol.
23889
23890Note that some linkers, including newer versions of the GNU linker,
23891can create multiple GOTs and sort GOT entries.  If you have such a linker,
23892you should only need to use @option{-mxgot} when compiling a single
23893object file that accesses more than 8192 GOT entries.  Very few do.
23894
23895These options have no effect unless GCC is generating
23896position-independent code.
23897
23898@item -mlong-jump-table-offsets
23899@opindex mlong-jump-table-offsets
23900Use 32-bit offsets in @code{switch} tables.  The default is to use
2390116-bit offsets.
23902
23903@end table
23904
23905@node MCore Options
23906@subsection MCore Options
23907@cindex MCore options
23908
23909These are the @samp{-m} options defined for the Motorola M*Core
23910processors.
23911
23912@table @gcctabopt
23913
23914@item -mhardlit
23915@itemx -mno-hardlit
23916@opindex mhardlit
23917@opindex mno-hardlit
23918Inline constants into the code stream if it can be done in two
23919instructions or less.
23920
23921@item -mdiv
23922@itemx -mno-div
23923@opindex mdiv
23924@opindex mno-div
23925Use the divide instruction.  (Enabled by default).
23926
23927@item -mrelax-immediate
23928@itemx -mno-relax-immediate
23929@opindex mrelax-immediate
23930@opindex mno-relax-immediate
23931Allow arbitrary-sized immediates in bit operations.
23932
23933@item -mwide-bitfields
23934@itemx -mno-wide-bitfields
23935@opindex mwide-bitfields
23936@opindex mno-wide-bitfields
23937Always treat bit-fields as @code{int}-sized.
23938
23939@item -m4byte-functions
23940@itemx -mno-4byte-functions
23941@opindex m4byte-functions
23942@opindex mno-4byte-functions
23943Force all functions to be aligned to a 4-byte boundary.
23944
23945@item -mcallgraph-data
23946@itemx -mno-callgraph-data
23947@opindex mcallgraph-data
23948@opindex mno-callgraph-data
23949Emit callgraph information.
23950
23951@item -mslow-bytes
23952@itemx -mno-slow-bytes
23953@opindex mslow-bytes
23954@opindex mno-slow-bytes
23955Prefer word access when reading byte quantities.
23956
23957@item -mlittle-endian
23958@itemx -mbig-endian
23959@opindex mlittle-endian
23960@opindex mbig-endian
23961Generate code for a little-endian target.
23962
23963@item -m210
23964@itemx -m340
23965@opindex m210
23966@opindex m340
23967Generate code for the 210 processor.
23968
23969@item -mno-lsim
23970@opindex mno-lsim
23971Assume that runtime support has been provided and so omit the
23972simulator library (@file{libsim.a)} from the linker command line.
23973
23974@item -mstack-increment=@var{size}
23975@opindex mstack-increment
23976Set the maximum amount for a single stack increment operation.  Large
23977values can increase the speed of programs that contain functions
23978that need a large amount of stack space, but they can also trigger a
23979segmentation fault if the stack is extended too much.  The default
23980value is 0x1000.
23981
23982@end table
23983
23984@node MeP Options
23985@subsection MeP Options
23986@cindex MeP options
23987
23988@table @gcctabopt
23989
23990@item -mabsdiff
23991@opindex mabsdiff
23992Enables the @code{abs} instruction, which is the absolute difference
23993between two registers.
23994
23995@item -mall-opts
23996@opindex mall-opts
23997Enables all the optional instructions---average, multiply, divide, bit
23998operations, leading zero, absolute difference, min/max, clip, and
23999saturation.
24000
24001
24002@item -maverage
24003@opindex maverage
24004Enables the @code{ave} instruction, which computes the average of two
24005registers.
24006
24007@item -mbased=@var{n}
24008@opindex mbased=
24009Variables of size @var{n} bytes or smaller are placed in the
24010@code{.based} section by default.  Based variables use the @code{$tp}
24011register as a base register, and there is a 128-byte limit to the
24012@code{.based} section.
24013
24014@item -mbitops
24015@opindex mbitops
24016Enables the bit operation instructions---bit test (@code{btstm}), set
24017(@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
24018test-and-set (@code{tas}).
24019
24020@item -mc=@var{name}
24021@opindex mc=
24022Selects which section constant data is placed in.  @var{name} may
24023be @samp{tiny}, @samp{near}, or @samp{far}.
24024
24025@item -mclip
24026@opindex mclip
24027Enables the @code{clip} instruction.  Note that @option{-mclip} is not
24028useful unless you also provide @option{-mminmax}.
24029
24030@item -mconfig=@var{name}
24031@opindex mconfig=
24032Selects one of the built-in core configurations.  Each MeP chip has
24033one or more modules in it; each module has a core CPU and a variety of
24034coprocessors, optional instructions, and peripherals.  The
24035@code{MeP-Integrator} tool, not part of GCC, provides these
24036configurations through this option; using this option is the same as
24037using all the corresponding command-line options.  The default
24038configuration is @samp{default}.
24039
24040@item -mcop
24041@opindex mcop
24042Enables the coprocessor instructions.  By default, this is a 32-bit
24043coprocessor.  Note that the coprocessor is normally enabled via the
24044@option{-mconfig=} option.
24045
24046@item -mcop32
24047@opindex mcop32
24048Enables the 32-bit coprocessor's instructions.
24049
24050@item -mcop64
24051@opindex mcop64
24052Enables the 64-bit coprocessor's instructions.
24053
24054@item -mivc2
24055@opindex mivc2
24056Enables IVC2 scheduling.  IVC2 is a 64-bit VLIW coprocessor.
24057
24058@item -mdc
24059@opindex mdc
24060Causes constant variables to be placed in the @code{.near} section.
24061
24062@item -mdiv
24063@opindex mdiv
24064Enables the @code{div} and @code{divu} instructions.
24065
24066@item -meb
24067@opindex meb
24068Generate big-endian code.
24069
24070@item -mel
24071@opindex mel
24072Generate little-endian code.
24073
24074@item -mio-volatile
24075@opindex mio-volatile
24076Tells the compiler that any variable marked with the @code{io}
24077attribute is to be considered volatile.
24078
24079@item -ml
24080@opindex ml
24081Causes variables to be assigned to the @code{.far} section by default.
24082
24083@item -mleadz
24084@opindex mleadz
24085Enables the @code{leadz} (leading zero) instruction.
24086
24087@item -mm
24088@opindex mm
24089Causes variables to be assigned to the @code{.near} section by default.
24090
24091@item -mminmax
24092@opindex mminmax
24093Enables the @code{min} and @code{max} instructions.
24094
24095@item -mmult
24096@opindex mmult
24097Enables the multiplication and multiply-accumulate instructions.
24098
24099@item -mno-opts
24100@opindex mno-opts
24101Disables all the optional instructions enabled by @option{-mall-opts}.
24102
24103@item -mrepeat
24104@opindex mrepeat
24105Enables the @code{repeat} and @code{erepeat} instructions, used for
24106low-overhead looping.
24107
24108@item -ms
24109@opindex ms
24110Causes all variables to default to the @code{.tiny} section.  Note
24111that there is a 65536-byte limit to this section.  Accesses to these
24112variables use the @code{%gp} base register.
24113
24114@item -msatur
24115@opindex msatur
24116Enables the saturation instructions.  Note that the compiler does not
24117currently generate these itself, but this option is included for
24118compatibility with other tools, like @code{as}.
24119
24120@item -msdram
24121@opindex msdram
24122Link the SDRAM-based runtime instead of the default ROM-based runtime.
24123
24124@item -msim
24125@opindex msim
24126Link the simulator run-time libraries.
24127
24128@item -msimnovec
24129@opindex msimnovec
24130Link the simulator runtime libraries, excluding built-in support
24131for reset and exception vectors and tables.
24132
24133@item -mtf
24134@opindex mtf
24135Causes all functions to default to the @code{.far} section.  Without
24136this option, functions default to the @code{.near} section.
24137
24138@item -mtiny=@var{n}
24139@opindex mtiny=
24140Variables that are @var{n} bytes or smaller are allocated to the
24141@code{.tiny} section.  These variables use the @code{$gp} base
24142register.  The default for this option is 4, but note that there's a
2414365536-byte limit to the @code{.tiny} section.
24144
24145@end table
24146
24147@node MicroBlaze Options
24148@subsection MicroBlaze Options
24149@cindex MicroBlaze Options
24150
24151@table @gcctabopt
24152
24153@item -msoft-float
24154@opindex msoft-float
24155Use software emulation for floating point (default).
24156
24157@item -mhard-float
24158@opindex mhard-float
24159Use hardware floating-point instructions.
24160
24161@item -mmemcpy
24162@opindex mmemcpy
24163Do not optimize block moves, use @code{memcpy}.
24164
24165@item -mno-clearbss
24166@opindex mno-clearbss
24167This option is deprecated.  Use @option{-fno-zero-initialized-in-bss} instead.
24168
24169@item -mcpu=@var{cpu-type}
24170@opindex mcpu=
24171Use features of, and schedule code for, the given CPU.
24172Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
24173where @var{X} is a major version, @var{YY} is the minor version, and
24174@var{Z} is compatibility code.  Example values are @samp{v3.00.a},
24175@samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
24176
24177@item -mxl-soft-mul
24178@opindex mxl-soft-mul
24179Use software multiply emulation (default).
24180
24181@item -mxl-soft-div
24182@opindex mxl-soft-div
24183Use software emulation for divides (default).
24184
24185@item -mxl-barrel-shift
24186@opindex mxl-barrel-shift
24187Use the hardware barrel shifter.
24188
24189@item -mxl-pattern-compare
24190@opindex mxl-pattern-compare
24191Use pattern compare instructions.
24192
24193@item -msmall-divides
24194@opindex msmall-divides
24195Use table lookup optimization for small signed integer divisions.
24196
24197@item -mxl-stack-check
24198@opindex mxl-stack-check
24199This option is deprecated.  Use @option{-fstack-check} instead.
24200
24201@item -mxl-gp-opt
24202@opindex mxl-gp-opt
24203Use GP-relative @code{.sdata}/@code{.sbss} sections.
24204
24205@item -mxl-multiply-high
24206@opindex mxl-multiply-high
24207Use multiply high instructions for high part of 32x32 multiply.
24208
24209@item -mxl-float-convert
24210@opindex mxl-float-convert
24211Use hardware floating-point conversion instructions.
24212
24213@item -mxl-float-sqrt
24214@opindex mxl-float-sqrt
24215Use hardware floating-point square root instruction.
24216
24217@item -mbig-endian
24218@opindex mbig-endian
24219Generate code for a big-endian target.
24220
24221@item -mlittle-endian
24222@opindex mlittle-endian
24223Generate code for a little-endian target.
24224
24225@item -mxl-reorder
24226@opindex mxl-reorder
24227Use reorder instructions (swap and byte reversed load/store).
24228
24229@item -mxl-mode-@var{app-model}
24230Select application model @var{app-model}.  Valid models are
24231@table @samp
24232@item executable
24233normal executable (default), uses startup code @file{crt0.o}.
24234
24235@item -mpic-data-is-text-relative
24236@opindex mpic-data-is-text-relative
24237Assume that the displacement between the text and data segments is fixed
24238at static link time.  This allows data to be referenced by offset from start of
24239text address instead of GOT since PC-relative addressing is not supported.
24240
24241@item xmdstub
24242for use with Xilinx Microprocessor Debugger (XMD) based
24243software intrusive debug agent called xmdstub. This uses startup file
24244@file{crt1.o} and sets the start address of the program to 0x800.
24245
24246@item bootstrap
24247for applications that are loaded using a bootloader.
24248This model uses startup file @file{crt2.o} which does not contain a processor
24249reset vector handler. This is suitable for transferring control on a
24250processor reset to the bootloader rather than the application.
24251
24252@item novectors
24253for applications that do not require any of the
24254MicroBlaze vectors. This option may be useful for applications running
24255within a monitoring application. This model uses @file{crt3.o} as a startup file.
24256@end table
24257
24258Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
24259@option{-mxl-mode-@var{app-model}}.
24260
24261@end table
24262
24263@node MIPS Options
24264@subsection MIPS Options
24265@cindex MIPS options
24266
24267@table @gcctabopt
24268
24269@item -EB
24270@opindex EB
24271Generate big-endian code.
24272
24273@item -EL
24274@opindex EL
24275Generate little-endian code.  This is the default for @samp{mips*el-*-*}
24276configurations.
24277
24278@item -march=@var{arch}
24279@opindex march
24280Generate code that runs on @var{arch}, which can be the name of a
24281generic MIPS ISA, or the name of a particular processor.
24282The ISA names are:
24283@samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
24284@samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
24285@samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
24286@samp{mips64r5} and @samp{mips64r6}.
24287The processor names are:
24288@samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
24289@samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
24290@samp{5kc}, @samp{5kf},
24291@samp{20kc},
24292@samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
24293@samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
24294@samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
24295@samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
24296@samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
24297@samp{i6400}, @samp{i6500},
24298@samp{interaptiv},
24299@samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a}, @samp{gs464},
24300@samp{gs464e}, @samp{gs264e},
24301@samp{m4k},
24302@samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
24303@samp{m5100}, @samp{m5101},
24304@samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
24305@samp{orion},
24306@samp{p5600}, @samp{p6600},
24307@samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
24308@samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r5900},
24309@samp{r6000}, @samp{r8000},
24310@samp{rm7000}, @samp{rm9000},
24311@samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
24312@samp{sb1},
24313@samp{sr71000},
24314@samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
24315@samp{vr5000}, @samp{vr5400}, @samp{vr5500},
24316@samp{xlr} and @samp{xlp}.
24317The special value @samp{from-abi} selects the
24318most compatible architecture for the selected ABI (that is,
24319@samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
24320
24321The native Linux/GNU toolchain also supports the value @samp{native},
24322which selects the best architecture option for the host processor.
24323@option{-march=native} has no effect if GCC does not recognize
24324the processor.
24325
24326In processor names, a final @samp{000} can be abbreviated as @samp{k}
24327(for example, @option{-march=r2k}).  Prefixes are optional, and
24328@samp{vr} may be written @samp{r}.
24329
24330Names of the form @samp{@var{n}f2_1} refer to processors with
24331FPUs clocked at half the rate of the core, names of the form
24332@samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
24333rate as the core, and names of the form @samp{@var{n}f3_2} refer to
24334processors with FPUs clocked a ratio of 3:2 with respect to the core.
24335For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
24336for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
24337accepted as synonyms for @samp{@var{n}f1_1}.
24338
24339GCC defines two macros based on the value of this option.  The first
24340is @code{_MIPS_ARCH}, which gives the name of target architecture, as
24341a string.  The second has the form @code{_MIPS_ARCH_@var{foo}},
24342where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
24343For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
24344to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
24345
24346Note that the @code{_MIPS_ARCH} macro uses the processor names given
24347above.  In other words, it has the full prefix and does not
24348abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
24349the macro names the resolved architecture (either @code{"mips1"} or
24350@code{"mips3"}).  It names the default architecture when no
24351@option{-march} option is given.
24352
24353@item -mtune=@var{arch}
24354@opindex mtune
24355Optimize for @var{arch}.  Among other things, this option controls
24356the way instructions are scheduled, and the perceived cost of arithmetic
24357operations.  The list of @var{arch} values is the same as for
24358@option{-march}.
24359
24360When this option is not used, GCC optimizes for the processor
24361specified by @option{-march}.  By using @option{-march} and
24362@option{-mtune} together, it is possible to generate code that
24363runs on a family of processors, but optimize the code for one
24364particular member of that family.
24365
24366@option{-mtune} defines the macros @code{_MIPS_TUNE} and
24367@code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
24368@option{-march} ones described above.
24369
24370@item -mips1
24371@opindex mips1
24372Equivalent to @option{-march=mips1}.
24373
24374@item -mips2
24375@opindex mips2
24376Equivalent to @option{-march=mips2}.
24377
24378@item -mips3
24379@opindex mips3
24380Equivalent to @option{-march=mips3}.
24381
24382@item -mips4
24383@opindex mips4
24384Equivalent to @option{-march=mips4}.
24385
24386@item -mips32
24387@opindex mips32
24388Equivalent to @option{-march=mips32}.
24389
24390@item -mips32r3
24391@opindex mips32r3
24392Equivalent to @option{-march=mips32r3}.
24393
24394@item -mips32r5
24395@opindex mips32r5
24396Equivalent to @option{-march=mips32r5}.
24397
24398@item -mips32r6
24399@opindex mips32r6
24400Equivalent to @option{-march=mips32r6}.
24401
24402@item -mips64
24403@opindex mips64
24404Equivalent to @option{-march=mips64}.
24405
24406@item -mips64r2
24407@opindex mips64r2
24408Equivalent to @option{-march=mips64r2}.
24409
24410@item -mips64r3
24411@opindex mips64r3
24412Equivalent to @option{-march=mips64r3}.
24413
24414@item -mips64r5
24415@opindex mips64r5
24416Equivalent to @option{-march=mips64r5}.
24417
24418@item -mips64r6
24419@opindex mips64r6
24420Equivalent to @option{-march=mips64r6}.
24421
24422@item -mips16
24423@itemx -mno-mips16
24424@opindex mips16
24425@opindex mno-mips16
24426Generate (do not generate) MIPS16 code.  If GCC is targeting a
24427MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
24428
24429MIPS16 code generation can also be controlled on a per-function basis
24430by means of @code{mips16} and @code{nomips16} attributes.
24431@xref{Function Attributes}, for more information.
24432
24433@item -mflip-mips16
24434@opindex mflip-mips16
24435Generate MIPS16 code on alternating functions.  This option is provided
24436for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
24437not intended for ordinary use in compiling user code.
24438
24439@item -minterlink-compressed
24440@itemx -mno-interlink-compressed
24441@opindex minterlink-compressed
24442@opindex mno-interlink-compressed
24443Require (do not require) that code using the standard (uncompressed) MIPS ISA
24444be link-compatible with MIPS16 and microMIPS code, and vice versa.
24445
24446For example, code using the standard ISA encoding cannot jump directly
24447to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
24448@option{-minterlink-compressed} therefore disables direct jumps unless GCC
24449knows that the target of the jump is not compressed.
24450
24451@item -minterlink-mips16
24452@itemx -mno-interlink-mips16
24453@opindex minterlink-mips16
24454@opindex mno-interlink-mips16
24455Aliases of @option{-minterlink-compressed} and
24456@option{-mno-interlink-compressed}.  These options predate the microMIPS ASE
24457and are retained for backwards compatibility.
24458
24459@item -mabi=32
24460@itemx -mabi=o64
24461@itemx -mabi=n32
24462@itemx -mabi=64
24463@itemx -mabi=eabi
24464@opindex mabi=32
24465@opindex mabi=o64
24466@opindex mabi=n32
24467@opindex mabi=64
24468@opindex mabi=eabi
24469Generate code for the given ABI@.
24470
24471Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
24472generates 64-bit code when you select a 64-bit architecture, but you
24473can use @option{-mgp32} to get 32-bit code instead.
24474
24475For information about the O64 ABI, see
24476@uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
24477
24478GCC supports a variant of the o32 ABI in which floating-point registers
24479are 64 rather than 32 bits wide.  You can select this combination with
24480@option{-mabi=32} @option{-mfp64}.  This ABI relies on the @code{mthc1}
24481and @code{mfhc1} instructions and is therefore only supported for
24482MIPS32R2, MIPS32R3 and MIPS32R5 processors.
24483
24484The register assignments for arguments and return values remain the
24485same, but each scalar value is passed in a single 64-bit register
24486rather than a pair of 32-bit registers.  For example, scalar
24487floating-point values are returned in @samp{$f0} only, not a
24488@samp{$f0}/@samp{$f1} pair.  The set of call-saved registers also
24489remains the same in that the even-numbered double-precision registers
24490are saved.
24491
24492Two additional variants of the o32 ABI are supported to enable
24493a transition from 32-bit to 64-bit registers.  These are FPXX
24494(@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
24495The FPXX extension mandates that all code must execute correctly
24496when run using 32-bit or 64-bit registers.  The code can be interlinked
24497with either FP32 or FP64, but not both.
24498The FP64A extension is similar to the FP64 extension but forbids the
24499use of odd-numbered single-precision registers.  This can be used
24500in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
24501processors and allows both FP32 and FP64A code to interlink and
24502run in the same process without changing FPU modes.
24503
24504@item -mabicalls
24505@itemx -mno-abicalls
24506@opindex mabicalls
24507@opindex mno-abicalls
24508Generate (do not generate) code that is suitable for SVR4-style
24509dynamic objects.  @option{-mabicalls} is the default for SVR4-based
24510systems.
24511
24512@item -mshared
24513@itemx -mno-shared
24514Generate (do not generate) code that is fully position-independent,
24515and that can therefore be linked into shared libraries.  This option
24516only affects @option{-mabicalls}.
24517
24518All @option{-mabicalls} code has traditionally been position-independent,
24519regardless of options like @option{-fPIC} and @option{-fpic}.  However,
24520as an extension, the GNU toolchain allows executables to use absolute
24521accesses for locally-binding symbols.  It can also use shorter GP
24522initialization sequences and generate direct calls to locally-defined
24523functions.  This mode is selected by @option{-mno-shared}.
24524
24525@option{-mno-shared} depends on binutils 2.16 or higher and generates
24526objects that can only be linked by the GNU linker.  However, the option
24527does not affect the ABI of the final executable; it only affects the ABI
24528of relocatable objects.  Using @option{-mno-shared} generally makes
24529executables both smaller and quicker.
24530
24531@option{-mshared} is the default.
24532
24533@item -mplt
24534@itemx -mno-plt
24535@opindex mplt
24536@opindex mno-plt
24537Assume (do not assume) that the static and dynamic linkers
24538support PLTs and copy relocations.  This option only affects
24539@option{-mno-shared -mabicalls}.  For the n64 ABI, this option
24540has no effect without @option{-msym32}.
24541
24542You can make @option{-mplt} the default by configuring
24543GCC with @option{--with-mips-plt}.  The default is
24544@option{-mno-plt} otherwise.
24545
24546@item -mxgot
24547@itemx -mno-xgot
24548@opindex mxgot
24549@opindex mno-xgot
24550Lift (do not lift) the usual restrictions on the size of the global
24551offset table.
24552
24553GCC normally uses a single instruction to load values from the GOT@.
24554While this is relatively efficient, it only works if the GOT
24555is smaller than about 64k.  Anything larger causes the linker
24556to report an error such as:
24557
24558@cindex relocation truncated to fit (MIPS)
24559@smallexample
24560relocation truncated to fit: R_MIPS_GOT16 foobar
24561@end smallexample
24562
24563If this happens, you should recompile your code with @option{-mxgot}.
24564This works with very large GOTs, although the code is also
24565less efficient, since it takes three instructions to fetch the
24566value of a global symbol.
24567
24568Note that some linkers can create multiple GOTs.  If you have such a
24569linker, you should only need to use @option{-mxgot} when a single object
24570file accesses more than 64k's worth of GOT entries.  Very few do.
24571
24572These options have no effect unless GCC is generating position
24573independent code.
24574
24575@item -mgp32
24576@opindex mgp32
24577Assume that general-purpose registers are 32 bits wide.
24578
24579@item -mgp64
24580@opindex mgp64
24581Assume that general-purpose registers are 64 bits wide.
24582
24583@item -mfp32
24584@opindex mfp32
24585Assume that floating-point registers are 32 bits wide.
24586
24587@item -mfp64
24588@opindex mfp64
24589Assume that floating-point registers are 64 bits wide.
24590
24591@item -mfpxx
24592@opindex mfpxx
24593Do not assume the width of floating-point registers.
24594
24595@item -mhard-float
24596@opindex mhard-float
24597Use floating-point coprocessor instructions.
24598
24599@item -msoft-float
24600@opindex msoft-float
24601Do not use floating-point coprocessor instructions.  Implement
24602floating-point calculations using library calls instead.
24603
24604@item -mno-float
24605@opindex mno-float
24606Equivalent to @option{-msoft-float}, but additionally asserts that the
24607program being compiled does not perform any floating-point operations.
24608This option is presently supported only by some bare-metal MIPS
24609configurations, where it may select a special set of libraries
24610that lack all floating-point support (including, for example, the
24611floating-point @code{printf} formats).
24612If code compiled with @option{-mno-float} accidentally contains
24613floating-point operations, it is likely to suffer a link-time
24614or run-time failure.
24615
24616@item -msingle-float
24617@opindex msingle-float
24618Assume that the floating-point coprocessor only supports single-precision
24619operations.
24620
24621@item -mdouble-float
24622@opindex mdouble-float
24623Assume that the floating-point coprocessor supports double-precision
24624operations.  This is the default.
24625
24626@item -modd-spreg
24627@itemx -mno-odd-spreg
24628@opindex modd-spreg
24629@opindex mno-odd-spreg
24630Enable the use of odd-numbered single-precision floating-point registers
24631for the o32 ABI.  This is the default for processors that are known to
24632support these registers.  When using the o32 FPXX ABI, @option{-mno-odd-spreg}
24633is set by default.
24634
24635@item -mabs=2008
24636@itemx -mabs=legacy
24637@opindex mabs=2008
24638@opindex mabs=legacy
24639These options control the treatment of the special not-a-number (NaN)
24640IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
24641@code{neg.@i{fmt}} machine instructions.
24642
24643By default or when @option{-mabs=legacy} is used the legacy
24644treatment is selected.  In this case these instructions are considered
24645arithmetic and avoided where correct operation is required and the
24646input operand might be a NaN.  A longer sequence of instructions that
24647manipulate the sign bit of floating-point datum manually is used
24648instead unless the @option{-ffinite-math-only} option has also been
24649specified.
24650
24651The @option{-mabs=2008} option selects the IEEE 754-2008 treatment.  In
24652this case these instructions are considered non-arithmetic and therefore
24653operating correctly in all cases, including in particular where the
24654input operand is a NaN.  These instructions are therefore always used
24655for the respective operations.
24656
24657@item -mnan=2008
24658@itemx -mnan=legacy
24659@opindex mnan=2008
24660@opindex mnan=legacy
24661These options control the encoding of the special not-a-number (NaN)
24662IEEE 754 floating-point data.
24663
24664The @option{-mnan=legacy} option selects the legacy encoding.  In this
24665case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
24666significand field being 0, whereas signaling NaNs (sNaNs) are denoted
24667by the first bit of their trailing significand field being 1.
24668
24669The @option{-mnan=2008} option selects the IEEE 754-2008 encoding.  In
24670this case qNaNs are denoted by the first bit of their trailing
24671significand field being 1, whereas sNaNs are denoted by the first bit of
24672their trailing significand field being 0.
24673
24674The default is @option{-mnan=legacy} unless GCC has been configured with
24675@option{--with-nan=2008}.
24676
24677@item -mllsc
24678@itemx -mno-llsc
24679@opindex mllsc
24680@opindex mno-llsc
24681Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
24682implement atomic memory built-in functions.  When neither option is
24683specified, GCC uses the instructions if the target architecture
24684supports them.
24685
24686@option{-mllsc} is useful if the runtime environment can emulate the
24687instructions and @option{-mno-llsc} can be useful when compiling for
24688nonstandard ISAs.  You can make either option the default by
24689configuring GCC with @option{--with-llsc} and @option{--without-llsc}
24690respectively.  @option{--with-llsc} is the default for some
24691configurations; see the installation documentation for details.
24692
24693@item -mdsp
24694@itemx -mno-dsp
24695@opindex mdsp
24696@opindex mno-dsp
24697Use (do not use) revision 1 of the MIPS DSP ASE@.
24698@xref{MIPS DSP Built-in Functions}.  This option defines the
24699preprocessor macro @code{__mips_dsp}.  It also defines
24700@code{__mips_dsp_rev} to 1.
24701
24702@item -mdspr2
24703@itemx -mno-dspr2
24704@opindex mdspr2
24705@opindex mno-dspr2
24706Use (do not use) revision 2 of the MIPS DSP ASE@.
24707@xref{MIPS DSP Built-in Functions}.  This option defines the
24708preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
24709It also defines @code{__mips_dsp_rev} to 2.
24710
24711@item -msmartmips
24712@itemx -mno-smartmips
24713@opindex msmartmips
24714@opindex mno-smartmips
24715Use (do not use) the MIPS SmartMIPS ASE.
24716
24717@item -mpaired-single
24718@itemx -mno-paired-single
24719@opindex mpaired-single
24720@opindex mno-paired-single
24721Use (do not use) paired-single floating-point instructions.
24722@xref{MIPS Paired-Single Support}.  This option requires
24723hardware floating-point support to be enabled.
24724
24725@item -mdmx
24726@itemx -mno-mdmx
24727@opindex mdmx
24728@opindex mno-mdmx
24729Use (do not use) MIPS Digital Media Extension instructions.
24730This option can only be used when generating 64-bit code and requires
24731hardware floating-point support to be enabled.
24732
24733@item -mips3d
24734@itemx -mno-mips3d
24735@opindex mips3d
24736@opindex mno-mips3d
24737Use (do not use) the MIPS-3D ASE@.  @xref{MIPS-3D Built-in Functions}.
24738The option @option{-mips3d} implies @option{-mpaired-single}.
24739
24740@item -mmicromips
24741@itemx -mno-micromips
24742@opindex mmicromips
24743@opindex mno-mmicromips
24744Generate (do not generate) microMIPS code.
24745
24746MicroMIPS code generation can also be controlled on a per-function basis
24747by means of @code{micromips} and @code{nomicromips} attributes.
24748@xref{Function Attributes}, for more information.
24749
24750@item -mmt
24751@itemx -mno-mt
24752@opindex mmt
24753@opindex mno-mt
24754Use (do not use) MT Multithreading instructions.
24755
24756@item -mmcu
24757@itemx -mno-mcu
24758@opindex mmcu
24759@opindex mno-mcu
24760Use (do not use) the MIPS MCU ASE instructions.
24761
24762@item -meva
24763@itemx -mno-eva
24764@opindex meva
24765@opindex mno-eva
24766Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
24767
24768@item -mvirt
24769@itemx -mno-virt
24770@opindex mvirt
24771@opindex mno-virt
24772Use (do not use) the MIPS Virtualization (VZ) instructions.
24773
24774@item -mxpa
24775@itemx -mno-xpa
24776@opindex mxpa
24777@opindex mno-xpa
24778Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
24779
24780@item -mcrc
24781@itemx -mno-crc
24782@opindex mcrc
24783@opindex mno-crc
24784Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
24785
24786@item -mginv
24787@itemx -mno-ginv
24788@opindex mginv
24789@opindex mno-ginv
24790Use (do not use) the MIPS Global INValidate (GINV) instructions.
24791
24792@item -mloongson-mmi
24793@itemx -mno-loongson-mmi
24794@opindex mloongson-mmi
24795@opindex mno-loongson-mmi
24796Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
24797
24798@item -mloongson-ext
24799@itemx -mno-loongson-ext
24800@opindex mloongson-ext
24801@opindex mno-loongson-ext
24802Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
24803
24804@item -mloongson-ext2
24805@itemx -mno-loongson-ext2
24806@opindex mloongson-ext2
24807@opindex mno-loongson-ext2
24808Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
24809
24810@item -mlong64
24811@opindex mlong64
24812Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
24813an explanation of the default and the way that the pointer size is
24814determined.
24815
24816@item -mlong32
24817@opindex mlong32
24818Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
24819
24820The default size of @code{int}s, @code{long}s and pointers depends on
24821the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
24822uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
2482332-bit @code{long}s.  Pointers are the same size as @code{long}s,
24824or the same size as integer registers, whichever is smaller.
24825
24826@item -msym32
24827@itemx -mno-sym32
24828@opindex msym32
24829@opindex mno-sym32
24830Assume (do not assume) that all symbols have 32-bit values, regardless
24831of the selected ABI@.  This option is useful in combination with
24832@option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
24833to generate shorter and faster references to symbolic addresses.
24834
24835@item -G @var{num}
24836@opindex G
24837Put definitions of externally-visible data in a small data section
24838if that data is no bigger than @var{num} bytes.  GCC can then generate
24839more efficient accesses to the data; see @option{-mgpopt} for details.
24840
24841The default @option{-G} option depends on the configuration.
24842
24843@item -mlocal-sdata
24844@itemx -mno-local-sdata
24845@opindex mlocal-sdata
24846@opindex mno-local-sdata
24847Extend (do not extend) the @option{-G} behavior to local data too,
24848such as to static variables in C@.  @option{-mlocal-sdata} is the
24849default for all configurations.
24850
24851If the linker complains that an application is using too much small data,
24852you might want to try rebuilding the less performance-critical parts with
24853@option{-mno-local-sdata}.  You might also want to build large
24854libraries with @option{-mno-local-sdata}, so that the libraries leave
24855more room for the main program.
24856
24857@item -mextern-sdata
24858@itemx -mno-extern-sdata
24859@opindex mextern-sdata
24860@opindex mno-extern-sdata
24861Assume (do not assume) that externally-defined data is in
24862a small data section if the size of that data is within the @option{-G} limit.
24863@option{-mextern-sdata} is the default for all configurations.
24864
24865If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
24866@var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
24867that is no bigger than @var{num} bytes, you must make sure that @var{Var}
24868is placed in a small data section.  If @var{Var} is defined by another
24869module, you must either compile that module with a high-enough
24870@option{-G} setting or attach a @code{section} attribute to @var{Var}'s
24871definition.  If @var{Var} is common, you must link the application
24872with a high-enough @option{-G} setting.
24873
24874The easiest way of satisfying these restrictions is to compile
24875and link every module with the same @option{-G} option.  However,
24876you may wish to build a library that supports several different
24877small data limits.  You can do this by compiling the library with
24878the highest supported @option{-G} setting and additionally using
24879@option{-mno-extern-sdata} to stop the library from making assumptions
24880about externally-defined data.
24881
24882@item -mgpopt
24883@itemx -mno-gpopt
24884@opindex mgpopt
24885@opindex mno-gpopt
24886Use (do not use) GP-relative accesses for symbols that are known to be
24887in a small data section; see @option{-G}, @option{-mlocal-sdata} and
24888@option{-mextern-sdata}.  @option{-mgpopt} is the default for all
24889configurations.
24890
24891@option{-mno-gpopt} is useful for cases where the @code{$gp} register
24892might not hold the value of @code{_gp}.  For example, if the code is
24893part of a library that might be used in a boot monitor, programs that
24894call boot monitor routines pass an unknown value in @code{$gp}.
24895(In such situations, the boot monitor itself is usually compiled
24896with @option{-G0}.)
24897
24898@option{-mno-gpopt} implies @option{-mno-local-sdata} and
24899@option{-mno-extern-sdata}.
24900
24901@item -membedded-data
24902@itemx -mno-embedded-data
24903@opindex membedded-data
24904@opindex mno-embedded-data
24905Allocate variables to the read-only data section first if possible, then
24906next in the small data section if possible, otherwise in data.  This gives
24907slightly slower code than the default, but reduces the amount of RAM required
24908when executing, and thus may be preferred for some embedded systems.
24909
24910@item -muninit-const-in-rodata
24911@itemx -mno-uninit-const-in-rodata
24912@opindex muninit-const-in-rodata
24913@opindex mno-uninit-const-in-rodata
24914Put uninitialized @code{const} variables in the read-only data section.
24915This option is only meaningful in conjunction with @option{-membedded-data}.
24916
24917@item -mcode-readable=@var{setting}
24918@opindex mcode-readable
24919Specify whether GCC may generate code that reads from executable sections.
24920There are three possible settings:
24921
24922@table @gcctabopt
24923@item -mcode-readable=yes
24924Instructions may freely access executable sections.  This is the
24925default setting.
24926
24927@item -mcode-readable=pcrel
24928MIPS16 PC-relative load instructions can access executable sections,
24929but other instructions must not do so.  This option is useful on 4KSc
24930and 4KSd processors when the code TLBs have the Read Inhibit bit set.
24931It is also useful on processors that can be configured to have a dual
24932instruction/data SRAM interface and that, like the M4K, automatically
24933redirect PC-relative loads to the instruction RAM.
24934
24935@item -mcode-readable=no
24936Instructions must not access executable sections.  This option can be
24937useful on targets that are configured to have a dual instruction/data
24938SRAM interface but that (unlike the M4K) do not automatically redirect
24939PC-relative loads to the instruction RAM.
24940@end table
24941
24942@item -msplit-addresses
24943@itemx -mno-split-addresses
24944@opindex msplit-addresses
24945@opindex mno-split-addresses
24946Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
24947relocation operators.  This option has been superseded by
24948@option{-mexplicit-relocs} but is retained for backwards compatibility.
24949
24950@item -mexplicit-relocs
24951@itemx -mno-explicit-relocs
24952@opindex mexplicit-relocs
24953@opindex mno-explicit-relocs
24954Use (do not use) assembler relocation operators when dealing with symbolic
24955addresses.  The alternative, selected by @option{-mno-explicit-relocs},
24956is to use assembler macros instead.
24957
24958@option{-mexplicit-relocs} is the default if GCC was configured
24959to use an assembler that supports relocation operators.
24960
24961@item -mcheck-zero-division
24962@itemx -mno-check-zero-division
24963@opindex mcheck-zero-division
24964@opindex mno-check-zero-division
24965Trap (do not trap) on integer division by zero.
24966
24967The default is @option{-mcheck-zero-division}.
24968
24969@item -mdivide-traps
24970@itemx -mdivide-breaks
24971@opindex mdivide-traps
24972@opindex mdivide-breaks
24973MIPS systems check for division by zero by generating either a
24974conditional trap or a break instruction.  Using traps results in
24975smaller code, but is only supported on MIPS II and later.  Also, some
24976versions of the Linux kernel have a bug that prevents trap from
24977generating the proper signal (@code{SIGFPE}).  Use @option{-mdivide-traps} to
24978allow conditional traps on architectures that support them and
24979@option{-mdivide-breaks} to force the use of breaks.
24980
24981The default is usually @option{-mdivide-traps}, but this can be
24982overridden at configure time using @option{--with-divide=breaks}.
24983Divide-by-zero checks can be completely disabled using
24984@option{-mno-check-zero-division}.
24985
24986@item -mload-store-pairs
24987@itemx -mno-load-store-pairs
24988@opindex mload-store-pairs
24989@opindex mno-load-store-pairs
24990Enable (disable) an optimization that pairs consecutive load or store
24991instructions to enable load/store bonding.  This option is enabled by
24992default but only takes effect when the selected architecture is known
24993to support bonding.
24994
24995@item -mmemcpy
24996@itemx -mno-memcpy
24997@opindex mmemcpy
24998@opindex mno-memcpy
24999Force (do not force) the use of @code{memcpy} for non-trivial block
25000moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
25001most constant-sized copies.
25002
25003@item -mlong-calls
25004@itemx -mno-long-calls
25005@opindex mlong-calls
25006@opindex mno-long-calls
25007Disable (do not disable) use of the @code{jal} instruction.  Calling
25008functions using @code{jal} is more efficient but requires the caller
25009and callee to be in the same 256 megabyte segment.
25010
25011This option has no effect on abicalls code.  The default is
25012@option{-mno-long-calls}.
25013
25014@item -mmad
25015@itemx -mno-mad
25016@opindex mmad
25017@opindex mno-mad
25018Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
25019instructions, as provided by the R4650 ISA@.
25020
25021@item -mimadd
25022@itemx -mno-imadd
25023@opindex mimadd
25024@opindex mno-imadd
25025Enable (disable) use of the @code{madd} and @code{msub} integer
25026instructions.  The default is @option{-mimadd} on architectures
25027that support @code{madd} and @code{msub} except for the 74k
25028architecture where it was found to generate slower code.
25029
25030@item -mfused-madd
25031@itemx -mno-fused-madd
25032@opindex mfused-madd
25033@opindex mno-fused-madd
25034Enable (disable) use of the floating-point multiply-accumulate
25035instructions, when they are available.  The default is
25036@option{-mfused-madd}.
25037
25038On the R8000 CPU when multiply-accumulate instructions are used,
25039the intermediate product is calculated to infinite precision
25040and is not subject to the FCSR Flush to Zero bit.  This may be
25041undesirable in some circumstances.  On other processors the result
25042is numerically identical to the equivalent computation using
25043separate multiply, add, subtract and negate instructions.
25044
25045@item -nocpp
25046@opindex nocpp
25047Tell the MIPS assembler to not run its preprocessor over user
25048assembler files (with a @samp{.s} suffix) when assembling them.
25049
25050@item -mfix-24k
25051@itemx -mno-fix-24k
25052@opindex mfix-24k
25053@opindex mno-fix-24k
25054Work around the 24K E48 (lost data on stores during refill) errata.
25055The workarounds are implemented by the assembler rather than by GCC@.
25056
25057@item -mfix-r4000
25058@itemx -mno-fix-r4000
25059@opindex mfix-r4000
25060@opindex mno-fix-r4000
25061Work around certain R4000 CPU errata:
25062@itemize @minus
25063@item
25064A double-word or a variable shift may give an incorrect result if executed
25065immediately after starting an integer division.
25066@item
25067A double-word or a variable shift may give an incorrect result if executed
25068while an integer multiplication is in progress.
25069@item
25070An integer division may give an incorrect result if started in a delay slot
25071of a taken branch or a jump.
25072@end itemize
25073
25074@item -mfix-r4400
25075@itemx -mno-fix-r4400
25076@opindex mfix-r4400
25077@opindex mno-fix-r4400
25078Work around certain R4400 CPU errata:
25079@itemize @minus
25080@item
25081A double-word or a variable shift may give an incorrect result if executed
25082immediately after starting an integer division.
25083@end itemize
25084
25085@item -mfix-r10000
25086@itemx -mno-fix-r10000
25087@opindex mfix-r10000
25088@opindex mno-fix-r10000
25089Work around certain R10000 errata:
25090@itemize @minus
25091@item
25092@code{ll}/@code{sc} sequences may not behave atomically on revisions
25093prior to 3.0.  They may deadlock on revisions 2.6 and earlier.
25094@end itemize
25095
25096This option can only be used if the target architecture supports
25097branch-likely instructions.  @option{-mfix-r10000} is the default when
25098@option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
25099otherwise.
25100
25101@item -mfix-r5900
25102@itemx -mno-fix-r5900
25103@opindex mfix-r5900
25104Do not attempt to schedule the preceding instruction into the delay slot
25105of a branch instruction placed at the end of a short loop of six
25106instructions or fewer and always schedule a @code{nop} instruction there
25107instead.  The short loop bug under certain conditions causes loops to
25108execute only once or twice, due to a hardware bug in the R5900 chip.  The
25109workaround is implemented by the assembler rather than by GCC@.
25110
25111@item -mfix-rm7000
25112@itemx -mno-fix-rm7000
25113@opindex mfix-rm7000
25114Work around the RM7000 @code{dmult}/@code{dmultu} errata.  The
25115workarounds are implemented by the assembler rather than by GCC@.
25116
25117@item -mfix-vr4120
25118@itemx -mno-fix-vr4120
25119@opindex mfix-vr4120
25120Work around certain VR4120 errata:
25121@itemize @minus
25122@item
25123@code{dmultu} does not always produce the correct result.
25124@item
25125@code{div} and @code{ddiv} do not always produce the correct result if one
25126of the operands is negative.
25127@end itemize
25128The workarounds for the division errata rely on special functions in
25129@file{libgcc.a}.  At present, these functions are only provided by
25130the @code{mips64vr*-elf} configurations.
25131
25132Other VR4120 errata require a NOP to be inserted between certain pairs of
25133instructions.  These errata are handled by the assembler, not by GCC itself.
25134
25135@item -mfix-vr4130
25136@opindex mfix-vr4130
25137Work around the VR4130 @code{mflo}/@code{mfhi} errata.  The
25138workarounds are implemented by the assembler rather than by GCC,
25139although GCC avoids using @code{mflo} and @code{mfhi} if the
25140VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
25141instructions are available instead.
25142
25143@item -mfix-sb1
25144@itemx -mno-fix-sb1
25145@opindex mfix-sb1
25146Work around certain SB-1 CPU core errata.
25147(This flag currently works around the SB-1 revision 2
25148``F1'' and ``F2'' floating-point errata.)
25149
25150@item -mr10k-cache-barrier=@var{setting}
25151@opindex mr10k-cache-barrier
25152Specify whether GCC should insert cache barriers to avoid the
25153side effects of speculation on R10K processors.
25154
25155In common with many processors, the R10K tries to predict the outcome
25156of a conditional branch and speculatively executes instructions from
25157the ``taken'' branch.  It later aborts these instructions if the
25158predicted outcome is wrong.  However, on the R10K, even aborted
25159instructions can have side effects.
25160
25161This problem only affects kernel stores and, depending on the system,
25162kernel loads.  As an example, a speculatively-executed store may load
25163the target memory into cache and mark the cache line as dirty, even if
25164the store itself is later aborted.  If a DMA operation writes to the
25165same area of memory before the ``dirty'' line is flushed, the cached
25166data overwrites the DMA-ed data.  See the R10K processor manual
25167for a full description, including other potential problems.
25168
25169One workaround is to insert cache barrier instructions before every memory
25170access that might be speculatively executed and that might have side
25171effects even if aborted.  @option{-mr10k-cache-barrier=@var{setting}}
25172controls GCC's implementation of this workaround.  It assumes that
25173aborted accesses to any byte in the following regions does not have
25174side effects:
25175
25176@enumerate
25177@item
25178the memory occupied by the current function's stack frame;
25179
25180@item
25181the memory occupied by an incoming stack argument;
25182
25183@item
25184the memory occupied by an object with a link-time-constant address.
25185@end enumerate
25186
25187It is the kernel's responsibility to ensure that speculative
25188accesses to these regions are indeed safe.
25189
25190If the input program contains a function declaration such as:
25191
25192@smallexample
25193void foo (void);
25194@end smallexample
25195
25196then the implementation of @code{foo} must allow @code{j foo} and
25197@code{jal foo} to be executed speculatively.  GCC honors this
25198restriction for functions it compiles itself.  It expects non-GCC
25199functions (such as hand-written assembly code) to do the same.
25200
25201The option has three forms:
25202
25203@table @gcctabopt
25204@item -mr10k-cache-barrier=load-store
25205Insert a cache barrier before a load or store that might be
25206speculatively executed and that might have side effects even
25207if aborted.
25208
25209@item -mr10k-cache-barrier=store
25210Insert a cache barrier before a store that might be speculatively
25211executed and that might have side effects even if aborted.
25212
25213@item -mr10k-cache-barrier=none
25214Disable the insertion of cache barriers.  This is the default setting.
25215@end table
25216
25217@item -mflush-func=@var{func}
25218@itemx -mno-flush-func
25219@opindex mflush-func
25220Specifies the function to call to flush the I and D caches, or to not
25221call any such function.  If called, the function must take the same
25222arguments as the common @code{_flush_func}, that is, the address of the
25223memory range for which the cache is being flushed, the size of the
25224memory range, and the number 3 (to flush both caches).  The default
25225depends on the target GCC was configured for, but commonly is either
25226@code{_flush_func} or @code{__cpu_flush}.
25227
25228@item mbranch-cost=@var{num}
25229@opindex mbranch-cost
25230Set the cost of branches to roughly @var{num} ``simple'' instructions.
25231This cost is only a heuristic and is not guaranteed to produce
25232consistent results across releases.  A zero cost redundantly selects
25233the default, which is based on the @option{-mtune} setting.
25234
25235@item -mbranch-likely
25236@itemx -mno-branch-likely
25237@opindex mbranch-likely
25238@opindex mno-branch-likely
25239Enable or disable use of Branch Likely instructions, regardless of the
25240default for the selected architecture.  By default, Branch Likely
25241instructions may be generated if they are supported by the selected
25242architecture.  An exception is for the MIPS32 and MIPS64 architectures
25243and processors that implement those architectures; for those, Branch
25244Likely instructions are not be generated by default because the MIPS32
25245and MIPS64 architectures specifically deprecate their use.
25246
25247@item -mcompact-branches=never
25248@itemx -mcompact-branches=optimal
25249@itemx -mcompact-branches=always
25250@opindex mcompact-branches=never
25251@opindex mcompact-branches=optimal
25252@opindex mcompact-branches=always
25253These options control which form of branches will be generated.  The
25254default is @option{-mcompact-branches=optimal}.
25255
25256The @option{-mcompact-branches=never} option ensures that compact branch
25257instructions will never be generated.
25258
25259The @option{-mcompact-branches=always} option ensures that a compact
25260branch instruction will be generated if available.  If a compact branch
25261instruction is not available, a delay slot form of the branch will be
25262used instead.
25263
25264This option is supported from MIPS Release 6 onwards.
25265
25266The @option{-mcompact-branches=optimal} option will cause a delay slot
25267branch to be used if one is available in the current ISA and the delay
25268slot is successfully filled.  If the delay slot is not filled, a compact
25269branch will be chosen if one is available.
25270
25271@item -mfp-exceptions
25272@itemx -mno-fp-exceptions
25273@opindex mfp-exceptions
25274Specifies whether FP exceptions are enabled.  This affects how
25275FP instructions are scheduled for some processors.
25276The default is that FP exceptions are
25277enabled.
25278
25279For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
2528064-bit code, then we can use both FP pipes.  Otherwise, we can only use one
25281FP pipe.
25282
25283@item -mvr4130-align
25284@itemx -mno-vr4130-align
25285@opindex mvr4130-align
25286The VR4130 pipeline is two-way superscalar, but can only issue two
25287instructions together if the first one is 8-byte aligned.  When this
25288option is enabled, GCC aligns pairs of instructions that it
25289thinks should execute in parallel.
25290
25291This option only has an effect when optimizing for the VR4130.
25292It normally makes code faster, but at the expense of making it bigger.
25293It is enabled by default at optimization level @option{-O3}.
25294
25295@item -msynci
25296@itemx -mno-synci
25297@opindex msynci
25298Enable (disable) generation of @code{synci} instructions on
25299architectures that support it.  The @code{synci} instructions (if
25300enabled) are generated when @code{__builtin___clear_cache} is
25301compiled.
25302
25303This option defaults to @option{-mno-synci}, but the default can be
25304overridden by configuring GCC with @option{--with-synci}.
25305
25306When compiling code for single processor systems, it is generally safe
25307to use @code{synci}.  However, on many multi-core (SMP) systems, it
25308does not invalidate the instruction caches on all cores and may lead
25309to undefined behavior.
25310
25311@item -mrelax-pic-calls
25312@itemx -mno-relax-pic-calls
25313@opindex mrelax-pic-calls
25314Try to turn PIC calls that are normally dispatched via register
25315@code{$25} into direct calls.  This is only possible if the linker can
25316resolve the destination at link time and if the destination is within
25317range for a direct call.
25318
25319@option{-mrelax-pic-calls} is the default if GCC was configured to use
25320an assembler and a linker that support the @code{.reloc} assembly
25321directive and @option{-mexplicit-relocs} is in effect.  With
25322@option{-mno-explicit-relocs}, this optimization can be performed by the
25323assembler and the linker alone without help from the compiler.
25324
25325@item -mmcount-ra-address
25326@itemx -mno-mcount-ra-address
25327@opindex mmcount-ra-address
25328@opindex mno-mcount-ra-address
25329Emit (do not emit) code that allows @code{_mcount} to modify the
25330calling function's return address.  When enabled, this option extends
25331the usual @code{_mcount} interface with a new @var{ra-address}
25332parameter, which has type @code{intptr_t *} and is passed in register
25333@code{$12}.  @code{_mcount} can then modify the return address by
25334doing both of the following:
25335@itemize
25336@item
25337Returning the new address in register @code{$31}.
25338@item
25339Storing the new address in @code{*@var{ra-address}},
25340if @var{ra-address} is nonnull.
25341@end itemize
25342
25343The default is @option{-mno-mcount-ra-address}.
25344
25345@item -mframe-header-opt
25346@itemx -mno-frame-header-opt
25347@opindex mframe-header-opt
25348Enable (disable) frame header optimization in the o32 ABI.  When using the
25349o32 ABI, calling functions will allocate 16 bytes on the stack for the called
25350function to write out register arguments.  When enabled, this optimization
25351will suppress the allocation of the frame header if it can be determined that
25352it is unused.
25353
25354This optimization is off by default at all optimization levels.
25355
25356@item -mlxc1-sxc1
25357@itemx -mno-lxc1-sxc1
25358@opindex mlxc1-sxc1
25359When applicable, enable (disable) the generation of @code{lwxc1},
25360@code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions.  Enabled by default.
25361
25362@item -mmadd4
25363@itemx -mno-madd4
25364@opindex mmadd4
25365When applicable, enable (disable) the generation of 4-operand @code{madd.s},
25366@code{madd.d} and related instructions.  Enabled by default.
25367
25368@end table
25369
25370@node MMIX Options
25371@subsection MMIX Options
25372@cindex MMIX Options
25373
25374These options are defined for the MMIX:
25375
25376@table @gcctabopt
25377@item -mlibfuncs
25378@itemx -mno-libfuncs
25379@opindex mlibfuncs
25380@opindex mno-libfuncs
25381Specify that intrinsic library functions are being compiled, passing all
25382values in registers, no matter the size.
25383
25384@item -mepsilon
25385@itemx -mno-epsilon
25386@opindex mepsilon
25387@opindex mno-epsilon
25388Generate floating-point comparison instructions that compare with respect
25389to the @code{rE} epsilon register.
25390
25391@item -mabi=mmixware
25392@itemx -mabi=gnu
25393@opindex mabi=mmixware
25394@opindex mabi=gnu
25395Generate code that passes function parameters and return values that (in
25396the called function) are seen as registers @code{$0} and up, as opposed to
25397the GNU ABI which uses global registers @code{$231} and up.
25398
25399@item -mzero-extend
25400@itemx -mno-zero-extend
25401@opindex mzero-extend
25402@opindex mno-zero-extend
25403When reading data from memory in sizes shorter than 64 bits, use (do not
25404use) zero-extending load instructions by default, rather than
25405sign-extending ones.
25406
25407@item -mknuthdiv
25408@itemx -mno-knuthdiv
25409@opindex mknuthdiv
25410@opindex mno-knuthdiv
25411Make the result of a division yielding a remainder have the same sign as
25412the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
25413remainder follows the sign of the dividend.  Both methods are
25414arithmetically valid, the latter being almost exclusively used.
25415
25416@item -mtoplevel-symbols
25417@itemx -mno-toplevel-symbols
25418@opindex mtoplevel-symbols
25419@opindex mno-toplevel-symbols
25420Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
25421code can be used with the @code{PREFIX} assembly directive.
25422
25423@item -melf
25424@opindex melf
25425Generate an executable in the ELF format, rather than the default
25426@samp{mmo} format used by the @command{mmix} simulator.
25427
25428@item -mbranch-predict
25429@itemx -mno-branch-predict
25430@opindex mbranch-predict
25431@opindex mno-branch-predict
25432Use (do not use) the probable-branch instructions, when static branch
25433prediction indicates a probable branch.
25434
25435@item -mbase-addresses
25436@itemx -mno-base-addresses
25437@opindex mbase-addresses
25438@opindex mno-base-addresses
25439Generate (do not generate) code that uses @emph{base addresses}.  Using a
25440base address automatically generates a request (handled by the assembler
25441and the linker) for a constant to be set up in a global register.  The
25442register is used for one or more base address requests within the range 0
25443to 255 from the value held in the register.  The generally leads to short
25444and fast code, but the number of different data items that can be
25445addressed is limited.  This means that a program that uses lots of static
25446data may require @option{-mno-base-addresses}.
25447
25448@item -msingle-exit
25449@itemx -mno-single-exit
25450@opindex msingle-exit
25451@opindex mno-single-exit
25452Force (do not force) generated code to have a single exit point in each
25453function.
25454@end table
25455
25456@node MN10300 Options
25457@subsection MN10300 Options
25458@cindex MN10300 options
25459
25460These @option{-m} options are defined for Matsushita MN10300 architectures:
25461
25462@table @gcctabopt
25463@item -mmult-bug
25464@opindex mmult-bug
25465Generate code to avoid bugs in the multiply instructions for the MN10300
25466processors.  This is the default.
25467
25468@item -mno-mult-bug
25469@opindex mno-mult-bug
25470Do not generate code to avoid bugs in the multiply instructions for the
25471MN10300 processors.
25472
25473@item -mam33
25474@opindex mam33
25475Generate code using features specific to the AM33 processor.
25476
25477@item -mno-am33
25478@opindex mno-am33
25479Do not generate code using features specific to the AM33 processor.  This
25480is the default.
25481
25482@item -mam33-2
25483@opindex mam33-2
25484Generate code using features specific to the AM33/2.0 processor.
25485
25486@item -mam34
25487@opindex mam34
25488Generate code using features specific to the AM34 processor.
25489
25490@item -mtune=@var{cpu-type}
25491@opindex mtune
25492Use the timing characteristics of the indicated CPU type when
25493scheduling instructions.  This does not change the targeted processor
25494type.  The CPU type must be one of @samp{mn10300}, @samp{am33},
25495@samp{am33-2} or @samp{am34}.
25496
25497@item -mreturn-pointer-on-d0
25498@opindex mreturn-pointer-on-d0
25499When generating a function that returns a pointer, return the pointer
25500in both @code{a0} and @code{d0}.  Otherwise, the pointer is returned
25501only in @code{a0}, and attempts to call such functions without a prototype
25502result in errors.  Note that this option is on by default; use
25503@option{-mno-return-pointer-on-d0} to disable it.
25504
25505@item -mno-crt0
25506@opindex mno-crt0
25507Do not link in the C run-time initialization object file.
25508
25509@item -mrelax
25510@opindex mrelax
25511Indicate to the linker that it should perform a relaxation optimization pass
25512to shorten branches, calls and absolute memory addresses.  This option only
25513has an effect when used on the command line for the final link step.
25514
25515This option makes symbolic debugging impossible.
25516
25517@item -mliw
25518@opindex mliw
25519Allow the compiler to generate @emph{Long Instruction Word}
25520instructions if the target is the @samp{AM33} or later.  This is the
25521default.  This option defines the preprocessor macro @code{__LIW__}.
25522
25523@item -mno-liw
25524@opindex mno-liw
25525Do not allow the compiler to generate @emph{Long Instruction Word}
25526instructions.  This option defines the preprocessor macro
25527@code{__NO_LIW__}.
25528
25529@item -msetlb
25530@opindex msetlb
25531Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
25532instructions if the target is the @samp{AM33} or later.  This is the
25533default.  This option defines the preprocessor macro @code{__SETLB__}.
25534
25535@item -mno-setlb
25536@opindex mno-setlb
25537Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
25538instructions.  This option defines the preprocessor macro
25539@code{__NO_SETLB__}.
25540
25541@end table
25542
25543@node Moxie Options
25544@subsection Moxie Options
25545@cindex Moxie Options
25546
25547@table @gcctabopt
25548
25549@item -meb
25550@opindex meb
25551Generate big-endian code.  This is the default for @samp{moxie-*-*}
25552configurations.
25553
25554@item -mel
25555@opindex mel
25556Generate little-endian code.
25557
25558@item -mmul.x
25559@opindex mmul.x
25560Generate mul.x and umul.x instructions.  This is the default for
25561@samp{moxiebox-*-*} configurations.
25562
25563@item -mno-crt0
25564@opindex mno-crt0
25565Do not link in the C run-time initialization object file.
25566
25567@end table
25568
25569@node MSP430 Options
25570@subsection MSP430 Options
25571@cindex MSP430 Options
25572
25573These options are defined for the MSP430:
25574
25575@table @gcctabopt
25576
25577@item -masm-hex
25578@opindex masm-hex
25579Force assembly output to always use hex constants.  Normally such
25580constants are signed decimals, but this option is available for
25581testsuite and/or aesthetic purposes.
25582
25583@item -mmcu=
25584@opindex mmcu=
25585Select the MCU to target.  This is used to create a C preprocessor
25586symbol based upon the MCU name, converted to upper case and pre- and
25587post-fixed with @samp{__}.  This in turn is used by the
25588@file{msp430.h} header file to select an MCU-specific supplementary
25589header file.
25590
25591The option also sets the ISA to use.  If the MCU name is one that is
25592known to only support the 430 ISA then that is selected, otherwise the
25593430X ISA is selected.  A generic MCU name of @samp{msp430} can also be
25594used to select the 430 ISA.  Similarly the generic @samp{msp430x} MCU
25595name selects the 430X ISA.
25596
25597In addition an MCU-specific linker script is added to the linker
25598command line.  The script's name is the name of the MCU with
25599@file{.ld} appended.  Thus specifying @option{-mmcu=xxx} on the @command{gcc}
25600command line defines the C preprocessor symbol @code{__XXX__} and
25601cause the linker to search for a script called @file{xxx.ld}.
25602
25603The ISA and hardware multiply supported for the different MCUs is hard-coded
25604into GCC.  However, an external @samp{devices.csv} file can be used to
25605extend device support beyond those that have been hard-coded.
25606
25607GCC searches for the @samp{devices.csv} file using the following methods in the
25608given precedence order, where the first method takes precendence over the
25609second which takes precedence over the third.
25610
25611@table @asis
25612@item Include path specified with @code{-I} and @code{-L}
25613@samp{devices.csv} will be searched for in each of the directories specified by
25614include paths and linker library search paths.
25615@item Path specified by the environment variable @samp{MSP430_GCC_INCLUDE_DIR}
25616Define the value of the global environment variable
25617@samp{MSP430_GCC_INCLUDE_DIR}
25618to the full path to the directory containing devices.csv, and GCC will search
25619this directory for devices.csv.  If devices.csv is found, this directory will
25620also be registered as an include path, and linker library path.  Header files
25621and linker scripts in this directory can therefore be used without manually
25622specifying @code{-I} and @code{-L} on the command line.
25623@item The @samp{msp430-elf@{,bare@}/include/devices} directory
25624Finally, GCC will examine @samp{msp430-elf@{,bare@}/include/devices} from the
25625toolchain root directory.  This directory does not exist in a default
25626installation, but if the user has created it and copied @samp{devices.csv}
25627there, then the MCU data will be read.  As above, this directory will
25628also be registered as an include path, and linker library path.
25629
25630@end table
25631If none of the above search methods find @samp{devices.csv}, then the
25632hard-coded MCU data is used.
25633
25634
25635@item -mwarn-mcu
25636@itemx -mno-warn-mcu
25637@opindex mwarn-mcu
25638@opindex mno-warn-mcu
25639This option enables or disables warnings about conflicts between the
25640MCU name specified by the @option{-mmcu} option and the ISA set by the
25641@option{-mcpu} option and/or the hardware multiply support set by the
25642@option{-mhwmult} option.  It also toggles warnings about unrecognized
25643MCU names.  This option is on by default.
25644
25645@item -mcpu=
25646@opindex mcpu=
25647Specifies the ISA to use.  Accepted values are @samp{msp430},
25648@samp{msp430x} and @samp{msp430xv2}.  This option is deprecated.  The
25649@option{-mmcu=} option should be used to select the ISA.
25650
25651@item -msim
25652@opindex msim
25653Link to the simulator runtime libraries and linker script.  Overrides
25654any scripts that would be selected by the @option{-mmcu=} option.
25655
25656@item -mlarge
25657@opindex mlarge
25658Use large-model addressing (20-bit pointers, 20-bit @code{size_t}).
25659
25660@item -msmall
25661@opindex msmall
25662Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
25663
25664@item -mrelax
25665@opindex mrelax
25666This option is passed to the assembler and linker, and allows the
25667linker to perform certain optimizations that cannot be done until
25668the final link.
25669
25670@item mhwmult=
25671@opindex mhwmult=
25672Describes the type of hardware multiply supported by the target.
25673Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
25674for the original 16-bit-only multiply supported by early MCUs.
25675@samp{32bit} for the 16/32-bit multiply supported by later MCUs and
25676@samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
25677A value of @samp{auto} can also be given.  This tells GCC to deduce
25678the hardware multiply support based upon the MCU name provided by the
25679@option{-mmcu} option.  If no @option{-mmcu} option is specified or if
25680the MCU name is not recognized then no hardware multiply support is
25681assumed.  @code{auto} is the default setting.
25682
25683Hardware multiplies are normally performed by calling a library
25684routine.  This saves space in the generated code.  When compiling at
25685@option{-O3} or higher however the hardware multiplier is invoked
25686inline.  This makes for bigger, but faster code.
25687
25688The hardware multiply routines disable interrupts whilst running and
25689restore the previous interrupt state when they finish.  This makes
25690them safe to use inside interrupt handlers as well as in normal code.
25691
25692@item -minrt
25693@opindex minrt
25694Enable the use of a minimum runtime environment - no static
25695initializers or constructors.  This is intended for memory-constrained
25696devices.  The compiler includes special symbols in some objects
25697that tell the linker and runtime which code fragments are required.
25698
25699@item -mtiny-printf
25700@opindex mtiny-printf
25701Enable reduced code size @code{printf} and @code{puts} library functions.
25702The @samp{tiny} implementations of these functions are not reentrant, so
25703must be used with caution in multi-threaded applications.
25704
25705Support for streams has been removed and the string to be printed will
25706always be sent to stdout via the @code{write} syscall.  The string is not
25707buffered before it is sent to write.
25708
25709This option requires Newlib Nano IO, so GCC must be configured with
25710@samp{--enable-newlib-nano-formatted-io}.
25711
25712@item -mmax-inline-shift=
25713@opindex mmax-inline-shift=
25714This option takes an integer between 0 and 64 inclusive, and sets
25715the maximum number of inline shift instructions which should be emitted to
25716perform a shift operation by a constant amount.  When this value needs to be
25717exceeded, an mspabi helper function is used instead.  The default value is 4.
25718
25719This only affects cases where a shift by multiple positions cannot be
25720completed with a single instruction (e.g. all shifts >1 on the 430 ISA).
25721
25722Shifts of a 32-bit value are at least twice as costly, so the value passed for
25723this option is divided by 2 and the resulting value used instead.
25724
25725@item -mcode-region=
25726@itemx -mdata-region=
25727@opindex mcode-region
25728@opindex mdata-region
25729These options tell the compiler where to place functions and data that
25730do not have one of the @code{lower}, @code{upper}, @code{either} or
25731@code{section} attributes.  Possible values are @code{lower},
25732@code{upper}, @code{either} or @code{any}.  The first three behave
25733like the corresponding attribute.  The fourth possible value -
25734@code{any} - is the default.  It leaves placement entirely up to the
25735linker script and how it assigns the standard sections
25736(@code{.text}, @code{.data}, etc) to the memory regions.
25737
25738@item -msilicon-errata=
25739@opindex msilicon-errata
25740This option passes on a request to assembler to enable the fixes for
25741the named silicon errata.
25742
25743@item -msilicon-errata-warn=
25744@opindex msilicon-errata-warn
25745This option passes on a request to the assembler to enable warning
25746messages when a silicon errata might need to be applied.
25747
25748@item -mwarn-devices-csv
25749@itemx -mno-warn-devices-csv
25750@opindex mwarn-devices-csv
25751@opindex mno-warn-devices-csv
25752Warn if @samp{devices.csv} is not found or there are problem parsing it
25753(default: on).
25754
25755@end table
25756
25757@node NDS32 Options
25758@subsection NDS32 Options
25759@cindex NDS32 Options
25760
25761These options are defined for NDS32 implementations:
25762
25763@table @gcctabopt
25764
25765@item -mbig-endian
25766@opindex mbig-endian
25767Generate code in big-endian mode.
25768
25769@item -mlittle-endian
25770@opindex mlittle-endian
25771Generate code in little-endian mode.
25772
25773@item -mreduced-regs
25774@opindex mreduced-regs
25775Use reduced-set registers for register allocation.
25776
25777@item -mfull-regs
25778@opindex mfull-regs
25779Use full-set registers for register allocation.
25780
25781@item -mcmov
25782@opindex mcmov
25783Generate conditional move instructions.
25784
25785@item -mno-cmov
25786@opindex mno-cmov
25787Do not generate conditional move instructions.
25788
25789@item -mext-perf
25790@opindex mext-perf
25791Generate performance extension instructions.
25792
25793@item -mno-ext-perf
25794@opindex mno-ext-perf
25795Do not generate performance extension instructions.
25796
25797@item -mext-perf2
25798@opindex mext-perf2
25799Generate performance extension 2 instructions.
25800
25801@item -mno-ext-perf2
25802@opindex mno-ext-perf2
25803Do not generate performance extension 2 instructions.
25804
25805@item -mext-string
25806@opindex mext-string
25807Generate string extension instructions.
25808
25809@item -mno-ext-string
25810@opindex mno-ext-string
25811Do not generate string extension instructions.
25812
25813@item -mv3push
25814@opindex mv3push
25815Generate v3 push25/pop25 instructions.
25816
25817@item -mno-v3push
25818@opindex mno-v3push
25819Do not generate v3 push25/pop25 instructions.
25820
25821@item -m16-bit
25822@opindex m16-bit
25823Generate 16-bit instructions.
25824
25825@item -mno-16-bit
25826@opindex mno-16-bit
25827Do not generate 16-bit instructions.
25828
25829@item -misr-vector-size=@var{num}
25830@opindex misr-vector-size
25831Specify the size of each interrupt vector, which must be 4 or 16.
25832
25833@item -mcache-block-size=@var{num}
25834@opindex mcache-block-size
25835Specify the size of each cache block,
25836which must be a power of 2 between 4 and 512.
25837
25838@item -march=@var{arch}
25839@opindex march
25840Specify the name of the target architecture.
25841
25842@item -mcmodel=@var{code-model}
25843@opindex mcmodel
25844Set the code model to one of
25845@table @asis
25846@item @samp{small}
25847All the data and read-only data segments must be within 512KB addressing space.
25848The text segment must be within 16MB addressing space.
25849@item @samp{medium}
25850The data segment must be within 512KB while the read-only data segment can be
25851within 4GB addressing space.  The text segment should be still within 16MB
25852addressing space.
25853@item @samp{large}
25854All the text and data segments can be within 4GB addressing space.
25855@end table
25856
25857@item -mctor-dtor
25858@opindex mctor-dtor
25859Enable constructor/destructor feature.
25860
25861@item -mrelax
25862@opindex mrelax
25863Guide linker to relax instructions.
25864
25865@end table
25866
25867@node Nios II Options
25868@subsection Nios II Options
25869@cindex Nios II options
25870@cindex Altera Nios II options
25871
25872These are the options defined for the Altera Nios II processor.
25873
25874@table @gcctabopt
25875
25876@item -G @var{num}
25877@opindex G
25878@cindex smaller data references
25879Put global and static objects less than or equal to @var{num} bytes
25880into the small data or BSS sections instead of the normal data or BSS
25881sections.  The default value of @var{num} is 8.
25882
25883@item -mgpopt=@var{option}
25884@itemx -mgpopt
25885@itemx -mno-gpopt
25886@opindex mgpopt
25887@opindex mno-gpopt
25888Generate (do not generate) GP-relative accesses.  The following
25889@var{option} names are recognized:
25890
25891@table @samp
25892
25893@item none
25894Do not generate GP-relative accesses.
25895
25896@item local
25897Generate GP-relative accesses for small data objects that are not
25898external, weak, or uninitialized common symbols.
25899Also use GP-relative addressing for objects that
25900have been explicitly placed in a small data section via a @code{section}
25901attribute.
25902
25903@item global
25904As for @samp{local}, but also generate GP-relative accesses for
25905small data objects that are external, weak, or common.  If you use this option,
25906you must ensure that all parts of your program (including libraries) are
25907compiled with the same @option{-G} setting.
25908
25909@item data
25910Generate GP-relative accesses for all data objects in the program.  If you
25911use this option, the entire data and BSS segments
25912of your program must fit in 64K of memory and you must use an appropriate
25913linker script to allocate them within the addressable range of the
25914global pointer.
25915
25916@item all
25917Generate GP-relative addresses for function pointers as well as data
25918pointers.  If you use this option, the entire text, data, and BSS segments
25919of your program must fit in 64K of memory and you must use an appropriate
25920linker script to allocate them within the addressable range of the
25921global pointer.
25922
25923@end table
25924
25925@option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
25926@option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
25927
25928The default is @option{-mgpopt} except when @option{-fpic} or
25929@option{-fPIC} is specified to generate position-independent code.
25930Note that the Nios II ABI does not permit GP-relative accesses from
25931shared libraries.
25932
25933You may need to specify @option{-mno-gpopt} explicitly when building
25934programs that include large amounts of small data, including large
25935GOT data sections.  In this case, the 16-bit offset for GP-relative
25936addressing may not be large enough to allow access to the entire
25937small data section.
25938
25939@item -mgprel-sec=@var{regexp}
25940@opindex mgprel-sec
25941This option specifies additional section names that can be accessed via
25942GP-relative addressing.  It is most useful in conjunction with
25943@code{section} attributes on variable declarations
25944(@pxref{Common Variable Attributes}) and a custom linker script.
25945The @var{regexp} is a POSIX Extended Regular Expression.
25946
25947This option does not affect the behavior of the @option{-G} option, and
25948the specified sections are in addition to the standard @code{.sdata}
25949and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
25950
25951@item -mr0rel-sec=@var{regexp}
25952@opindex mr0rel-sec
25953This option specifies names of sections that can be accessed via a
2595416-bit offset from @code{r0}; that is, in the low 32K or high 32K
25955of the 32-bit address space.  It is most useful in conjunction with
25956@code{section} attributes on variable declarations
25957(@pxref{Common Variable Attributes}) and a custom linker script.
25958The @var{regexp} is a POSIX Extended Regular Expression.
25959
25960In contrast to the use of GP-relative addressing for small data,
25961zero-based addressing is never generated by default and there are no
25962conventional section names used in standard linker scripts for sections
25963in the low or high areas of memory.
25964
25965@item -mel
25966@itemx -meb
25967@opindex mel
25968@opindex meb
25969Generate little-endian (default) or big-endian (experimental) code,
25970respectively.
25971
25972@item -march=@var{arch}
25973@opindex march
25974This specifies the name of the target Nios II architecture.  GCC uses this
25975name to determine what kind of instructions it can emit when generating
25976assembly code.  Permissible names are: @samp{r1}, @samp{r2}.
25977
25978The preprocessor macro @code{__nios2_arch__} is available to programs,
25979with value 1 or 2, indicating the targeted ISA level.
25980
25981@item -mbypass-cache
25982@itemx -mno-bypass-cache
25983@opindex mno-bypass-cache
25984@opindex mbypass-cache
25985Force all load and store instructions to always bypass cache by
25986using I/O variants of the instructions. The default is not to
25987bypass the cache.
25988
25989@item -mno-cache-volatile
25990@itemx -mcache-volatile
25991@opindex mcache-volatile
25992@opindex mno-cache-volatile
25993Volatile memory access bypass the cache using the I/O variants of
25994the load and store instructions. The default is not to bypass the cache.
25995
25996@item -mno-fast-sw-div
25997@itemx -mfast-sw-div
25998@opindex mno-fast-sw-div
25999@opindex mfast-sw-div
26000Do not use table-based fast divide for small numbers. The default
26001is to use the fast divide at @option{-O3} and above.
26002
26003@item -mno-hw-mul
26004@itemx -mhw-mul
26005@itemx -mno-hw-mulx
26006@itemx -mhw-mulx
26007@itemx -mno-hw-div
26008@itemx -mhw-div
26009@opindex mno-hw-mul
26010@opindex mhw-mul
26011@opindex mno-hw-mulx
26012@opindex mhw-mulx
26013@opindex mno-hw-div
26014@opindex mhw-div
26015Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
26016instructions by the compiler. The default is to emit @code{mul}
26017and not emit @code{div} and @code{mulx}.
26018
26019@item -mbmx
26020@itemx -mno-bmx
26021@itemx -mcdx
26022@itemx -mno-cdx
26023Enable or disable generation of Nios II R2 BMX (bit manipulation) and
26024CDX (code density) instructions.  Enabling these instructions also
26025requires @option{-march=r2}.  Since these instructions are optional
26026extensions to the R2 architecture, the default is not to emit them.
26027
26028@item -mcustom-@var{insn}=@var{N}
26029@itemx -mno-custom-@var{insn}
26030@opindex mcustom-@var{insn}
26031@opindex mno-custom-@var{insn}
26032Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
26033custom instruction with encoding @var{N} when generating code that uses
26034@var{insn}.  For example, @option{-mcustom-fadds=253} generates custom
26035instruction 253 for single-precision floating-point add operations instead
26036of the default behavior of using a library call.
26037
26038The following values of @var{insn} are supported.  Except as otherwise
26039noted, floating-point operations are expected to be implemented with
26040normal IEEE 754 semantics and correspond directly to the C operators or the
26041equivalent GCC built-in functions (@pxref{Other Builtins}).
26042
26043Single-precision floating point:
26044@table @asis
26045
26046@item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
26047Binary arithmetic operations.
26048
26049@item @samp{fnegs}
26050Unary negation.
26051
26052@item @samp{fabss}
26053Unary absolute value.
26054
26055@item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
26056Comparison operations.
26057
26058@item @samp{fmins}, @samp{fmaxs}
26059Floating-point minimum and maximum.  These instructions are only
26060generated if @option{-ffinite-math-only} is specified.
26061
26062@item @samp{fsqrts}
26063Unary square root operation.
26064
26065@item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
26066Floating-point trigonometric and exponential functions.  These instructions
26067are only generated if @option{-funsafe-math-optimizations} is also specified.
26068
26069@end table
26070
26071Double-precision floating point:
26072@table @asis
26073
26074@item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
26075Binary arithmetic operations.
26076
26077@item @samp{fnegd}
26078Unary negation.
26079
26080@item @samp{fabsd}
26081Unary absolute value.
26082
26083@item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
26084Comparison operations.
26085
26086@item @samp{fmind}, @samp{fmaxd}
26087Double-precision minimum and maximum.  These instructions are only
26088generated if @option{-ffinite-math-only} is specified.
26089
26090@item @samp{fsqrtd}
26091Unary square root operation.
26092
26093@item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
26094Double-precision trigonometric and exponential functions.  These instructions
26095are only generated if @option{-funsafe-math-optimizations} is also specified.
26096
26097@end table
26098
26099Conversions:
26100@table @asis
26101@item @samp{fextsd}
26102Conversion from single precision to double precision.
26103
26104@item @samp{ftruncds}
26105Conversion from double precision to single precision.
26106
26107@item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
26108Conversion from floating point to signed or unsigned integer types, with
26109truncation towards zero.
26110
26111@item @samp{round}
26112Conversion from single-precision floating point to signed integer,
26113rounding to the nearest integer and ties away from zero.
26114This corresponds to the @code{__builtin_lroundf} function when
26115@option{-fno-math-errno} is used.
26116
26117@item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
26118Conversion from signed or unsigned integer types to floating-point types.
26119
26120@end table
26121
26122In addition, all of the following transfer instructions for internal
26123registers X and Y must be provided to use any of the double-precision
26124floating-point instructions.  Custom instructions taking two
26125double-precision source operands expect the first operand in the
2612664-bit register X.  The other operand (or only operand of a unary
26127operation) is given to the custom arithmetic instruction with the
26128least significant half in source register @var{src1} and the most
26129significant half in @var{src2}.  A custom instruction that returns a
26130double-precision result returns the most significant 32 bits in the
26131destination register and the other half in 32-bit register Y.
26132GCC automatically generates the necessary code sequences to write
26133register X and/or read register Y when double-precision floating-point
26134instructions are used.
26135
26136@table @asis
26137
26138@item @samp{fwrx}
26139Write @var{src1} into the least significant half of X and @var{src2} into
26140the most significant half of X.
26141
26142@item @samp{fwry}
26143Write @var{src1} into Y.
26144
26145@item @samp{frdxhi}, @samp{frdxlo}
26146Read the most or least (respectively) significant half of X and store it in
26147@var{dest}.
26148
26149@item @samp{frdy}
26150Read the value of Y and store it into @var{dest}.
26151@end table
26152
26153Note that you can gain more local control over generation of Nios II custom
26154instructions by using the @code{target("custom-@var{insn}=@var{N}")}
26155and @code{target("no-custom-@var{insn}")} function attributes
26156(@pxref{Function Attributes})
26157or pragmas (@pxref{Function Specific Option Pragmas}).
26158
26159@item -mcustom-fpu-cfg=@var{name}
26160@opindex mcustom-fpu-cfg
26161
26162This option enables a predefined, named set of custom instruction encodings
26163(see @option{-mcustom-@var{insn}} above).
26164Currently, the following sets are defined:
26165
26166@option{-mcustom-fpu-cfg=60-1} is equivalent to:
26167@gccoptlist{-mcustom-fmuls=252 @gol
26168-mcustom-fadds=253 @gol
26169-mcustom-fsubs=254 @gol
26170-fsingle-precision-constant}
26171
26172@option{-mcustom-fpu-cfg=60-2} is equivalent to:
26173@gccoptlist{-mcustom-fmuls=252 @gol
26174-mcustom-fadds=253 @gol
26175-mcustom-fsubs=254 @gol
26176-mcustom-fdivs=255 @gol
26177-fsingle-precision-constant}
26178
26179@option{-mcustom-fpu-cfg=72-3} is equivalent to:
26180@gccoptlist{-mcustom-floatus=243 @gol
26181-mcustom-fixsi=244 @gol
26182-mcustom-floatis=245 @gol
26183-mcustom-fcmpgts=246 @gol
26184-mcustom-fcmples=249 @gol
26185-mcustom-fcmpeqs=250 @gol
26186-mcustom-fcmpnes=251 @gol
26187-mcustom-fmuls=252 @gol
26188-mcustom-fadds=253 @gol
26189-mcustom-fsubs=254 @gol
26190-mcustom-fdivs=255 @gol
26191-fsingle-precision-constant}
26192
26193@option{-mcustom-fpu-cfg=fph2} is equivalent to:
26194@gccoptlist{-mcustom-fabss=224 @gol
26195-mcustom-fnegs=225 @gol
26196-mcustom-fcmpnes=226 @gol
26197-mcustom-fcmpeqs=227 @gol
26198-mcustom-fcmpges=228 @gol
26199-mcustom-fcmpgts=229 @gol
26200-mcustom-fcmples=230 @gol
26201-mcustom-fcmplts=231 @gol
26202-mcustom-fmaxs=232 @gol
26203-mcustom-fmins=233 @gol
26204-mcustom-round=248 @gol
26205-mcustom-fixsi=249 @gol
26206-mcustom-floatis=250 @gol
26207-mcustom-fsqrts=251 @gol
26208-mcustom-fmuls=252 @gol
26209-mcustom-fadds=253 @gol
26210-mcustom-fsubs=254 @gol
26211-mcustom-fdivs=255 @gol}
26212
26213Custom instruction assignments given by individual
26214@option{-mcustom-@var{insn}=} options override those given by
26215@option{-mcustom-fpu-cfg=}, regardless of the
26216order of the options on the command line.
26217
26218Note that you can gain more local control over selection of a FPU
26219configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
26220function attribute (@pxref{Function Attributes})
26221or pragma (@pxref{Function Specific Option Pragmas}).
26222
26223The name @var{fph2} is an abbreviation for @emph{Nios II Floating Point
26224Hardware 2 Component}.  Please note that the custom instructions enabled by
26225@option{-mcustom-fmins=233} and @option{-mcustom-fmaxs=234} are only generated
26226if @option{-ffinite-math-only} is specified.  The custom instruction enabled by
26227@option{-mcustom-round=248} is only generated if @option{-fno-math-errno} is
26228specified.  In contrast to the other configurations,
26229@option{-fsingle-precision-constant} is not set.
26230
26231@end table
26232
26233These additional @samp{-m} options are available for the Altera Nios II
26234ELF (bare-metal) target:
26235
26236@table @gcctabopt
26237
26238@item -mhal
26239@opindex mhal
26240Link with HAL BSP.  This suppresses linking with the GCC-provided C runtime
26241startup and termination code, and is typically used in conjunction with
26242@option{-msys-crt0=} to specify the location of the alternate startup code
26243provided by the HAL BSP.
26244
26245@item -msmallc
26246@opindex msmallc
26247Link with a limited version of the C library, @option{-lsmallc}, rather than
26248Newlib.
26249
26250@item -msys-crt0=@var{startfile}
26251@opindex msys-crt0
26252@var{startfile} is the file name of the startfile (crt0) to use
26253when linking.  This option is only useful in conjunction with @option{-mhal}.
26254
26255@item -msys-lib=@var{systemlib}
26256@opindex msys-lib
26257@var{systemlib} is the library name of the library that provides
26258low-level system calls required by the C library,
26259e.g.@: @code{read} and @code{write}.
26260This option is typically used to link with a library provided by a HAL BSP.
26261
26262@end table
26263
26264@node Nvidia PTX Options
26265@subsection Nvidia PTX Options
26266@cindex Nvidia PTX options
26267@cindex nvptx options
26268
26269These options are defined for Nvidia PTX:
26270
26271@table @gcctabopt
26272
26273@item -m64
26274@opindex m64
26275Ignored, but preserved for backward compatibility.  Only 64-bit ABI is
26276supported.
26277
26278@item -misa=@var{ISA-string}
26279@opindex march
26280Generate code for given the specified PTX ISA (e.g.@: @samp{sm_35}).  ISA
26281strings must be lower-case.  Valid ISA strings include @samp{sm_30} and
26282@samp{sm_35}.  The default ISA is sm_35.
26283
26284@item -mmainkernel
26285@opindex mmainkernel
26286Link in code for a __main kernel.  This is for stand-alone instead of
26287offloading execution.
26288
26289@item -moptimize
26290@opindex moptimize
26291Apply partitioned execution optimizations.  This is the default when any
26292level of optimization is selected.
26293
26294@item -msoft-stack
26295@opindex msoft-stack
26296Generate code that does not use @code{.local} memory
26297directly for stack storage. Instead, a per-warp stack pointer is
26298maintained explicitly. This enables variable-length stack allocation (with
26299variable-length arrays or @code{alloca}), and when global memory is used for
26300underlying storage, makes it possible to access automatic variables from other
26301threads, or with atomic instructions. This code generation variant is used
26302for OpenMP offloading, but the option is exposed on its own for the purpose
26303of testing the compiler; to generate code suitable for linking into programs
26304using OpenMP offloading, use option @option{-mgomp}.
26305
26306@item -muniform-simt
26307@opindex muniform-simt
26308Switch to code generation variant that allows to execute all threads in each
26309warp, while maintaining memory state and side effects as if only one thread
26310in each warp was active outside of OpenMP SIMD regions.  All atomic operations
26311and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
26312current lane index equals the master lane index), and the register being
26313assigned is copied via a shuffle instruction from the master lane.  Outside of
26314SIMD regions lane 0 is the master; inside, each thread sees itself as the
26315master.  Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
26316all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
26317regions).  Each thread can bitwise-and the bitmask at position @code{tid.y}
26318with current lane index to compute the master lane index.
26319
26320@item -mgomp
26321@opindex mgomp
26322Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
26323@option{-muniform-simt} options, and selects corresponding multilib variant.
26324
26325@end table
26326
26327@node OpenRISC Options
26328@subsection OpenRISC Options
26329@cindex OpenRISC Options
26330
26331These options are defined for OpenRISC:
26332
26333@table @gcctabopt
26334
26335@item -mboard=@var{name}
26336@opindex mboard
26337Configure a board specific runtime.  This will be passed to the linker for
26338newlib board library linking.  The default is @code{or1ksim}.
26339
26340@item -mnewlib
26341@opindex mnewlib
26342This option is ignored; it is for compatibility purposes only.  This used to
26343select linker and preprocessor options for use with newlib.
26344
26345@item -msoft-div
26346@itemx -mhard-div
26347@opindex msoft-div
26348@opindex mhard-div
26349Select software or hardware divide (@code{l.div}, @code{l.divu}) instructions.
26350This default is hardware divide.
26351
26352@item -msoft-mul
26353@itemx -mhard-mul
26354@opindex msoft-mul
26355@opindex mhard-mul
26356Select software or hardware multiply (@code{l.mul}, @code{l.muli}) instructions.
26357This default is hardware multiply.
26358
26359@item -msoft-float
26360@itemx -mhard-float
26361@opindex msoft-float
26362@opindex mhard-float
26363Select software or hardware for floating point operations.
26364The default is software.
26365
26366@item -mdouble-float
26367@opindex mdouble-float
26368When @option{-mhard-float} is selected, enables generation of double-precision
26369floating point instructions.  By default functions from @file{libgcc} are used
26370to perform double-precision floating point operations.
26371
26372@item -munordered-float
26373@opindex munordered-float
26374When @option{-mhard-float} is selected, enables generation of unordered
26375floating point compare and set flag (@code{lf.sfun*}) instructions.  By default
26376functions from @file{libgcc} are used to perform unordered floating point
26377compare and set flag operations.
26378
26379@item -mcmov
26380@opindex mcmov
26381Enable generation of conditional move (@code{l.cmov}) instructions.  By
26382default the equivalent will be generated using set and branch.
26383
26384@item -mror
26385@opindex mror
26386Enable generation of rotate right (@code{l.ror}) instructions.  By default
26387functions from @file{libgcc} are used to perform rotate right operations.
26388
26389@item -mrori
26390@opindex mrori
26391Enable generation of rotate right with immediate (@code{l.rori}) instructions.
26392By default functions from @file{libgcc} are used to perform rotate right with
26393immediate operations.
26394
26395@item -msext
26396@opindex msext
26397Enable generation of sign extension (@code{l.ext*}) instructions.  By default
26398memory loads are used to perform sign extension.
26399
26400@item -msfimm
26401@opindex msfimm
26402Enable generation of compare and set flag with immediate (@code{l.sf*i})
26403instructions.  By default extra instructions will be generated to store the
26404immediate to a register first.
26405
26406@item -mshftimm
26407@opindex mshftimm
26408Enable generation of shift with immediate (@code{l.srai}, @code{l.srli},
26409@code{l.slli}) instructions.  By default extra instructions will be generated
26410to store the immediate to a register first.
26411
26412
26413@end table
26414
26415@node PDP-11 Options
26416@subsection PDP-11 Options
26417@cindex PDP-11 Options
26418
26419These options are defined for the PDP-11:
26420
26421@table @gcctabopt
26422@item -mfpu
26423@opindex mfpu
26424Use hardware FPP floating point.  This is the default.  (FIS floating
26425point on the PDP-11/40 is not supported.)  Implies -m45.
26426
26427@item -msoft-float
26428@opindex msoft-float
26429Do not use hardware floating point.
26430
26431@item -mac0
26432@opindex mac0
26433Return floating-point results in ac0 (fr0 in Unix assembler syntax).
26434
26435@item -mno-ac0
26436@opindex mno-ac0
26437Return floating-point results in memory.  This is the default.
26438
26439@item -m40
26440@opindex m40
26441Generate code for a PDP-11/40.  Implies -msoft-float -mno-split.
26442
26443@item -m45
26444@opindex m45
26445Generate code for a PDP-11/45.  This is the default.
26446
26447@item -m10
26448@opindex m10
26449Generate code for a PDP-11/10.  Implies -msoft-float -mno-split.
26450
26451@item -mint16
26452@itemx -mno-int32
26453@opindex mint16
26454@opindex mno-int32
26455Use 16-bit @code{int}.  This is the default.
26456
26457@item -mint32
26458@itemx -mno-int16
26459@opindex mint32
26460@opindex mno-int16
26461Use 32-bit @code{int}.
26462
26463@item -msplit
26464@opindex msplit
26465Target has split instruction and data space.  Implies -m45.
26466
26467@item -munix-asm
26468@opindex munix-asm
26469Use Unix assembler syntax.
26470
26471@item -mdec-asm
26472@opindex mdec-asm
26473Use DEC assembler syntax.
26474
26475@item -mgnu-asm
26476@opindex mgnu-asm
26477Use GNU assembler syntax.  This is the default.
26478
26479@item -mlra
26480@opindex mlra
26481Use the new LRA register allocator.  By default, the old ``reload''
26482allocator is used.
26483@end table
26484
26485@node picoChip Options
26486@subsection picoChip Options
26487@cindex picoChip options
26488
26489These @samp{-m} options are defined for picoChip implementations:
26490
26491@table @gcctabopt
26492
26493@item -mae=@var{ae_type}
26494@opindex mcpu
26495Set the instruction set, register set, and instruction scheduling
26496parameters for array element type @var{ae_type}.  Supported values
26497for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
26498
26499@option{-mae=ANY} selects a completely generic AE type.  Code
26500generated with this option runs on any of the other AE types.  The
26501code is not as efficient as it would be if compiled for a specific
26502AE type, and some types of operation (e.g., multiplication) do not
26503work properly on all types of AE.
26504
26505@option{-mae=MUL} selects a MUL AE type.  This is the most useful AE type
26506for compiled code, and is the default.
26507
26508@option{-mae=MAC} selects a DSP-style MAC AE.  Code compiled with this
26509option may suffer from poor performance of byte (char) manipulation,
26510since the DSP AE does not provide hardware support for byte load/stores.
26511
26512@item -msymbol-as-address
26513Enable the compiler to directly use a symbol name as an address in a
26514load/store instruction, without first loading it into a
26515register.  Typically, the use of this option generates larger
26516programs, which run faster than when the option isn't used.  However, the
26517results vary from program to program, so it is left as a user option,
26518rather than being permanently enabled.
26519
26520@item -mno-inefficient-warnings
26521Disables warnings about the generation of inefficient code.  These
26522warnings can be generated, for example, when compiling code that
26523performs byte-level memory operations on the MAC AE type.  The MAC AE has
26524no hardware support for byte-level memory operations, so all byte
26525load/stores must be synthesized from word load/store operations.  This is
26526inefficient and a warning is generated to indicate
26527that you should rewrite the code to avoid byte operations, or to target
26528an AE type that has the necessary hardware support.  This option disables
26529these warnings.
26530
26531@end table
26532
26533@node PowerPC Options
26534@subsection PowerPC Options
26535@cindex PowerPC options
26536
26537These are listed under @xref{RS/6000 and PowerPC Options}.
26538
26539@node PRU Options
26540@subsection PRU Options
26541@cindex PRU Options
26542
26543These command-line options are defined for PRU target:
26544
26545@table @gcctabopt
26546@item -minrt
26547@opindex minrt
26548Link with a minimum runtime environment, with no support for static
26549initializers and constructors.  Using this option can significantly reduce
26550the size of the final ELF binary.  Beware that the compiler could still
26551generate code with static initializers and constructors.  It is up to the
26552programmer to ensure that the source program will not use those features.
26553
26554@item -mmcu=@var{mcu}
26555@opindex mmcu
26556Specify the PRU MCU variant to use.  Check Newlib for the exact list of
26557supported MCUs.
26558
26559@item -mno-relax
26560@opindex mno-relax
26561Make GCC pass the @option{--no-relax} command-line option to the linker
26562instead of the @option{--relax} option.
26563
26564@item -mloop
26565@opindex mloop
26566Allow (or do not allow) GCC to use the LOOP instruction.
26567
26568@item -mabi=@var{variant}
26569@opindex mabi
26570Specify the ABI variant to output code for.  @option{-mabi=ti} selects the
26571unmodified TI ABI while @option{-mabi=gnu} selects a GNU variant that copes
26572more naturally with certain GCC assumptions.  These are the differences:
26573
26574@table @samp
26575@item Function Pointer Size
26576TI ABI specifies that function (code) pointers are 16-bit, whereas GNU
26577supports only 32-bit data and code pointers.
26578
26579@item Optional Return Value Pointer
26580Function return values larger than 64 bits are passed by using a hidden
26581pointer as the first argument of the function.  TI ABI, though, mandates that
26582the pointer can be NULL in case the caller is not using the returned value.
26583GNU always passes and expects a valid return value pointer.
26584
26585@end table
26586
26587The current @option{-mabi=ti} implementation simply raises a compile error
26588when any of the above code constructs is detected.  As a consequence
26589the standard C library cannot be built and it is omitted when linking with
26590@option{-mabi=ti}.
26591
26592Relaxation is a GNU feature and for safety reasons is disabled when using
26593@option{-mabi=ti}.  The TI toolchain does not emit relocations for QBBx
26594instructions, so the GNU linker cannot adjust them when shortening adjacent
26595LDI32 pseudo instructions.
26596
26597@end table
26598
26599@node RISC-V Options
26600@subsection RISC-V Options
26601@cindex RISC-V Options
26602
26603These command-line options are defined for RISC-V targets:
26604
26605@table @gcctabopt
26606@item -mbranch-cost=@var{n}
26607@opindex mbranch-cost
26608Set the cost of branches to roughly @var{n} instructions.
26609
26610@item -mplt
26611@itemx -mno-plt
26612@opindex plt
26613When generating PIC code, do or don't allow the use of PLTs. Ignored for
26614non-PIC.  The default is @option{-mplt}.
26615
26616@item -mabi=@var{ABI-string}
26617@opindex mabi
26618Specify integer and floating-point calling convention.  @var{ABI-string}
26619contains two parts: the size of integer types and the registers used for
26620floating-point types.  For example @samp{-march=rv64ifd -mabi=lp64d} means that
26621@samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
2662232-bit), and that floating-point values up to 64 bits wide are passed in F
26623registers.  Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
26624allows the compiler to generate code that uses the F and D extensions but only
26625allows floating-point values up to 32 bits long to be passed in registers; or
26626@samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
26627passed in registers.
26628
26629The default for this argument is system dependent, users who want a specific
26630calling convention should specify one explicitly.  The valid calling
26631conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
26632@samp{lp64f}, and @samp{lp64d}.  Some calling conventions are impossible to
26633implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
26634invalid because the ABI requires 64-bit values be passed in F registers, but F
26635registers are only 32 bits wide.  There is also the @samp{ilp32e} ABI that can
26636only be used with the @samp{rv32e} architecture.  This ABI is not well
26637specified at present, and is subject to change.
26638
26639@item -mfdiv
26640@itemx -mno-fdiv
26641@opindex mfdiv
26642Do or don't use hardware floating-point divide and square root instructions.
26643This requires the F or D extensions for floating-point registers.  The default
26644is to use them if the specified architecture has these instructions.
26645
26646@item -mdiv
26647@itemx -mno-div
26648@opindex mdiv
26649Do or don't use hardware instructions for integer division.  This requires the
26650M extension.  The default is to use them if the specified architecture has
26651these instructions.
26652
26653@item -march=@var{ISA-string}
26654@opindex march
26655Generate code for given RISC-V ISA (e.g.@: @samp{rv64im}).  ISA strings must be
26656lower-case.  Examples include @samp{rv64i}, @samp{rv32g}, @samp{rv32e}, and
26657@samp{rv32imaf}.
26658
26659When @option{-march=} is not specified, use the setting from @option{-mcpu}.
26660
26661If both @option{-march} and @option{-mcpu=} are not specified, the default for
26662this argument is system dependent, users who want a specific architecture
26663extensions should specify one explicitly.
26664
26665@item -mcpu=@var{processor-string}
26666@opindex mcpu
26667Use architecture of and optimize the output for the given processor, specified
26668by particular CPU name.
26669Permissible values for this option are: @samp{sifive-e20}, @samp{sifive-e21},
26670@samp{sifive-e24}, @samp{sifive-e31}, @samp{sifive-e34}, @samp{sifive-e76},
26671@samp{sifive-s21}, @samp{sifive-s51}, @samp{sifive-s54}, @samp{sifive-s76},
26672@samp{sifive-u54}, and @samp{sifive-u74}.
26673
26674@item -mtune=@var{processor-string}
26675@opindex mtune
26676Optimize the output for the given processor, specified by microarchitecture or
26677particular CPU name.  Permissible values for this option are: @samp{rocket},
26678@samp{sifive-3-series}, @samp{sifive-5-series}, @samp{sifive-7-series},
26679@samp{size}, and all valid options for @option{-mcpu=}.
26680
26681When @option{-mtune=} is not specified, use the setting from @option{-mcpu},
26682the default is @samp{rocket} if both are not specified.
26683
26684The @samp{size} choice is not intended for use by end-users.  This is used
26685when @option{-Os} is specified.  It overrides the instruction cost info
26686provided by @option{-mtune=}, but does not override the pipeline info.  This
26687helps reduce code size while still giving good performance.
26688
26689@item -mpreferred-stack-boundary=@var{num}
26690@opindex mpreferred-stack-boundary
26691Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
26692byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
26693the default is 4 (16 bytes or 128-bits).
26694
26695@strong{Warning:} If you use this switch, then you must build all modules with
26696the same value, including any libraries.  This includes the system libraries
26697and startup modules.
26698
26699@item -msmall-data-limit=@var{n}
26700@opindex msmall-data-limit
26701Put global and static data smaller than @var{n} bytes into a special section
26702(on some targets).
26703
26704@item -msave-restore
26705@itemx -mno-save-restore
26706@opindex msave-restore
26707Do or don't use smaller but slower prologue and epilogue code that uses
26708library function calls.  The default is to use fast inline prologues and
26709epilogues.
26710
26711@item -mshorten-memrefs
26712@itemx -mno-shorten-memrefs
26713@opindex mshorten-memrefs
26714Do or do not attempt to make more use of compressed load/store instructions by
26715replacing a load/store of 'base register + large offset' with a new load/store
26716of 'new base + small offset'.  If the new base gets stored in a compressed
26717register, then the new load/store can be compressed.  Currently targets 32-bit
26718integer load/stores only.
26719
26720@item -mstrict-align
26721@itemx -mno-strict-align
26722@opindex mstrict-align
26723Do not or do generate unaligned memory accesses.  The default is set depending
26724on whether the processor we are optimizing for supports fast unaligned access
26725or not.
26726
26727@item -mcmodel=medlow
26728@opindex mcmodel=medlow
26729Generate code for the medium-low code model. The program and its statically
26730defined symbols must lie within a single 2 GiB address range and must lie
26731between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
26732statically or dynamically linked. This is the default code model.
26733
26734@item -mcmodel=medany
26735@opindex mcmodel=medany
26736Generate code for the medium-any code model. The program and its statically
26737defined symbols must be within any single 2 GiB address range. Programs can be
26738statically or dynamically linked.
26739
26740@item -mexplicit-relocs
26741@itemx -mno-exlicit-relocs
26742Use or do not use assembler relocation operators when dealing with symbolic
26743addresses.  The alternative is to use assembler macros instead, which may
26744limit optimization.
26745
26746@item -mrelax
26747@itemx -mno-relax
26748Take advantage of linker relaxations to reduce the number of instructions
26749required to materialize symbol addresses. The default is to take advantage of
26750linker relaxations.
26751
26752@item -memit-attribute
26753@itemx -mno-emit-attribute
26754Emit (do not emit) RISC-V attribute to record extra information into ELF
26755objects.  This feature requires at least binutils 2.32.
26756
26757@item -malign-data=@var{type}
26758@opindex malign-data
26759Control how GCC aligns variables and constants of array, structure, or union
26760types.  Supported values for @var{type} are @samp{xlen} which uses x register
26761width as the alignment value, and @samp{natural} which uses natural alignment.
26762@samp{xlen} is the default.
26763
26764@item -mbig-endian
26765@opindex mbig-endian
26766Generate big-endian code.  This is the default when GCC is configured for a
26767@samp{riscv64be-*-*} or @samp{riscv32be-*-*} target.
26768
26769@item -mlittle-endian
26770@opindex mlittle-endian
26771Generate little-endian code.  This is the default when GCC is configured for a
26772@samp{riscv64-*-*} or @samp{riscv32-*-*} but not a @samp{riscv64be-*-*} or
26773@samp{riscv32be-*-*} target.
26774
26775@item -mstack-protector-guard=@var{guard}
26776@itemx -mstack-protector-guard-reg=@var{reg}
26777@itemx -mstack-protector-guard-offset=@var{offset}
26778@opindex mstack-protector-guard
26779@opindex mstack-protector-guard-reg
26780@opindex mstack-protector-guard-offset
26781Generate stack protection code using canary at @var{guard}.  Supported
26782locations are @samp{global} for a global canary or @samp{tls} for per-thread
26783canary in the TLS block.
26784
26785With the latter choice the options
26786@option{-mstack-protector-guard-reg=@var{reg}} and
26787@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
26788which register to use as base register for reading the canary,
26789and from what offset from that base register. There is no default
26790register or offset as this is entirely for use within the Linux
26791kernel.
26792@end table
26793
26794@node RL78 Options
26795@subsection RL78 Options
26796@cindex RL78 Options
26797
26798@table @gcctabopt
26799
26800@item -msim
26801@opindex msim
26802Links in additional target libraries to support operation within a
26803simulator.
26804
26805@item -mmul=none
26806@itemx -mmul=g10
26807@itemx -mmul=g13
26808@itemx -mmul=g14
26809@itemx -mmul=rl78
26810@opindex mmul
26811Specifies the type of hardware multiplication and division support to
26812be used.  The simplest is @code{none}, which uses software for both
26813multiplication and division.  This is the default.  The @code{g13}
26814value is for the hardware multiply/divide peripheral found on the
26815RL78/G13 (S2 core) targets.  The @code{g14} value selects the use of
26816the multiplication and division instructions supported by the RL78/G14
26817(S3 core) parts.  The value @code{rl78} is an alias for @code{g14} and
26818the value @code{mg10} is an alias for @code{none}.
26819
26820In addition a C preprocessor macro is defined, based upon the setting
26821of this option.  Possible values are: @code{__RL78_MUL_NONE__},
26822@code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
26823
26824@item -mcpu=g10
26825@itemx -mcpu=g13
26826@itemx -mcpu=g14
26827@itemx -mcpu=rl78
26828@opindex mcpu
26829Specifies the RL78 core to target.  The default is the G14 core, also
26830known as an S3 core or just RL78.  The G13 or S2 core does not have
26831multiply or divide instructions, instead it uses a hardware peripheral
26832for these operations.  The G10 or S1 core does not have register
26833banks, so it uses a different calling convention.
26834
26835If this option is set it also selects the type of hardware multiply
26836support to use, unless this is overridden by an explicit
26837@option{-mmul=none} option on the command line.  Thus specifying
26838@option{-mcpu=g13} enables the use of the G13 hardware multiply
26839peripheral and specifying @option{-mcpu=g10} disables the use of
26840hardware multiplications altogether.
26841
26842Note, although the RL78/G14 core is the default target, specifying
26843@option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
26844change the behavior of the toolchain since it also enables G14
26845hardware multiply support.  If these options are not specified on the
26846command line then software multiplication routines will be used even
26847though the code targets the RL78 core.  This is for backwards
26848compatibility with older toolchains which did not have hardware
26849multiply and divide support.
26850
26851In addition a C preprocessor macro is defined, based upon the setting
26852of this option.  Possible values are: @code{__RL78_G10__},
26853@code{__RL78_G13__} or @code{__RL78_G14__}.
26854
26855@item -mg10
26856@itemx -mg13
26857@itemx -mg14
26858@itemx -mrl78
26859@opindex mg10
26860@opindex mg13
26861@opindex mg14
26862@opindex mrl78
26863These are aliases for the corresponding @option{-mcpu=} option.  They
26864are provided for backwards compatibility.
26865
26866@item -mallregs
26867@opindex mallregs
26868Allow the compiler to use all of the available registers.  By default
26869registers @code{r24..r31} are reserved for use in interrupt handlers.
26870With this option enabled these registers can be used in ordinary
26871functions as well.
26872
26873@item -m64bit-doubles
26874@itemx -m32bit-doubles
26875@opindex m64bit-doubles
26876@opindex m32bit-doubles
26877Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
26878or 32 bits (@option{-m32bit-doubles}) in size.  The default is
26879@option{-m32bit-doubles}.
26880
26881@item -msave-mduc-in-interrupts
26882@itemx -mno-save-mduc-in-interrupts
26883@opindex msave-mduc-in-interrupts
26884@opindex mno-save-mduc-in-interrupts
26885Specifies that interrupt handler functions should preserve the
26886MDUC registers.  This is only necessary if normal code might use
26887the MDUC registers, for example because it performs multiplication
26888and division operations.  The default is to ignore the MDUC registers
26889as this makes the interrupt handlers faster.  The target option -mg13
26890needs to be passed for this to work as this feature is only available
26891on the G13 target (S2 core).  The MDUC registers will only be saved
26892if the interrupt handler performs a multiplication or division
26893operation or it calls another function.
26894
26895@end table
26896
26897@node RS/6000 and PowerPC Options
26898@subsection IBM RS/6000 and PowerPC Options
26899@cindex RS/6000 and PowerPC Options
26900@cindex IBM RS/6000 and PowerPC Options
26901
26902These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
26903@table @gcctabopt
26904@item -mpowerpc-gpopt
26905@itemx -mno-powerpc-gpopt
26906@itemx -mpowerpc-gfxopt
26907@itemx -mno-powerpc-gfxopt
26908@need 800
26909@itemx -mpowerpc64
26910@itemx -mno-powerpc64
26911@itemx -mmfcrf
26912@itemx -mno-mfcrf
26913@itemx -mpopcntb
26914@itemx -mno-popcntb
26915@itemx -mpopcntd
26916@itemx -mno-popcntd
26917@itemx -mfprnd
26918@itemx -mno-fprnd
26919@need 800
26920@itemx -mcmpb
26921@itemx -mno-cmpb
26922@itemx -mhard-dfp
26923@itemx -mno-hard-dfp
26924@opindex mpowerpc-gpopt
26925@opindex mno-powerpc-gpopt
26926@opindex mpowerpc-gfxopt
26927@opindex mno-powerpc-gfxopt
26928@opindex mpowerpc64
26929@opindex mno-powerpc64
26930@opindex mmfcrf
26931@opindex mno-mfcrf
26932@opindex mpopcntb
26933@opindex mno-popcntb
26934@opindex mpopcntd
26935@opindex mno-popcntd
26936@opindex mfprnd
26937@opindex mno-fprnd
26938@opindex mcmpb
26939@opindex mno-cmpb
26940@opindex mhard-dfp
26941@opindex mno-hard-dfp
26942You use these options to specify which instructions are available on the
26943processor you are using.  The default value of these options is
26944determined when configuring GCC@.  Specifying the
26945@option{-mcpu=@var{cpu_type}} overrides the specification of these
26946options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
26947rather than the options listed above.
26948
26949Specifying @option{-mpowerpc-gpopt} allows
26950GCC to use the optional PowerPC architecture instructions in the
26951General Purpose group, including floating-point square root.  Specifying
26952@option{-mpowerpc-gfxopt} allows GCC to
26953use the optional PowerPC architecture instructions in the Graphics
26954group, including floating-point select.
26955
26956The @option{-mmfcrf} option allows GCC to generate the move from
26957condition register field instruction implemented on the POWER4
26958processor and other processors that support the PowerPC V2.01
26959architecture.
26960The @option{-mpopcntb} option allows GCC to generate the popcount and
26961double-precision FP reciprocal estimate instruction implemented on the
26962POWER5 processor and other processors that support the PowerPC V2.02
26963architecture.
26964The @option{-mpopcntd} option allows GCC to generate the popcount
26965instruction implemented on the POWER7 processor and other processors
26966that support the PowerPC V2.06 architecture.
26967The @option{-mfprnd} option allows GCC to generate the FP round to
26968integer instructions implemented on the POWER5+ processor and other
26969processors that support the PowerPC V2.03 architecture.
26970The @option{-mcmpb} option allows GCC to generate the compare bytes
26971instruction implemented on the POWER6 processor and other processors
26972that support the PowerPC V2.05 architecture.
26973The @option{-mhard-dfp} option allows GCC to generate the decimal
26974floating-point instructions implemented on some POWER processors.
26975
26976The @option{-mpowerpc64} option allows GCC to generate the additional
2697764-bit instructions that are found in the full PowerPC64 architecture
26978and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
26979@option{-mno-powerpc64}.
26980
26981@item -mcpu=@var{cpu_type}
26982@opindex mcpu
26983Set architecture type, register usage, and
26984instruction scheduling parameters for machine type @var{cpu_type}.
26985Supported values for @var{cpu_type} are @samp{401}, @samp{403},
26986@samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
26987@samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
26988@samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
26989@samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
26990@samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
26991@samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
26992@samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
26993@samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
26994@samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
26995@samp{power9}, @samp{future}, @samp{powerpc}, @samp{powerpc64},
26996@samp{powerpc64le}, @samp{rs64}, and @samp{native}.
26997
26998@option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
26999@option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
27000endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
27001architecture machine types, with an appropriate, generic processor
27002model assumed for scheduling purposes.
27003
27004Specifying @samp{native} as cpu type detects and selects the
27005architecture option that corresponds to the host processor of the
27006system performing the compilation.
27007@option{-mcpu=native} has no effect if GCC does not recognize the
27008processor.
27009
27010The other options specify a specific processor.  Code generated under
27011those options runs best on that processor, and may not run at all on
27012others.
27013
27014The @option{-mcpu} options automatically enable or disable the
27015following options:
27016
27017@gccoptlist{-maltivec  -mfprnd  -mhard-float  -mmfcrf  -mmultiple @gol
27018-mpopcntb  -mpopcntd  -mpowerpc64 @gol
27019-mpowerpc-gpopt  -mpowerpc-gfxopt @gol
27020-mmulhw  -mdlmzb  -mmfpgpr  -mvsx @gol
27021-mcrypto  -mhtm  -mpower8-fusion  -mpower8-vector @gol
27022-mquad-memory  -mquad-memory-atomic  -mfloat128 @gol
27023-mfloat128-hardware -mprefixed -mpcrel -mmma @gol
27024-mrop-protect}
27025
27026The particular options set for any particular CPU varies between
27027compiler versions, depending on what setting seems to produce optimal
27028code for that CPU; it doesn't necessarily reflect the actual hardware's
27029capabilities.  If you wish to set an individual option to a particular
27030value, you may specify it after the @option{-mcpu} option, like
27031@option{-mcpu=970 -mno-altivec}.
27032
27033On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
27034not enabled or disabled by the @option{-mcpu} option at present because
27035AIX does not have full support for these options.  You may still
27036enable or disable them individually if you're sure it'll work in your
27037environment.
27038
27039@item -mtune=@var{cpu_type}
27040@opindex mtune
27041Set the instruction scheduling parameters for machine type
27042@var{cpu_type}, but do not set the architecture type or register usage,
27043as @option{-mcpu=@var{cpu_type}} does.  The same
27044values for @var{cpu_type} are used for @option{-mtune} as for
27045@option{-mcpu}.  If both are specified, the code generated uses the
27046architecture and registers set by @option{-mcpu}, but the
27047scheduling parameters set by @option{-mtune}.
27048
27049@item -mcmodel=small
27050@opindex mcmodel=small
27051Generate PowerPC64 code for the small model: The TOC is limited to
2705264k.
27053
27054@item -mcmodel=medium
27055@opindex mcmodel=medium
27056Generate PowerPC64 code for the medium model: The TOC and other static
27057data may be up to a total of 4G in size.  This is the default for 64-bit
27058Linux.
27059
27060@item -mcmodel=large
27061@opindex mcmodel=large
27062Generate PowerPC64 code for the large model: The TOC may be up to 4G
27063in size.  Other data and code is only limited by the 64-bit address
27064space.
27065
27066@item -maltivec
27067@itemx -mno-altivec
27068@opindex maltivec
27069@opindex mno-altivec
27070Generate code that uses (does not use) AltiVec instructions, and also
27071enable the use of built-in functions that allow more direct access to
27072the AltiVec instruction set.  You may also need to set
27073@option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
27074enhancements.
27075
27076When @option{-maltivec} is used, the element order for AltiVec intrinsics
27077such as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
27078match array element order corresponding to the endianness of the
27079target.  That is, element zero identifies the leftmost element in a
27080vector register when targeting a big-endian platform, and identifies
27081the rightmost element in a vector register when targeting a
27082little-endian platform.
27083
27084@item -mvrsave
27085@itemx -mno-vrsave
27086@opindex mvrsave
27087@opindex mno-vrsave
27088Generate VRSAVE instructions when generating AltiVec code.
27089
27090@item -msecure-plt
27091@opindex msecure-plt
27092Generate code that allows @command{ld} and @command{ld.so}
27093to build executables and shared
27094libraries with non-executable @code{.plt} and @code{.got} sections.
27095This is a PowerPC
2709632-bit SYSV ABI option.
27097
27098@item -mbss-plt
27099@opindex mbss-plt
27100Generate code that uses a BSS @code{.plt} section that @command{ld.so}
27101fills in, and
27102requires @code{.plt} and @code{.got}
27103sections that are both writable and executable.
27104This is a PowerPC 32-bit SYSV ABI option.
27105
27106@item -misel
27107@itemx -mno-isel
27108@opindex misel
27109@opindex mno-isel
27110This switch enables or disables the generation of ISEL instructions.
27111
27112@item -mvsx
27113@itemx -mno-vsx
27114@opindex mvsx
27115@opindex mno-vsx
27116Generate code that uses (does not use) vector/scalar (VSX)
27117instructions, and also enable the use of built-in functions that allow
27118more direct access to the VSX instruction set.
27119
27120@item -mcrypto
27121@itemx -mno-crypto
27122@opindex mcrypto
27123@opindex mno-crypto
27124Enable the use (disable) of the built-in functions that allow direct
27125access to the cryptographic instructions that were added in version
271262.07 of the PowerPC ISA.
27127
27128@item -mhtm
27129@itemx -mno-htm
27130@opindex mhtm
27131@opindex mno-htm
27132Enable (disable) the use of the built-in functions that allow direct
27133access to the Hardware Transactional Memory (HTM) instructions that
27134were added in version 2.07 of the PowerPC ISA.
27135
27136@item -mpower8-fusion
27137@itemx -mno-power8-fusion
27138@opindex mpower8-fusion
27139@opindex mno-power8-fusion
27140Generate code that keeps (does not keeps) some integer operations
27141adjacent so that the instructions can be fused together on power8 and
27142later processors.
27143
27144@item -mpower8-vector
27145@itemx -mno-power8-vector
27146@opindex mpower8-vector
27147@opindex mno-power8-vector
27148Generate code that uses (does not use) the vector and scalar
27149instructions that were added in version 2.07 of the PowerPC ISA.  Also
27150enable the use of built-in functions that allow more direct access to
27151the vector instructions.
27152
27153@item -mquad-memory
27154@itemx -mno-quad-memory
27155@opindex mquad-memory
27156@opindex mno-quad-memory
27157Generate code that uses (does not use) the non-atomic quad word memory
27158instructions.  The @option{-mquad-memory} option requires use of
2715964-bit mode.
27160
27161@item -mquad-memory-atomic
27162@itemx -mno-quad-memory-atomic
27163@opindex mquad-memory-atomic
27164@opindex mno-quad-memory-atomic
27165Generate code that uses (does not use) the atomic quad word memory
27166instructions.  The @option{-mquad-memory-atomic} option requires use of
2716764-bit mode.
27168
27169@item -mfloat128
27170@itemx -mno-float128
27171@opindex mfloat128
27172@opindex mno-float128
27173Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
27174and use either software emulation for IEEE 128-bit floating point or
27175hardware instructions.
27176
27177The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
27178@option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
27179use the IEEE 128-bit floating point support.  The IEEE 128-bit
27180floating point support only works on PowerPC Linux systems.
27181
27182The default for @option{-mfloat128} is enabled on PowerPC Linux
27183systems using the VSX instruction set, and disabled on other systems.
27184
27185If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
27186@option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
27187point support will also enable the generation of ISA 3.0 IEEE 128-bit
27188floating point instructions.  Otherwise, if you do not specify to
27189generate ISA 3.0 instructions or you are targeting a 32-bit big endian
27190system, IEEE 128-bit floating point will be done with software
27191emulation.
27192
27193@item -mfloat128-hardware
27194@itemx -mno-float128-hardware
27195@opindex mfloat128-hardware
27196@opindex mno-float128-hardware
27197Enable/disable using ISA 3.0 hardware instructions to support the
27198@var{__float128} data type.
27199
27200The default for @option{-mfloat128-hardware} is enabled on PowerPC
27201Linux systems using the ISA 3.0 instruction set, and disabled on other
27202systems.
27203
27204@item -m32
27205@itemx -m64
27206@opindex m32
27207@opindex m64
27208Generate code for 32-bit or 64-bit environments of Darwin and SVR4
27209targets (including GNU/Linux).  The 32-bit environment sets int, long
27210and pointer to 32 bits and generates code that runs on any PowerPC
27211variant.  The 64-bit environment sets int to 32 bits and long and
27212pointer to 64 bits, and generates code for PowerPC64, as for
27213@option{-mpowerpc64}.
27214
27215@item -mfull-toc
27216@itemx -mno-fp-in-toc
27217@itemx -mno-sum-in-toc
27218@itemx -mminimal-toc
27219@opindex mfull-toc
27220@opindex mno-fp-in-toc
27221@opindex mno-sum-in-toc
27222@opindex mminimal-toc
27223Modify generation of the TOC (Table Of Contents), which is created for
27224every executable file.  The @option{-mfull-toc} option is selected by
27225default.  In that case, GCC allocates at least one TOC entry for
27226each unique non-automatic variable reference in your program.  GCC
27227also places floating-point constants in the TOC@.  However, only
2722816,384 entries are available in the TOC@.
27229
27230If you receive a linker error message that saying you have overflowed
27231the available TOC space, you can reduce the amount of TOC space used
27232with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
27233@option{-mno-fp-in-toc} prevents GCC from putting floating-point
27234constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
27235generate code to calculate the sum of an address and a constant at
27236run time instead of putting that sum into the TOC@.  You may specify one
27237or both of these options.  Each causes GCC to produce very slightly
27238slower and larger code at the expense of conserving TOC space.
27239
27240If you still run out of space in the TOC even when you specify both of
27241these options, specify @option{-mminimal-toc} instead.  This option causes
27242GCC to make only one TOC entry for every file.  When you specify this
27243option, GCC produces code that is slower and larger but which
27244uses extremely little TOC space.  You may wish to use this option
27245only on files that contain less frequently-executed code.
27246
27247@item -maix64
27248@itemx -maix32
27249@opindex maix64
27250@opindex maix32
27251Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
27252@code{long} type, and the infrastructure needed to support them.
27253Specifying @option{-maix64} implies @option{-mpowerpc64},
27254while @option{-maix32} disables the 64-bit ABI and
27255implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
27256
27257@item -mxl-compat
27258@itemx -mno-xl-compat
27259@opindex mxl-compat
27260@opindex mno-xl-compat
27261Produce code that conforms more closely to IBM XL compiler semantics
27262when using AIX-compatible ABI@.  Pass floating-point arguments to
27263prototyped functions beyond the register save area (RSA) on the stack
27264in addition to argument FPRs.  Do not assume that most significant
27265double in 128-bit long double value is properly rounded when comparing
27266values and converting to double.  Use XL symbol names for long double
27267support routines.
27268
27269The AIX calling convention was extended but not initially documented to
27270handle an obscure K&R C case of calling a function that takes the
27271address of its arguments with fewer arguments than declared.  IBM XL
27272compilers access floating-point arguments that do not fit in the
27273RSA from the stack when a subroutine is compiled without
27274optimization.  Because always storing floating-point arguments on the
27275stack is inefficient and rarely needed, this option is not enabled by
27276default and only is necessary when calling subroutines compiled by IBM
27277XL compilers without optimization.
27278
27279@item -mpe
27280@opindex mpe
27281Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
27282application written to use message passing with special startup code to
27283enable the application to run.  The system must have PE installed in the
27284standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
27285must be overridden with the @option{-specs=} option to specify the
27286appropriate directory location.  The Parallel Environment does not
27287support threads, so the @option{-mpe} option and the @option{-pthread}
27288option are incompatible.
27289
27290@item -malign-natural
27291@itemx -malign-power
27292@opindex malign-natural
27293@opindex malign-power
27294On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
27295@option{-malign-natural} overrides the ABI-defined alignment of larger
27296types, such as floating-point doubles, on their natural size-based boundary.
27297The option @option{-malign-power} instructs GCC to follow the ABI-specified
27298alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
27299
27300On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
27301is not supported.
27302
27303@item -msoft-float
27304@itemx -mhard-float
27305@opindex msoft-float
27306@opindex mhard-float
27307Generate code that does not use (uses) the floating-point register set.
27308Software floating-point emulation is provided if you use the
27309@option{-msoft-float} option, and pass the option to GCC when linking.
27310
27311@item -mmultiple
27312@itemx -mno-multiple
27313@opindex mmultiple
27314@opindex mno-multiple
27315Generate code that uses (does not use) the load multiple word
27316instructions and the store multiple word instructions.  These
27317instructions are generated by default on POWER systems, and not
27318generated on PowerPC systems.  Do not use @option{-mmultiple} on little-endian
27319PowerPC systems, since those instructions do not work when the
27320processor is in little-endian mode.  The exceptions are PPC740 and
27321PPC750 which permit these instructions in little-endian mode.
27322
27323@item -mupdate
27324@itemx -mno-update
27325@opindex mupdate
27326@opindex mno-update
27327Generate code that uses (does not use) the load or store instructions
27328that update the base register to the address of the calculated memory
27329location.  These instructions are generated by default.  If you use
27330@option{-mno-update}, there is a small window between the time that the
27331stack pointer is updated and the address of the previous frame is
27332stored, which means code that walks the stack frame across interrupts or
27333signals may get corrupted data.
27334
27335@item -mavoid-indexed-addresses
27336@itemx -mno-avoid-indexed-addresses
27337@opindex mavoid-indexed-addresses
27338@opindex mno-avoid-indexed-addresses
27339Generate code that tries to avoid (not avoid) the use of indexed load
27340or store instructions. These instructions can incur a performance
27341penalty on Power6 processors in certain situations, such as when
27342stepping through large arrays that cross a 16M boundary.  This option
27343is enabled by default when targeting Power6 and disabled otherwise.
27344
27345@item -mfused-madd
27346@itemx -mno-fused-madd
27347@opindex mfused-madd
27348@opindex mno-fused-madd
27349Generate code that uses (does not use) the floating-point multiply and
27350accumulate instructions.  These instructions are generated by default
27351if hardware floating point is used.  The machine-dependent
27352@option{-mfused-madd} option is now mapped to the machine-independent
27353@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
27354mapped to @option{-ffp-contract=off}.
27355
27356@item -mmulhw
27357@itemx -mno-mulhw
27358@opindex mmulhw
27359@opindex mno-mulhw
27360Generate code that uses (does not use) the half-word multiply and
27361multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
27362These instructions are generated by default when targeting those
27363processors.
27364
27365@item -mdlmzb
27366@itemx -mno-dlmzb
27367@opindex mdlmzb
27368@opindex mno-dlmzb
27369Generate code that uses (does not use) the string-search @samp{dlmzb}
27370instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
27371generated by default when targeting those processors.
27372
27373@item -mno-bit-align
27374@itemx -mbit-align
27375@opindex mno-bit-align
27376@opindex mbit-align
27377On System V.4 and embedded PowerPC systems do not (do) force structures
27378and unions that contain bit-fields to be aligned to the base type of the
27379bit-field.
27380
27381For example, by default a structure containing nothing but 8
27382@code{unsigned} bit-fields of length 1 is aligned to a 4-byte
27383boundary and has a size of 4 bytes.  By using @option{-mno-bit-align},
27384the structure is aligned to a 1-byte boundary and is 1 byte in
27385size.
27386
27387@item -mno-strict-align
27388@itemx -mstrict-align
27389@opindex mno-strict-align
27390@opindex mstrict-align
27391On System V.4 and embedded PowerPC systems do not (do) assume that
27392unaligned memory references are handled by the system.
27393
27394@item -mrelocatable
27395@itemx -mno-relocatable
27396@opindex mrelocatable
27397@opindex mno-relocatable
27398Generate code that allows (does not allow) a static executable to be
27399relocated to a different address at run time.  A simple embedded
27400PowerPC system loader should relocate the entire contents of
27401@code{.got2} and 4-byte locations listed in the @code{.fixup} section,
27402a table of 32-bit addresses generated by this option.  For this to
27403work, all objects linked together must be compiled with
27404@option{-mrelocatable} or @option{-mrelocatable-lib}.
27405@option{-mrelocatable} code aligns the stack to an 8-byte boundary.
27406
27407@item -mrelocatable-lib
27408@itemx -mno-relocatable-lib
27409@opindex mrelocatable-lib
27410@opindex mno-relocatable-lib
27411Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
27412@code{.fixup} section to allow static executables to be relocated at
27413run time, but @option{-mrelocatable-lib} does not use the smaller stack
27414alignment of @option{-mrelocatable}.  Objects compiled with
27415@option{-mrelocatable-lib} may be linked with objects compiled with
27416any combination of the @option{-mrelocatable} options.
27417
27418@item -mno-toc
27419@itemx -mtoc
27420@opindex mno-toc
27421@opindex mtoc
27422On System V.4 and embedded PowerPC systems do not (do) assume that
27423register 2 contains a pointer to a global area pointing to the addresses
27424used in the program.
27425
27426@item -mlittle
27427@itemx -mlittle-endian
27428@opindex mlittle
27429@opindex mlittle-endian
27430On System V.4 and embedded PowerPC systems compile code for the
27431processor in little-endian mode.  The @option{-mlittle-endian} option is
27432the same as @option{-mlittle}.
27433
27434@item -mbig
27435@itemx -mbig-endian
27436@opindex mbig
27437@opindex mbig-endian
27438On System V.4 and embedded PowerPC systems compile code for the
27439processor in big-endian mode.  The @option{-mbig-endian} option is
27440the same as @option{-mbig}.
27441
27442@item -mdynamic-no-pic
27443@opindex mdynamic-no-pic
27444On Darwin and Mac OS X systems, compile code so that it is not
27445relocatable, but that its external references are relocatable.  The
27446resulting code is suitable for applications, but not shared
27447libraries.
27448
27449@item -msingle-pic-base
27450@opindex msingle-pic-base
27451Treat the register used for PIC addressing as read-only, rather than
27452loading it in the prologue for each function.  The runtime system is
27453responsible for initializing this register with an appropriate value
27454before execution begins.
27455
27456@item -mprioritize-restricted-insns=@var{priority}
27457@opindex mprioritize-restricted-insns
27458This option controls the priority that is assigned to
27459dispatch-slot restricted instructions during the second scheduling
27460pass.  The argument @var{priority} takes the value @samp{0}, @samp{1},
27461or @samp{2} to assign no, highest, or second-highest (respectively)
27462priority to dispatch-slot restricted
27463instructions.
27464
27465@item -msched-costly-dep=@var{dependence_type}
27466@opindex msched-costly-dep
27467This option controls which dependences are considered costly
27468by the target during instruction scheduling.  The argument
27469@var{dependence_type} takes one of the following values:
27470
27471@table @asis
27472@item @samp{no}
27473No dependence is costly.
27474
27475@item @samp{all}
27476All dependences are costly.
27477
27478@item @samp{true_store_to_load}
27479A true dependence from store to load is costly.
27480
27481@item @samp{store_to_load}
27482Any dependence from store to load is costly.
27483
27484@item @var{number}
27485Any dependence for which the latency is greater than or equal to
27486@var{number} is costly.
27487@end table
27488
27489@item -minsert-sched-nops=@var{scheme}
27490@opindex minsert-sched-nops
27491This option controls which NOP insertion scheme is used during
27492the second scheduling pass.  The argument @var{scheme} takes one of the
27493following values:
27494
27495@table @asis
27496@item @samp{no}
27497Don't insert NOPs.
27498
27499@item @samp{pad}
27500Pad with NOPs any dispatch group that has vacant issue slots,
27501according to the scheduler's grouping.
27502
27503@item @samp{regroup_exact}
27504Insert NOPs to force costly dependent insns into
27505separate groups.  Insert exactly as many NOPs as needed to force an insn
27506to a new group, according to the estimated processor grouping.
27507
27508@item @var{number}
27509Insert NOPs to force costly dependent insns into
27510separate groups.  Insert @var{number} NOPs to force an insn to a new group.
27511@end table
27512
27513@item -mcall-sysv
27514@opindex mcall-sysv
27515On System V.4 and embedded PowerPC systems compile code using calling
27516conventions that adhere to the March 1995 draft of the System V
27517Application Binary Interface, PowerPC processor supplement.  This is the
27518default unless you configured GCC using @samp{powerpc-*-eabiaix}.
27519
27520@item -mcall-sysv-eabi
27521@itemx -mcall-eabi
27522@opindex mcall-sysv-eabi
27523@opindex mcall-eabi
27524Specify both @option{-mcall-sysv} and @option{-meabi} options.
27525
27526@item -mcall-sysv-noeabi
27527@opindex mcall-sysv-noeabi
27528Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
27529
27530@item -mcall-aixdesc
27531@opindex m
27532On System V.4 and embedded PowerPC systems compile code for the AIX
27533operating system.
27534
27535@item -mcall-linux
27536@opindex mcall-linux
27537On System V.4 and embedded PowerPC systems compile code for the
27538Linux-based GNU system.
27539
27540@item -mcall-freebsd
27541@opindex mcall-freebsd
27542On System V.4 and embedded PowerPC systems compile code for the
27543FreeBSD operating system.
27544
27545@item -mcall-netbsd
27546@opindex mcall-netbsd
27547On System V.4 and embedded PowerPC systems compile code for the
27548NetBSD operating system.
27549
27550@item -mcall-openbsd
27551@opindex mcall-netbsd
27552On System V.4 and embedded PowerPC systems compile code for the
27553OpenBSD operating system.
27554
27555@item -mtraceback=@var{traceback_type}
27556@opindex mtraceback
27557Select the type of traceback table. Valid values for @var{traceback_type}
27558are @samp{full}, @samp{part}, and @samp{no}.
27559
27560@item -maix-struct-return
27561@opindex maix-struct-return
27562Return all structures in memory (as specified by the AIX ABI)@.
27563
27564@item -msvr4-struct-return
27565@opindex msvr4-struct-return
27566Return structures smaller than 8 bytes in registers (as specified by the
27567SVR4 ABI)@.
27568
27569@item -mabi=@var{abi-type}
27570@opindex mabi
27571Extend the current ABI with a particular extension, or remove such extension.
27572Valid values are: @samp{altivec}, @samp{no-altivec},
27573@samp{ibmlongdouble}, @samp{ieeelongdouble},
27574@samp{elfv1}, @samp{elfv2},
27575and for AIX: @samp{vec-extabi}, @samp{vec-default}@.
27576
27577@item -mabi=ibmlongdouble
27578@opindex mabi=ibmlongdouble
27579Change the current ABI to use IBM extended-precision long double.
27580This is not likely to work if your system defaults to using IEEE
27581extended-precision long double.  If you change the long double type
27582from IEEE extended-precision, the compiler will issue a warning unless
27583you use the @option{-Wno-psabi} option.  Requires @option{-mlong-double-128}
27584to be enabled.
27585
27586@item -mabi=ieeelongdouble
27587@opindex mabi=ieeelongdouble
27588Change the current ABI to use IEEE extended-precision long double.
27589This is not likely to work if your system defaults to using IBM
27590extended-precision long double.  If you change the long double type
27591from IBM extended-precision, the compiler will issue a warning unless
27592you use the @option{-Wno-psabi} option.  Requires @option{-mlong-double-128}
27593to be enabled.
27594
27595@item -mabi=elfv1
27596@opindex mabi=elfv1
27597Change the current ABI to use the ELFv1 ABI.
27598This is the default ABI for big-endian PowerPC 64-bit Linux.
27599Overriding the default ABI requires special system support and is
27600likely to fail in spectacular ways.
27601
27602@item -mabi=elfv2
27603@opindex mabi=elfv2
27604Change the current ABI to use the ELFv2 ABI.
27605This is the default ABI for little-endian PowerPC 64-bit Linux.
27606Overriding the default ABI requires special system support and is
27607likely to fail in spectacular ways.
27608
27609@item -mgnu-attribute
27610@itemx -mno-gnu-attribute
27611@opindex mgnu-attribute
27612@opindex mno-gnu-attribute
27613Emit .gnu_attribute assembly directives to set tag/value pairs in a
27614.gnu.attributes section that specify ABI variations in function
27615parameters or return values.
27616
27617@item -mprototype
27618@itemx -mno-prototype
27619@opindex mprototype
27620@opindex mno-prototype
27621On System V.4 and embedded PowerPC systems assume that all calls to
27622variable argument functions are properly prototyped.  Otherwise, the
27623compiler must insert an instruction before every non-prototyped call to
27624set or clear bit 6 of the condition code register (@code{CR}) to
27625indicate whether floating-point values are passed in the floating-point
27626registers in case the function takes variable arguments.  With
27627@option{-mprototype}, only calls to prototyped variable argument functions
27628set or clear the bit.
27629
27630@item -msim
27631@opindex msim
27632On embedded PowerPC systems, assume that the startup module is called
27633@file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
27634@file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}
27635configurations.
27636
27637@item -mmvme
27638@opindex mmvme
27639On embedded PowerPC systems, assume that the startup module is called
27640@file{crt0.o} and the standard C libraries are @file{libmvme.a} and
27641@file{libc.a}.
27642
27643@item -mads
27644@opindex mads
27645On embedded PowerPC systems, assume that the startup module is called
27646@file{crt0.o} and the standard C libraries are @file{libads.a} and
27647@file{libc.a}.
27648
27649@item -myellowknife
27650@opindex myellowknife
27651On embedded PowerPC systems, assume that the startup module is called
27652@file{crt0.o} and the standard C libraries are @file{libyk.a} and
27653@file{libc.a}.
27654
27655@item -mvxworks
27656@opindex mvxworks
27657On System V.4 and embedded PowerPC systems, specify that you are
27658compiling for a VxWorks system.
27659
27660@item -memb
27661@opindex memb
27662On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
27663header to indicate that @samp{eabi} extended relocations are used.
27664
27665@item -meabi
27666@itemx -mno-eabi
27667@opindex meabi
27668@opindex mno-eabi
27669On System V.4 and embedded PowerPC systems do (do not) adhere to the
27670Embedded Applications Binary Interface (EABI), which is a set of
27671modifications to the System V.4 specifications.  Selecting @option{-meabi}
27672means that the stack is aligned to an 8-byte boundary, a function
27673@code{__eabi} is called from @code{main} to set up the EABI
27674environment, and the @option{-msdata} option can use both @code{r2} and
27675@code{r13} to point to two separate small data areas.  Selecting
27676@option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
27677no EABI initialization function is called from @code{main}, and the
27678@option{-msdata} option only uses @code{r13} to point to a single
27679small data area.  The @option{-meabi} option is on by default if you
27680configured GCC using one of the @samp{powerpc*-*-eabi*} options.
27681
27682@item -msdata=eabi
27683@opindex msdata=eabi
27684On System V.4 and embedded PowerPC systems, put small initialized
27685@code{const} global and static data in the @code{.sdata2} section, which
27686is pointed to by register @code{r2}.  Put small initialized
27687non-@code{const} global and static data in the @code{.sdata} section,
27688which is pointed to by register @code{r13}.  Put small uninitialized
27689global and static data in the @code{.sbss} section, which is adjacent to
27690the @code{.sdata} section.  The @option{-msdata=eabi} option is
27691incompatible with the @option{-mrelocatable} option.  The
27692@option{-msdata=eabi} option also sets the @option{-memb} option.
27693
27694@item -msdata=sysv
27695@opindex msdata=sysv
27696On System V.4 and embedded PowerPC systems, put small global and static
27697data in the @code{.sdata} section, which is pointed to by register
27698@code{r13}.  Put small uninitialized global and static data in the
27699@code{.sbss} section, which is adjacent to the @code{.sdata} section.
27700The @option{-msdata=sysv} option is incompatible with the
27701@option{-mrelocatable} option.
27702
27703@item -msdata=default
27704@itemx -msdata
27705@opindex msdata=default
27706@opindex msdata
27707On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
27708compile code the same as @option{-msdata=eabi}, otherwise compile code the
27709same as @option{-msdata=sysv}.
27710
27711@item -msdata=data
27712@opindex msdata=data
27713On System V.4 and embedded PowerPC systems, put small global
27714data in the @code{.sdata} section.  Put small uninitialized global
27715data in the @code{.sbss} section.  Do not use register @code{r13}
27716to address small data however.  This is the default behavior unless
27717other @option{-msdata} options are used.
27718
27719@item -msdata=none
27720@itemx -mno-sdata
27721@opindex msdata=none
27722@opindex mno-sdata
27723On embedded PowerPC systems, put all initialized global and static data
27724in the @code{.data} section, and all uninitialized data in the
27725@code{.bss} section.
27726
27727@item -mreadonly-in-sdata
27728@opindex mreadonly-in-sdata
27729@opindex mno-readonly-in-sdata
27730Put read-only objects in the @code{.sdata} section as well.  This is the
27731default.
27732
27733@item -mblock-move-inline-limit=@var{num}
27734@opindex mblock-move-inline-limit
27735Inline all block moves (such as calls to @code{memcpy} or structure
27736copies) less than or equal to @var{num} bytes.  The minimum value for
27737@var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
27738targets.  The default value is target-specific.
27739
27740@item -mblock-compare-inline-limit=@var{num}
27741@opindex mblock-compare-inline-limit
27742Generate non-looping inline code for all block compares (such as calls
27743to @code{memcmp} or structure compares) less than or equal to @var{num}
27744bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
27745block compare is disabled. The default value is target-specific.
27746
27747@item -mblock-compare-inline-loop-limit=@var{num}
27748@opindex mblock-compare-inline-loop-limit
27749Generate an inline expansion using loop code for all block compares that
27750are less than or equal to @var{num} bytes, but greater than the limit
27751for non-loop inline block compare expansion. If the block length is not
27752constant, at most @var{num} bytes will be compared before @code{memcmp}
27753is called to compare the remainder of the block. The default value is
27754target-specific.
27755
27756@item -mstring-compare-inline-limit=@var{num}
27757@opindex mstring-compare-inline-limit
27758Compare at most @var{num} string bytes with inline code.
27759If the difference or end of string is not found at the
27760end of the inline compare a call to @code{strcmp} or @code{strncmp} will
27761take care of the rest of the comparison. The default is 64 bytes.
27762
27763@item -G @var{num}
27764@opindex G
27765@cindex smaller data references (PowerPC)
27766@cindex .sdata/.sdata2 references (PowerPC)
27767On embedded PowerPC systems, put global and static items less than or
27768equal to @var{num} bytes into the small data or BSS sections instead of
27769the normal data or BSS section.  By default, @var{num} is 8.  The
27770@option{-G @var{num}} switch is also passed to the linker.
27771All modules should be compiled with the same @option{-G @var{num}} value.
27772
27773@item -mregnames
27774@itemx -mno-regnames
27775@opindex mregnames
27776@opindex mno-regnames
27777On System V.4 and embedded PowerPC systems do (do not) emit register
27778names in the assembly language output using symbolic forms.
27779
27780@item -mlongcall
27781@itemx -mno-longcall
27782@opindex mlongcall
27783@opindex mno-longcall
27784By default assume that all calls are far away so that a longer and more
27785expensive calling sequence is required.  This is required for calls
27786farther than 32 megabytes (33,554,432 bytes) from the current location.
27787A short call is generated if the compiler knows
27788the call cannot be that far away.  This setting can be overridden by
27789the @code{shortcall} function attribute, or by @code{#pragma
27790longcall(0)}.
27791
27792Some linkers are capable of detecting out-of-range calls and generating
27793glue code on the fly.  On these systems, long calls are unnecessary and
27794generate slower code.  As of this writing, the AIX linker can do this,
27795as can the GNU linker for PowerPC/64.  It is planned to add this feature
27796to the GNU linker for 32-bit PowerPC systems as well.
27797
27798On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
27799GCC can generate long calls using an inline PLT call sequence (see
27800@option{-mpltseq}).  PowerPC with @option{-mbss-plt} and PowerPC64
27801ELFv1 (big-endian) do not support inline PLT calls.
27802
27803On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
27804callee, L42}, plus a @dfn{branch island} (glue code).  The two target
27805addresses represent the callee and the branch island.  The
27806Darwin/PPC linker prefers the first address and generates a @code{bl
27807callee} if the PPC @code{bl} instruction reaches the callee directly;
27808otherwise, the linker generates @code{bl L42} to call the branch
27809island.  The branch island is appended to the body of the
27810calling function; it computes the full 32-bit address of the callee
27811and jumps to it.
27812
27813On Mach-O (Darwin) systems, this option directs the compiler emit to
27814the glue for every direct call, and the Darwin linker decides whether
27815to use or discard it.
27816
27817In the future, GCC may ignore all longcall specifications
27818when the linker is known to generate glue.
27819
27820@item -mpltseq
27821@itemx -mno-pltseq
27822@opindex mpltseq
27823@opindex mno-pltseq
27824Implement (do not implement) -fno-plt and long calls using an inline
27825PLT call sequence that supports lazy linking and long calls to
27826functions in dlopen'd shared libraries.  Inline PLT calls are only
27827supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
27828linkers, and are enabled by default if the support is detected when
27829configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
27830configured with @option{--enable-secureplt}.  @option{-mpltseq} code
27831and @option{-mbss-plt} 32-bit PowerPC relocatable objects may not be
27832linked together.
27833
27834@item -mtls-markers
27835@itemx -mno-tls-markers
27836@opindex mtls-markers
27837@opindex mno-tls-markers
27838Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
27839specifying the function argument.  The relocation allows the linker to
27840reliably associate function call with argument setup instructions for
27841TLS optimization, which in turn allows GCC to better schedule the
27842sequence.
27843
27844@item -mrecip
27845@itemx -mno-recip
27846@opindex mrecip
27847This option enables use of the reciprocal estimate and
27848reciprocal square root estimate instructions with additional
27849Newton-Raphson steps to increase precision instead of doing a divide or
27850square root and divide for floating-point arguments.  You should use
27851the @option{-ffast-math} option when using @option{-mrecip} (or at
27852least @option{-funsafe-math-optimizations},
27853@option{-ffinite-math-only}, @option{-freciprocal-math} and
27854@option{-fno-trapping-math}).  Note that while the throughput of the
27855sequence is generally higher than the throughput of the non-reciprocal
27856instruction, the precision of the sequence can be decreased by up to 2
27857ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
27858roots.
27859
27860@item -mrecip=@var{opt}
27861@opindex mrecip=opt
27862This option controls which reciprocal estimate instructions
27863may be used.  @var{opt} is a comma-separated list of options, which may
27864be preceded by a @code{!} to invert the option:
27865
27866@table @samp
27867
27868@item all
27869Enable all estimate instructions.
27870
27871@item default
27872Enable the default instructions, equivalent to @option{-mrecip}.
27873
27874@item none
27875Disable all estimate instructions, equivalent to @option{-mno-recip}.
27876
27877@item div
27878Enable the reciprocal approximation instructions for both
27879single and double precision.
27880
27881@item divf
27882Enable the single-precision reciprocal approximation instructions.
27883
27884@item divd
27885Enable the double-precision reciprocal approximation instructions.
27886
27887@item rsqrt
27888Enable the reciprocal square root approximation instructions for both
27889single and double precision.
27890
27891@item rsqrtf
27892Enable the single-precision reciprocal square root approximation instructions.
27893
27894@item rsqrtd
27895Enable the double-precision reciprocal square root approximation instructions.
27896
27897@end table
27898
27899So, for example, @option{-mrecip=all,!rsqrtd} enables
27900all of the reciprocal estimate instructions, except for the
27901@code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
27902which handle the double-precision reciprocal square root calculations.
27903
27904@item -mrecip-precision
27905@itemx -mno-recip-precision
27906@opindex mrecip-precision
27907Assume (do not assume) that the reciprocal estimate instructions
27908provide higher-precision estimates than is mandated by the PowerPC
27909ABI.  Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
27910@option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
27911The double-precision square root estimate instructions are not generated by
27912default on low-precision machines, since they do not provide an
27913estimate that converges after three steps.
27914
27915@item -mveclibabi=@var{type}
27916@opindex mveclibabi
27917Specifies the ABI type to use for vectorizing intrinsics using an
27918external library.  The only type supported at present is @samp{mass},
27919which specifies to use IBM's Mathematical Acceleration Subsystem
27920(MASS) libraries for vectorizing intrinsics using external libraries.
27921GCC currently emits calls to @code{acosd2}, @code{acosf4},
27922@code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
27923@code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
27924@code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
27925@code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
27926@code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
27927@code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
27928@code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
27929@code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
27930@code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
27931@code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
27932@code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
27933@code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
27934@code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
27935for power7.  Both @option{-ftree-vectorize} and
27936@option{-funsafe-math-optimizations} must also be enabled.  The MASS
27937libraries must be specified at link time.
27938
27939@item -mfriz
27940@itemx -mno-friz
27941@opindex mfriz
27942Generate (do not generate) the @code{friz} instruction when the
27943@option{-funsafe-math-optimizations} option is used to optimize
27944rounding of floating-point values to 64-bit integer and back to floating
27945point.  The @code{friz} instruction does not return the same value if
27946the floating-point number is too large to fit in an integer.
27947
27948@item -mpointers-to-nested-functions
27949@itemx -mno-pointers-to-nested-functions
27950@opindex mpointers-to-nested-functions
27951Generate (do not generate) code to load up the static chain register
27952(@code{r11}) when calling through a pointer on AIX and 64-bit Linux
27953systems where a function pointer points to a 3-word descriptor giving
27954the function address, TOC value to be loaded in register @code{r2}, and
27955static chain value to be loaded in register @code{r11}.  The
27956@option{-mpointers-to-nested-functions} is on by default.  You cannot
27957call through pointers to nested functions or pointers
27958to functions compiled in other languages that use the static chain if
27959you use @option{-mno-pointers-to-nested-functions}.
27960
27961@item -msave-toc-indirect
27962@itemx -mno-save-toc-indirect
27963@opindex msave-toc-indirect
27964Generate (do not generate) code to save the TOC value in the reserved
27965stack location in the function prologue if the function calls through
27966a pointer on AIX and 64-bit Linux systems.  If the TOC value is not
27967saved in the prologue, it is saved just before the call through the
27968pointer.  The @option{-mno-save-toc-indirect} option is the default.
27969
27970@item -mcompat-align-parm
27971@itemx -mno-compat-align-parm
27972@opindex mcompat-align-parm
27973Generate (do not generate) code to pass structure parameters with a
27974maximum alignment of 64 bits, for compatibility with older versions
27975of GCC.
27976
27977Older versions of GCC (prior to 4.9.0) incorrectly did not align a
27978structure parameter on a 128-bit boundary when that structure contained
27979a member requiring 128-bit alignment.  This is corrected in more
27980recent versions of GCC.  This option may be used to generate code
27981that is compatible with functions compiled with older versions of
27982GCC.
27983
27984The @option{-mno-compat-align-parm} option is the default.
27985
27986@item -mstack-protector-guard=@var{guard}
27987@itemx -mstack-protector-guard-reg=@var{reg}
27988@itemx -mstack-protector-guard-offset=@var{offset}
27989@itemx -mstack-protector-guard-symbol=@var{symbol}
27990@opindex mstack-protector-guard
27991@opindex mstack-protector-guard-reg
27992@opindex mstack-protector-guard-offset
27993@opindex mstack-protector-guard-symbol
27994Generate stack protection code using canary at @var{guard}.  Supported
27995locations are @samp{global} for global canary or @samp{tls} for per-thread
27996canary in the TLS block (the default with GNU libc version 2.4 or later).
27997
27998With the latter choice the options
27999@option{-mstack-protector-guard-reg=@var{reg}} and
28000@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
28001which register to use as base register for reading the canary, and from what
28002offset from that base register. The default for those is as specified in the
28003relevant ABI.  @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
28004the offset with a symbol reference to a canary in the TLS block.
28005
28006@item -mpcrel
28007@itemx -mno-pcrel
28008@opindex mpcrel
28009@opindex mno-pcrel
28010Generate (do not generate) pc-relative addressing when the option
28011@option{-mcpu=future} is used.  The @option{-mpcrel} option requires
28012that the medium code model (@option{-mcmodel=medium}) and prefixed
28013addressing (@option{-mprefixed}) options are enabled.
28014
28015@item -mprefixed
28016@itemx -mno-prefixed
28017@opindex mprefixed
28018@opindex mno-prefixed
28019Generate (do not generate) addressing modes using prefixed load and
28020store instructions when the option @option{-mcpu=future} is used.
28021
28022@item -mmma
28023@itemx -mno-mma
28024@opindex mmma
28025@opindex mno-mma
28026Generate (do not generate) the MMA instructions when the option
28027@option{-mcpu=future} is used.
28028
28029@item -mrop-protect
28030@itemx -mno-rop-protect
28031@opindex mrop-protect
28032@opindex mno-rop-protect
28033Generate (do not generate) ROP protection instructions when the target
28034processor supports them.  Currently this option disables the shrink-wrap
28035optimization (@option{-fshrink-wrap}).
28036
28037@item -mprivileged
28038@itemx -mno-privileged
28039@opindex mprivileged
28040@opindex mno-privileged
28041Generate (do not generate) code that will run in privileged state.
28042
28043@item -mblock-ops-unaligned-vsx
28044@itemx -mno-block-ops-unaligned-vsx
28045@opindex block-ops-unaligned-vsx
28046@opindex no-block-ops-unaligned-vsx
28047Generate (do not generate) unaligned vsx loads and stores for
28048inline expansion of @code{memcpy} and @code{memmove}.
28049@end table
28050
28051@node RX Options
28052@subsection RX Options
28053@cindex RX Options
28054
28055These command-line options are defined for RX targets:
28056
28057@table @gcctabopt
28058@item -m64bit-doubles
28059@itemx -m32bit-doubles
28060@opindex m64bit-doubles
28061@opindex m32bit-doubles
28062Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
28063or 32 bits (@option{-m32bit-doubles}) in size.  The default is
28064@option{-m32bit-doubles}.  @emph{Note} RX floating-point hardware only
28065works on 32-bit values, which is why the default is
28066@option{-m32bit-doubles}.
28067
28068@item -fpu
28069@itemx -nofpu
28070@opindex fpu
28071@opindex nofpu
28072Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
28073floating-point hardware.  The default is enabled for the RX600
28074series and disabled for the RX200 series.
28075
28076Floating-point instructions are only generated for 32-bit floating-point
28077values, however, so the FPU hardware is not used for doubles if the
28078@option{-m64bit-doubles} option is used.
28079
28080@emph{Note} If the @option{-fpu} option is enabled then
28081@option{-funsafe-math-optimizations} is also enabled automatically.
28082This is because the RX FPU instructions are themselves unsafe.
28083
28084@item -mcpu=@var{name}
28085@opindex mcpu
28086Selects the type of RX CPU to be targeted.  Currently three types are
28087supported, the generic @samp{RX600} and @samp{RX200} series hardware and
28088the specific @samp{RX610} CPU.  The default is @samp{RX600}.
28089
28090The only difference between @samp{RX600} and @samp{RX610} is that the
28091@samp{RX610} does not support the @code{MVTIPL} instruction.
28092
28093The @samp{RX200} series does not have a hardware floating-point unit
28094and so @option{-nofpu} is enabled by default when this type is
28095selected.
28096
28097@item -mbig-endian-data
28098@itemx -mlittle-endian-data
28099@opindex mbig-endian-data
28100@opindex mlittle-endian-data
28101Store data (but not code) in the big-endian format.  The default is
28102@option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
28103format.
28104
28105@item -msmall-data-limit=@var{N}
28106@opindex msmall-data-limit
28107Specifies the maximum size in bytes of global and static variables
28108which can be placed into the small data area.  Using the small data
28109area can lead to smaller and faster code, but the size of area is
28110limited and it is up to the programmer to ensure that the area does
28111not overflow.  Also when the small data area is used one of the RX's
28112registers (usually @code{r13}) is reserved for use pointing to this
28113area, so it is no longer available for use by the compiler.  This
28114could result in slower and/or larger code if variables are pushed onto
28115the stack instead of being held in this register.
28116
28117Note, common variables (variables that have not been initialized) and
28118constants are not placed into the small data area as they are assigned
28119to other sections in the output executable.
28120
28121The default value is zero, which disables this feature.  Note, this
28122feature is not enabled by default with higher optimization levels
28123(@option{-O2} etc) because of the potentially detrimental effects of
28124reserving a register.  It is up to the programmer to experiment and
28125discover whether this feature is of benefit to their program.  See the
28126description of the @option{-mpid} option for a description of how the
28127actual register to hold the small data area pointer is chosen.
28128
28129@item -msim
28130@itemx -mno-sim
28131@opindex msim
28132@opindex mno-sim
28133Use the simulator runtime.  The default is to use the libgloss
28134board-specific runtime.
28135
28136@item -mas100-syntax
28137@itemx -mno-as100-syntax
28138@opindex mas100-syntax
28139@opindex mno-as100-syntax
28140When generating assembler output use a syntax that is compatible with
28141Renesas's AS100 assembler.  This syntax can also be handled by the GAS
28142assembler, but it has some restrictions so it is not generated by default.
28143
28144@item -mmax-constant-size=@var{N}
28145@opindex mmax-constant-size
28146Specifies the maximum size, in bytes, of a constant that can be used as
28147an operand in a RX instruction.  Although the RX instruction set does
28148allow constants of up to 4 bytes in length to be used in instructions,
28149a longer value equates to a longer instruction.  Thus in some
28150circumstances it can be beneficial to restrict the size of constants
28151that are used in instructions.  Constants that are too big are instead
28152placed into a constant pool and referenced via register indirection.
28153
28154The value @var{N} can be between 0 and 4.  A value of 0 (the default)
28155or 4 means that constants of any size are allowed.
28156
28157@item -mrelax
28158@opindex mrelax
28159Enable linker relaxation.  Linker relaxation is a process whereby the
28160linker attempts to reduce the size of a program by finding shorter
28161versions of various instructions.  Disabled by default.
28162
28163@item -mint-register=@var{N}
28164@opindex mint-register
28165Specify the number of registers to reserve for fast interrupt handler
28166functions.  The value @var{N} can be between 0 and 4.  A value of 1
28167means that register @code{r13} is reserved for the exclusive use
28168of fast interrupt handlers.  A value of 2 reserves @code{r13} and
28169@code{r12}.  A value of 3 reserves @code{r13}, @code{r12} and
28170@code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
28171A value of 0, the default, does not reserve any registers.
28172
28173@item -msave-acc-in-interrupts
28174@opindex msave-acc-in-interrupts
28175Specifies that interrupt handler functions should preserve the
28176accumulator register.  This is only necessary if normal code might use
28177the accumulator register, for example because it performs 64-bit
28178multiplications.  The default is to ignore the accumulator as this
28179makes the interrupt handlers faster.
28180
28181@item -mpid
28182@itemx -mno-pid
28183@opindex mpid
28184@opindex mno-pid
28185Enables the generation of position independent data.  When enabled any
28186access to constant data is done via an offset from a base address
28187held in a register.  This allows the location of constant data to be
28188determined at run time without requiring the executable to be
28189relocated, which is a benefit to embedded applications with tight
28190memory constraints.  Data that can be modified is not affected by this
28191option.
28192
28193Note, using this feature reserves a register, usually @code{r13}, for
28194the constant data base address.  This can result in slower and/or
28195larger code, especially in complicated functions.
28196
28197The actual register chosen to hold the constant data base address
28198depends upon whether the @option{-msmall-data-limit} and/or the
28199@option{-mint-register} command-line options are enabled.  Starting
28200with register @code{r13} and proceeding downwards, registers are
28201allocated first to satisfy the requirements of @option{-mint-register},
28202then @option{-mpid} and finally @option{-msmall-data-limit}.  Thus it
28203is possible for the small data area register to be @code{r8} if both
28204@option{-mint-register=4} and @option{-mpid} are specified on the
28205command line.
28206
28207By default this feature is not enabled.  The default can be restored
28208via the @option{-mno-pid} command-line option.
28209
28210@item -mno-warn-multiple-fast-interrupts
28211@itemx -mwarn-multiple-fast-interrupts
28212@opindex mno-warn-multiple-fast-interrupts
28213@opindex mwarn-multiple-fast-interrupts
28214Prevents GCC from issuing a warning message if it finds more than one
28215fast interrupt handler when it is compiling a file.  The default is to
28216issue a warning for each extra fast interrupt handler found, as the RX
28217only supports one such interrupt.
28218
28219@item -mallow-string-insns
28220@itemx -mno-allow-string-insns
28221@opindex mallow-string-insns
28222@opindex mno-allow-string-insns
28223Enables or disables the use of the string manipulation instructions
28224@code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
28225@code{SWHILE} and also the @code{RMPA} instruction.  These
28226instructions may prefetch data, which is not safe to do if accessing
28227an I/O register.  (See section 12.2.7 of the RX62N Group User's Manual
28228for more information).
28229
28230The default is to allow these instructions, but it is not possible for
28231GCC to reliably detect all circumstances where a string instruction
28232might be used to access an I/O register, so their use cannot be
28233disabled automatically.  Instead it is reliant upon the programmer to
28234use the @option{-mno-allow-string-insns} option if their program
28235accesses I/O space.
28236
28237When the instructions are enabled GCC defines the C preprocessor
28238symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
28239symbol @code{__RX_DISALLOW_STRING_INSNS__}.
28240
28241@item -mjsr
28242@itemx -mno-jsr
28243@opindex mjsr
28244@opindex mno-jsr
28245Use only (or not only) @code{JSR} instructions to access functions.
28246This option can be used when code size exceeds the range of @code{BSR}
28247instructions.  Note that @option{-mno-jsr} does not mean to not use
28248@code{JSR} but instead means that any type of branch may be used.
28249@end table
28250
28251@emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
28252has special significance to the RX port when used with the
28253@code{interrupt} function attribute.  This attribute indicates a
28254function intended to process fast interrupts.  GCC ensures
28255that it only uses the registers @code{r10}, @code{r11}, @code{r12}
28256and/or @code{r13} and only provided that the normal use of the
28257corresponding registers have been restricted via the
28258@option{-ffixed-@var{reg}} or @option{-mint-register} command-line
28259options.
28260
28261@node S/390 and zSeries Options
28262@subsection S/390 and zSeries Options
28263@cindex S/390 and zSeries Options
28264
28265These are the @samp{-m} options defined for the S/390 and zSeries architecture.
28266
28267@table @gcctabopt
28268@item -mhard-float
28269@itemx -msoft-float
28270@opindex mhard-float
28271@opindex msoft-float
28272Use (do not use) the hardware floating-point instructions and registers
28273for floating-point operations.  When @option{-msoft-float} is specified,
28274functions in @file{libgcc.a} are used to perform floating-point
28275operations.  When @option{-mhard-float} is specified, the compiler
28276generates IEEE floating-point instructions.  This is the default.
28277
28278@item -mhard-dfp
28279@itemx -mno-hard-dfp
28280@opindex mhard-dfp
28281@opindex mno-hard-dfp
28282Use (do not use) the hardware decimal-floating-point instructions for
28283decimal-floating-point operations.  When @option{-mno-hard-dfp} is
28284specified, functions in @file{libgcc.a} are used to perform
28285decimal-floating-point operations.  When @option{-mhard-dfp} is
28286specified, the compiler generates decimal-floating-point hardware
28287instructions.  This is the default for @option{-march=z9-ec} or higher.
28288
28289@item -mlong-double-64
28290@itemx -mlong-double-128
28291@opindex mlong-double-64
28292@opindex mlong-double-128
28293These switches control the size of @code{long double} type. A size
28294of 64 bits makes the @code{long double} type equivalent to the @code{double}
28295type. This is the default.
28296
28297@item -mbackchain
28298@itemx -mno-backchain
28299@opindex mbackchain
28300@opindex mno-backchain
28301Store (do not store) the address of the caller's frame as backchain pointer
28302into the callee's stack frame.
28303A backchain may be needed to allow debugging using tools that do not understand
28304DWARF call frame information.
28305When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
28306at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
28307the backchain is placed into the topmost word of the 96/160 byte register
28308save area.
28309
28310In general, code compiled with @option{-mbackchain} is call-compatible with
28311code compiled with @option{-mno-backchain}; however, use of the backchain
28312for debugging purposes usually requires that the whole binary is built with
28313@option{-mbackchain}.  Note that the combination of @option{-mbackchain},
28314@option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
28315to build a linux kernel use @option{-msoft-float}.
28316
28317The default is to not maintain the backchain.
28318
28319@item -mpacked-stack
28320@itemx -mno-packed-stack
28321@opindex mpacked-stack
28322@opindex mno-packed-stack
28323Use (do not use) the packed stack layout.  When @option{-mno-packed-stack} is
28324specified, the compiler uses the all fields of the 96/160 byte register save
28325area only for their default purpose; unused fields still take up stack space.
28326When @option{-mpacked-stack} is specified, register save slots are densely
28327packed at the top of the register save area; unused space is reused for other
28328purposes, allowing for more efficient use of the available stack space.
28329However, when @option{-mbackchain} is also in effect, the topmost word of
28330the save area is always used to store the backchain, and the return address
28331register is always saved two words below the backchain.
28332
28333As long as the stack frame backchain is not used, code generated with
28334@option{-mpacked-stack} is call-compatible with code generated with
28335@option{-mno-packed-stack}.  Note that some non-FSF releases of GCC 2.95 for
28336S/390 or zSeries generated code that uses the stack frame backchain at run
28337time, not just for debugging purposes.  Such code is not call-compatible
28338with code compiled with @option{-mpacked-stack}.  Also, note that the
28339combination of @option{-mbackchain},
28340@option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
28341to build a linux kernel use @option{-msoft-float}.
28342
28343The default is to not use the packed stack layout.
28344
28345@item -msmall-exec
28346@itemx -mno-small-exec
28347@opindex msmall-exec
28348@opindex mno-small-exec
28349Generate (or do not generate) code using the @code{bras} instruction
28350to do subroutine calls.
28351This only works reliably if the total executable size does not
28352exceed 64k.  The default is to use the @code{basr} instruction instead,
28353which does not have this limitation.
28354
28355@item -m64
28356@itemx -m31
28357@opindex m64
28358@opindex m31
28359When @option{-m31} is specified, generate code compliant to the
28360GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
28361code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
28362particular to generate 64-bit instructions.  For the @samp{s390}
28363targets, the default is @option{-m31}, while the @samp{s390x}
28364targets default to @option{-m64}.
28365
28366@item -mzarch
28367@itemx -mesa
28368@opindex mzarch
28369@opindex mesa
28370When @option{-mzarch} is specified, generate code using the
28371instructions available on z/Architecture.
28372When @option{-mesa} is specified, generate code using the
28373instructions available on ESA/390.  Note that @option{-mesa} is
28374not possible with @option{-m64}.
28375When generating code compliant to the GNU/Linux for S/390 ABI,
28376the default is @option{-mesa}.  When generating code compliant
28377to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
28378
28379@item -mhtm
28380@itemx -mno-htm
28381@opindex mhtm
28382@opindex mno-htm
28383The @option{-mhtm} option enables a set of builtins making use of
28384instructions available with the transactional execution facility
28385introduced with the IBM zEnterprise EC12 machine generation
28386@ref{S/390 System z Built-in Functions}.
28387@option{-mhtm} is enabled by default when using @option{-march=zEC12}.
28388
28389@item -mvx
28390@itemx -mno-vx
28391@opindex mvx
28392@opindex mno-vx
28393When @option{-mvx} is specified, generate code using the instructions
28394available with the vector extension facility introduced with the IBM
28395z13 machine generation.
28396This option changes the ABI for some vector type values with regard to
28397alignment and calling conventions.  In case vector type values are
28398being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
28399command will be added to mark the resulting binary with the ABI used.
28400@option{-mvx} is enabled by default when using @option{-march=z13}.
28401
28402@item -mzvector
28403@itemx -mno-zvector
28404@opindex mzvector
28405@opindex mno-zvector
28406The @option{-mzvector} option enables vector language extensions and
28407builtins using instructions available with the vector extension
28408facility introduced with the IBM z13 machine generation.
28409This option adds support for @samp{vector} to be used as a keyword to
28410define vector type variables and arguments.  @samp{vector} is only
28411available when GNU extensions are enabled.  It will not be expanded
28412when requesting strict standard compliance e.g.@: with @option{-std=c99}.
28413In addition to the GCC low-level builtins @option{-mzvector} enables
28414a set of builtins added for compatibility with AltiVec-style
28415implementations like Power and Cell.  In order to make use of these
28416builtins the header file @file{vecintrin.h} needs to be included.
28417@option{-mzvector} is disabled by default.
28418
28419@item -mmvcle
28420@itemx -mno-mvcle
28421@opindex mmvcle
28422@opindex mno-mvcle
28423Generate (or do not generate) code using the @code{mvcle} instruction
28424to perform block moves.  When @option{-mno-mvcle} is specified,
28425use a @code{mvc} loop instead.  This is the default unless optimizing for
28426size.
28427
28428@item -mdebug
28429@itemx -mno-debug
28430@opindex mdebug
28431@opindex mno-debug
28432Print (or do not print) additional debug information when compiling.
28433The default is to not print debug information.
28434
28435@item -march=@var{cpu-type}
28436@opindex march
28437Generate code that runs on @var{cpu-type}, which is the name of a
28438system representing a certain processor type.  Possible values for
28439@var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
28440@samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
28441@samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
28442@samp{z14}/@samp{arch12}, @samp{z15}/@samp{arch13}, and @samp{native}.
28443
28444The default is @option{-march=z900}.
28445
28446Specifying @samp{native} as cpu type can be used to select the best
28447architecture option for the host processor.
28448@option{-march=native} has no effect if GCC does not recognize the
28449processor.
28450
28451@item -mtune=@var{cpu-type}
28452@opindex mtune
28453Tune to @var{cpu-type} everything applicable about the generated code,
28454except for the ABI and the set of available instructions.
28455The list of @var{cpu-type} values is the same as for @option{-march}.
28456The default is the value used for @option{-march}.
28457
28458@item -mtpf-trace
28459@itemx -mno-tpf-trace
28460@opindex mtpf-trace
28461@opindex mno-tpf-trace
28462Generate code that adds (does not add) in TPF OS specific branches to trace
28463routines in the operating system.  This option is off by default, even
28464when compiling for the TPF OS@.
28465
28466@item -mtpf-trace-skip
28467@itemx -mno-tpf-trace-skip
28468@opindex mtpf-trace-skip
28469@opindex mno-tpf-trace-skip
28470Generate code that changes (does not change) the default branch
28471targets enabled by @option{-mtpf-trace} to point to specialized trace
28472routines providing the ability of selectively skipping function trace
28473entries for the TPF OS.  This option is off by default, even when
28474compiling for the TPF OS and specifying @option{-mtpf-trace}.
28475
28476@item -mfused-madd
28477@itemx -mno-fused-madd
28478@opindex mfused-madd
28479@opindex mno-fused-madd
28480Generate code that uses (does not use) the floating-point multiply and
28481accumulate instructions.  These instructions are generated by default if
28482hardware floating point is used.
28483
28484@item -mwarn-framesize=@var{framesize}
28485@opindex mwarn-framesize
28486Emit a warning if the current function exceeds the given frame size.  Because
28487this is a compile-time check it doesn't need to be a real problem when the program
28488runs.  It is intended to identify functions that most probably cause
28489a stack overflow.  It is useful to be used in an environment with limited stack
28490size e.g.@: the linux kernel.
28491
28492@item -mwarn-dynamicstack
28493@opindex mwarn-dynamicstack
28494Emit a warning if the function calls @code{alloca} or uses dynamically-sized
28495arrays.  This is generally a bad idea with a limited stack size.
28496
28497@item -mstack-guard=@var{stack-guard}
28498@itemx -mstack-size=@var{stack-size}
28499@opindex mstack-guard
28500@opindex mstack-size
28501If these options are provided the S/390 back end emits additional instructions in
28502the function prologue that trigger a trap if the stack size is @var{stack-guard}
28503bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
28504If the @var{stack-guard} option is omitted the smallest power of 2 larger than
28505the frame size of the compiled function is chosen.
28506These options are intended to be used to help debugging stack overflow problems.
28507The additionally emitted code causes only little overhead and hence can also be
28508used in production-like systems without greater performance degradation.  The given
28509values have to be exact powers of 2 and @var{stack-size} has to be greater than
28510@var{stack-guard} without exceeding 64k.
28511In order to be efficient the extra code makes the assumption that the stack starts
28512at an address aligned to the value given by @var{stack-size}.
28513The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
28514
28515@item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
28516@opindex mhotpatch
28517If the hotpatch option is enabled, a ``hot-patching'' function
28518prologue is generated for all functions in the compilation unit.
28519The funtion label is prepended with the given number of two-byte
28520NOP instructions (@var{pre-halfwords}, maximum 1000000).  After
28521the label, 2 * @var{post-halfwords} bytes are appended, using the
28522largest NOP like instructions the architecture allows (maximum
285231000000).
28524
28525If both arguments are zero, hotpatching is disabled.
28526
28527This option can be overridden for individual functions with the
28528@code{hotpatch} attribute.
28529@end table
28530
28531@node Score Options
28532@subsection Score Options
28533@cindex Score Options
28534
28535These options are defined for Score implementations:
28536
28537@table @gcctabopt
28538@item -meb
28539@opindex meb
28540Compile code for big-endian mode.  This is the default.
28541
28542@item -mel
28543@opindex mel
28544Compile code for little-endian mode.
28545
28546@item -mnhwloop
28547@opindex mnhwloop
28548Disable generation of @code{bcnz} instructions.
28549
28550@item -muls
28551@opindex muls
28552Enable generation of unaligned load and store instructions.
28553
28554@item -mmac
28555@opindex mmac
28556Enable the use of multiply-accumulate instructions. Disabled by default.
28557
28558@item -mscore5
28559@opindex mscore5
28560Specify the SCORE5 as the target architecture.
28561
28562@item -mscore5u
28563@opindex mscore5u
28564Specify the SCORE5U of the target architecture.
28565
28566@item -mscore7
28567@opindex mscore7
28568Specify the SCORE7 as the target architecture. This is the default.
28569
28570@item -mscore7d
28571@opindex mscore7d
28572Specify the SCORE7D as the target architecture.
28573@end table
28574
28575@node SH Options
28576@subsection SH Options
28577
28578These @samp{-m} options are defined for the SH implementations:
28579
28580@table @gcctabopt
28581@item -m1
28582@opindex m1
28583Generate code for the SH1.
28584
28585@item -m2
28586@opindex m2
28587Generate code for the SH2.
28588
28589@item -m2e
28590Generate code for the SH2e.
28591
28592@item -m2a-nofpu
28593@opindex m2a-nofpu
28594Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
28595that the floating-point unit is not used.
28596
28597@item -m2a-single-only
28598@opindex m2a-single-only
28599Generate code for the SH2a-FPU, in such a way that no double-precision
28600floating-point operations are used.
28601
28602@item -m2a-single
28603@opindex m2a-single
28604Generate code for the SH2a-FPU assuming the floating-point unit is in
28605single-precision mode by default.
28606
28607@item -m2a
28608@opindex m2a
28609Generate code for the SH2a-FPU assuming the floating-point unit is in
28610double-precision mode by default.
28611
28612@item -m3
28613@opindex m3
28614Generate code for the SH3.
28615
28616@item -m3e
28617@opindex m3e
28618Generate code for the SH3e.
28619
28620@item -m4-nofpu
28621@opindex m4-nofpu
28622Generate code for the SH4 without a floating-point unit.
28623
28624@item -m4-single-only
28625@opindex m4-single-only
28626Generate code for the SH4 with a floating-point unit that only
28627supports single-precision arithmetic.
28628
28629@item -m4-single
28630@opindex m4-single
28631Generate code for the SH4 assuming the floating-point unit is in
28632single-precision mode by default.
28633
28634@item -m4
28635@opindex m4
28636Generate code for the SH4.
28637
28638@item -m4-100
28639@opindex m4-100
28640Generate code for SH4-100.
28641
28642@item -m4-100-nofpu
28643@opindex m4-100-nofpu
28644Generate code for SH4-100 in such a way that the
28645floating-point unit is not used.
28646
28647@item -m4-100-single
28648@opindex m4-100-single
28649Generate code for SH4-100 assuming the floating-point unit is in
28650single-precision mode by default.
28651
28652@item -m4-100-single-only
28653@opindex m4-100-single-only
28654Generate code for SH4-100 in such a way that no double-precision
28655floating-point operations are used.
28656
28657@item -m4-200
28658@opindex m4-200
28659Generate code for SH4-200.
28660
28661@item -m4-200-nofpu
28662@opindex m4-200-nofpu
28663Generate code for SH4-200 without in such a way that the
28664floating-point unit is not used.
28665
28666@item -m4-200-single
28667@opindex m4-200-single
28668Generate code for SH4-200 assuming the floating-point unit is in
28669single-precision mode by default.
28670
28671@item -m4-200-single-only
28672@opindex m4-200-single-only
28673Generate code for SH4-200 in such a way that no double-precision
28674floating-point operations are used.
28675
28676@item -m4-300
28677@opindex m4-300
28678Generate code for SH4-300.
28679
28680@item -m4-300-nofpu
28681@opindex m4-300-nofpu
28682Generate code for SH4-300 without in such a way that the
28683floating-point unit is not used.
28684
28685@item -m4-300-single
28686@opindex m4-300-single
28687Generate code for SH4-300 in such a way that no double-precision
28688floating-point operations are used.
28689
28690@item -m4-300-single-only
28691@opindex m4-300-single-only
28692Generate code for SH4-300 in such a way that no double-precision
28693floating-point operations are used.
28694
28695@item -m4-340
28696@opindex m4-340
28697Generate code for SH4-340 (no MMU, no FPU).
28698
28699@item -m4-500
28700@opindex m4-500
28701Generate code for SH4-500 (no FPU).  Passes @option{-isa=sh4-nofpu} to the
28702assembler.
28703
28704@item -m4a-nofpu
28705@opindex m4a-nofpu
28706Generate code for the SH4al-dsp, or for a SH4a in such a way that the
28707floating-point unit is not used.
28708
28709@item -m4a-single-only
28710@opindex m4a-single-only
28711Generate code for the SH4a, in such a way that no double-precision
28712floating-point operations are used.
28713
28714@item -m4a-single
28715@opindex m4a-single
28716Generate code for the SH4a assuming the floating-point unit is in
28717single-precision mode by default.
28718
28719@item -m4a
28720@opindex m4a
28721Generate code for the SH4a.
28722
28723@item -m4al
28724@opindex m4al
28725Same as @option{-m4a-nofpu}, except that it implicitly passes
28726@option{-dsp} to the assembler.  GCC doesn't generate any DSP
28727instructions at the moment.
28728
28729@item -mb
28730@opindex mb
28731Compile code for the processor in big-endian mode.
28732
28733@item -ml
28734@opindex ml
28735Compile code for the processor in little-endian mode.
28736
28737@item -mdalign
28738@opindex mdalign
28739Align doubles at 64-bit boundaries.  Note that this changes the calling
28740conventions, and thus some functions from the standard C library do
28741not work unless you recompile it first with @option{-mdalign}.
28742
28743@item -mrelax
28744@opindex mrelax
28745Shorten some address references at link time, when possible; uses the
28746linker option @option{-relax}.
28747
28748@item -mbigtable
28749@opindex mbigtable
28750Use 32-bit offsets in @code{switch} tables.  The default is to use
2875116-bit offsets.
28752
28753@item -mbitops
28754@opindex mbitops
28755Enable the use of bit manipulation instructions on SH2A.
28756
28757@item -mfmovd
28758@opindex mfmovd
28759Enable the use of the instruction @code{fmovd}.  Check @option{-mdalign} for
28760alignment constraints.
28761
28762@item -mrenesas
28763@opindex mrenesas
28764Comply with the calling conventions defined by Renesas.
28765
28766@item -mno-renesas
28767@opindex mno-renesas
28768Comply with the calling conventions defined for GCC before the Renesas
28769conventions were available.  This option is the default for all
28770targets of the SH toolchain.
28771
28772@item -mnomacsave
28773@opindex mnomacsave
28774Mark the @code{MAC} register as call-clobbered, even if
28775@option{-mrenesas} is given.
28776
28777@item -mieee
28778@itemx -mno-ieee
28779@opindex mieee
28780@opindex mno-ieee
28781Control the IEEE compliance of floating-point comparisons, which affects the
28782handling of cases where the result of a comparison is unordered.  By default
28783@option{-mieee} is implicitly enabled.  If @option{-ffinite-math-only} is
28784enabled @option{-mno-ieee} is implicitly set, which results in faster
28785floating-point greater-equal and less-equal comparisons.  The implicit settings
28786can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
28787
28788@item -minline-ic_invalidate
28789@opindex minline-ic_invalidate
28790Inline code to invalidate instruction cache entries after setting up
28791nested function trampolines.
28792This option has no effect if @option{-musermode} is in effect and the selected
28793code generation option (e.g.@: @option{-m4}) does not allow the use of the @code{icbi}
28794instruction.
28795If the selected code generation option does not allow the use of the @code{icbi}
28796instruction, and @option{-musermode} is not in effect, the inlined code
28797manipulates the instruction cache address array directly with an associative
28798write.  This not only requires privileged mode at run time, but it also
28799fails if the cache line had been mapped via the TLB and has become unmapped.
28800
28801@item -misize
28802@opindex misize
28803Dump instruction size and location in the assembly code.
28804
28805@item -mpadstruct
28806@opindex mpadstruct
28807This option is deprecated.  It pads structures to multiple of 4 bytes,
28808which is incompatible with the SH ABI@.
28809
28810@item -matomic-model=@var{model}
28811@opindex matomic-model=@var{model}
28812Sets the model of atomic operations and additional parameters as a comma
28813separated list.  For details on the atomic built-in functions see
28814@ref{__atomic Builtins}.  The following models and parameters are supported:
28815
28816@table @samp
28817
28818@item none
28819Disable compiler generated atomic sequences and emit library calls for atomic
28820operations.  This is the default if the target is not @code{sh*-*-linux*}.
28821
28822@item soft-gusa
28823Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
28824built-in functions.  The generated atomic sequences require additional support
28825from the interrupt/exception handling code of the system and are only suitable
28826for SH3* and SH4* single-core systems.  This option is enabled by default when
28827the target is @code{sh*-*-linux*} and SH3* or SH4*.  When the target is SH4A,
28828this option also partially utilizes the hardware atomic instructions
28829@code{movli.l} and @code{movco.l} to create more efficient code, unless
28830@samp{strict} is specified.
28831
28832@item soft-tcb
28833Generate software atomic sequences that use a variable in the thread control
28834block.  This is a variation of the gUSA sequences which can also be used on
28835SH1* and SH2* targets.  The generated atomic sequences require additional
28836support from the interrupt/exception handling code of the system and are only
28837suitable for single-core systems.  When using this model, the @samp{gbr-offset=}
28838parameter has to be specified as well.
28839
28840@item soft-imask
28841Generate software atomic sequences that temporarily disable interrupts by
28842setting @code{SR.IMASK = 1111}.  This model works only when the program runs
28843in privileged mode and is only suitable for single-core systems.  Additional
28844support from the interrupt/exception handling code of the system is not
28845required.  This model is enabled by default when the target is
28846@code{sh*-*-linux*} and SH1* or SH2*.
28847
28848@item hard-llcs
28849Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
28850instructions only.  This is only available on SH4A and is suitable for
28851multi-core systems.  Since the hardware instructions support only 32 bit atomic
28852variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
28853Code compiled with this option is also compatible with other software
28854atomic model interrupt/exception handling systems if executed on an SH4A
28855system.  Additional support from the interrupt/exception handling code of the
28856system is not required for this model.
28857
28858@item gbr-offset=
28859This parameter specifies the offset in bytes of the variable in the thread
28860control block structure that should be used by the generated atomic sequences
28861when the @samp{soft-tcb} model has been selected.  For other models this
28862parameter is ignored.  The specified value must be an integer multiple of four
28863and in the range 0-1020.
28864
28865@item strict
28866This parameter prevents mixed usage of multiple atomic models, even if they
28867are compatible, and makes the compiler generate atomic sequences of the
28868specified model only.
28869
28870@end table
28871
28872@item -mtas
28873@opindex mtas
28874Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
28875Notice that depending on the particular hardware and software configuration
28876this can degrade overall performance due to the operand cache line flushes
28877that are implied by the @code{tas.b} instruction.  On multi-core SH4A
28878processors the @code{tas.b} instruction must be used with caution since it
28879can result in data corruption for certain cache configurations.
28880
28881@item -mprefergot
28882@opindex mprefergot
28883When generating position-independent code, emit function calls using
28884the Global Offset Table instead of the Procedure Linkage Table.
28885
28886@item -musermode
28887@itemx -mno-usermode
28888@opindex musermode
28889@opindex mno-usermode
28890Don't allow (allow) the compiler generating privileged mode code.  Specifying
28891@option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
28892inlined code would not work in user mode.  @option{-musermode} is the default
28893when the target is @code{sh*-*-linux*}.  If the target is SH1* or SH2*
28894@option{-musermode} has no effect, since there is no user mode.
28895
28896@item -multcost=@var{number}
28897@opindex multcost=@var{number}
28898Set the cost to assume for a multiply insn.
28899
28900@item -mdiv=@var{strategy}
28901@opindex mdiv=@var{strategy}
28902Set the division strategy to be used for integer division operations.
28903@var{strategy} can be one of:
28904
28905@table @samp
28906
28907@item call-div1
28908Calls a library function that uses the single-step division instruction
28909@code{div1} to perform the operation.  Division by zero calculates an
28910unspecified result and does not trap.  This is the default except for SH4,
28911SH2A and SHcompact.
28912
28913@item call-fp
28914Calls a library function that performs the operation in double precision
28915floating point.  Division by zero causes a floating-point exception.  This is
28916the default for SHcompact with FPU.  Specifying this for targets that do not
28917have a double precision FPU defaults to @code{call-div1}.
28918
28919@item call-table
28920Calls a library function that uses a lookup table for small divisors and
28921the @code{div1} instruction with case distinction for larger divisors.  Division
28922by zero calculates an unspecified result and does not trap.  This is the default
28923for SH4.  Specifying this for targets that do not have dynamic shift
28924instructions defaults to @code{call-div1}.
28925
28926@end table
28927
28928When a division strategy has not been specified the default strategy is
28929selected based on the current target.  For SH2A the default strategy is to
28930use the @code{divs} and @code{divu} instructions instead of library function
28931calls.
28932
28933@item -maccumulate-outgoing-args
28934@opindex maccumulate-outgoing-args
28935Reserve space once for outgoing arguments in the function prologue rather
28936than around each call.  Generally beneficial for performance and size.  Also
28937needed for unwinding to avoid changing the stack frame around conditional code.
28938
28939@item -mdivsi3_libfunc=@var{name}
28940@opindex mdivsi3_libfunc=@var{name}
28941Set the name of the library function used for 32-bit signed division to
28942@var{name}.
28943This only affects the name used in the @samp{call} division strategies, and
28944the compiler still expects the same sets of input/output/clobbered registers as
28945if this option were not present.
28946
28947@item -mfixed-range=@var{register-range}
28948@opindex mfixed-range
28949Generate code treating the given register range as fixed registers.
28950A fixed register is one that the register allocator cannot use.  This is
28951useful when compiling kernel code.  A register range is specified as
28952two registers separated by a dash.  Multiple register ranges can be
28953specified separated by a comma.
28954
28955@item -mbranch-cost=@var{num}
28956@opindex mbranch-cost=@var{num}
28957Assume @var{num} to be the cost for a branch instruction.  Higher numbers
28958make the compiler try to generate more branch-free code if possible.
28959If not specified the value is selected depending on the processor type that
28960is being compiled for.
28961
28962@item -mzdcbranch
28963@itemx -mno-zdcbranch
28964@opindex mzdcbranch
28965@opindex mno-zdcbranch
28966Assume (do not assume) that zero displacement conditional branch instructions
28967@code{bt} and @code{bf} are fast.  If @option{-mzdcbranch} is specified, the
28968compiler prefers zero displacement branch code sequences.  This is
28969enabled by default when generating code for SH4 and SH4A.  It can be explicitly
28970disabled by specifying @option{-mno-zdcbranch}.
28971
28972@item -mcbranch-force-delay-slot
28973@opindex mcbranch-force-delay-slot
28974Force the usage of delay slots for conditional branches, which stuffs the delay
28975slot with a @code{nop} if a suitable instruction cannot be found.  By default
28976this option is disabled.  It can be enabled to work around hardware bugs as
28977found in the original SH7055.
28978
28979@item -mfused-madd
28980@itemx -mno-fused-madd
28981@opindex mfused-madd
28982@opindex mno-fused-madd
28983Generate code that uses (does not use) the floating-point multiply and
28984accumulate instructions.  These instructions are generated by default
28985if hardware floating point is used.  The machine-dependent
28986@option{-mfused-madd} option is now mapped to the machine-independent
28987@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
28988mapped to @option{-ffp-contract=off}.
28989
28990@item -mfsca
28991@itemx -mno-fsca
28992@opindex mfsca
28993@opindex mno-fsca
28994Allow or disallow the compiler to emit the @code{fsca} instruction for sine
28995and cosine approximations.  The option @option{-mfsca} must be used in
28996combination with @option{-funsafe-math-optimizations}.  It is enabled by default
28997when generating code for SH4A.  Using @option{-mno-fsca} disables sine and cosine
28998approximations even if @option{-funsafe-math-optimizations} is in effect.
28999
29000@item -mfsrra
29001@itemx -mno-fsrra
29002@opindex mfsrra
29003@opindex mno-fsrra
29004Allow or disallow the compiler to emit the @code{fsrra} instruction for
29005reciprocal square root approximations.  The option @option{-mfsrra} must be used
29006in combination with @option{-funsafe-math-optimizations} and
29007@option{-ffinite-math-only}.  It is enabled by default when generating code for
29008SH4A.  Using @option{-mno-fsrra} disables reciprocal square root approximations
29009even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
29010in effect.
29011
29012@item -mpretend-cmove
29013@opindex mpretend-cmove
29014Prefer zero-displacement conditional branches for conditional move instruction
29015patterns.  This can result in faster code on the SH4 processor.
29016
29017@item -mfdpic
29018@opindex fdpic
29019Generate code using the FDPIC ABI.
29020
29021@end table
29022
29023@node Solaris 2 Options
29024@subsection Solaris 2 Options
29025@cindex Solaris 2 options
29026
29027These @samp{-m} options are supported on Solaris 2:
29028
29029@table @gcctabopt
29030@item -mclear-hwcap
29031@opindex mclear-hwcap
29032@option{-mclear-hwcap} tells the compiler to remove the hardware
29033capabilities generated by the Solaris assembler.  This is only necessary
29034when object files use ISA extensions not supported by the current
29035machine, but check at runtime whether or not to use them.
29036
29037@item -mimpure-text
29038@opindex mimpure-text
29039@option{-mimpure-text}, used in addition to @option{-shared}, tells
29040the compiler to not pass @option{-z text} to the linker when linking a
29041shared object.  Using this option, you can link position-dependent
29042code into a shared object.
29043
29044@option{-mimpure-text} suppresses the ``relocations remain against
29045allocatable but non-writable sections'' linker error message.
29046However, the necessary relocations trigger copy-on-write, and the
29047shared object is not actually shared across processes.  Instead of
29048using @option{-mimpure-text}, you should compile all source code with
29049@option{-fpic} or @option{-fPIC}.
29050
29051@end table
29052
29053These switches are supported in addition to the above on Solaris 2:
29054
29055@table @gcctabopt
29056@item -pthreads
29057@opindex pthreads
29058This is a synonym for @option{-pthread}.
29059@end table
29060
29061@node SPARC Options
29062@subsection SPARC Options
29063@cindex SPARC options
29064
29065These @samp{-m} options are supported on the SPARC:
29066
29067@table @gcctabopt
29068@item -mno-app-regs
29069@itemx -mapp-regs
29070@opindex mno-app-regs
29071@opindex mapp-regs
29072Specify @option{-mapp-regs} to generate output using the global registers
290732 through 4, which the SPARC SVR4 ABI reserves for applications.  Like the
29074global register 1, each global register 2 through 4 is then treated as an
29075allocable register that is clobbered by function calls.  This is the default.
29076
29077To be fully SVR4 ABI-compliant at the cost of some performance loss,
29078specify @option{-mno-app-regs}.  You should compile libraries and system
29079software with this option.
29080
29081@item -mflat
29082@itemx -mno-flat
29083@opindex mflat
29084@opindex mno-flat
29085With @option{-mflat}, the compiler does not generate save/restore instructions
29086and uses a ``flat'' or single register window model.  This model is compatible
29087with the regular register window model.  The local registers and the input
29088registers (0--5) are still treated as ``call-saved'' registers and are
29089saved on the stack as needed.
29090
29091With @option{-mno-flat} (the default), the compiler generates save/restore
29092instructions (except for leaf functions).  This is the normal operating mode.
29093
29094@item -mfpu
29095@itemx -mhard-float
29096@opindex mfpu
29097@opindex mhard-float
29098Generate output containing floating-point instructions.  This is the
29099default.
29100
29101@item -mno-fpu
29102@itemx -msoft-float
29103@opindex mno-fpu
29104@opindex msoft-float
29105Generate output containing library calls for floating point.
29106@strong{Warning:} the requisite libraries are not available for all SPARC
29107targets.  Normally the facilities of the machine's usual C compiler are
29108used, but this cannot be done directly in cross-compilation.  You must make
29109your own arrangements to provide suitable library functions for
29110cross-compilation.  The embedded targets @samp{sparc-*-aout} and
29111@samp{sparclite-*-*} do provide software floating-point support.
29112
29113@option{-msoft-float} changes the calling convention in the output file;
29114therefore, it is only useful if you compile @emph{all} of a program with
29115this option.  In particular, you need to compile @file{libgcc.a}, the
29116library that comes with GCC, with @option{-msoft-float} in order for
29117this to work.
29118
29119@item -mhard-quad-float
29120@opindex mhard-quad-float
29121Generate output containing quad-word (long double) floating-point
29122instructions.
29123
29124@item -msoft-quad-float
29125@opindex msoft-quad-float
29126Generate output containing library calls for quad-word (long double)
29127floating-point instructions.  The functions called are those specified
29128in the SPARC ABI@.  This is the default.
29129
29130As of this writing, there are no SPARC implementations that have hardware
29131support for the quad-word floating-point instructions.  They all invoke
29132a trap handler for one of these instructions, and then the trap handler
29133emulates the effect of the instruction.  Because of the trap handler overhead,
29134this is much slower than calling the ABI library routines.  Thus the
29135@option{-msoft-quad-float} option is the default.
29136
29137@item -mno-unaligned-doubles
29138@itemx -munaligned-doubles
29139@opindex mno-unaligned-doubles
29140@opindex munaligned-doubles
29141Assume that doubles have 8-byte alignment.  This is the default.
29142
29143With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
29144alignment only if they are contained in another type, or if they have an
29145absolute address.  Otherwise, it assumes they have 4-byte alignment.
29146Specifying this option avoids some rare compatibility problems with code
29147generated by other compilers.  It is not the default because it results
29148in a performance loss, especially for floating-point code.
29149
29150@item -muser-mode
29151@itemx -mno-user-mode
29152@opindex muser-mode
29153@opindex mno-user-mode
29154Do not generate code that can only run in supervisor mode.  This is relevant
29155only for the @code{casa} instruction emitted for the LEON3 processor.  This
29156is the default.
29157
29158@item -mfaster-structs
29159@itemx -mno-faster-structs
29160@opindex mfaster-structs
29161@opindex mno-faster-structs
29162With @option{-mfaster-structs}, the compiler assumes that structures
29163should have 8-byte alignment.  This enables the use of pairs of
29164@code{ldd} and @code{std} instructions for copies in structure
29165assignment, in place of twice as many @code{ld} and @code{st} pairs.
29166However, the use of this changed alignment directly violates the SPARC
29167ABI@.  Thus, it's intended only for use on targets where the developer
29168acknowledges that their resulting code is not directly in line with
29169the rules of the ABI@.
29170
29171@item -mstd-struct-return
29172@itemx -mno-std-struct-return
29173@opindex mstd-struct-return
29174@opindex mno-std-struct-return
29175With @option{-mstd-struct-return}, the compiler generates checking code
29176in functions returning structures or unions to detect size mismatches
29177between the two sides of function calls, as per the 32-bit ABI@.
29178
29179The default is @option{-mno-std-struct-return}.  This option has no effect
29180in 64-bit mode.
29181
29182@item -mlra
29183@itemx -mno-lra
29184@opindex mlra
29185@opindex mno-lra
29186Enable Local Register Allocation.  This is the default for SPARC since GCC 7
29187so @option{-mno-lra} needs to be passed to get old Reload.
29188
29189@item -mcpu=@var{cpu_type}
29190@opindex mcpu
29191Set the instruction set, register set, and instruction scheduling parameters
29192for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
29193@samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
29194@samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
29195@samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
29196@samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
29197@samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
29198
29199Native Solaris and GNU/Linux toolchains also support the value @samp{native},
29200which selects the best architecture option for the host processor.
29201@option{-mcpu=native} has no effect if GCC does not recognize
29202the processor.
29203
29204Default instruction scheduling parameters are used for values that select
29205an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
29206@samp{sparclite}, @samp{sparclet}, @samp{v9}.
29207
29208Here is a list of each supported architecture and their supported
29209implementations.
29210
29211@table @asis
29212@item v7
29213cypress, leon3v7
29214
29215@item v8
29216supersparc, hypersparc, leon, leon3
29217
29218@item sparclite
29219f930, f934, sparclite86x
29220
29221@item sparclet
29222tsc701
29223
29224@item v9
29225ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
29226niagara7, m8
29227@end table
29228
29229By default (unless configured otherwise), GCC generates code for the V7
29230variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
29231additionally optimizes it for the Cypress CY7C602 chip, as used in the
29232SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
29233SPARCStation 1, 2, IPX etc.
29234
29235With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
29236architecture.  The only difference from V7 code is that the compiler emits
29237the integer multiply and integer divide instructions which exist in SPARC-V8
29238but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
29239optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
292402000 series.
29241
29242With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
29243the SPARC architecture.  This adds the integer multiply, integer divide step
29244and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
29245With @option{-mcpu=f930}, the compiler additionally optimizes it for the
29246Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@.  With
29247@option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
29248MB86934 chip, which is the more recent SPARClite with FPU@.
29249
29250With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
29251the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
29252integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
29253but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
29254optimizes it for the TEMIC SPARClet chip.
29255
29256With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
29257architecture.  This adds 64-bit integer and floating-point move instructions,
292583 additional floating-point condition code registers and conditional move
29259instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
29260optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
29261@option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
29262Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
29263@option{-mcpu=niagara}, the compiler additionally optimizes it for
29264Sun UltraSPARC T1 chips.  With @option{-mcpu=niagara2}, the compiler
29265additionally optimizes it for Sun UltraSPARC T2 chips. With
29266@option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
29267UltraSPARC T3 chips.  With @option{-mcpu=niagara4}, the compiler
29268additionally optimizes it for Sun UltraSPARC T4 chips.  With
29269@option{-mcpu=niagara7}, the compiler additionally optimizes it for
29270Oracle SPARC M7 chips.  With @option{-mcpu=m8}, the compiler
29271additionally optimizes it for Oracle M8 chips.
29272
29273@item -mtune=@var{cpu_type}
29274@opindex mtune
29275Set the instruction scheduling parameters for machine type
29276@var{cpu_type}, but do not set the instruction set or register set that the
29277option @option{-mcpu=@var{cpu_type}} does.
29278
29279The same values for @option{-mcpu=@var{cpu_type}} can be used for
29280@option{-mtune=@var{cpu_type}}, but the only useful values are those
29281that select a particular CPU implementation.  Those are
29282@samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
29283@samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
29284@samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
29285@samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
29286@samp{niagara4}, @samp{niagara7} and @samp{m8}.  With native Solaris
29287and GNU/Linux toolchains, @samp{native} can also be used.
29288
29289@item -mv8plus
29290@itemx -mno-v8plus
29291@opindex mv8plus
29292@opindex mno-v8plus
29293With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@.  The
29294difference from the V8 ABI is that the global and out registers are
29295considered 64 bits wide.  This is enabled by default on Solaris in 32-bit
29296mode for all SPARC-V9 processors.
29297
29298@item -mvis
29299@itemx -mno-vis
29300@opindex mvis
29301@opindex mno-vis
29302With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
29303Visual Instruction Set extensions.  The default is @option{-mno-vis}.
29304
29305@item -mvis2
29306@itemx -mno-vis2
29307@opindex mvis2
29308@opindex mno-vis2
29309With @option{-mvis2}, GCC generates code that takes advantage of
29310version 2.0 of the UltraSPARC Visual Instruction Set extensions.  The
29311default is @option{-mvis2} when targeting a cpu that supports such
29312instructions, such as UltraSPARC-III and later.  Setting @option{-mvis2}
29313also sets @option{-mvis}.
29314
29315@item -mvis3
29316@itemx -mno-vis3
29317@opindex mvis3
29318@opindex mno-vis3
29319With @option{-mvis3}, GCC generates code that takes advantage of
29320version 3.0 of the UltraSPARC Visual Instruction Set extensions.  The
29321default is @option{-mvis3} when targeting a cpu that supports such
29322instructions, such as niagara-3 and later.  Setting @option{-mvis3}
29323also sets @option{-mvis2} and @option{-mvis}.
29324
29325@item -mvis4
29326@itemx -mno-vis4
29327@opindex mvis4
29328@opindex mno-vis4
29329With @option{-mvis4}, GCC generates code that takes advantage of
29330version 4.0 of the UltraSPARC Visual Instruction Set extensions.  The
29331default is @option{-mvis4} when targeting a cpu that supports such
29332instructions, such as niagara-7 and later.  Setting @option{-mvis4}
29333also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
29334
29335@item -mvis4b
29336@itemx -mno-vis4b
29337@opindex mvis4b
29338@opindex mno-vis4b
29339With @option{-mvis4b}, GCC generates code that takes advantage of
29340version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
29341the additional VIS instructions introduced in the Oracle SPARC
29342Architecture 2017.  The default is @option{-mvis4b} when targeting a
29343cpu that supports such instructions, such as m8 and later.  Setting
29344@option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
29345@option{-mvis2} and @option{-mvis}.
29346
29347@item -mcbcond
29348@itemx -mno-cbcond
29349@opindex mcbcond
29350@opindex mno-cbcond
29351With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
29352Compare-and-Branch-on-Condition instructions.  The default is @option{-mcbcond}
29353when targeting a CPU that supports such instructions, such as Niagara-4 and
29354later.
29355
29356@item -mfmaf
29357@itemx -mno-fmaf
29358@opindex mfmaf
29359@opindex mno-fmaf
29360With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
29361Fused Multiply-Add Floating-point instructions.  The default is @option{-mfmaf}
29362when targeting a CPU that supports such instructions, such as Niagara-3 and
29363later.
29364
29365@item -mfsmuld
29366@itemx -mno-fsmuld
29367@opindex mfsmuld
29368@opindex mno-fsmuld
29369With @option{-mfsmuld}, GCC generates code that takes advantage of the
29370Floating-point Multiply Single to Double (FsMULd) instruction.  The default is
29371@option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
29372or V9 with FPU except @option{-mcpu=leon}.
29373
29374@item -mpopc
29375@itemx -mno-popc
29376@opindex mpopc
29377@opindex mno-popc
29378With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
29379Population Count instruction.  The default is @option{-mpopc}
29380when targeting a CPU that supports such an instruction, such as Niagara-2 and
29381later.
29382
29383@item -msubxc
29384@itemx -mno-subxc
29385@opindex msubxc
29386@opindex mno-subxc
29387With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
29388Subtract-Extended-with-Carry instruction.  The default is @option{-msubxc}
29389when targeting a CPU that supports such an instruction, such as Niagara-7 and
29390later.
29391
29392@item -mfix-at697f
29393@opindex mfix-at697f
29394Enable the documented workaround for the single erratum of the Atmel AT697F
29395processor (which corresponds to erratum #13 of the AT697E processor).
29396
29397@item -mfix-ut699
29398@opindex mfix-ut699
29399Enable the documented workarounds for the floating-point errata and the data
29400cache nullify errata of the UT699 processor.
29401
29402@item -mfix-ut700
29403@opindex mfix-ut700
29404Enable the documented workaround for the back-to-back store errata of
29405the UT699E/UT700 processor.
29406
29407@item -mfix-gr712rc
29408@opindex mfix-gr712rc
29409Enable the documented workaround for the back-to-back store errata of
29410the GR712RC processor.
29411@end table
29412
29413These @samp{-m} options are supported in addition to the above
29414on SPARC-V9 processors in 64-bit environments:
29415
29416@table @gcctabopt
29417@item -m32
29418@itemx -m64
29419@opindex m32
29420@opindex m64
29421Generate code for a 32-bit or 64-bit environment.
29422The 32-bit environment sets int, long and pointer to 32 bits.
29423The 64-bit environment sets int to 32 bits and long and pointer
29424to 64 bits.
29425
29426@item -mcmodel=@var{which}
29427@opindex mcmodel
29428Set the code model to one of
29429
29430@table @samp
29431@item medlow
29432The Medium/Low code model: 64-bit addresses, programs
29433must be linked in the low 32 bits of memory.  Programs can be statically
29434or dynamically linked.
29435
29436@item medmid
29437The Medium/Middle code model: 64-bit addresses, programs
29438must be linked in the low 44 bits of memory, the text and data segments must
29439be less than 2GB in size and the data segment must be located within 2GB of
29440the text segment.
29441
29442@item medany
29443The Medium/Anywhere code model: 64-bit addresses, programs
29444may be linked anywhere in memory, the text and data segments must be less
29445than 2GB in size and the data segment must be located within 2GB of the
29446text segment.
29447
29448@item embmedany
29449The Medium/Anywhere code model for embedded systems:
2945064-bit addresses, the text and data segments must be less than 2GB in
29451size, both starting anywhere in memory (determined at link time).  The
29452global register %g4 points to the base of the data segment.  Programs
29453are statically linked and PIC is not supported.
29454@end table
29455
29456@item -mmemory-model=@var{mem-model}
29457@opindex mmemory-model
29458Set the memory model in force on the processor to one of
29459
29460@table @samp
29461@item default
29462The default memory model for the processor and operating system.
29463
29464@item rmo
29465Relaxed Memory Order
29466
29467@item pso
29468Partial Store Order
29469
29470@item tso
29471Total Store Order
29472
29473@item sc
29474Sequential Consistency
29475@end table
29476
29477These memory models are formally defined in Appendix D of the SPARC-V9
29478architecture manual, as set in the processor's @code{PSTATE.MM} field.
29479
29480@item -mstack-bias
29481@itemx -mno-stack-bias
29482@opindex mstack-bias
29483@opindex mno-stack-bias
29484With @option{-mstack-bias}, GCC assumes that the stack pointer, and
29485frame pointer if present, are offset by @minus{}2047 which must be added back
29486when making stack frame references.  This is the default in 64-bit mode.
29487Otherwise, assume no such offset is present.
29488@end table
29489
29490@node System V Options
29491@subsection Options for System V
29492
29493These additional options are available on System V Release 4 for
29494compatibility with other compilers on those systems:
29495
29496@table @gcctabopt
29497@item -G
29498@opindex G
29499Create a shared object.
29500It is recommended that @option{-symbolic} or @option{-shared} be used instead.
29501
29502@item -Qy
29503@opindex Qy
29504Identify the versions of each tool used by the compiler, in a
29505@code{.ident} assembler directive in the output.
29506
29507@item -Qn
29508@opindex Qn
29509Refrain from adding @code{.ident} directives to the output file (this is
29510the default).
29511
29512@item -YP,@var{dirs}
29513@opindex YP
29514Search the directories @var{dirs}, and no others, for libraries
29515specified with @option{-l}.
29516
29517@item -Ym,@var{dir}
29518@opindex Ym
29519Look in the directory @var{dir} to find the M4 preprocessor.
29520The assembler uses this option.
29521@c This is supposed to go with a -Yd for predefined M4 macro files, but
29522@c the generic assembler that comes with Solaris takes just -Ym.
29523@end table
29524
29525@node TILE-Gx Options
29526@subsection TILE-Gx Options
29527@cindex TILE-Gx options
29528
29529These @samp{-m} options are supported on the TILE-Gx:
29530
29531@table @gcctabopt
29532@item -mcmodel=small
29533@opindex mcmodel=small
29534Generate code for the small model.  The distance for direct calls is
29535limited to 500M in either direction.  PC-relative addresses are 32
29536bits.  Absolute addresses support the full address range.
29537
29538@item -mcmodel=large
29539@opindex mcmodel=large
29540Generate code for the large model.  There is no limitation on call
29541distance, pc-relative addresses, or absolute addresses.
29542
29543@item -mcpu=@var{name}
29544@opindex mcpu
29545Selects the type of CPU to be targeted.  Currently the only supported
29546type is @samp{tilegx}.
29547
29548@item -m32
29549@itemx -m64
29550@opindex m32
29551@opindex m64
29552Generate code for a 32-bit or 64-bit environment.  The 32-bit
29553environment sets int, long, and pointer to 32 bits.  The 64-bit
29554environment sets int to 32 bits and long and pointer to 64 bits.
29555
29556@item -mbig-endian
29557@itemx -mlittle-endian
29558@opindex mbig-endian
29559@opindex mlittle-endian
29560Generate code in big/little endian mode, respectively.
29561@end table
29562
29563@node TILEPro Options
29564@subsection TILEPro Options
29565@cindex TILEPro options
29566
29567These @samp{-m} options are supported on the TILEPro:
29568
29569@table @gcctabopt
29570@item -mcpu=@var{name}
29571@opindex mcpu
29572Selects the type of CPU to be targeted.  Currently the only supported
29573type is @samp{tilepro}.
29574
29575@item -m32
29576@opindex m32
29577Generate code for a 32-bit environment, which sets int, long, and
29578pointer to 32 bits.  This is the only supported behavior so the flag
29579is essentially ignored.
29580@end table
29581
29582@node V850 Options
29583@subsection V850 Options
29584@cindex V850 Options
29585
29586These @samp{-m} options are defined for V850 implementations:
29587
29588@table @gcctabopt
29589@item -mlong-calls
29590@itemx -mno-long-calls
29591@opindex mlong-calls
29592@opindex mno-long-calls
29593Treat all calls as being far away (near).  If calls are assumed to be
29594far away, the compiler always loads the function's address into a
29595register, and calls indirect through the pointer.
29596
29597@item -mno-ep
29598@itemx -mep
29599@opindex mno-ep
29600@opindex mep
29601Do not optimize (do optimize) basic blocks that use the same index
29602pointer 4 or more times to copy pointer into the @code{ep} register, and
29603use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
29604option is on by default if you optimize.
29605
29606@item -mno-prolog-function
29607@itemx -mprolog-function
29608@opindex mno-prolog-function
29609@opindex mprolog-function
29610Do not use (do use) external functions to save and restore registers
29611at the prologue and epilogue of a function.  The external functions
29612are slower, but use less code space if more than one function saves
29613the same number of registers.  The @option{-mprolog-function} option
29614is on by default if you optimize.
29615
29616@item -mspace
29617@opindex mspace
29618Try to make the code as small as possible.  At present, this just turns
29619on the @option{-mep} and @option{-mprolog-function} options.
29620
29621@item -mtda=@var{n}
29622@opindex mtda
29623Put static or global variables whose size is @var{n} bytes or less into
29624the tiny data area that register @code{ep} points to.  The tiny data
29625area can hold up to 256 bytes in total (128 bytes for byte references).
29626
29627@item -msda=@var{n}
29628@opindex msda
29629Put static or global variables whose size is @var{n} bytes or less into
29630the small data area that register @code{gp} points to.  The small data
29631area can hold up to 64 kilobytes.
29632
29633@item -mzda=@var{n}
29634@opindex mzda
29635Put static or global variables whose size is @var{n} bytes or less into
29636the first 32 kilobytes of memory.
29637
29638@item -mv850
29639@opindex mv850
29640Specify that the target processor is the V850.
29641
29642@item -mv850e3v5
29643@opindex mv850e3v5
29644Specify that the target processor is the V850E3V5.  The preprocessor
29645constant @code{__v850e3v5__} is defined if this option is used.
29646
29647@item -mv850e2v4
29648@opindex mv850e2v4
29649Specify that the target processor is the V850E3V5.  This is an alias for
29650the @option{-mv850e3v5} option.
29651
29652@item -mv850e2v3
29653@opindex mv850e2v3
29654Specify that the target processor is the V850E2V3.  The preprocessor
29655constant @code{__v850e2v3__} is defined if this option is used.
29656
29657@item -mv850e2
29658@opindex mv850e2
29659Specify that the target processor is the V850E2.  The preprocessor
29660constant @code{__v850e2__} is defined if this option is used.
29661
29662@item -mv850e1
29663@opindex mv850e1
29664Specify that the target processor is the V850E1.  The preprocessor
29665constants @code{__v850e1__} and @code{__v850e__} are defined if
29666this option is used.
29667
29668@item -mv850es
29669@opindex mv850es
29670Specify that the target processor is the V850ES.  This is an alias for
29671the @option{-mv850e1} option.
29672
29673@item -mv850e
29674@opindex mv850e
29675Specify that the target processor is the V850E@.  The preprocessor
29676constant @code{__v850e__} is defined if this option is used.
29677
29678If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
29679nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
29680are defined then a default target processor is chosen and the
29681relevant @samp{__v850*__} preprocessor constant is defined.
29682
29683The preprocessor constants @code{__v850} and @code{__v851__} are always
29684defined, regardless of which processor variant is the target.
29685
29686@item -mdisable-callt
29687@itemx -mno-disable-callt
29688@opindex mdisable-callt
29689@opindex mno-disable-callt
29690This option suppresses generation of the @code{CALLT} instruction for the
29691v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
29692architecture.
29693
29694This option is enabled by default when the RH850 ABI is
29695in use (see @option{-mrh850-abi}), and disabled by default when the
29696GCC ABI is in use.  If @code{CALLT} instructions are being generated
29697then the C preprocessor symbol @code{__V850_CALLT__} is defined.
29698
29699@item -mrelax
29700@itemx -mno-relax
29701@opindex mrelax
29702@opindex mno-relax
29703Pass on (or do not pass on) the @option{-mrelax} command-line option
29704to the assembler.
29705
29706@item -mlong-jumps
29707@itemx -mno-long-jumps
29708@opindex mlong-jumps
29709@opindex mno-long-jumps
29710Disable (or re-enable) the generation of PC-relative jump instructions.
29711
29712@item -msoft-float
29713@itemx -mhard-float
29714@opindex msoft-float
29715@opindex mhard-float
29716Disable (or re-enable) the generation of hardware floating point
29717instructions.  This option is only significant when the target
29718architecture is @samp{V850E2V3} or higher.  If hardware floating point
29719instructions are being generated then the C preprocessor symbol
29720@code{__FPU_OK__} is defined, otherwise the symbol
29721@code{__NO_FPU__} is defined.
29722
29723@item -mloop
29724@opindex mloop
29725Enables the use of the e3v5 LOOP instruction.  The use of this
29726instruction is not enabled by default when the e3v5 architecture is
29727selected because its use is still experimental.
29728
29729@item -mrh850-abi
29730@itemx -mghs
29731@opindex mrh850-abi
29732@opindex mghs
29733Enables support for the RH850 version of the V850 ABI.  This is the
29734default.  With this version of the ABI the following rules apply:
29735
29736@itemize
29737@item
29738Integer sized structures and unions are returned via a memory pointer
29739rather than a register.
29740
29741@item
29742Large structures and unions (more than 8 bytes in size) are passed by
29743value.
29744
29745@item
29746Functions are aligned to 16-bit boundaries.
29747
29748@item
29749The @option{-m8byte-align} command-line option is supported.
29750
29751@item
29752The @option{-mdisable-callt} command-line option is enabled by
29753default.  The @option{-mno-disable-callt} command-line option is not
29754supported.
29755@end itemize
29756
29757When this version of the ABI is enabled the C preprocessor symbol
29758@code{__V850_RH850_ABI__} is defined.
29759
29760@item -mgcc-abi
29761@opindex mgcc-abi
29762Enables support for the old GCC version of the V850 ABI.  With this
29763version of the ABI the following rules apply:
29764
29765@itemize
29766@item
29767Integer sized structures and unions are returned in register @code{r10}.
29768
29769@item
29770Large structures and unions (more than 8 bytes in size) are passed by
29771reference.
29772
29773@item
29774Functions are aligned to 32-bit boundaries, unless optimizing for
29775size.
29776
29777@item
29778The @option{-m8byte-align} command-line option is not supported.
29779
29780@item
29781The @option{-mdisable-callt} command-line option is supported but not
29782enabled by default.
29783@end itemize
29784
29785When this version of the ABI is enabled the C preprocessor symbol
29786@code{__V850_GCC_ABI__} is defined.
29787
29788@item -m8byte-align
29789@itemx -mno-8byte-align
29790@opindex m8byte-align
29791@opindex mno-8byte-align
29792Enables support for @code{double} and @code{long long} types to be
29793aligned on 8-byte boundaries.  The default is to restrict the
29794alignment of all objects to at most 4-bytes.  When
29795@option{-m8byte-align} is in effect the C preprocessor symbol
29796@code{__V850_8BYTE_ALIGN__} is defined.
29797
29798@item -mbig-switch
29799@opindex mbig-switch
29800Generate code suitable for big switch tables.  Use this option only if
29801the assembler/linker complain about out of range branches within a switch
29802table.
29803
29804@item -mapp-regs
29805@opindex mapp-regs
29806This option causes r2 and r5 to be used in the code generated by
29807the compiler.  This setting is the default.
29808
29809@item -mno-app-regs
29810@opindex mno-app-regs
29811This option causes r2 and r5 to be treated as fixed registers.
29812
29813@end table
29814
29815@node VAX Options
29816@subsection VAX Options
29817@cindex VAX options
29818
29819These @samp{-m} options are defined for the VAX:
29820
29821@table @gcctabopt
29822@item -munix
29823@opindex munix
29824Do not output certain jump instructions (@code{aobleq} and so on)
29825that the Unix assembler for the VAX cannot handle across long
29826ranges.
29827
29828@item -mgnu
29829@opindex mgnu
29830Do output those jump instructions, on the assumption that the
29831GNU assembler is being used.
29832
29833@item -mg
29834@opindex mg
29835Output code for G-format floating-point numbers instead of D-format.
29836@end table
29837
29838@node Visium Options
29839@subsection Visium Options
29840@cindex Visium options
29841
29842@table @gcctabopt
29843
29844@item -mdebug
29845@opindex mdebug
29846A program which performs file I/O and is destined to run on an MCM target
29847should be linked with this option.  It causes the libraries libc.a and
29848libdebug.a to be linked.  The program should be run on the target under
29849the control of the GDB remote debugging stub.
29850
29851@item -msim
29852@opindex msim
29853A program which performs file I/O and is destined to run on the simulator
29854should be linked with option.  This causes libraries libc.a and libsim.a to
29855be linked.
29856
29857@item -mfpu
29858@itemx -mhard-float
29859@opindex mfpu
29860@opindex mhard-float
29861Generate code containing floating-point instructions.  This is the
29862default.
29863
29864@item -mno-fpu
29865@itemx -msoft-float
29866@opindex mno-fpu
29867@opindex msoft-float
29868Generate code containing library calls for floating-point.
29869
29870@option{-msoft-float} changes the calling convention in the output file;
29871therefore, it is only useful if you compile @emph{all} of a program with
29872this option.  In particular, you need to compile @file{libgcc.a}, the
29873library that comes with GCC, with @option{-msoft-float} in order for
29874this to work.
29875
29876@item -mcpu=@var{cpu_type}
29877@opindex mcpu
29878Set the instruction set, register set, and instruction scheduling parameters
29879for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
29880@samp{mcm}, @samp{gr5} and @samp{gr6}.
29881
29882@samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
29883
29884By default (unless configured otherwise), GCC generates code for the GR5
29885variant of the Visium architecture.
29886
29887With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
29888architecture.  The only difference from GR5 code is that the compiler will
29889generate block move instructions.
29890
29891@item -mtune=@var{cpu_type}
29892@opindex mtune
29893Set the instruction scheduling parameters for machine type @var{cpu_type},
29894but do not set the instruction set or register set that the option
29895@option{-mcpu=@var{cpu_type}} would.
29896
29897@item -msv-mode
29898@opindex msv-mode
29899Generate code for the supervisor mode, where there are no restrictions on
29900the access to general registers.  This is the default.
29901
29902@item -muser-mode
29903@opindex muser-mode
29904Generate code for the user mode, where the access to some general registers
29905is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
29906mode; on the GR6, only registers r29 to r31 are affected.
29907@end table
29908
29909@node VMS Options
29910@subsection VMS Options
29911
29912These @samp{-m} options are defined for the VMS implementations:
29913
29914@table @gcctabopt
29915@item -mvms-return-codes
29916@opindex mvms-return-codes
29917Return VMS condition codes from @code{main}. The default is to return POSIX-style
29918condition (e.g.@: error) codes.
29919
29920@item -mdebug-main=@var{prefix}
29921@opindex mdebug-main=@var{prefix}
29922Flag the first routine whose name starts with @var{prefix} as the main
29923routine for the debugger.
29924
29925@item -mmalloc64
29926@opindex mmalloc64
29927Default to 64-bit memory allocation routines.
29928
29929@item -mpointer-size=@var{size}
29930@opindex mpointer-size=@var{size}
29931Set the default size of pointers. Possible options for @var{size} are
29932@samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
29933for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
29934The later option disables @code{pragma pointer_size}.
29935@end table
29936
29937@node VxWorks Options
29938@subsection VxWorks Options
29939@cindex VxWorks Options
29940
29941The options in this section are defined for all VxWorks targets.
29942Options specific to the target hardware are listed with the other
29943options for that target.
29944
29945@table @gcctabopt
29946@item -mrtp
29947@opindex mrtp
29948GCC can generate code for both VxWorks kernels and real time processes
29949(RTPs).  This option switches from the former to the latter.  It also
29950defines the preprocessor macro @code{__RTP__}.
29951
29952@item -non-static
29953@opindex non-static
29954Link an RTP executable against shared libraries rather than static
29955libraries.  The options @option{-static} and @option{-shared} can
29956also be used for RTPs (@pxref{Link Options}); @option{-static}
29957is the default.
29958
29959@item -Bstatic
29960@itemx -Bdynamic
29961@opindex Bstatic
29962@opindex Bdynamic
29963These options are passed down to the linker.  They are defined for
29964compatibility with Diab.
29965
29966@item -Xbind-lazy
29967@opindex Xbind-lazy
29968Enable lazy binding of function calls.  This option is equivalent to
29969@option{-Wl,-z,now} and is defined for compatibility with Diab.
29970
29971@item -Xbind-now
29972@opindex Xbind-now
29973Disable lazy binding of function calls.  This option is the default and
29974is defined for compatibility with Diab.
29975@end table
29976
29977@node x86 Options
29978@subsection x86 Options
29979@cindex x86 Options
29980
29981These @samp{-m} options are defined for the x86 family of computers.
29982
29983@table @gcctabopt
29984
29985@item -march=@var{cpu-type}
29986@opindex march
29987Generate instructions for the machine type @var{cpu-type}.  In contrast to
29988@option{-mtune=@var{cpu-type}}, which merely tunes the generated code
29989for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
29990to generate code that may not run at all on processors other than the one
29991indicated.  Specifying @option{-march=@var{cpu-type}} implies
29992@option{-mtune=@var{cpu-type}}, except where noted otherwise.
29993
29994The choices for @var{cpu-type} are:
29995
29996@table @samp
29997@item native
29998This selects the CPU to generate code for at compilation time by determining
29999the processor type of the compiling machine.  Using @option{-march=native}
30000enables all instruction subsets supported by the local machine (hence
30001the result might not run on different machines).  Using @option{-mtune=native}
30002produces code optimized for the local machine under the constraints
30003of the selected instruction set.
30004
30005@item x86-64
30006A generic CPU with 64-bit extensions.
30007
30008@item x86-64-v2
30009@itemx x86-64-v3
30010@itemx x86-64-v4
30011These choices for @var{cpu-type} select the corresponding
30012micro-architecture level from the x86-64 psABI.  On ABIs other than
30013the x86-64 psABI they select the same CPU features as the x86-64 psABI
30014documents for the particular micro-architecture level.
30015
30016Since these @var{cpu-type} values do not have a corresponding
30017@option{-mtune} setting, using @option{-march} with these values enables
30018generic tuning.  Specific tuning can be enabled using the
30019@option{-mtune=@var{other-cpu-type}} option with an appropriate
30020@var{other-cpu-type} value.
30021
30022@item i386
30023Original Intel i386 CPU@.
30024
30025@item i486
30026Intel i486 CPU@.  (No scheduling is implemented for this chip.)
30027
30028@item i586
30029@itemx pentium
30030Intel Pentium CPU with no MMX support.
30031
30032@item lakemont
30033Intel Lakemont MCU, based on Intel Pentium CPU.
30034
30035@item pentium-mmx
30036Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
30037
30038@item pentiumpro
30039Intel Pentium Pro CPU@.
30040
30041@item i686
30042When used with @option{-march}, the Pentium Pro
30043instruction set is used, so the code runs on all i686 family chips.
30044When used with @option{-mtune}, it has the same meaning as @samp{generic}.
30045
30046@item pentium2
30047Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
30048support.
30049
30050@item pentium3
30051@itemx pentium3m
30052Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
30053set support.
30054
30055@item pentium-m
30056Intel Pentium M; low-power version of Intel Pentium III CPU
30057with MMX, SSE and SSE2 instruction set support.  Used by Centrino notebooks.
30058
30059@item pentium4
30060@itemx pentium4m
30061Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
30062
30063@item prescott
30064Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
30065set support.
30066
30067@item nocona
30068Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
30069SSE2 and SSE3 instruction set support.
30070
30071@item core2
30072Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
30073instruction set support.
30074
30075@item nehalem
30076Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
30077SSE4.1, SSE4.2 and POPCNT instruction set support.
30078
30079@item westmere
30080Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
30081SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
30082
30083@item sandybridge
30084Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
30085SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
30086
30087@item ivybridge
30088Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
30089SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
30090instruction set support.
30091
30092@item haswell
30093Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
30094SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
30095BMI, BMI2 and F16C instruction set support.
30096
30097@item broadwell
30098Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
30099SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2,
30100F16C, RDSEED ADCX and PREFETCHW instruction set support.
30101
30102@item skylake
30103Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
30104SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
30105BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and XSAVES
30106instruction set support.
30107
30108@item bonnell
30109Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
30110instruction set support.
30111
30112@item silvermont
30113Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
30114SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL and RDRND instruction set support.
30115
30116@item goldmont
30117Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
30118SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC, XSAVES,
30119XSAVEOPT and FSGSBASE instruction set support.
30120
30121@item goldmont-plus
30122Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
30123SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC,
30124XSAVES, XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX and UMIP instruction set support.
30125
30126@item tremont
30127Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
30128SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC, XSAVES,
30129XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, UMIP, GFNI-SSE, CLWB, MOVDIRI,
30130MOVDIR64B, CLDEMOTE and WAITPKG instruction set support.
30131
30132@item knl
30133Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
30134SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
30135BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, PREFETCHWT1, AVX512F, AVX512PF,
30136AVX512ER and AVX512CD instruction set support.
30137
30138@item knm
30139Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
30140SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
30141BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, PREFETCHWT1, AVX512F, AVX512PF,
30142AVX512ER, AVX512CD, AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction
30143set support.
30144
30145@item skylake-avx512
30146Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
30147SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
30148BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
30149CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
30150
30151@item cannonlake
30152Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
30153SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
30154RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
30155XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
30156AVX512IFMA, SHA and UMIP instruction set support.
30157
30158@item icelake-client
30159Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
30160SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
30161RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
30162XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
30163AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
30164AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
30165
30166@item icelake-server
30167Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
30168SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
30169RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
30170XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
30171AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
30172AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
30173set support.
30174
30175@item cascadelake
30176Intel Cascadelake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
30177SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
30178BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
30179AVX512VL, AVX512BW, AVX512DQ, AVX512CD and AVX512VNNI instruction set support.
30180
30181@item cooperlake
30182Intel cooperlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
30183SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
30184BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
30185AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VNNI and AVX512BF16 instruction
30186set support.
30187
30188@item tigerlake
30189Intel Tigerlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
30190SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
30191BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
30192AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA, CLWB, UMIP,
30193RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ,
30194VAES, PCONFIG, WBNOINVD, MOVDIRI, MOVDIR64B, AVX512VP2INTERSECT and KEYLOCKER
30195instruction set support.
30196
30197@item sapphirerapids
30198Intel sapphirerapids CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
30199SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND,
30200FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES,
30201AVX512F, CLWB, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VNNI, AVX512BF16,
30202MOVDIRI, MOVDIR64B, AVX512VP2INTERSECT, ENQCMD, CLDEMOTE, PTWRITE, WAITPKG,
30203SERIALIZE, TSXLDTRK, UINTR, AMX-BF16, AMX-TILE, AMX-INT8 and AVX-VNNI
30204instruction set support.
30205
30206@item alderlake
30207Intel Alderlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
30208SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC, XSAVES,
30209XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, UMIP, GFNI-SSE, CLWB, MOVDIRI,
30210MOVDIR64B, CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT,
30211PCONFIG, PKU, VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL and AVX-VNNI
30212instruction set support.
30213
30214@item rocketlake
30215Intel Rocketlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
30216SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
30217RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
30218XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
30219AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
30220AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
30221
30222@item k6
30223AMD K6 CPU with MMX instruction set support.
30224
30225@item k6-2
30226@itemx k6-3
30227Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
30228
30229@item athlon
30230@itemx athlon-tbird
30231AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
30232support.
30233
30234@item athlon-4
30235@itemx athlon-xp
30236@itemx athlon-mp
30237Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
30238instruction set support.
30239
30240@item k8
30241@itemx opteron
30242@itemx athlon64
30243@itemx athlon-fx
30244Processors based on the AMD K8 core with x86-64 instruction set support,
30245including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
30246(This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
30247instruction set extensions.)
30248
30249@item k8-sse3
30250@itemx opteron-sse3
30251@itemx athlon64-sse3
30252Improved versions of AMD K8 cores with SSE3 instruction set support.
30253
30254@item amdfam10
30255@itemx barcelona
30256CPUs based on AMD Family 10h cores with x86-64 instruction set support.  (This
30257supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
30258instruction set extensions.)
30259
30260@item bdver1
30261CPUs based on AMD Family 15h cores with x86-64 instruction set support.  (This
30262supersets FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
30263SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
30264
30265@item bdver2
30266AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
30267supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX,
30268SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
30269extensions.)
30270
30271@item bdver3
30272AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
30273supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
30274PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
3027564-bit instruction set extensions.)
30276
30277@item bdver4
30278AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
30279supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
30280AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
30281SSE4.2, ABM and 64-bit instruction set extensions.)
30282
30283@item znver1
30284AMD Family 17h core based CPUs with x86-64 instruction set support.  (This
30285supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
30286SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
30287SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
30288instruction set extensions.)
30289
30290@item znver2
30291AMD Family 17h core based CPUs with x86-64 instruction set support. (This
30292supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
30293MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
30294SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID,
30295WBNOINVD, and 64-bit instruction set extensions.)
30296
30297@item znver3
30298AMD Family 19h core based CPUs with x86-64 instruction set support. (This
30299supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
30300MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
30301SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID,
30302WBNOINVD, PKU, VPCLMULQDQ, VAES, and 64-bit instruction set extensions.)
30303
30304@item btver1
30305CPUs based on AMD Family 14h cores with x86-64 instruction set support.  (This
30306supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
30307instruction set extensions.)
30308
30309@item btver2
30310CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
30311includes MOVBE, F16C, BMI, AVX, PCLMUL, AES, SSE4.2, SSE4.1, CX16, ABM,
30312SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
30313
30314@item winchip-c6
30315IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
30316set support.
30317
30318@item winchip2
30319IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
30320instruction set support.
30321
30322@item c3
30323VIA C3 CPU with MMX and 3DNow!@: instruction set support.
30324(No scheduling is implemented for this chip.)
30325
30326@item c3-2
30327VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
30328(No scheduling is implemented for this chip.)
30329
30330@item c7
30331VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
30332(No scheduling is implemented for this chip.)
30333
30334@item samuel-2
30335VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
30336(No scheduling is implemented for this chip.)
30337
30338@item nehemiah
30339VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
30340(No scheduling is implemented for this chip.)
30341
30342@item esther
30343VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
30344(No scheduling is implemented for this chip.)
30345
30346@item eden-x2
30347VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
30348(No scheduling is implemented for this chip.)
30349
30350@item eden-x4
30351VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
30352AVX and AVX2 instruction set support.
30353(No scheduling is implemented for this chip.)
30354
30355@item nano
30356Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
30357instruction set support.
30358(No scheduling is implemented for this chip.)
30359
30360@item nano-1000
30361VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
30362instruction set support.
30363(No scheduling is implemented for this chip.)
30364
30365@item nano-2000
30366VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
30367instruction set support.
30368(No scheduling is implemented for this chip.)
30369
30370@item nano-3000
30371VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
30372instruction set support.
30373(No scheduling is implemented for this chip.)
30374
30375@item nano-x2
30376VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
30377instruction set support.
30378(No scheduling is implemented for this chip.)
30379
30380@item nano-x4
30381VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
30382instruction set support.
30383(No scheduling is implemented for this chip.)
30384
30385@item geode
30386AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
30387@end table
30388
30389@item -mtune=@var{cpu-type}
30390@opindex mtune
30391Tune to @var{cpu-type} everything applicable about the generated code, except
30392for the ABI and the set of available instructions.
30393While picking a specific @var{cpu-type} schedules things appropriately
30394for that particular chip, the compiler does not generate any code that
30395cannot run on the default machine type unless you use a
30396@option{-march=@var{cpu-type}} option.
30397For example, if GCC is configured for i686-pc-linux-gnu
30398then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
30399but still runs on i686 machines.
30400
30401The choices for @var{cpu-type} are the same as for @option{-march}.
30402In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
30403
30404@table @samp
30405@item generic
30406Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
30407If you know the CPU on which your code will run, then you should use
30408the corresponding @option{-mtune} or @option{-march} option instead of
30409@option{-mtune=generic}.  But, if you do not know exactly what CPU users
30410of your application will have, then you should use this option.
30411
30412As new processors are deployed in the marketplace, the behavior of this
30413option will change.  Therefore, if you upgrade to a newer version of
30414GCC, code generation controlled by this option will change to reflect
30415the processors
30416that are most common at the time that version of GCC is released.
30417
30418There is no @option{-march=generic} option because @option{-march}
30419indicates the instruction set the compiler can use, and there is no
30420generic instruction set applicable to all processors.  In contrast,
30421@option{-mtune} indicates the processor (or, in this case, collection of
30422processors) for which the code is optimized.
30423
30424@item intel
30425Produce code optimized for the most current Intel processors, which are
30426Haswell and Silvermont for this version of GCC.  If you know the CPU
30427on which your code will run, then you should use the corresponding
30428@option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
30429But, if you want your application performs better on both Haswell and
30430Silvermont, then you should use this option.
30431
30432As new Intel processors are deployed in the marketplace, the behavior of
30433this option will change.  Therefore, if you upgrade to a newer version of
30434GCC, code generation controlled by this option will change to reflect
30435the most current Intel processors at the time that version of GCC is
30436released.
30437
30438There is no @option{-march=intel} option because @option{-march} indicates
30439the instruction set the compiler can use, and there is no common
30440instruction set applicable to all processors.  In contrast,
30441@option{-mtune} indicates the processor (or, in this case, collection of
30442processors) for which the code is optimized.
30443@end table
30444
30445@item -mcpu=@var{cpu-type}
30446@opindex mcpu
30447A deprecated synonym for @option{-mtune}.
30448
30449@item -mfpmath=@var{unit}
30450@opindex mfpmath
30451Generate floating-point arithmetic for selected unit @var{unit}.  The choices
30452for @var{unit} are:
30453
30454@table @samp
30455@item 387
30456Use the standard 387 floating-point coprocessor present on the majority of chips and
30457emulated otherwise.  Code compiled with this option runs almost everywhere.
30458The temporary results are computed in 80-bit precision instead of the precision
30459specified by the type, resulting in slightly different results compared to most
30460of other chips.  See @option{-ffloat-store} for more detailed description.
30461
30462This is the default choice for non-Darwin x86-32 targets.
30463
30464@item sse
30465Use scalar floating-point instructions present in the SSE instruction set.
30466This instruction set is supported by Pentium III and newer chips,
30467and in the AMD line
30468by Athlon-4, Athlon XP and Athlon MP chips.  The earlier version of the SSE
30469instruction set supports only single-precision arithmetic, thus the double and
30470extended-precision arithmetic are still done using 387.  A later version, present
30471only in Pentium 4 and AMD x86-64 chips, supports double-precision
30472arithmetic too.
30473
30474For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
30475or @option{-msse2} switches to enable SSE extensions and make this option
30476effective.  For the x86-64 compiler, these extensions are enabled by default.
30477
30478The resulting code should be considerably faster in the majority of cases and avoid
30479the numerical instability problems of 387 code, but may break some existing
30480code that expects temporaries to be 80 bits.
30481
30482This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
30483and the default choice for x86-32 targets with the SSE2 instruction set
30484when @option{-ffast-math} is enabled.
30485
30486@item sse,387
30487@itemx sse+387
30488@itemx both
30489Attempt to utilize both instruction sets at once.  This effectively doubles the
30490amount of available registers, and on chips with separate execution units for
30491387 and SSE the execution resources too.  Use this option with care, as it is
30492still experimental, because the GCC register allocator does not model separate
30493functional units well, resulting in unstable performance.
30494@end table
30495
30496@item -masm=@var{dialect}
30497@opindex masm=@var{dialect}
30498Output assembly instructions using selected @var{dialect}.  Also affects
30499which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
30500extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
30501order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
30502not support @samp{intel}.
30503
30504@item -mieee-fp
30505@itemx -mno-ieee-fp
30506@opindex mieee-fp
30507@opindex mno-ieee-fp
30508Control whether or not the compiler uses IEEE floating-point
30509comparisons.  These correctly handle the case where the result of a
30510comparison is unordered.
30511
30512@item -m80387
30513@itemx -mhard-float
30514@opindex 80387
30515@opindex mhard-float
30516Generate output containing 80387 instructions for floating point.
30517
30518@item -mno-80387
30519@itemx -msoft-float
30520@opindex no-80387
30521@opindex msoft-float
30522Generate output containing library calls for floating point.
30523
30524@strong{Warning:} the requisite libraries are not part of GCC@.
30525Normally the facilities of the machine's usual C compiler are used, but
30526this cannot be done directly in cross-compilation.  You must make your
30527own arrangements to provide suitable library functions for
30528cross-compilation.
30529
30530On machines where a function returns floating-point results in the 80387
30531register stack, some floating-point opcodes may be emitted even if
30532@option{-msoft-float} is used.
30533
30534@item -mno-fp-ret-in-387
30535@opindex mno-fp-ret-in-387
30536@opindex mfp-ret-in-387
30537Do not use the FPU registers for return values of functions.
30538
30539The usual calling convention has functions return values of types
30540@code{float} and @code{double} in an FPU register, even if there
30541is no FPU@.  The idea is that the operating system should emulate
30542an FPU@.
30543
30544The option @option{-mno-fp-ret-in-387} causes such values to be returned
30545in ordinary CPU registers instead.
30546
30547@item -mno-fancy-math-387
30548@opindex mno-fancy-math-387
30549@opindex mfancy-math-387
30550Some 387 emulators do not support the @code{sin}, @code{cos} and
30551@code{sqrt} instructions for the 387.  Specify this option to avoid
30552generating those instructions.
30553This option is overridden when @option{-march}
30554indicates that the target CPU always has an FPU and so the
30555instruction does not need emulation.  These
30556instructions are not generated unless you also use the
30557@option{-funsafe-math-optimizations} switch.
30558
30559@item -malign-double
30560@itemx -mno-align-double
30561@opindex malign-double
30562@opindex mno-align-double
30563Control whether GCC aligns @code{double}, @code{long double}, and
30564@code{long long} variables on a two-word boundary or a one-word
30565boundary.  Aligning @code{double} variables on a two-word boundary
30566produces code that runs somewhat faster on a Pentium at the
30567expense of more memory.
30568
30569On x86-64, @option{-malign-double} is enabled by default.
30570
30571@strong{Warning:} if you use the @option{-malign-double} switch,
30572structures containing the above types are aligned differently than
30573the published application binary interface specifications for the x86-32
30574and are not binary compatible with structures in code compiled
30575without that switch.
30576
30577@item -m96bit-long-double
30578@itemx -m128bit-long-double
30579@opindex m96bit-long-double
30580@opindex m128bit-long-double
30581These switches control the size of @code{long double} type.  The x86-32
30582application binary interface specifies the size to be 96 bits,
30583so @option{-m96bit-long-double} is the default in 32-bit mode.
30584
30585Modern architectures (Pentium and newer) prefer @code{long double}
30586to be aligned to an 8- or 16-byte boundary.  In arrays or structures
30587conforming to the ABI, this is not possible.  So specifying
30588@option{-m128bit-long-double} aligns @code{long double}
30589to a 16-byte boundary by padding the @code{long double} with an additional
3059032-bit zero.
30591
30592In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
30593its ABI specifies that @code{long double} is aligned on 16-byte boundary.
30594
30595Notice that neither of these options enable any extra precision over the x87
30596standard of 80 bits for a @code{long double}.
30597
30598@strong{Warning:} if you override the default value for your target ABI, this
30599changes the size of
30600structures and arrays containing @code{long double} variables,
30601as well as modifying the function calling convention for functions taking
30602@code{long double}.  Hence they are not binary-compatible
30603with code compiled without that switch.
30604
30605@item -mlong-double-64
30606@itemx -mlong-double-80
30607@itemx -mlong-double-128
30608@opindex mlong-double-64
30609@opindex mlong-double-80
30610@opindex mlong-double-128
30611These switches control the size of @code{long double} type. A size
30612of 64 bits makes the @code{long double} type equivalent to the @code{double}
30613type. This is the default for 32-bit Bionic C library.  A size
30614of 128 bits makes the @code{long double} type equivalent to the
30615@code{__float128} type. This is the default for 64-bit Bionic C library.
30616
30617@strong{Warning:} if you override the default value for your target ABI, this
30618changes the size of
30619structures and arrays containing @code{long double} variables,
30620as well as modifying the function calling convention for functions taking
30621@code{long double}.  Hence they are not binary-compatible
30622with code compiled without that switch.
30623
30624@item -malign-data=@var{type}
30625@opindex malign-data
30626Control how GCC aligns variables.  Supported values for @var{type} are
30627@samp{compat} uses increased alignment value compatible uses GCC 4.8
30628and earlier, @samp{abi} uses alignment value as specified by the
30629psABI, and @samp{cacheline} uses increased alignment value to match
30630the cache line size.  @samp{compat} is the default.
30631
30632@item -mlarge-data-threshold=@var{threshold}
30633@opindex mlarge-data-threshold
30634When @option{-mcmodel=medium} is specified, data objects larger than
30635@var{threshold} are placed in the large data section.  This value must be the
30636same across all objects linked into the binary, and defaults to 65535.
30637
30638@item -mrtd
30639@opindex mrtd
30640Use a different function-calling convention, in which functions that
30641take a fixed number of arguments return with the @code{ret @var{num}}
30642instruction, which pops their arguments while returning.  This saves one
30643instruction in the caller since there is no need to pop the arguments
30644there.
30645
30646You can specify that an individual function is called with this calling
30647sequence with the function attribute @code{stdcall}.  You can also
30648override the @option{-mrtd} option by using the function attribute
30649@code{cdecl}.  @xref{Function Attributes}.
30650
30651@strong{Warning:} this calling convention is incompatible with the one
30652normally used on Unix, so you cannot use it if you need to call
30653libraries compiled with the Unix compiler.
30654
30655Also, you must provide function prototypes for all functions that
30656take variable numbers of arguments (including @code{printf});
30657otherwise incorrect code is generated for calls to those
30658functions.
30659
30660In addition, seriously incorrect code results if you call a
30661function with too many arguments.  (Normally, extra arguments are
30662harmlessly ignored.)
30663
30664@item -mregparm=@var{num}
30665@opindex mregparm
30666Control how many registers are used to pass integer arguments.  By
30667default, no registers are used to pass arguments, and at most 3
30668registers can be used.  You can control this behavior for a specific
30669function by using the function attribute @code{regparm}.
30670@xref{Function Attributes}.
30671
30672@strong{Warning:} if you use this switch, and
30673@var{num} is nonzero, then you must build all modules with the same
30674value, including any libraries.  This includes the system libraries and
30675startup modules.
30676
30677@item -msseregparm
30678@opindex msseregparm
30679Use SSE register passing conventions for float and double arguments
30680and return values.  You can control this behavior for a specific
30681function by using the function attribute @code{sseregparm}.
30682@xref{Function Attributes}.
30683
30684@strong{Warning:} if you use this switch then you must build all
30685modules with the same value, including any libraries.  This includes
30686the system libraries and startup modules.
30687
30688@item -mvect8-ret-in-mem
30689@opindex mvect8-ret-in-mem
30690Return 8-byte vectors in memory instead of MMX registers.  This is the
30691default on VxWorks to match the ABI of the Sun Studio compilers until
30692version 12.  @emph{Only} use this option if you need to remain
30693compatible with existing code produced by those previous compiler
30694versions or older versions of GCC@.
30695
30696@item -mpc32
30697@itemx -mpc64
30698@itemx -mpc80
30699@opindex mpc32
30700@opindex mpc64
30701@opindex mpc80
30702
30703Set 80387 floating-point precision to 32, 64 or 80 bits.  When @option{-mpc32}
30704is specified, the significands of results of floating-point operations are
30705rounded to 24 bits (single precision); @option{-mpc64} rounds the
30706significands of results of floating-point operations to 53 bits (double
30707precision) and @option{-mpc80} rounds the significands of results of
30708floating-point operations to 64 bits (extended double precision), which is
30709the default.  When this option is used, floating-point operations in higher
30710precisions are not available to the programmer without setting the FPU
30711control word explicitly.
30712
30713Setting the rounding of floating-point operations to less than the default
3071480 bits can speed some programs by 2% or more.  Note that some mathematical
30715libraries assume that extended-precision (80-bit) floating-point operations
30716are enabled by default; routines in such libraries could suffer significant
30717loss of accuracy, typically through so-called ``catastrophic cancellation'',
30718when this option is used to set the precision to less than extended precision.
30719
30720@item -mstackrealign
30721@opindex mstackrealign
30722Realign the stack at entry.  On the x86, the @option{-mstackrealign}
30723option generates an alternate prologue and epilogue that realigns the
30724run-time stack if necessary.  This supports mixing legacy codes that keep
307254-byte stack alignment with modern codes that keep 16-byte stack alignment for
30726SSE compatibility.  See also the attribute @code{force_align_arg_pointer},
30727applicable to individual functions.
30728
30729@item -mpreferred-stack-boundary=@var{num}
30730@opindex mpreferred-stack-boundary
30731Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
30732byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
30733the default is 4 (16 bytes or 128 bits).
30734
30735@strong{Warning:} When generating code for the x86-64 architecture with
30736SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
30737used to keep the stack boundary aligned to 8 byte boundary.  Since
30738x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
30739intended to be used in controlled environment where stack space is
30740important limitation.  This option leads to wrong code when functions
30741compiled with 16 byte stack alignment (such as functions from a standard
30742library) are called with misaligned stack.  In this case, SSE
30743instructions may lead to misaligned memory access traps.  In addition,
30744variable arguments are handled incorrectly for 16 byte aligned
30745objects (including x87 long double and __int128), leading to wrong
30746results.  You must build all modules with
30747@option{-mpreferred-stack-boundary=3}, including any libraries.  This
30748includes the system libraries and startup modules.
30749
30750@item -mincoming-stack-boundary=@var{num}
30751@opindex mincoming-stack-boundary
30752Assume the incoming stack is aligned to a 2 raised to @var{num} byte
30753boundary.  If @option{-mincoming-stack-boundary} is not specified,
30754the one specified by @option{-mpreferred-stack-boundary} is used.
30755
30756On Pentium and Pentium Pro, @code{double} and @code{long double} values
30757should be aligned to an 8-byte boundary (see @option{-malign-double}) or
30758suffer significant run time performance penalties.  On Pentium III, the
30759Streaming SIMD Extension (SSE) data type @code{__m128} may not work
30760properly if it is not 16-byte aligned.
30761
30762To ensure proper alignment of this values on the stack, the stack boundary
30763must be as aligned as that required by any value stored on the stack.
30764Further, every function must be generated such that it keeps the stack
30765aligned.  Thus calling a function compiled with a higher preferred
30766stack boundary from a function compiled with a lower preferred stack
30767boundary most likely misaligns the stack.  It is recommended that
30768libraries that use callbacks always use the default setting.
30769
30770This extra alignment does consume extra stack space, and generally
30771increases code size.  Code that is sensitive to stack space usage, such
30772as embedded systems and operating system kernels, may want to reduce the
30773preferred alignment to @option{-mpreferred-stack-boundary=2}.
30774
30775@need 200
30776@item -mmmx
30777@opindex mmmx
30778@need 200
30779@itemx -msse
30780@opindex msse
30781@need 200
30782@itemx -msse2
30783@opindex msse2
30784@need 200
30785@itemx -msse3
30786@opindex msse3
30787@need 200
30788@itemx -mssse3
30789@opindex mssse3
30790@need 200
30791@itemx -msse4
30792@opindex msse4
30793@need 200
30794@itemx -msse4a
30795@opindex msse4a
30796@need 200
30797@itemx -msse4.1
30798@opindex msse4.1
30799@need 200
30800@itemx -msse4.2
30801@opindex msse4.2
30802@need 200
30803@itemx -mavx
30804@opindex mavx
30805@need 200
30806@itemx -mavx2
30807@opindex mavx2
30808@need 200
30809@itemx -mavx512f
30810@opindex mavx512f
30811@need 200
30812@itemx -mavx512pf
30813@opindex mavx512pf
30814@need 200
30815@itemx -mavx512er
30816@opindex mavx512er
30817@need 200
30818@itemx -mavx512cd
30819@opindex mavx512cd
30820@need 200
30821@itemx -mavx512vl
30822@opindex mavx512vl
30823@need 200
30824@itemx -mavx512bw
30825@opindex mavx512bw
30826@need 200
30827@itemx -mavx512dq
30828@opindex mavx512dq
30829@need 200
30830@itemx -mavx512ifma
30831@opindex mavx512ifma
30832@need 200
30833@itemx -mavx512vbmi
30834@opindex mavx512vbmi
30835@need 200
30836@itemx -msha
30837@opindex msha
30838@need 200
30839@itemx -maes
30840@opindex maes
30841@need 200
30842@itemx -mpclmul
30843@opindex mpclmul
30844@need 200
30845@itemx -mclflushopt
30846@opindex mclflushopt
30847@need 200
30848@itemx -mclwb
30849@opindex mclwb
30850@need 200
30851@itemx -mfsgsbase
30852@opindex mfsgsbase
30853@need 200
30854@itemx -mptwrite
30855@opindex mptwrite
30856@need 200
30857@itemx -mrdrnd
30858@opindex mrdrnd
30859@need 200
30860@itemx -mf16c
30861@opindex mf16c
30862@need 200
30863@itemx -mfma
30864@opindex mfma
30865@need 200
30866@itemx -mpconfig
30867@opindex mpconfig
30868@need 200
30869@itemx -mwbnoinvd
30870@opindex mwbnoinvd
30871@need 200
30872@itemx -mfma4
30873@opindex mfma4
30874@need 200
30875@itemx -mprfchw
30876@opindex mprfchw
30877@need 200
30878@itemx -mrdpid
30879@opindex mrdpid
30880@need 200
30881@itemx -mprefetchwt1
30882@opindex mprefetchwt1
30883@need 200
30884@itemx -mrdseed
30885@opindex mrdseed
30886@need 200
30887@itemx -msgx
30888@opindex msgx
30889@need 200
30890@itemx -mxop
30891@opindex mxop
30892@need 200
30893@itemx -mlwp
30894@opindex mlwp
30895@need 200
30896@itemx -m3dnow
30897@opindex m3dnow
30898@need 200
30899@itemx -m3dnowa
30900@opindex m3dnowa
30901@need 200
30902@itemx -mpopcnt
30903@opindex mpopcnt
30904@need 200
30905@itemx -mabm
30906@opindex mabm
30907@need 200
30908@itemx -madx
30909@opindex madx
30910@need 200
30911@itemx -mbmi
30912@opindex mbmi
30913@need 200
30914@itemx -mbmi2
30915@opindex mbmi2
30916@need 200
30917@itemx -mlzcnt
30918@opindex mlzcnt
30919@need 200
30920@itemx -mfxsr
30921@opindex mfxsr
30922@need 200
30923@itemx -mxsave
30924@opindex mxsave
30925@need 200
30926@itemx -mxsaveopt
30927@opindex mxsaveopt
30928@need 200
30929@itemx -mxsavec
30930@opindex mxsavec
30931@need 200
30932@itemx -mxsaves
30933@opindex mxsaves
30934@need 200
30935@itemx -mrtm
30936@opindex mrtm
30937@need 200
30938@itemx -mhle
30939@opindex mhle
30940@need 200
30941@itemx -mtbm
30942@opindex mtbm
30943@need 200
30944@itemx -mmwaitx
30945@opindex mmwaitx
30946@need 200
30947@itemx -mclzero
30948@opindex mclzero
30949@need 200
30950@itemx -mpku
30951@opindex mpku
30952@need 200
30953@itemx -mavx512vbmi2
30954@opindex mavx512vbmi2
30955@need 200
30956@itemx -mavx512bf16
30957@opindex mavx512bf16
30958@need 200
30959@itemx -mgfni
30960@opindex mgfni
30961@need 200
30962@itemx -mvaes
30963@opindex mvaes
30964@need 200
30965@itemx -mwaitpkg
30966@opindex mwaitpkg
30967@need 200
30968@itemx -mvpclmulqdq
30969@opindex mvpclmulqdq
30970@need 200
30971@itemx -mavx512bitalg
30972@opindex mavx512bitalg
30973@need 200
30974@itemx -mmovdiri
30975@opindex mmovdiri
30976@need 200
30977@itemx -mmovdir64b
30978@opindex mmovdir64b
30979@need 200
30980@itemx -menqcmd
30981@opindex menqcmd
30982@itemx -muintr
30983@opindex muintr
30984@need 200
30985@itemx -mtsxldtrk
30986@opindex mtsxldtrk
30987@need 200
30988@itemx -mavx512vpopcntdq
30989@opindex mavx512vpopcntdq
30990@need 200
30991@itemx -mavx512vp2intersect
30992@opindex mavx512vp2intersect
30993@need 200
30994@itemx -mavx5124fmaps
30995@opindex mavx5124fmaps
30996@need 200
30997@itemx -mavx512vnni
30998@opindex mavx512vnni
30999@need 200
31000@itemx -mavxvnni
31001@opindex mavxvnni
31002@need 200
31003@itemx -mavx5124vnniw
31004@opindex mavx5124vnniw
31005@need 200
31006@itemx -mcldemote
31007@opindex mcldemote
31008@need 200
31009@itemx -mserialize
31010@opindex mserialize
31011@need 200
31012@itemx -mamx-tile
31013@opindex mamx-tile
31014@need 200
31015@itemx -mamx-int8
31016@opindex mamx-int8
31017@need 200
31018@itemx -mamx-bf16
31019@opindex mamx-bf16
31020@need 200
31021@itemx -mhreset
31022@opindex mhreset
31023@itemx -mkl
31024@opindex mkl
31025@need 200
31026@itemx -mwidekl
31027@opindex mwidekl
31028These switches enable the use of instructions in the MMX, SSE,
31029SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF,
31030AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA,
31031AES, PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG,
31032WBNOINVD, FMA4, PREFETCHW, RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP,
310333DNow!@:, enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE,
31034XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO, PKU, AVX512VBMI2,
31035GFNI, VAES, WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B, AVX512BF16,
31036ENQCMD, AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, AVX5124VNNIW, SERIALIZE,
31037UINTR, HRESET, AMXTILE, AMXINT8, AMXBF16, KL, WIDEKL, AVXVNNI or CLDEMOTE
31038extended instruction sets. Each has a corresponding @option{-mno-} option to
31039disable use of these instructions.
31040
31041These extensions are also available as built-in functions: see
31042@ref{x86 Built-in Functions}, for details of the functions enabled and
31043disabled by these switches.
31044
31045To generate SSE/SSE2 instructions automatically from floating-point
31046code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
31047
31048GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
31049generates new AVX instructions or AVX equivalence for all SSEx instructions
31050when needed.
31051
31052These options enable GCC to use these extended instructions in
31053generated code, even without @option{-mfpmath=sse}.  Applications that
31054perform run-time CPU detection must compile separate files for each
31055supported architecture, using the appropriate flags.  In particular,
31056the file containing the CPU detection code should be compiled without
31057these options.
31058
31059@item -mdump-tune-features
31060@opindex mdump-tune-features
31061This option instructs GCC to dump the names of the x86 performance
31062tuning features and default settings. The names can be used in
31063@option{-mtune-ctrl=@var{feature-list}}.
31064
31065@item -mtune-ctrl=@var{feature-list}
31066@opindex mtune-ctrl=@var{feature-list}
31067This option is used to do fine grain control of x86 code generation features.
31068@var{feature-list} is a comma separated list of @var{feature} names. See also
31069@option{-mdump-tune-features}. When specified, the @var{feature} is turned
31070on if it is not preceded with @samp{^}, otherwise, it is turned off.
31071@option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
31072developers. Using it may lead to code paths not covered by testing and can
31073potentially result in compiler ICEs or runtime errors.
31074
31075@item -mno-default
31076@opindex mno-default
31077This option instructs GCC to turn off all tunable features. See also
31078@option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
31079
31080@item -mcld
31081@opindex mcld
31082This option instructs GCC to emit a @code{cld} instruction in the prologue
31083of functions that use string instructions.  String instructions depend on
31084the DF flag to select between autoincrement or autodecrement mode.  While the
31085ABI specifies the DF flag to be cleared on function entry, some operating
31086systems violate this specification by not clearing the DF flag in their
31087exception dispatchers.  The exception handler can be invoked with the DF flag
31088set, which leads to wrong direction mode when string instructions are used.
31089This option can be enabled by default on 32-bit x86 targets by configuring
31090GCC with the @option{--enable-cld} configure option.  Generation of @code{cld}
31091instructions can be suppressed with the @option{-mno-cld} compiler option
31092in this case.
31093
31094@item -mvzeroupper
31095@opindex mvzeroupper
31096This option instructs GCC to emit a @code{vzeroupper} instruction
31097before a transfer of control flow out of the function to minimize
31098the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
31099intrinsics.
31100
31101@item -mprefer-avx128
31102@opindex mprefer-avx128
31103This option instructs GCC to use 128-bit AVX instructions instead of
31104256-bit AVX instructions in the auto-vectorizer.
31105
31106@item -mprefer-vector-width=@var{opt}
31107@opindex mprefer-vector-width
31108This option instructs GCC to use @var{opt}-bit vector width in instructions
31109instead of default on the selected platform.
31110
31111@table @samp
31112@item none
31113No extra limitations applied to GCC other than defined by the selected platform.
31114
31115@item 128
31116Prefer 128-bit vector width for instructions.
31117
31118@item 256
31119Prefer 256-bit vector width for instructions.
31120
31121@item 512
31122Prefer 512-bit vector width for instructions.
31123@end table
31124
31125@item -mcx16
31126@opindex mcx16
31127This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
31128code to implement compare-and-exchange operations on 16-byte aligned 128-bit
31129objects.  This is useful for atomic updates of data structures exceeding one
31130machine word in size.  The compiler uses this instruction to implement
31131@ref{__sync Builtins}.  However, for @ref{__atomic Builtins} operating on
31132128-bit integers, a library call is always used.
31133
31134@item -msahf
31135@opindex msahf
31136This option enables generation of @code{SAHF} instructions in 64-bit code.
31137Early Intel Pentium 4 CPUs with Intel 64 support,
31138prior to the introduction of Pentium 4 G1 step in December 2005,
31139lacked the @code{LAHF} and @code{SAHF} instructions
31140which are supported by AMD64.
31141These are load and store instructions, respectively, for certain status flags.
31142In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
31143@code{drem}, and @code{remainder} built-in functions;
31144see @ref{Other Builtins} for details.
31145
31146@item -mmovbe
31147@opindex mmovbe
31148This option enables use of the @code{movbe} instruction to implement
31149@code{__builtin_bswap32} and @code{__builtin_bswap64}.
31150
31151@item -mshstk
31152@opindex mshstk
31153The @option{-mshstk} option enables shadow stack built-in functions
31154from x86 Control-flow Enforcement Technology (CET).
31155
31156@item -mcrc32
31157@opindex mcrc32
31158This option enables built-in functions @code{__builtin_ia32_crc32qi},
31159@code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
31160@code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
31161
31162@item -mrecip
31163@opindex mrecip
31164This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
31165(and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
31166with an additional Newton-Raphson step
31167to increase precision instead of @code{DIVSS} and @code{SQRTSS}
31168(and their vectorized
31169variants) for single-precision floating-point arguments.  These instructions
31170are generated only when @option{-funsafe-math-optimizations} is enabled
31171together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
31172Note that while the throughput of the sequence is higher than the throughput
31173of the non-reciprocal instruction, the precision of the sequence can be
31174decreased by up to 2 ulp (i.e.@: the inverse of 1.0 equals 0.99999994).
31175
31176Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
31177(or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
31178combination), and doesn't need @option{-mrecip}.
31179
31180Also note that GCC emits the above sequence with additional Newton-Raphson step
31181for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
31182already with @option{-ffast-math} (or the above option combination), and
31183doesn't need @option{-mrecip}.
31184
31185@item -mrecip=@var{opt}
31186@opindex mrecip=opt
31187This option controls which reciprocal estimate instructions
31188may be used.  @var{opt} is a comma-separated list of options, which may
31189be preceded by a @samp{!} to invert the option:
31190
31191@table @samp
31192@item all
31193Enable all estimate instructions.
31194
31195@item default
31196Enable the default instructions, equivalent to @option{-mrecip}.
31197
31198@item none
31199Disable all estimate instructions, equivalent to @option{-mno-recip}.
31200
31201@item div
31202Enable the approximation for scalar division.
31203
31204@item vec-div
31205Enable the approximation for vectorized division.
31206
31207@item sqrt
31208Enable the approximation for scalar square root.
31209
31210@item vec-sqrt
31211Enable the approximation for vectorized square root.
31212@end table
31213
31214So, for example, @option{-mrecip=all,!sqrt} enables
31215all of the reciprocal approximations, except for square root.
31216
31217@item -mveclibabi=@var{type}
31218@opindex mveclibabi
31219Specifies the ABI type to use for vectorizing intrinsics using an
31220external library.  Supported values for @var{type} are @samp{svml}
31221for the Intel short
31222vector math library and @samp{acml} for the AMD math core library.
31223To use this option, both @option{-ftree-vectorize} and
31224@option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
31225ABI-compatible library must be specified at link time.
31226
31227GCC currently emits calls to @code{vmldExp2},
31228@code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
31229@code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
31230@code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
31231@code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
31232@code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
31233@code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
31234@code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
31235@code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
31236@code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
31237function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
31238@code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
31239@code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
31240@code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
31241@code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
31242when @option{-mveclibabi=acml} is used.
31243
31244@item -mabi=@var{name}
31245@opindex mabi
31246Generate code for the specified calling convention.  Permissible values
31247are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
31248@samp{ms} for the Microsoft ABI.  The default is to use the Microsoft
31249ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
31250You can control this behavior for specific functions by
31251using the function attributes @code{ms_abi} and @code{sysv_abi}.
31252@xref{Function Attributes}.
31253
31254@item -mforce-indirect-call
31255@opindex mforce-indirect-call
31256Force all calls to functions to be indirect. This is useful
31257when using Intel Processor Trace where it generates more precise timing
31258information for function calls.
31259
31260@item -mmanual-endbr
31261@opindex mmanual-endbr
31262Insert ENDBR instruction at function entry only via the @code{cf_check}
31263function attribute. This is useful when used with the option
31264@option{-fcf-protection=branch} to control ENDBR insertion at the
31265function entry.
31266
31267@item -mcall-ms2sysv-xlogues
31268@opindex mcall-ms2sysv-xlogues
31269@opindex mno-call-ms2sysv-xlogues
31270Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
31271System V ABI function must consider RSI, RDI and XMM6-15 as clobbered.  By
31272default, the code for saving and restoring these registers is emitted inline,
31273resulting in fairly lengthy prologues and epilogues.  Using
31274@option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
31275use stubs in the static portion of libgcc to perform these saves and restores,
31276thus reducing function size at the cost of a few extra instructions.
31277
31278@item -mtls-dialect=@var{type}
31279@opindex mtls-dialect
31280Generate code to access thread-local storage using the @samp{gnu} or
31281@samp{gnu2} conventions.  @samp{gnu} is the conservative default;
31282@samp{gnu2} is more efficient, but it may add compile- and run-time
31283requirements that cannot be satisfied on all systems.
31284
31285@item -mpush-args
31286@itemx -mno-push-args
31287@opindex mpush-args
31288@opindex mno-push-args
31289Use PUSH operations to store outgoing parameters.  This method is shorter
31290and usually equally fast as method using SUB/MOV operations and is enabled
31291by default.  In some cases disabling it may improve performance because of
31292improved scheduling and reduced dependencies.
31293
31294@item -maccumulate-outgoing-args
31295@opindex maccumulate-outgoing-args
31296If enabled, the maximum amount of space required for outgoing arguments is
31297computed in the function prologue.  This is faster on most modern CPUs
31298because of reduced dependencies, improved scheduling and reduced stack usage
31299when the preferred stack boundary is not equal to 2.  The drawback is a notable
31300increase in code size.  This switch implies @option{-mno-push-args}.
31301
31302@item -mthreads
31303@opindex mthreads
31304Support thread-safe exception handling on MinGW.  Programs that rely
31305on thread-safe exception handling must compile and link all code with the
31306@option{-mthreads} option.  When compiling, @option{-mthreads} defines
31307@option{-D_MT}; when linking, it links in a special thread helper library
31308@option{-lmingwthrd} which cleans up per-thread exception-handling data.
31309
31310@item -mms-bitfields
31311@itemx -mno-ms-bitfields
31312@opindex mms-bitfields
31313@opindex mno-ms-bitfields
31314
31315Enable/disable bit-field layout compatible with the native Microsoft
31316Windows compiler.
31317
31318If @code{packed} is used on a structure, or if bit-fields are used,
31319it may be that the Microsoft ABI lays out the structure differently
31320than the way GCC normally does.  Particularly when moving packed
31321data between functions compiled with GCC and the native Microsoft compiler
31322(either via function call or as data in a file), it may be necessary to access
31323either format.
31324
31325This option is enabled by default for Microsoft Windows
31326targets.  This behavior can also be controlled locally by use of variable
31327or type attributes.  For more information, see @ref{x86 Variable Attributes}
31328and @ref{x86 Type Attributes}.
31329
31330The Microsoft structure layout algorithm is fairly simple with the exception
31331of the bit-field packing.
31332The padding and alignment of members of structures and whether a bit-field
31333can straddle a storage-unit boundary are determine by these rules:
31334
31335@enumerate
31336@item Structure members are stored sequentially in the order in which they are
31337declared: the first member has the lowest memory address and the last member
31338the highest.
31339
31340@item Every data object has an alignment requirement.  The alignment requirement
31341for all data except structures, unions, and arrays is either the size of the
31342object or the current packing size (specified with either the
31343@code{aligned} attribute or the @code{pack} pragma),
31344whichever is less.  For structures, unions, and arrays,
31345the alignment requirement is the largest alignment requirement of its members.
31346Every object is allocated an offset so that:
31347
31348@smallexample
31349offset % alignment_requirement == 0
31350@end smallexample
31351
31352@item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
31353unit if the integral types are the same size and if the next bit-field fits
31354into the current allocation unit without crossing the boundary imposed by the
31355common alignment requirements of the bit-fields.
31356@end enumerate
31357
31358MSVC interprets zero-length bit-fields in the following ways:
31359
31360@enumerate
31361@item If a zero-length bit-field is inserted between two bit-fields that
31362are normally coalesced, the bit-fields are not coalesced.
31363
31364For example:
31365
31366@smallexample
31367struct
31368 @{
31369   unsigned long bf_1 : 12;
31370   unsigned long : 0;
31371   unsigned long bf_2 : 12;
31372 @} t1;
31373@end smallexample
31374
31375@noindent
31376The size of @code{t1} is 8 bytes with the zero-length bit-field.  If the
31377zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
31378
31379@item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
31380alignment of the zero-length bit-field is greater than the member that follows it,
31381@code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
31382
31383For example:
31384
31385@smallexample
31386struct
31387 @{
31388   char foo : 4;
31389   short : 0;
31390   char bar;
31391 @} t2;
31392
31393struct
31394 @{
31395   char foo : 4;
31396   short : 0;
31397   double bar;
31398 @} t3;
31399@end smallexample
31400
31401@noindent
31402For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
31403Accordingly, the size of @code{t2} is 4.  For @code{t3}, the zero-length
31404bit-field does not affect the alignment of @code{bar} or, as a result, the size
31405of the structure.
31406
31407Taking this into account, it is important to note the following:
31408
31409@enumerate
31410@item If a zero-length bit-field follows a normal bit-field, the type of the
31411zero-length bit-field may affect the alignment of the structure as whole. For
31412example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
31413normal bit-field, and is of type short.
31414
31415@item Even if a zero-length bit-field is not followed by a normal bit-field, it may
31416still affect the alignment of the structure:
31417
31418@smallexample
31419struct
31420 @{
31421   char foo : 6;
31422   long : 0;
31423 @} t4;
31424@end smallexample
31425
31426@noindent
31427Here, @code{t4} takes up 4 bytes.
31428@end enumerate
31429
31430@item Zero-length bit-fields following non-bit-field members are ignored:
31431
31432@smallexample
31433struct
31434 @{
31435   char foo;
31436   long : 0;
31437   char bar;
31438 @} t5;
31439@end smallexample
31440
31441@noindent
31442Here, @code{t5} takes up 2 bytes.
31443@end enumerate
31444
31445
31446@item -mno-align-stringops
31447@opindex mno-align-stringops
31448@opindex malign-stringops
31449Do not align the destination of inlined string operations.  This switch reduces
31450code size and improves performance in case the destination is already aligned,
31451but GCC doesn't know about it.
31452
31453@item -minline-all-stringops
31454@opindex minline-all-stringops
31455By default GCC inlines string operations only when the destination is
31456known to be aligned to least a 4-byte boundary.
31457This enables more inlining and increases code
31458size, but may improve performance of code that depends on fast
31459@code{memcpy} and @code{memset} for short lengths.
31460The option enables inline expansion of @code{strlen} for all
31461pointer alignments.
31462
31463@item -minline-stringops-dynamically
31464@opindex minline-stringops-dynamically
31465For string operations of unknown size, use run-time checks with
31466inline code for small blocks and a library call for large blocks.
31467
31468@item -mstringop-strategy=@var{alg}
31469@opindex mstringop-strategy=@var{alg}
31470Override the internal decision heuristic for the particular algorithm to use
31471for inlining string operations.  The allowed values for @var{alg} are:
31472
31473@table @samp
31474@item rep_byte
31475@itemx rep_4byte
31476@itemx rep_8byte
31477Expand using i386 @code{rep} prefix of the specified size.
31478
31479@item byte_loop
31480@itemx loop
31481@itemx unrolled_loop
31482Expand into an inline loop.
31483
31484@item libcall
31485Always use a library call.
31486@end table
31487
31488@item -mmemcpy-strategy=@var{strategy}
31489@opindex mmemcpy-strategy=@var{strategy}
31490Override the internal decision heuristic to decide if @code{__builtin_memcpy}
31491should be inlined and what inline algorithm to use when the expected size
31492of the copy operation is known. @var{strategy}
31493is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
31494@var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
31495the max byte size with which inline algorithm @var{alg} is allowed.  For the last
31496triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
31497in the list must be specified in increasing order.  The minimal byte size for
31498@var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
31499preceding range.
31500
31501@item -mmemset-strategy=@var{strategy}
31502@opindex mmemset-strategy=@var{strategy}
31503The option is similar to @option{-mmemcpy-strategy=} except that it is to control
31504@code{__builtin_memset} expansion.
31505
31506@item -momit-leaf-frame-pointer
31507@opindex momit-leaf-frame-pointer
31508Don't keep the frame pointer in a register for leaf functions.  This
31509avoids the instructions to save, set up, and restore frame pointers and
31510makes an extra register available in leaf functions.  The option
31511@option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
31512which might make debugging harder.
31513
31514@item -mtls-direct-seg-refs
31515@itemx -mno-tls-direct-seg-refs
31516@opindex mtls-direct-seg-refs
31517Controls whether TLS variables may be accessed with offsets from the
31518TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
31519or whether the thread base pointer must be added.  Whether or not this
31520is valid depends on the operating system, and whether it maps the
31521segment to cover the entire TLS area.
31522
31523For systems that use the GNU C Library, the default is on.
31524
31525@item -msse2avx
31526@itemx -mno-sse2avx
31527@opindex msse2avx
31528Specify that the assembler should encode SSE instructions with VEX
31529prefix.  The option @option{-mavx} turns this on by default.
31530
31531@item -mfentry
31532@itemx -mno-fentry
31533@opindex mfentry
31534If profiling is active (@option{-pg}), put the profiling
31535counter call before the prologue.
31536Note: On x86 architectures the attribute @code{ms_hook_prologue}
31537isn't possible at the moment for @option{-mfentry} and @option{-pg}.
31538
31539@item -mrecord-mcount
31540@itemx -mno-record-mcount
31541@opindex mrecord-mcount
31542If profiling is active (@option{-pg}), generate a __mcount_loc section
31543that contains pointers to each profiling call. This is useful for
31544automatically patching and out calls.
31545
31546@item -mnop-mcount
31547@itemx -mno-nop-mcount
31548@opindex mnop-mcount
31549If profiling is active (@option{-pg}), generate the calls to
31550the profiling functions as NOPs. This is useful when they
31551should be patched in later dynamically. This is likely only
31552useful together with @option{-mrecord-mcount}.
31553
31554@item -minstrument-return=@var{type}
31555@opindex minstrument-return
31556Instrument function exit in -pg -mfentry instrumented functions with
31557call to specified function. This only instruments true returns ending
31558with ret, but not sibling calls ending with jump. Valid types
31559are @var{none} to not instrument, @var{call} to generate a call to __return__,
31560or @var{nop5} to generate a 5 byte nop.
31561
31562@item -mrecord-return
31563@itemx -mno-record-return
31564@opindex mrecord-return
31565Generate a __return_loc section pointing to all return instrumentation code.
31566
31567@item -mfentry-name=@var{name}
31568@opindex mfentry-name
31569Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.
31570
31571@item -mfentry-section=@var{name}
31572@opindex mfentry-section
31573Set name of section to record -mrecord-mcount calls (default __mcount_loc).
31574
31575@item -mskip-rax-setup
31576@itemx -mno-skip-rax-setup
31577@opindex mskip-rax-setup
31578When generating code for the x86-64 architecture with SSE extensions
31579disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
31580register when there are no variable arguments passed in vector registers.
31581
31582@strong{Warning:} Since RAX register is used to avoid unnecessarily
31583saving vector registers on stack when passing variable arguments, the
31584impacts of this option are callees may waste some stack space,
31585misbehave or jump to a random location.  GCC 4.4 or newer don't have
31586those issues, regardless the RAX register value.
31587
31588@item -m8bit-idiv
31589@itemx -mno-8bit-idiv
31590@opindex m8bit-idiv
31591On some processors, like Intel Atom, 8-bit unsigned integer divide is
31592much faster than 32-bit/64-bit integer divide.  This option generates a
31593run-time check.  If both dividend and divisor are within range of 0
31594to 255, 8-bit unsigned integer divide is used instead of
3159532-bit/64-bit integer divide.
31596
31597@item -mavx256-split-unaligned-load
31598@itemx -mavx256-split-unaligned-store
31599@opindex mavx256-split-unaligned-load
31600@opindex mavx256-split-unaligned-store
31601Split 32-byte AVX unaligned load and store.
31602
31603@item -mstack-protector-guard=@var{guard}
31604@itemx -mstack-protector-guard-reg=@var{reg}
31605@itemx -mstack-protector-guard-offset=@var{offset}
31606@opindex mstack-protector-guard
31607@opindex mstack-protector-guard-reg
31608@opindex mstack-protector-guard-offset
31609Generate stack protection code using canary at @var{guard}.  Supported
31610locations are @samp{global} for global canary or @samp{tls} for per-thread
31611canary in the TLS block (the default).  This option has effect only when
31612@option{-fstack-protector} or @option{-fstack-protector-all} is specified.
31613
31614With the latter choice the options
31615@option{-mstack-protector-guard-reg=@var{reg}} and
31616@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
31617which segment register (@code{%fs} or @code{%gs}) to use as base register
31618for reading the canary, and from what offset from that base register.
31619The default for those is as specified in the relevant ABI.
31620
31621@item -mgeneral-regs-only
31622@opindex mgeneral-regs-only
31623Generate code that uses only the general-purpose registers.  This
31624prevents the compiler from using floating-point, vector, mask and bound
31625registers.
31626
31627@item -mindirect-branch=@var{choice}
31628@opindex mindirect-branch
31629Convert indirect call and jump with @var{choice}.  The default is
31630@samp{keep}, which keeps indirect call and jump unmodified.
31631@samp{thunk} converts indirect call and jump to call and return thunk.
31632@samp{thunk-inline} converts indirect call and jump to inlined call
31633and return thunk.  @samp{thunk-extern} converts indirect call and jump
31634to external call and return thunk provided in a separate object file.
31635You can control this behavior for a specific function by using the
31636function attribute @code{indirect_branch}.  @xref{Function Attributes}.
31637
31638Note that @option{-mcmodel=large} is incompatible with
31639@option{-mindirect-branch=thunk} and
31640@option{-mindirect-branch=thunk-extern} since the thunk function may
31641not be reachable in the large code model.
31642
31643Note that @option{-mindirect-branch=thunk-extern} is compatible with
31644@option{-fcf-protection=branch} since the external thunk can be made
31645to enable control-flow check.
31646
31647@item -mfunction-return=@var{choice}
31648@opindex mfunction-return
31649Convert function return with @var{choice}.  The default is @samp{keep},
31650which keeps function return unmodified.  @samp{thunk} converts function
31651return to call and return thunk.  @samp{thunk-inline} converts function
31652return to inlined call and return thunk.  @samp{thunk-extern} converts
31653function return to external call and return thunk provided in a separate
31654object file.  You can control this behavior for a specific function by
31655using the function attribute @code{function_return}.
31656@xref{Function Attributes}.
31657
31658Note that @option{-mindirect-return=thunk-extern} is compatible with
31659@option{-fcf-protection=branch} since the external thunk can be made
31660to enable control-flow check.
31661
31662Note that @option{-mcmodel=large} is incompatible with
31663@option{-mfunction-return=thunk} and
31664@option{-mfunction-return=thunk-extern} since the thunk function may
31665not be reachable in the large code model.
31666
31667
31668@item -mindirect-branch-register
31669@opindex mindirect-branch-register
31670Force indirect call and jump via register.
31671
31672@end table
31673
31674These @samp{-m} switches are supported in addition to the above
31675on x86-64 processors in 64-bit environments.
31676
31677@table @gcctabopt
31678@item -m32
31679@itemx -m64
31680@itemx -mx32
31681@itemx -m16
31682@itemx -miamcu
31683@opindex m32
31684@opindex m64
31685@opindex mx32
31686@opindex m16
31687@opindex miamcu
31688Generate code for a 16-bit, 32-bit or 64-bit environment.
31689The @option{-m32} option sets @code{int}, @code{long}, and pointer types
31690to 32 bits, and
31691generates code that runs on any i386 system.
31692
31693The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
31694types to 64 bits, and generates code for the x86-64 architecture.
31695For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
31696and @option{-mdynamic-no-pic} options.
31697
31698The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
31699to 32 bits, and
31700generates code for the x86-64 architecture.
31701
31702The @option{-m16} option is the same as @option{-m32}, except for that
31703it outputs the @code{.code16gcc} assembly directive at the beginning of
31704the assembly output so that the binary can run in 16-bit mode.
31705
31706The @option{-miamcu} option generates code which conforms to Intel MCU
31707psABI.  It requires the @option{-m32} option to be turned on.
31708
31709@item -mno-red-zone
31710@opindex mno-red-zone
31711@opindex mred-zone
31712Do not use a so-called ``red zone'' for x86-64 code.  The red zone is mandated
31713by the x86-64 ABI; it is a 128-byte area beyond the location of the
31714stack pointer that is not modified by signal or interrupt handlers
31715and therefore can be used for temporary data without adjusting the stack
31716pointer.  The flag @option{-mno-red-zone} disables this red zone.
31717
31718@item -mcmodel=small
31719@opindex mcmodel=small
31720Generate code for the small code model: the program and its symbols must
31721be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
31722Programs can be statically or dynamically linked.  This is the default
31723code model.
31724
31725@item -mcmodel=kernel
31726@opindex mcmodel=kernel
31727Generate code for the kernel code model.  The kernel runs in the
31728negative 2 GB of the address space.
31729This model has to be used for Linux kernel code.
31730
31731@item -mcmodel=medium
31732@opindex mcmodel=medium
31733Generate code for the medium model: the program is linked in the lower 2
31734GB of the address space.  Small symbols are also placed there.  Symbols
31735with sizes larger than @option{-mlarge-data-threshold} are put into
31736large data or BSS sections and can be located above 2GB.  Programs can
31737be statically or dynamically linked.
31738
31739@item -mcmodel=large
31740@opindex mcmodel=large
31741Generate code for the large model.  This model makes no assumptions
31742about addresses and sizes of sections.
31743
31744@item -maddress-mode=long
31745@opindex maddress-mode=long
31746Generate code for long address mode.  This is only supported for 64-bit
31747and x32 environments.  It is the default address mode for 64-bit
31748environments.
31749
31750@item -maddress-mode=short
31751@opindex maddress-mode=short
31752Generate code for short address mode.  This is only supported for 32-bit
31753and x32 environments.  It is the default address mode for 32-bit and
31754x32 environments.
31755
31756@item -mneeded
31757@itemx -mno-needed
31758@opindex mneeded
31759Emit GNU_PROPERTY_X86_ISA_1_NEEDED GNU property for Linux target to
31760indicate the micro-architecture ISA level required to execute the binary.
31761@end table
31762
31763@node x86 Windows Options
31764@subsection x86 Windows Options
31765@cindex x86 Windows Options
31766@cindex Windows Options for x86
31767
31768These additional options are available for Microsoft Windows targets:
31769
31770@table @gcctabopt
31771@item -mconsole
31772@opindex mconsole
31773This option
31774specifies that a console application is to be generated, by
31775instructing the linker to set the PE header subsystem type
31776required for console applications.
31777This option is available for Cygwin and MinGW targets and is
31778enabled by default on those targets.
31779
31780@item -mdll
31781@opindex mdll
31782This option is available for Cygwin and MinGW targets.  It
31783specifies that a DLL---a dynamic link library---is to be
31784generated, enabling the selection of the required runtime
31785startup object and entry point.
31786
31787@item -mnop-fun-dllimport
31788@opindex mnop-fun-dllimport
31789This option is available for Cygwin and MinGW targets.  It
31790specifies that the @code{dllimport} attribute should be ignored.
31791
31792@item -mthread
31793@opindex mthread
31794This option is available for MinGW targets. It specifies
31795that MinGW-specific thread support is to be used.
31796
31797@item -municode
31798@opindex municode
31799This option is available for MinGW-w64 targets.  It causes
31800the @code{UNICODE} preprocessor macro to be predefined, and
31801chooses Unicode-capable runtime startup code.
31802
31803@item -mwin32
31804@opindex mwin32
31805This option is available for Cygwin and MinGW targets.  It
31806specifies that the typical Microsoft Windows predefined macros are to
31807be set in the pre-processor, but does not influence the choice
31808of runtime library/startup code.
31809
31810@item -mwindows
31811@opindex mwindows
31812This option is available for Cygwin and MinGW targets.  It
31813specifies that a GUI application is to be generated by
31814instructing the linker to set the PE header subsystem type
31815appropriately.
31816
31817@item -fno-set-stack-executable
31818@opindex fno-set-stack-executable
31819@opindex fset-stack-executable
31820This option is available for MinGW targets. It specifies that
31821the executable flag for the stack used by nested functions isn't
31822set. This is necessary for binaries running in kernel mode of
31823Microsoft Windows, as there the User32 API, which is used to set executable
31824privileges, isn't available.
31825
31826@item -fwritable-relocated-rdata
31827@opindex fno-writable-relocated-rdata
31828@opindex fwritable-relocated-rdata
31829This option is available for MinGW and Cygwin targets.  It specifies
31830that relocated-data in read-only section is put into the @code{.data}
31831section.  This is a necessary for older runtimes not supporting
31832modification of @code{.rdata} sections for pseudo-relocation.
31833
31834@item -mpe-aligned-commons
31835@opindex mpe-aligned-commons
31836This option is available for Cygwin and MinGW targets.  It
31837specifies that the GNU extension to the PE file format that
31838permits the correct alignment of COMMON variables should be
31839used when generating code.  It is enabled by default if
31840GCC detects that the target assembler found during configuration
31841supports the feature.
31842@end table
31843
31844See also under @ref{x86 Options} for standard options.
31845
31846@node Xstormy16 Options
31847@subsection Xstormy16 Options
31848@cindex Xstormy16 Options
31849
31850These options are defined for Xstormy16:
31851
31852@table @gcctabopt
31853@item -msim
31854@opindex msim
31855Choose startup files and linker script suitable for the simulator.
31856@end table
31857
31858@node Xtensa Options
31859@subsection Xtensa Options
31860@cindex Xtensa Options
31861
31862These options are supported for Xtensa targets:
31863
31864@table @gcctabopt
31865@item -mconst16
31866@itemx -mno-const16
31867@opindex mconst16
31868@opindex mno-const16
31869Enable or disable use of @code{CONST16} instructions for loading
31870constant values.  The @code{CONST16} instruction is currently not a
31871standard option from Tensilica.  When enabled, @code{CONST16}
31872instructions are always used in place of the standard @code{L32R}
31873instructions.  The use of @code{CONST16} is enabled by default only if
31874the @code{L32R} instruction is not available.
31875
31876@item -mfused-madd
31877@itemx -mno-fused-madd
31878@opindex mfused-madd
31879@opindex mno-fused-madd
31880Enable or disable use of fused multiply/add and multiply/subtract
31881instructions in the floating-point option.  This has no effect if the
31882floating-point option is not also enabled.  Disabling fused multiply/add
31883and multiply/subtract instructions forces the compiler to use separate
31884instructions for the multiply and add/subtract operations.  This may be
31885desirable in some cases where strict IEEE 754-compliant results are
31886required: the fused multiply add/subtract instructions do not round the
31887intermediate result, thereby producing results with @emph{more} bits of
31888precision than specified by the IEEE standard.  Disabling fused multiply
31889add/subtract instructions also ensures that the program output is not
31890sensitive to the compiler's ability to combine multiply and add/subtract
31891operations.
31892
31893@item -mserialize-volatile
31894@itemx -mno-serialize-volatile
31895@opindex mserialize-volatile
31896@opindex mno-serialize-volatile
31897When this option is enabled, GCC inserts @code{MEMW} instructions before
31898@code{volatile} memory references to guarantee sequential consistency.
31899The default is @option{-mserialize-volatile}.  Use
31900@option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
31901
31902@item -mforce-no-pic
31903@opindex mforce-no-pic
31904For targets, like GNU/Linux, where all user-mode Xtensa code must be
31905position-independent code (PIC), this option disables PIC for compiling
31906kernel code.
31907
31908@item -mtext-section-literals
31909@itemx -mno-text-section-literals
31910@opindex mtext-section-literals
31911@opindex mno-text-section-literals
31912These options control the treatment of literal pools.  The default is
31913@option{-mno-text-section-literals}, which places literals in a separate
31914section in the output file.  This allows the literal pool to be placed
31915in a data RAM/ROM, and it also allows the linker to combine literal
31916pools from separate object files to remove redundant literals and
31917improve code size.  With @option{-mtext-section-literals}, the literals
31918are interspersed in the text section in order to keep them as close as
31919possible to their references.  This may be necessary for large assembly
31920files.  Literals for each function are placed right before that function.
31921
31922@item -mauto-litpools
31923@itemx -mno-auto-litpools
31924@opindex mauto-litpools
31925@opindex mno-auto-litpools
31926These options control the treatment of literal pools.  The default is
31927@option{-mno-auto-litpools}, which places literals in a separate
31928section in the output file unless @option{-mtext-section-literals} is
31929used.  With @option{-mauto-litpools} the literals are interspersed in
31930the text section by the assembler.  Compiler does not produce explicit
31931@code{.literal} directives and loads literals into registers with
31932@code{MOVI} instructions instead of @code{L32R} to let the assembler
31933do relaxation and place literals as necessary.  This option allows
31934assembler to create several literal pools per function and assemble
31935very big functions, which may not be possible with
31936@option{-mtext-section-literals}.
31937
31938@item -mtarget-align
31939@itemx -mno-target-align
31940@opindex mtarget-align
31941@opindex mno-target-align
31942When this option is enabled, GCC instructs the assembler to
31943automatically align instructions to reduce branch penalties at the
31944expense of some code density.  The assembler attempts to widen density
31945instructions to align branch targets and the instructions following call
31946instructions.  If there are not enough preceding safe density
31947instructions to align a target, no widening is performed.  The
31948default is @option{-mtarget-align}.  These options do not affect the
31949treatment of auto-aligned instructions like @code{LOOP}, which the
31950assembler always aligns, either by widening density instructions or
31951by inserting NOP instructions.
31952
31953@item -mlongcalls
31954@itemx -mno-longcalls
31955@opindex mlongcalls
31956@opindex mno-longcalls
31957When this option is enabled, GCC instructs the assembler to translate
31958direct calls to indirect calls unless it can determine that the target
31959of a direct call is in the range allowed by the call instruction.  This
31960translation typically occurs for calls to functions in other source
31961files.  Specifically, the assembler translates a direct @code{CALL}
31962instruction into an @code{L32R} followed by a @code{CALLX} instruction.
31963The default is @option{-mno-longcalls}.  This option should be used in
31964programs where the call target can potentially be out of range.  This
31965option is implemented in the assembler, not the compiler, so the
31966assembly code generated by GCC still shows direct call
31967instructions---look at the disassembled object code to see the actual
31968instructions.  Note that the assembler uses an indirect call for
31969every cross-file call, not just those that really are out of range.
31970
31971@item -mabi=@var{name}
31972@opindex mabi
31973Generate code for the specified ABI@.  Permissible values are: @samp{call0},
31974@samp{windowed}.  Default ABI is chosen by the Xtensa core configuration.
31975
31976@item -mabi=call0
31977@opindex mabi=call0
31978When this option is enabled function parameters are passed in registers
31979@code{a2} through @code{a7}, registers @code{a12} through @code{a15} are
31980caller-saved, and register @code{a15} may be used as a frame pointer.
31981When this version of the ABI is enabled the C preprocessor symbol
31982@code{__XTENSA_CALL0_ABI__} is defined.
31983
31984@item -mabi=windowed
31985@opindex mabi=windowed
31986When this option is enabled function parameters are passed in registers
31987@code{a10} through @code{a15}, and called function rotates register window
31988by 8 registers on entry so that its arguments are found in registers
31989@code{a2} through @code{a7}.  Register @code{a7} may be used as a frame
31990pointer.  Register window is rotated 8 registers back upon return.
31991When this version of the ABI is enabled the C preprocessor symbol
31992@code{__XTENSA_WINDOWED_ABI__} is defined.
31993@end table
31994
31995@node zSeries Options
31996@subsection zSeries Options
31997@cindex zSeries options
31998
31999These are listed under @xref{S/390 and zSeries Options}.
32000
32001
32002@c man end
32003
32004@node Spec Files
32005@section Specifying Subprocesses and the Switches to Pass to Them
32006@cindex Spec Files
32007
32008@command{gcc} is a driver program.  It performs its job by invoking a
32009sequence of other programs to do the work of compiling, assembling and
32010linking.  GCC interprets its command-line parameters and uses these to
32011deduce which programs it should invoke, and which command-line options
32012it ought to place on their command lines.  This behavior is controlled
32013by @dfn{spec strings}.  In most cases there is one spec string for each
32014program that GCC can invoke, but a few programs have multiple spec
32015strings to control their behavior.  The spec strings built into GCC can
32016be overridden by using the @option{-specs=} command-line switch to specify
32017a spec file.
32018
32019@dfn{Spec files} are plain-text files that are used to construct spec
32020strings.  They consist of a sequence of directives separated by blank
32021lines.  The type of directive is determined by the first non-whitespace
32022character on the line, which can be one of the following:
32023
32024@table @code
32025@item %@var{command}
32026Issues a @var{command} to the spec file processor.  The commands that can
32027appear here are:
32028
32029@table @code
32030@item %include <@var{file}>
32031@cindex @code{%include}
32032Search for @var{file} and insert its text at the current point in the
32033specs file.
32034
32035@item %include_noerr <@var{file}>
32036@cindex @code{%include_noerr}
32037Just like @samp{%include}, but do not generate an error message if the include
32038file cannot be found.
32039
32040@item %rename @var{old_name} @var{new_name}
32041@cindex @code{%rename}
32042Rename the spec string @var{old_name} to @var{new_name}.
32043
32044@end table
32045
32046@item *[@var{spec_name}]:
32047This tells the compiler to create, override or delete the named spec
32048string.  All lines after this directive up to the next directive or
32049blank line are considered to be the text for the spec string.  If this
32050results in an empty string then the spec is deleted.  (Or, if the
32051spec did not exist, then nothing happens.)  Otherwise, if the spec
32052does not currently exist a new spec is created.  If the spec does
32053exist then its contents are overridden by the text of this
32054directive, unless the first character of that text is the @samp{+}
32055character, in which case the text is appended to the spec.
32056
32057@item [@var{suffix}]:
32058Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
32059and up to the next directive or blank line are considered to make up the
32060spec string for the indicated suffix.  When the compiler encounters an
32061input file with the named suffix, it processes the spec string in
32062order to work out how to compile that file.  For example:
32063
32064@smallexample
32065.ZZ:
32066z-compile -input %i
32067@end smallexample
32068
32069This says that any input file whose name ends in @samp{.ZZ} should be
32070passed to the program @samp{z-compile}, which should be invoked with the
32071command-line switch @option{-input} and with the result of performing the
32072@samp{%i} substitution.  (See below.)
32073
32074As an alternative to providing a spec string, the text following a
32075suffix directive can be one of the following:
32076
32077@table @code
32078@item @@@var{language}
32079This says that the suffix is an alias for a known @var{language}.  This is
32080similar to using the @option{-x} command-line switch to GCC to specify a
32081language explicitly.  For example:
32082
32083@smallexample
32084.ZZ:
32085@@c++
32086@end smallexample
32087
32088Says that .ZZ files are, in fact, C++ source files.
32089
32090@item #@var{name}
32091This causes an error messages saying:
32092
32093@smallexample
32094@var{name} compiler not installed on this system.
32095@end smallexample
32096@end table
32097
32098GCC already has an extensive list of suffixes built into it.
32099This directive adds an entry to the end of the list of suffixes, but
32100since the list is searched from the end backwards, it is effectively
32101possible to override earlier entries using this technique.
32102
32103@end table
32104
32105GCC has the following spec strings built into it.  Spec files can
32106override these strings or create their own.  Note that individual
32107targets can also add their own spec strings to this list.
32108
32109@smallexample
32110asm          Options to pass to the assembler
32111asm_final    Options to pass to the assembler post-processor
32112cpp          Options to pass to the C preprocessor
32113cc1          Options to pass to the C compiler
32114cc1plus      Options to pass to the C++ compiler
32115endfile      Object files to include at the end of the link
32116link         Options to pass to the linker
32117lib          Libraries to include on the command line to the linker
32118libgcc       Decides which GCC support library to pass to the linker
32119linker       Sets the name of the linker
32120predefines   Defines to be passed to the C preprocessor
32121signed_char  Defines to pass to CPP to say whether @code{char} is signed
32122             by default
32123startfile    Object files to include at the start of the link
32124@end smallexample
32125
32126Here is a small example of a spec file:
32127
32128@smallexample
32129%rename lib                 old_lib
32130
32131*lib:
32132--start-group -lgcc -lc -leval1 --end-group %(old_lib)
32133@end smallexample
32134
32135This example renames the spec called @samp{lib} to @samp{old_lib} and
32136then overrides the previous definition of @samp{lib} with a new one.
32137The new definition adds in some extra command-line options before
32138including the text of the old definition.
32139
32140@dfn{Spec strings} are a list of command-line options to be passed to their
32141corresponding program.  In addition, the spec strings can contain
32142@samp{%}-prefixed sequences to substitute variable text or to
32143conditionally insert text into the command line.  Using these constructs
32144it is possible to generate quite complex command lines.
32145
32146Here is a table of all defined @samp{%}-sequences for spec
32147strings.  Note that spaces are not generated automatically around the
32148results of expanding these sequences.  Therefore you can concatenate them
32149together or combine them with constant text in a single argument.
32150
32151@table @code
32152@item %%
32153Substitute one @samp{%} into the program name or argument.
32154
32155@item %"
32156Substitute an empty argument.
32157
32158@item %i
32159Substitute the name of the input file being processed.
32160
32161@item %b
32162Substitute the basename for outputs related with the input file being
32163processed.  This is often the substring up to (and not including) the
32164last period and not including the directory but, unless %w is active, it
32165expands to the basename for auxiliary outputs, which may be influenced
32166by an explicit output name, and by various other options that control
32167how auxiliary outputs are named.
32168
32169@item %B
32170This is the same as @samp{%b}, but include the file suffix (text after
32171the last period).  Without %w, it expands to the basename for dump
32172outputs.
32173
32174@item %d
32175Marks the argument containing or following the @samp{%d} as a
32176temporary file name, so that that file is deleted if GCC exits
32177successfully.  Unlike @samp{%g}, this contributes no text to the
32178argument.
32179
32180@item %g@var{suffix}
32181Substitute a file name that has suffix @var{suffix} and is chosen
32182once per compilation, and mark the argument in the same way as
32183@samp{%d}.  To reduce exposure to denial-of-service attacks, the file
32184name is now chosen in a way that is hard to predict even when previously
32185chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
32186might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
32187the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
32188treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
32189was simply substituted with a file name chosen once per compilation,
32190without regard to any appended suffix (which was therefore treated
32191just like ordinary text), making such attacks more likely to succeed.
32192
32193@item %u@var{suffix}
32194Like @samp{%g}, but generates a new temporary file name
32195each time it appears instead of once per compilation.
32196
32197@item %U@var{suffix}
32198Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
32199new one if there is no such last file name.  In the absence of any
32200@samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
32201the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
32202involves the generation of two distinct file names, one
32203for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
32204simply substituted with a file name chosen for the previous @samp{%u},
32205without regard to any appended suffix.
32206
32207@item %j@var{suffix}
32208Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
32209writable, and if @option{-save-temps} is not used;
32210otherwise, substitute the name
32211of a temporary file, just like @samp{%u}.  This temporary file is not
32212meant for communication between processes, but rather as a junk
32213disposal mechanism.
32214
32215@item %|@var{suffix}
32216@itemx %m@var{suffix}
32217Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
32218@samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
32219all.  These are the two most common ways to instruct a program that it
32220should read from standard input or write to standard output.  If you
32221need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
32222construct: see for example @file{gcc/fortran/lang-specs.h}.
32223
32224@item %.@var{SUFFIX}
32225Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
32226when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
32227terminated by the next space or %.
32228
32229@item %w
32230Marks the argument containing or following the @samp{%w} as the
32231designated output file of this compilation.  This puts the argument
32232into the sequence of arguments that @samp{%o} substitutes.
32233
32234@item %V
32235Indicates that this compilation produces no output file.
32236
32237@item %o
32238Substitutes the names of all the output files, with spaces
32239automatically placed around them.  You should write spaces
32240around the @samp{%o} as well or the results are undefined.
32241@samp{%o} is for use in the specs for running the linker.
32242Input files whose names have no recognized suffix are not compiled
32243at all, but they are included among the output files, so they are
32244linked.
32245
32246@item %O
32247Substitutes the suffix for object files.  Note that this is
32248handled specially when it immediately follows @samp{%g, %u, or %U},
32249because of the need for those to form complete file names.  The
32250handling is such that @samp{%O} is treated exactly as if it had already
32251been substituted, except that @samp{%g, %u, and %U} do not currently
32252support additional @var{suffix} characters following @samp{%O} as they do
32253following, for example, @samp{.o}.
32254
32255@item %I
32256Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
32257@option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
32258@option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
32259and @option{-imultilib} as necessary.
32260
32261@item %s
32262Current argument is the name of a library or startup file of some sort.
32263Search for that file in a standard list of directories and substitute
32264the full name found.  The current working directory is included in the
32265list of directories scanned.
32266
32267@item %T
32268Current argument is the name of a linker script.  Search for that file
32269in the current list of directories to scan for libraries. If the file
32270is located insert a @option{--script} option into the command line
32271followed by the full path name found.  If the file is not found then
32272generate an error message.  Note: the current working directory is not
32273searched.
32274
32275@item %e@var{str}
32276Print @var{str} as an error message.  @var{str} is terminated by a newline.
32277Use this when inconsistent options are detected.
32278
32279@item %n@var{str}
32280Print @var{str} as a notice.  @var{str} is terminated by a newline.
32281
32282@item %(@var{name})
32283Substitute the contents of spec string @var{name} at this point.
32284
32285@item %x@{@var{option}@}
32286Accumulate an option for @samp{%X}.
32287
32288@item %X
32289Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
32290spec string.
32291
32292@item %Y
32293Output the accumulated assembler options specified by @option{-Wa}.
32294
32295@item %Z
32296Output the accumulated preprocessor options specified by @option{-Wp}.
32297
32298@item %M
32299Output @code{multilib_os_dir}.
32300
32301@item %R
32302Output the concatenation of @code{target_system_root} and @code{target_sysroot_suffix}.
32303
32304@item %a
32305Process the @code{asm} spec.  This is used to compute the
32306switches to be passed to the assembler.
32307
32308@item %A
32309Process the @code{asm_final} spec.  This is a spec string for
32310passing switches to an assembler post-processor, if such a program is
32311needed.
32312
32313@item %l
32314Process the @code{link} spec.  This is the spec for computing the
32315command line passed to the linker.  Typically it makes use of the
32316@samp{%L %G %S %D and %E} sequences.
32317
32318@item %D
32319Dump out a @option{-L} option for each directory that GCC believes might
32320contain startup files.  If the target supports multilibs then the
32321current multilib directory is prepended to each of these paths.
32322
32323@item %L
32324Process the @code{lib} spec.  This is a spec string for deciding which
32325libraries are included on the command line to the linker.
32326
32327@item %G
32328Process the @code{libgcc} spec.  This is a spec string for deciding
32329which GCC support library is included on the command line to the linker.
32330
32331@item %S
32332Process the @code{startfile} spec.  This is a spec for deciding which
32333object files are the first ones passed to the linker.  Typically
32334this might be a file named @file{crt0.o}.
32335
32336@item %E
32337Process the @code{endfile} spec.  This is a spec string that specifies
32338the last object files that are passed to the linker.
32339
32340@item %C
32341Process the @code{cpp} spec.  This is used to construct the arguments
32342to be passed to the C preprocessor.
32343
32344@item %1
32345Process the @code{cc1} spec.  This is used to construct the options to be
32346passed to the actual C compiler (@command{cc1}).
32347
32348@item %2
32349Process the @code{cc1plus} spec.  This is used to construct the options to be
32350passed to the actual C++ compiler (@command{cc1plus}).
32351
32352@item %*
32353Substitute the variable part of a matched option.  See below.
32354Note that each comma in the substituted string is replaced by
32355a single space.
32356
32357@item %<S
32358Remove all occurrences of @code{-S} from the command line.  Note---this
32359command is position dependent.  @samp{%} commands in the spec string
32360before this one see @code{-S}, @samp{%} commands in the spec string
32361after this one do not.
32362
32363@item %<S*
32364Similar to @samp{%<S}, but match all switches beginning with @code{-S}.
32365
32366@item %>S
32367Similar to @samp{%<S}, but keep @code{-S} in the GCC command line.
32368
32369@item %:@var{function}(@var{args})
32370Call the named function @var{function}, passing it @var{args}.
32371@var{args} is first processed as a nested spec string, then split
32372into an argument vector in the usual fashion.  The function returns
32373a string which is processed as if it had appeared literally as part
32374of the current spec.
32375
32376The following built-in spec functions are provided:
32377
32378@table @code
32379@item @code{getenv}
32380The @code{getenv} spec function takes two arguments: an environment
32381variable name and a string.  If the environment variable is not
32382defined, a fatal error is issued.  Otherwise, the return value is the
32383value of the environment variable concatenated with the string.  For
32384example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
32385
32386@smallexample
32387%:getenv(TOPDIR /include)
32388@end smallexample
32389
32390expands to @file{/path/to/top/include}.
32391
32392@item @code{if-exists}
32393The @code{if-exists} spec function takes one argument, an absolute
32394pathname to a file.  If the file exists, @code{if-exists} returns the
32395pathname.  Here is a small example of its usage:
32396
32397@smallexample
32398*startfile:
32399crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
32400@end smallexample
32401
32402@item @code{if-exists-else}
32403The @code{if-exists-else} spec function is similar to the @code{if-exists}
32404spec function, except that it takes two arguments.  The first argument is
32405an absolute pathname to a file.  If the file exists, @code{if-exists-else}
32406returns the pathname.  If it does not exist, it returns the second argument.
32407This way, @code{if-exists-else} can be used to select one file or another,
32408based on the existence of the first.  Here is a small example of its usage:
32409
32410@smallexample
32411*startfile:
32412crt0%O%s %:if-exists(crti%O%s) \
32413%:if-exists-else(crtbeginT%O%s crtbegin%O%s)
32414@end smallexample
32415
32416@item @code{if-exists-then-else}
32417The @code{if-exists-then-else} spec function takes at least two arguments
32418and an optional third one. The first argument is an absolute pathname to a
32419file.  If the file exists, the function returns the second argument.
32420If the file does not exist, the function returns the third argument if there
32421is one, or NULL otherwise. This can be used to expand one text, or optionally
32422another, based on the existence of a file.  Here is a small example of its
32423usage:
32424
32425@smallexample
32426-l%:if-exists-then-else(%:getenv(VSB_DIR rtnet.h) rtnet net)
32427@end smallexample
32428
32429@item @code{sanitize}
32430The @code{sanitize} spec function takes no arguments.  It returns non-NULL if
32431any address, thread or undefined behavior sanitizers are active.
32432
32433@smallexample
32434%@{%:sanitize(address):-funwind-tables@}
32435@end smallexample
32436
32437@item @code{replace-outfile}
32438The @code{replace-outfile} spec function takes two arguments.  It looks for the
32439first argument in the outfiles array and replaces it with the second argument.  Here
32440is a small example of its usage:
32441
32442@smallexample
32443%@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
32444@end smallexample
32445
32446@item @code{remove-outfile}
32447The @code{remove-outfile} spec function takes one argument.  It looks for the
32448first argument in the outfiles array and removes it.  Here is a small example
32449its usage:
32450
32451@smallexample
32452%:remove-outfile(-lm)
32453@end smallexample
32454
32455@item @code{version-compare}
32456The @code{version-compare} spec function takes four or five arguments of the following
32457form:
32458
32459@smallexample
32460<comparison-op> <arg1> [<arg2>] <switch> <result>
32461@end smallexample
32462
32463It returns @code{result} if the comparison evaluates to true, and NULL if it doesn't.
32464The supported @code{comparison-op} values are:
32465
32466@table @code
32467@item >=
32468True if @code{switch} is a later (or same) version than @code{arg1}
32469
32470@item !>
32471Opposite of @code{>=}
32472
32473@item <
32474True if @code{switch} is an earlier version than @code{arg1}
32475
32476@item !<
32477Opposite of @code{<}
32478
32479@item ><
32480True if @code{switch} is @code{arg1} or later, and earlier than @code{arg2}
32481
32482@item <>
32483True if @code{switch} is earlier than @code{arg1}, or is @code{arg2} or later
32484@end table
32485
32486If the @code{switch} is not present at all, the condition is false unless the first character
32487of the @code{comparison-op} is @code{!}.
32488
32489@smallexample
32490%:version-compare(>= 10.3 mmacosx-version-min= -lmx)
32491@end smallexample
32492
32493The above example would add @option{-lmx} if @option{-mmacosx-version-min=10.3.9} was
32494passed.
32495
32496@item @code{include}
32497The @code{include} spec function behaves much like @code{%include}, with the advantage
32498that it can be nested inside a spec and thus be conditionalized.  It takes one argument,
32499the filename, and looks for it in the startfile path.  It always returns NULL.
32500
32501@smallexample
32502%@{static-libasan|static:%:include(libsanitizer.spec)%(link_libasan)@}
32503@end smallexample
32504
32505@item @code{pass-through-libs}
32506The @code{pass-through-libs} spec function takes any number of arguments.  It
32507finds any @option{-l} options and any non-options ending in @file{.a} (which it
32508assumes are the names of linker input library archive files) and returns a
32509result containing all the found arguments each prepended by
32510@option{-plugin-opt=-pass-through=} and joined by spaces.  This list is
32511intended to be passed to the LTO linker plugin.
32512
32513@smallexample
32514%:pass-through-libs(%G %L %G)
32515@end smallexample
32516
32517@item @code{print-asm-header}
32518The @code{print-asm-header} function takes no arguments and simply
32519prints a banner like:
32520
32521@smallexample
32522Assembler options
32523=================
32524
32525Use "-Wa,OPTION" to pass "OPTION" to the assembler.
32526@end smallexample
32527
32528It is used to separate compiler options from assembler options
32529in the @option{--target-help} output.
32530
32531@item @code{gt}
32532The @code{gt} spec function takes two or more arguments.  It returns @code{""} (the
32533empty string) if the second-to-last argument is greater than the last argument, and NULL
32534otherwise.  The following example inserts the @code{link_gomp} spec if the last
32535@option{-ftree-parallelize-loops=} option given on the command line is greater than 1:
32536
32537@smallexample
32538%@{%:gt(%@{ftree-parallelize-loops=*:%*@} 1):%:include(libgomp.spec)%(link_gomp)@}
32539@end smallexample
32540
32541@item @code{debug-level-gt}
32542The @code{debug-level-gt} spec function takes one argument and returns @code{""} (the
32543empty string) if @code{debug_info_level} is greater than the specified number, and NULL
32544otherwise.
32545
32546@smallexample
32547%@{%:debug-level-gt(0):%@{gdwarf*:--gdwarf2@}@}
32548@end smallexample
32549@end table
32550
32551@item %@{S@}
32552Substitutes the @code{-S} switch, if that switch is given to GCC@.
32553If that switch is not specified, this substitutes nothing.  Note that
32554the leading dash is omitted when specifying this option, and it is
32555automatically inserted if the substitution is performed.  Thus the spec
32556string @samp{%@{foo@}} matches the command-line option @option{-foo}
32557and outputs the command-line option @option{-foo}.
32558
32559@item %W@{S@}
32560Like %@{@code{S}@} but mark last argument supplied within as a file to be
32561deleted on failure.
32562
32563@item %@@@{S@}
32564Like %@{@code{S}@} but puts the result into a @code{FILE} and substitutes
32565@code{@@FILE} if an @code{@@file} argument has been supplied.
32566
32567@item %@{S*@}
32568Substitutes all the switches specified to GCC whose names start
32569with @code{-S}, but which also take an argument.  This is used for
32570switches like @option{-o}, @option{-D}, @option{-I}, etc.
32571GCC considers @option{-o foo} as being
32572one switch whose name starts with @samp{o}.  %@{o*@} substitutes this
32573text, including the space.  Thus two arguments are generated.
32574
32575@item %@{S*&T*@}
32576Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
32577(the order of @code{S} and @code{T} in the spec is not significant).
32578There can be any number of ampersand-separated variables; for each the
32579wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
32580
32581@item %@{S:X@}
32582Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
32583
32584@item %@{!S:X@}
32585Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
32586
32587@item %@{S*:X@}
32588Substitutes @code{X} if one or more switches whose names start with
32589@code{-S} are specified to GCC@.  Normally @code{X} is substituted only
32590once, no matter how many such switches appeared.  However, if @code{%*}
32591appears somewhere in @code{X}, then @code{X} is substituted once
32592for each matching switch, with the @code{%*} replaced by the part of
32593that switch matching the @code{*}.
32594
32595If @code{%*} appears as the last part of a spec sequence then a space
32596is added after the end of the last substitution.  If there is more
32597text in the sequence, however, then a space is not generated.  This
32598allows the @code{%*} substitution to be used as part of a larger
32599string.  For example, a spec string like this:
32600
32601@smallexample
32602%@{mcu=*:--script=%*/memory.ld@}
32603@end smallexample
32604
32605@noindent
32606when matching an option like @option{-mcu=newchip} produces:
32607
32608@smallexample
32609--script=newchip/memory.ld
32610@end smallexample
32611
32612@item %@{.S:X@}
32613Substitutes @code{X}, if processing a file with suffix @code{S}.
32614
32615@item %@{!.S:X@}
32616Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
32617
32618@item %@{,S:X@}
32619Substitutes @code{X}, if processing a file for language @code{S}.
32620
32621@item %@{!,S:X@}
32622Substitutes @code{X}, if not processing a file for language @code{S}.
32623
32624@item %@{S|P:X@}
32625Substitutes @code{X} if either @code{-S} or @code{-P} is given to
32626GCC@.  This may be combined with @samp{!}, @samp{.}, @samp{,}, and
32627@code{*} sequences as well, although they have a stronger binding than
32628the @samp{|}.  If @code{%*} appears in @code{X}, all of the
32629alternatives must be starred, and only the first matching alternative
32630is substituted.
32631
32632For example, a spec string like this:
32633
32634@smallexample
32635%@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
32636@end smallexample
32637
32638@noindent
32639outputs the following command-line options from the following input
32640command-line options:
32641
32642@smallexample
32643fred.c        -foo -baz
32644jim.d         -bar -boggle
32645-d fred.c     -foo -baz -boggle
32646-d jim.d      -bar -baz -boggle
32647@end smallexample
32648
32649@item %@{%:@var{function}(@var{args}):X@}
32650
32651Call function named @var{function} with args @var{args}.  If the
32652function returns non-NULL, then @code{X} is substituted, if it returns
32653NULL, it isn't substituted.
32654
32655@item %@{S:X; T:Y; :D@}
32656
32657If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
32658given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
32659be as many clauses as you need.  This may be combined with @code{.},
32660@code{,}, @code{!}, @code{|}, and @code{*} as needed.
32661
32662
32663@end table
32664
32665The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
32666or similar construct can use a backslash to ignore the special meaning
32667of the character following it, thus allowing literal matching of a
32668character that is otherwise specially treated.  For example,
32669@samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
32670@option{-std=iso9899:1999} option is given.
32671
32672The conditional text @code{X} in a @samp{%@{S:X@}} or similar
32673construct may contain other nested @samp{%} constructs or spaces, or
32674even newlines.  They are processed as usual, as described above.
32675Trailing white space in @code{X} is ignored.  White space may also
32676appear anywhere on the left side of the colon in these constructs,
32677except between @code{.} or @code{*} and the corresponding word.
32678
32679The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
32680handled specifically in these constructs.  If another value of
32681@option{-O} or the negated form of a @option{-f}, @option{-m}, or
32682@option{-W} switch is found later in the command line, the earlier
32683switch value is ignored, except with @{@code{S}*@} where @code{S} is
32684just one letter, which passes all matching options.
32685
32686The character @samp{|} at the beginning of the predicate text is used to
32687indicate that a command should be piped to the following command, but
32688only if @option{-pipe} is specified.
32689
32690It is built into GCC which switches take arguments and which do not.
32691(You might think it would be useful to generalize this to allow each
32692compiler's spec to say which switches take arguments.  But this cannot
32693be done in a consistent fashion.  GCC cannot even decide which input
32694files have been specified without knowing which switches take arguments,
32695and it must know which input files to compile in order to tell which
32696compilers to run).
32697
32698GCC also knows implicitly that arguments starting in @option{-l} are to be
32699treated as compiler output files, and passed to the linker in their
32700proper position among the other output files.
32701
32702@node Environment Variables
32703@section Environment Variables Affecting GCC
32704@cindex environment variables
32705
32706@c man begin ENVIRONMENT
32707This section describes several environment variables that affect how GCC
32708operates.  Some of them work by specifying directories or prefixes to use
32709when searching for various kinds of files.  Some are used to specify other
32710aspects of the compilation environment.
32711
32712Note that you can also specify places to search using options such as
32713@option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
32714take precedence over places specified using environment variables, which
32715in turn take precedence over those specified by the configuration of GCC@.
32716@xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
32717GNU Compiler Collection (GCC) Internals}.
32718
32719@table @env
32720@item LANG
32721@itemx LC_CTYPE
32722@c @itemx LC_COLLATE
32723@itemx LC_MESSAGES
32724@c @itemx LC_MONETARY
32725@c @itemx LC_NUMERIC
32726@c @itemx LC_TIME
32727@itemx LC_ALL
32728@findex LANG
32729@findex LC_CTYPE
32730@c @findex LC_COLLATE
32731@findex LC_MESSAGES
32732@c @findex LC_MONETARY
32733@c @findex LC_NUMERIC
32734@c @findex LC_TIME
32735@findex LC_ALL
32736@cindex locale
32737These environment variables control the way that GCC uses
32738localization information which allows GCC to work with different
32739national conventions.  GCC inspects the locale categories
32740@env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
32741so.  These locale categories can be set to any value supported by your
32742installation.  A typical value is @samp{en_GB.UTF-8} for English in the United
32743Kingdom encoded in UTF-8.
32744
32745The @env{LC_CTYPE} environment variable specifies character
32746classification.  GCC uses it to determine the character boundaries in
32747a string; this is needed for some multibyte encodings that contain quote
32748and escape characters that are otherwise interpreted as a string
32749end or escape.
32750
32751The @env{LC_MESSAGES} environment variable specifies the language to
32752use in diagnostic messages.
32753
32754If the @env{LC_ALL} environment variable is set, it overrides the value
32755of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
32756and @env{LC_MESSAGES} default to the value of the @env{LANG}
32757environment variable.  If none of these variables are set, GCC
32758defaults to traditional C English behavior.
32759
32760@item TMPDIR
32761@findex TMPDIR
32762If @env{TMPDIR} is set, it specifies the directory to use for temporary
32763files.  GCC uses temporary files to hold the output of one stage of
32764compilation which is to be used as input to the next stage: for example,
32765the output of the preprocessor, which is the input to the compiler
32766proper.
32767
32768@item GCC_COMPARE_DEBUG
32769@findex GCC_COMPARE_DEBUG
32770Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
32771@option{-fcompare-debug} to the compiler driver.  See the documentation
32772of this option for more details.
32773
32774@item GCC_EXEC_PREFIX
32775@findex GCC_EXEC_PREFIX
32776If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
32777names of the subprograms executed by the compiler.  No slash is added
32778when this prefix is combined with the name of a subprogram, but you can
32779specify a prefix that ends with a slash if you wish.
32780
32781If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
32782an appropriate prefix to use based on the pathname it is invoked with.
32783
32784If GCC cannot find the subprogram using the specified prefix, it
32785tries looking in the usual places for the subprogram.
32786
32787The default value of @env{GCC_EXEC_PREFIX} is
32788@file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
32789the installed compiler. In many cases @var{prefix} is the value
32790of @code{prefix} when you ran the @file{configure} script.
32791
32792Other prefixes specified with @option{-B} take precedence over this prefix.
32793
32794This prefix is also used for finding files such as @file{crt0.o} that are
32795used for linking.
32796
32797In addition, the prefix is used in an unusual way in finding the
32798directories to search for header files.  For each of the standard
32799directories whose name normally begins with @samp{/usr/local/lib/gcc}
32800(more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
32801replacing that beginning with the specified prefix to produce an
32802alternate directory name.  Thus, with @option{-Bfoo/}, GCC searches
32803@file{foo/bar} just before it searches the standard directory
32804@file{/usr/local/lib/bar}.
32805If a standard directory begins with the configured
32806@var{prefix} then the value of @var{prefix} is replaced by
32807@env{GCC_EXEC_PREFIX} when looking for header files.
32808
32809@item COMPILER_PATH
32810@findex COMPILER_PATH
32811The value of @env{COMPILER_PATH} is a colon-separated list of
32812directories, much like @env{PATH}.  GCC tries the directories thus
32813specified when searching for subprograms, if it cannot find the
32814subprograms using @env{GCC_EXEC_PREFIX}.
32815
32816@item LIBRARY_PATH
32817@findex LIBRARY_PATH
32818The value of @env{LIBRARY_PATH} is a colon-separated list of
32819directories, much like @env{PATH}.  When configured as a native compiler,
32820GCC tries the directories thus specified when searching for special
32821linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}.  Linking
32822using GCC also uses these directories when searching for ordinary
32823libraries for the @option{-l} option (but directories specified with
32824@option{-L} come first).
32825
32826@item LANG
32827@findex LANG
32828@cindex locale definition
32829This variable is used to pass locale information to the compiler.  One way in
32830which this information is used is to determine the character set to be used
32831when character literals, string literals and comments are parsed in C and C++.
32832When the compiler is configured to allow multibyte characters,
32833the following values for @env{LANG} are recognized:
32834
32835@table @samp
32836@item C-JIS
32837Recognize JIS characters.
32838@item C-SJIS
32839Recognize SJIS characters.
32840@item C-EUCJP
32841Recognize EUCJP characters.
32842@end table
32843
32844If @env{LANG} is not defined, or if it has some other value, then the
32845compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
32846recognize and translate multibyte characters.
32847
32848@item GCC_EXTRA_DIAGNOSTIC_OUTPUT
32849@findex GCC_EXTRA_DIAGNOSTIC_OUTPUT
32850If @env{GCC_EXTRA_DIAGNOSTIC_OUTPUT} is set to one of the following values,
32851then additional text will be emitted to stderr when fix-it hints are
32852emitted.  @option{-fdiagnostics-parseable-fixits} and
32853@option{-fno-diagnostics-parseable-fixits} take precedence over this
32854environment variable.
32855
32856@table @samp
32857@item fixits-v1
32858Emit parseable fix-it hints, equivalent to
32859@option{-fdiagnostics-parseable-fixits}.  In particular, columns are
32860expressed as a count of bytes, starting at byte 1 for the initial column.
32861
32862@item fixits-v2
32863As @code{fixits-v1}, but columns are expressed as display columns,
32864as per @option{-fdiagnostics-column-unit=display}.
32865@end table
32866
32867@end table
32868
32869@noindent
32870Some additional environment variables affect the behavior of the
32871preprocessor.
32872
32873@include cppenv.texi
32874
32875@c man end
32876
32877@node Precompiled Headers
32878@section Using Precompiled Headers
32879@cindex precompiled headers
32880@cindex speed of compilation
32881
32882Often large projects have many header files that are included in every
32883source file.  The time the compiler takes to process these header files
32884over and over again can account for nearly all of the time required to
32885build the project.  To make builds faster, GCC allows you to
32886@dfn{precompile} a header file.
32887
32888To create a precompiled header file, simply compile it as you would any
32889other file, if necessary using the @option{-x} option to make the driver
32890treat it as a C or C++ header file.  You may want to use a
32891tool like @command{make} to keep the precompiled header up-to-date when
32892the headers it contains change.
32893
32894A precompiled header file is searched for when @code{#include} is
32895seen in the compilation.  As it searches for the included file
32896(@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
32897compiler looks for a precompiled header in each directory just before it
32898looks for the include file in that directory.  The name searched for is
32899the name specified in the @code{#include} with @samp{.gch} appended.  If
32900the precompiled header file cannot be used, it is ignored.
32901
32902For instance, if you have @code{#include "all.h"}, and you have
32903@file{all.h.gch} in the same directory as @file{all.h}, then the
32904precompiled header file is used if possible, and the original
32905header is used otherwise.
32906
32907Alternatively, you might decide to put the precompiled header file in a
32908directory and use @option{-I} to ensure that directory is searched
32909before (or instead of) the directory containing the original header.
32910Then, if you want to check that the precompiled header file is always
32911used, you can put a file of the same name as the original header in this
32912directory containing an @code{#error} command.
32913
32914This also works with @option{-include}.  So yet another way to use
32915precompiled headers, good for projects not designed with precompiled
32916header files in mind, is to simply take most of the header files used by
32917a project, include them from another header file, precompile that header
32918file, and @option{-include} the precompiled header.  If the header files
32919have guards against multiple inclusion, they are skipped because
32920they've already been included (in the precompiled header).
32921
32922If you need to precompile the same header file for different
32923languages, targets, or compiler options, you can instead make a
32924@emph{directory} named like @file{all.h.gch}, and put each precompiled
32925header in the directory, perhaps using @option{-o}.  It doesn't matter
32926what you call the files in the directory; every precompiled header in
32927the directory is considered.  The first precompiled header
32928encountered in the directory that is valid for this compilation is
32929used; they're searched in no particular order.
32930
32931There are many other possibilities, limited only by your imagination,
32932good sense, and the constraints of your build system.
32933
32934A precompiled header file can be used only when these conditions apply:
32935
32936@itemize
32937@item
32938Only one precompiled header can be used in a particular compilation.
32939
32940@item
32941A precompiled header cannot be used once the first C token is seen.  You
32942can have preprocessor directives before a precompiled header; you cannot
32943include a precompiled header from inside another header.
32944
32945@item
32946The precompiled header file must be produced for the same language as
32947the current compilation.  You cannot use a C precompiled header for a C++
32948compilation.
32949
32950@item
32951The precompiled header file must have been produced by the same compiler
32952binary as the current compilation is using.
32953
32954@item
32955Any macros defined before the precompiled header is included must
32956either be defined in the same way as when the precompiled header was
32957generated, or must not affect the precompiled header, which usually
32958means that they don't appear in the precompiled header at all.
32959
32960The @option{-D} option is one way to define a macro before a
32961precompiled header is included; using a @code{#define} can also do it.
32962There are also some options that define macros implicitly, like
32963@option{-O} and @option{-Wdeprecated}; the same rule applies to macros
32964defined this way.
32965
32966@item If debugging information is output when using the precompiled
32967header, using @option{-g} or similar, the same kind of debugging information
32968must have been output when building the precompiled header.  However,
32969a precompiled header built using @option{-g} can be used in a compilation
32970when no debugging information is being output.
32971
32972@item The same @option{-m} options must generally be used when building
32973and using the precompiled header.  @xref{Submodel Options},
32974for any cases where this rule is relaxed.
32975
32976@item Each of the following options must be the same when building and using
32977the precompiled header:
32978
32979@gccoptlist{-fexceptions}
32980
32981@item
32982Some other command-line options starting with @option{-f},
32983@option{-p}, or @option{-O} must be defined in the same way as when
32984the precompiled header was generated.  At present, it's not clear
32985which options are safe to change and which are not; the safest choice
32986is to use exactly the same options when generating and using the
32987precompiled header.  The following are known to be safe:
32988
32989@gccoptlist{-fmessage-length=  -fpreprocessed  -fsched-interblock @gol
32990-fsched-spec  -fsched-spec-load  -fsched-spec-load-dangerous @gol
32991-fsched-verbose=@var{number}  -fschedule-insns  -fvisibility= @gol
32992-pedantic-errors}
32993
32994@item Address space layout randomization (ASLR) can lead to not binary identical
32995PCH files.  If you rely on stable PCH file contents disable ASLR when generating
32996PCH files.
32997
32998@end itemize
32999
33000For all of these except the last, the compiler automatically
33001ignores the precompiled header if the conditions aren't met.  If you
33002find an option combination that doesn't work and doesn't cause the
33003precompiled header to be ignored, please consider filing a bug report,
33004see @ref{Bugs}.
33005
33006If you do use differing options when generating and using the
33007precompiled header, the actual behavior is a mixture of the
33008behavior for the options.  For instance, if you use @option{-g} to
33009generate the precompiled header but not when using it, you may or may
33010not get debugging information for routines in the precompiled header.
33011
33012@node C++ Modules
33013@section C++ Modules
33014@cindex speed of compilation
33015
33016Modules are a C++20 language feature.  As the name suggests, they
33017provides a modular compilation system, intending to provide both
33018faster builds and better library isolation.  The ``Merging Modules''
33019paper @uref{https://wg21.link/p1103}, provides the easiest to read set
33020of changes to the standard, although it does not capture later
33021changes.  That specification is now part of C++20,
33022@uref{git@@github.com:cplusplus/draft.git}, it is considered complete
33023(there may be defect reports to come).
33024
33025@emph{G++'s modules support is not complete.}  Other than bugs, the
33026known missing pieces are:
33027
33028@table @emph
33029
33030@item Private Module Fragment
33031The Private Module Fragment is recognized, but an error is emitted.
33032
33033@item Partition definition visibility rules
33034Entities may be defined in implementation partitions, and those
33035definitions are not available outside of the module.  This is not
33036implemented, and the definitions are available to extra-module use.
33037
33038@item Textual merging of reachable GM entities
33039Entities may be multiply defined across different header-units.
33040These must be de-duplicated, and this is implemented across imports,
33041or when an import redefines a textually-defined entity.  However the
33042reverse is not implemented---textually redefining an entity that has
33043been defined in an imported header-unit.  A redefinition error is
33044emitted.
33045
33046@item Translation-Unit local referencing rules
33047Papers p1815 (@uref{https://wg21.link/p1815}) and p2003
33048(@uref{https://wg21.link/p2003}) add limitations on which entities an
33049exported region may reference (for instance, the entities an exported
33050template definition may reference).  These are not fully implemented.
33051
33052@item Language-linkage module attachment
33053Declarations with explicit language linkage (@code{extern "C"} or
33054@code{extern "C++"}) are attached to the global module, even when in
33055the purview of a named module.  This is not implemented.  Such
33056declarations will be attached to the module, if any, in which they are
33057declared.
33058
33059@item Standard Library Header Units
33060The Standard Library is not provided as importable header units.  If
33061you want to import such units, you must explicitly build them first.
33062If you do not do this with care, you may have multiple declarations,
33063which the module machinery must merge---compiler resource usage can be
33064affected by how you partition header files into header units.
33065
33066@end table
33067
33068Modular compilation is @emph{not} enabled with just the
33069@option{-std=c++20} option.  You must explicitly enable it with the
33070@option{-fmodules-ts} option.  It is independent of the language
33071version selected, although in pre-C++20 versions, it is of course an
33072extension.
33073
33074No new source file suffixes are required or supported.  If you wish to
33075use a non-standard suffix (@xref{Overall Options}), you also need
33076to provide a @option{-x c++} option too.@footnote{Some users like to
33077distinguish module interface files with a new suffix, such as naming
33078the source @code{module.cppm}, which involves
33079teaching all tools about the new suffix.  A different scheme, such as
33080naming @code{module-m.cpp} would be less invasive.}
33081
33082Compiling a module interface unit produces an additional output (to
33083the assembly or object file), called a Compiled Module Interface
33084(CMI).  This encodes the exported declarations of the module.
33085Importing a module reads in the CMI.  The import graph is a Directed
33086Acyclic Graph (DAG).  You must build imports before the importer.
33087
33088Header files may themselves be compiled to header units, which are a
33089transitional ability aiming at faster compilation.  The
33090@option{-fmodule-header} option is used to enable this, and implies
33091the @option{-fmodules-ts} option.  These CMIs are named by the fully
33092resolved underlying header file, and thus may be a complete pathname
33093containing subdirectories.  If the header file is found at an absolute
33094pathname, the CMI location is still relative to a CMI root directory.
33095
33096As header files often have no suffix, you commonly have to specify a
33097@option{-x} option to tell the compiler the source is a header file.
33098You may use @option{-x c++-header}, @option{-x c++-user-header} or
33099@option{-x c++-system-header}.  When used in conjunction with
33100@option{-fmodules-ts}, these all imply an appropriate
33101@option{-fmodule-header} option.  The latter two variants use the
33102user or system include path to search for the file specified.  This
33103allows you to, for instance, compile standard library header files as
33104header units, without needing to know exactly where they are
33105installed.  Specifying the language as one of these variants also
33106inhibits output of the object file, as header files have no associated
33107object file.
33108
33109The @option{-fmodule-only} option disables generation of the
33110associated object file for compiling a module interface.  Only the CMI
33111is generated.  This option is implied when using the
33112@option{-fmodule-header} option.
33113
33114The @option{-flang-info-include-translate} and
33115@option{-flang-info-include-translate-not} options notes whether
33116include translation occurs or not.  With no argument, the first will
33117note all include translation.  The second will note all
33118non-translations of include files not known to intentionally be
33119textual.  With an argument, queries about include translation of a
33120header files with that particular trailing pathname are noted.  You
33121may repeat this form to cover several different header files.  This
33122option may be helpful in determining whether include translation is
33123happening---if it is working correctly, it behaves as if it isn't
33124there at all.
33125
33126The @option{-flang-info-module-cmi} option can be used to determine
33127where the compiler is reading a CMI from.  Without the option, the
33128compiler is silent when such a read is successful.  This option has an
33129optional argument, which will restrict the notification to just the
33130set of named modules or header units specified.
33131
33132The @option{-Winvalid-imported-macros} option causes all imported macros
33133to be resolved at the end of compilation.  Without this, imported
33134macros are only resolved when expanded or (re)defined.  This option
33135detects conflicting import definitions for all macros.
33136
33137@xref{C++ Module Mapper} for details of the @option{-fmodule-mapper}
33138family of options.
33139
33140@menu
33141* C++ Module Mapper::       Module Mapper
33142* C++ Module Preprocessing::  Module Preprocessing
33143* C++ Compiled Module Interface:: Compiled Module Interface
33144@end menu
33145
33146@node C++ Module Mapper
33147@subsection Module Mapper
33148@cindex C++ Module Mapper
33149
33150A module mapper provides a server or file that the compiler queries to
33151determine the mapping between module names and CMI files.  It is also
33152used to build CMIs on demand.  @emph{Mapper functionality is in its
33153infancy and is intended for experimentation with build system
33154interactions.}
33155
33156You can specify a mapper with the @option{-fmodule-mapper=@var{val}}
33157option or @env{CXX_MODULE_MAPPER} environment variable.  The value may
33158have one of the following forms:
33159
33160@table @gcctabopt
33161
33162@item @r{[}@var{hostname}@r{]}:@var{port}@r{[}?@var{ident}@r{]}
33163An optional hostname and a numeric port number to connect to.  If the
33164hostname is omitted, the loopback address is used.  If the hostname
33165corresponds to multiple IPV6 addresses, these are tried in turn, until
33166one is successful.  If your host lacks IPv6, this form is
33167non-functional.  If you must use IPv4 use
33168@option{-fmodule-mapper='|ncat @var{ipv4host} @var{port}'}.
33169
33170@item =@var{socket}@r{[}?@var{ident}@r{]}
33171A local domain socket.  If your host lacks local domain sockets, this
33172form is non-functional.
33173
33174@item |@var{program}@r{[}?@var{ident}@r{]} @r{[}@var{args...}@r{]}
33175A program to spawn, and communicate with on its stdin/stdout streams.
33176Your @var{PATH} environment variable is searched for the program.
33177Arguments are separated by space characters, (it is not possible for
33178one of the arguments delivered to the program to contain a space).  An
33179exception is if @var{program} begins with @@.  In that case
33180@var{program} (sans @@) is looked for in the compiler's internal
33181binary directory.  Thus the sample mapper-server can be specified
33182with @code{@@g++-mapper-server}.
33183
33184@item <>@r{[}?@var{ident}@r{]}
33185@item <>@var{inout}@r{[}?@var{ident}@r{]}
33186@item <@var{in}>@var{out}@r{[}?@var{ident}@r{]}
33187Named pipes or file descriptors to communicate over.  The first form,
33188@option{<>}, communicates over stdin and stdout.  The other forms
33189allow you to specify a file descriptor or name a pipe.  A numeric value
33190is interpreted as a file descriptor, otherwise named pipe is opened.
33191The second form specifies a bidirectional pipe and the last form
33192allows specifying two independent pipes.  Using file descriptors
33193directly in this manner is fragile in general, as it can require the
33194cooperation of intermediate processes.  In particular using stdin &
33195stdout is fraught with danger as other compiler options might also
33196cause the compiler to read stdin or write stdout, and it can have
33197unfortunate interactions with signal delivery from the terminal.
33198
33199@item @var{file}@r{[}?@var{ident}@r{]}
33200A mapping file consisting of space-separated module-name, filename
33201pairs, one per line.  Only the mappings for the direct imports and any
33202module export name need be provided.  If other mappings are provided,
33203they override those stored in any imported CMI files.  A repository
33204root may be specified in the mapping file by using @samp{$root} as the
33205module name in the first active line.  Use of this option will disable
33206any default module->CMI name mapping.
33207
33208@end table
33209
33210As shown, an optional @var{ident} may suffix the first word of the
33211option, indicated by a @samp{?} prefix.  The value is used in the
33212initial handshake with the module server, or to specify a prefix on
33213mapping file lines.  In the server case, the main source file name is
33214used if no @var{ident} is specified.  In the file case, all non-blank
33215lines are significant, unless a value is specified, in which case only
33216lines beginning with @var{ident} are significant.  The @var{ident}
33217must be separated by whitespace from the module name.  Be aware that
33218@samp{<}, @samp{>}, @samp{?}, and @samp{|} characters are often
33219significant to the shell, and therefore may need quoting.
33220
33221The mapper is connected to or loaded lazily, when the first module
33222mapping is required.  The networking protocols are only supported on
33223hosts that provide networking.  If no mapper is specified a default is
33224provided.
33225
33226A project-specific mapper is expected to be provided by the build
33227system that invokes the compiler.  It is not expected that a
33228general-purpose server is provided for all compilations.  As such, the
33229server will know the build configuration, the compiler it invoked, and
33230the environment (such as working directory) in which that is
33231operating.  As it may parallelize builds, several compilations may
33232connect to the same socket.
33233
33234The default mapper generates CMI files in a @samp{gcm.cache}
33235directory.  CMI files have a @samp{.gcm} suffix.  The module unit name
33236is used directly to provide the basename.  Header units construct a
33237relative path using the underlying header file name.  If the path is
33238already relative, a @samp{,} directory is prepended.  Internal
33239@samp{..} components are translated to @samp{,,}.  No attempt is made
33240to canonicalize these filenames beyond that done by the preprocessor's
33241include search algorithm, as in general it is ambiguous when symbolic
33242links are present.
33243
33244The mapper protocol was published as ``A Module Mapper''
33245@uref{https://wg21.link/p1184}.  The implementation is provided by
33246@command{libcody}, @uref{https://github.com/urnathan/libcody},
33247which specifies the canonical protocol definition.  A proof of concept
33248server implementation embedded in @command{make} was described in
33249''Make Me A Module'', @uref{https://wg21.link/p1602}.
33250
33251@node C++ Module Preprocessing
33252@subsection Module Preprocessing
33253@cindex C++ Module Preprocessing
33254
33255Modules affect preprocessing because of header units and include
33256translation.  Some uses of the preprocessor as a separate step either
33257do not produce a correct output, or require CMIs to be available.
33258
33259Header units import macros.  These macros can affect later conditional
33260inclusion, which therefore can cascade to differing import sets.  When
33261preprocessing, it is necessary to load the CMI.  If a header unit is
33262unavailable, the preprocessor issues a warning and continue (when
33263not just preprocessing, an error is emitted).  Detecting such imports
33264requires preprocessor tokenization of the input stream to phase 4
33265(macro expansion).
33266
33267Include translation converts @code{#include}, @code{#include_next} and
33268@code{#import} directives to internal @code{import} declarations.
33269Whether a particular directive is translated is controlled by the
33270module mapper.  Header unit names are canonicalized during
33271preprocessing.
33272
33273Dependency information can be emitted for macro import, extending the
33274functionality of @option{-MD} and @option{-MMD} options.  Detection of
33275import declarations also requires phase 4 preprocessing, and thus
33276requires full preprocessing (or compilation).
33277
33278The @option{-M}, @option{-MM} and @option{-E -fdirectives-only} options halt
33279preprocessing before phase 4.
33280
33281The @option{-save-temps} option uses @option{-fdirectives-only} for
33282preprocessing, and preserve the macro definitions in the preprocessed
33283output.  Usually you also want to use this option when explicitly
33284preprocessing a header-unit, or consuming such preprocessed output:
33285
33286@smallexample
33287g++ -fmodules-ts -E -fdirectives-only my-header.hh -o my-header.ii
33288g++ -x c++-header -fmodules-ts -fpreprocessed -fdirectives-only my-header.ii
33289@end smallexample
33290
33291@node C++ Compiled Module Interface
33292@subsection Compiled Module Interface
33293@cindex C++ Compiled Module Interface
33294
33295CMIs are an additional artifact when compiling named module
33296interfaces, partitions or header units.  These are read when
33297importing.  CMI contents are implementation-specific, and in GCC's
33298case tied to the compiler version.  Consider them a rebuildable cache
33299artifact, not a distributable object.
33300
33301When creating an output CMI, any missing directory components are
33302created in a manner that is safe for concurrent builds creating
33303multiple, different, CMIs within a common subdirectory tree.
33304
33305CMI contents are written to a temporary file, which is then atomically
33306renamed.  Observers either see old contents (if there is an
33307existing file), or complete new contents.  They do not observe the
33308CMI during its creation.  This is unlike object file writing, which
33309may be observed by an external process.
33310
33311CMIs are read in lazily, if the host OS provides @code{mmap}
33312functionality.  Generally blocks are read when name lookup or template
33313instantiation occurs.  To inhibit this, the @option{-fno-module-lazy}
33314option may be used.
33315
33316The @option{--param lazy-modules=@var{n}} parameter controls the limit
33317on the number of concurrently open module files during lazy loading.
33318Should more modules be imported, an LRU algorithm is used to determine
33319which files to close---until that file is needed again.  This limit
33320may be exceeded with deep module dependency hierarchies.  With large
33321code bases there may be more imports than the process limit of file
33322descriptors.  By default, the limit is a few less than the per-process
33323file descriptor hard limit, if that is determinable.@footnote{Where
33324applicable the soft limit is incremented as needed towards the hard limit.}
33325
33326GCC CMIs use ELF32 as an architecture-neutral encapsulation mechanism.
33327You may use @command{readelf} to inspect them, although section
33328contents are largely undecipherable.  There is a section named
33329@code{.gnu.c++.README}, which contains human-readable text.  Other
33330than the first line, each line consists of @code{@var{tag}: @code{value}}
33331tuples.
33332
33333@smallexample
33334> @command{readelf -p.gnu.c++.README gcm.cache/foo.gcm}
33335
33336String dump of section '.gnu.c++.README':
33337  [     0]  GNU C++ primary module interface
33338  [    21]  compiler: 11.0.0 20201116 (experimental) [c++-modules revision 20201116-0454]
33339  [    6f]  version: 2020/11/16-04:54
33340  [    89]  module: foo
33341  [    95]  source: c_b.ii
33342  [    a4]  dialect: C++20/coroutines
33343  [    be]  cwd: /data/users/nathans/modules/obj/x86_64/gcc
33344  [    ee]  repository: gcm.cache
33345  [   104]  buildtime: 2020/11/16 15:03:21 UTC
33346  [   127]  localtime: 2020/11/16 07:03:21 PST
33347  [   14a]  export: foo:part1 foo-part1.gcm
33348@end smallexample
33349
33350Amongst other things, this lists the source that was built, C++
33351dialect used and imports of the module.@footnote{The precise contents
33352of this output may change.} The timestamp is the same value as that
33353provided by the @code{__DATE__} & @code{__TIME__} macros, and may be
33354explicitly specified with the environment variable
33355@code{SOURCE_DATE_EPOCH}.  @xref{Environment Variables} for further
33356details.
33357
33358A set of related CMIs may be copied, provided the relative pathnames
33359are preserved.
33360
33361The @code{.gnu.c++.README} contents do not affect CMI integrity, and
33362it may be removed or altered.  The section numbering of the sections
33363whose names do not begin with @code{.gnu.c++.}, or are not the string
33364section is significant and must not be altered.
33365