1 /* A type-safe hash table template.
2    Copyright (C) 2012-2021 Free Software Foundation, Inc.
3    Contributed by Lawrence Crowl <crowl@google.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 
22 /* This file implements a typed hash table.
23    The implementation borrows from libiberty's htab_t in hashtab.h.
24 
25 
26    INTRODUCTION TO TYPES
27 
28    Users of the hash table generally need to be aware of three types.
29 
30       1. The type being placed into the hash table.  This type is called
31       the value type.
32 
33       2. The type used to describe how to handle the value type within
34       the hash table.  This descriptor type provides the hash table with
35       several things.
36 
37          - A typedef named 'value_type' to the value type (from above).
38 	 Provided a suitable Descriptor class it may be a user-defined,
39 	 non-POD type.
40 
41          - A static member function named 'hash' that takes a value_type
42          (or 'const value_type &') and returns a hashval_t value.
43 
44          - A typedef named 'compare_type' that is used to test when a value
45 	 is found.  This type is the comparison type.  Usually, it will be
46 	 the same as value_type and may be a user-defined, non-POD type.
47 	 If it is not the same type, you must generally explicitly compute
48 	 hash values and pass them to the hash table.
49 
50          - A static member function named 'equal' that takes a value_type
51          and a compare_type, and returns a bool.  Both arguments can be
52          const references.
53 
54          - A static function named 'remove' that takes an value_type pointer
55          and frees the memory allocated by it.  This function is used when
56          individual elements of the table need to be disposed of (e.g.,
57          when deleting a hash table, removing elements from the table, etc).
58 
59 	 - An optional static function named 'keep_cache_entry'.  This
60 	 function is provided only for garbage-collected elements that
61 	 are not marked by the normal gc mark pass.  It describes what
62 	 what should happen to the element at the end of the gc mark phase.
63 	 The return value should be:
64 	   - 0 if the element should be deleted
65 	   - 1 if the element should be kept and needs to be marked
66 	   - -1 if the element should be kept and is already marked.
67 	 Returning -1 rather than 1 is purely an optimization.
68 
69       3. The type of the hash table itself.  (More later.)
70 
71    In very special circumstances, users may need to know about a fourth type.
72 
73       4. The template type used to describe how hash table memory
74       is allocated.  This type is called the allocator type.  It is
75       parameterized on the value type.  It provides two functions:
76 
77          - A static member function named 'data_alloc'.  This function
78          allocates the data elements in the table.
79 
80          - A static member function named 'data_free'.  This function
81          deallocates the data elements in the table.
82 
83    Hash table are instantiated with two type arguments.
84 
85       * The descriptor type, (2) above.
86 
87       * The allocator type, (4) above.  In general, you will not need to
88       provide your own allocator type.  By default, hash tables will use
89       the class template xcallocator, which uses malloc/free for allocation.
90 
91 
92    DEFINING A DESCRIPTOR TYPE
93 
94    The first task in using the hash table is to describe the element type.
95    We compose this into a few steps.
96 
97       1. Decide on a removal policy for values stored in the table.
98          hash-traits.h provides class templates for the four most common
99          policies:
100 
101          * typed_free_remove implements the static 'remove' member function
102          by calling free().
103 
104          * typed_noop_remove implements the static 'remove' member function
105          by doing nothing.
106 
107          * ggc_remove implements the static 'remove' member by doing nothing,
108          but instead provides routines for gc marking and for PCH streaming.
109          Use this for garbage-collected data that needs to be preserved across
110          collections.
111 
112          * ggc_cache_remove is like ggc_remove, except that it does not
113          mark the entries during the normal gc mark phase.  Instead it
114          uses 'keep_cache_entry' (described above) to keep elements that
115          were not collected and delete those that were.  Use this for
116          garbage-collected caches that should not in themselves stop
117          the data from being collected.
118 
119          You can use these policies by simply deriving the descriptor type
120          from one of those class template, with the appropriate argument.
121 
122          Otherwise, you need to write the static 'remove' member function
123          in the descriptor class.
124 
125       2. Choose a hash function.  Write the static 'hash' member function.
126 
127       3. Decide whether the lookup function should take as input an object
128 	 of type value_type or something more restricted.  Define compare_type
129 	 accordingly.
130 
131       4. Choose an equality testing function 'equal' that compares a value_type
132 	 and a compare_type.
133 
134    If your elements are pointers, it is usually easiest to start with one
135    of the generic pointer descriptors described below and override the bits
136    you need to change.
137 
138    AN EXAMPLE DESCRIPTOR TYPE
139 
140    Suppose you want to put some_type into the hash table.  You could define
141    the descriptor type as follows.
142 
143       struct some_type_hasher : nofree_ptr_hash <some_type>
144       // Deriving from nofree_ptr_hash means that we get a 'remove' that does
145       // nothing.  This choice is good for raw values.
146       {
147         static inline hashval_t hash (const value_type *);
148         static inline bool equal (const value_type *, const compare_type *);
149       };
150 
151       inline hashval_t
152       some_type_hasher::hash (const value_type *e)
153       { ... compute and return a hash value for E ... }
154 
155       inline bool
156       some_type_hasher::equal (const value_type *p1, const compare_type *p2)
157       { ... compare P1 vs P2.  Return true if they are the 'same' ... }
158 
159 
160    AN EXAMPLE HASH_TABLE DECLARATION
161 
162    To instantiate a hash table for some_type:
163 
164       hash_table <some_type_hasher> some_type_hash_table;
165 
166    There is no need to mention some_type directly, as the hash table will
167    obtain it using some_type_hasher::value_type.
168 
169    You can then use any of the functions in hash_table's public interface.
170    See hash_table for details.  The interface is very similar to libiberty's
171    htab_t.
172 
173    If a hash table is used only in some rare cases, it is possible
174    to construct the hash_table lazily before first use.  This is done
175    through:
176 
177       hash_table <some_type_hasher, true> some_type_hash_table;
178 
179    which will cause whatever methods actually need the allocated entries
180    array to allocate it later.
181 
182 
183    EASY DESCRIPTORS FOR POINTERS
184 
185    There are four descriptors for pointer elements, one for each of
186    the removal policies above:
187 
188    * nofree_ptr_hash (based on typed_noop_remove)
189    * free_ptr_hash (based on typed_free_remove)
190    * ggc_ptr_hash (based on ggc_remove)
191    * ggc_cache_ptr_hash (based on ggc_cache_remove)
192 
193    These descriptors hash and compare elements by their pointer value,
194    rather than what they point to.  So, to instantiate a hash table over
195    pointers to whatever_type, without freeing the whatever_types, use:
196 
197       hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
198 
199 
200    HASH TABLE ITERATORS
201 
202    The hash table provides standard C++ iterators.  For example, consider a
203    hash table of some_info.  We wish to consume each element of the table:
204 
205       extern void consume (some_info *);
206 
207    We define a convenience typedef and the hash table:
208 
209       typedef hash_table <some_info_hasher> info_table_type;
210       info_table_type info_table;
211 
212    Then we write the loop in typical C++ style:
213 
214       for (info_table_type::iterator iter = info_table.begin ();
215            iter != info_table.end ();
216            ++iter)
217         if ((*iter).status == INFO_READY)
218           consume (&*iter);
219 
220    Or with common sub-expression elimination:
221 
222       for (info_table_type::iterator iter = info_table.begin ();
223            iter != info_table.end ();
224            ++iter)
225         {
226           some_info &elem = *iter;
227           if (elem.status == INFO_READY)
228             consume (&elem);
229         }
230 
231    One can also use a more typical GCC style:
232 
233       typedef some_info *some_info_p;
234       some_info *elem_ptr;
235       info_table_type::iterator iter;
236       FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
237         if (elem_ptr->status == INFO_READY)
238           consume (elem_ptr);
239 
240 */
241 
242 
243 #ifndef TYPED_HASHTAB_H
244 #define TYPED_HASHTAB_H
245 
246 #include "statistics.h"
247 #include "ggc.h"
248 #include "vec.h"
249 #include "hashtab.h"
250 #include "inchash.h"
251 #include "mem-stats-traits.h"
252 #include "hash-traits.h"
253 #include "hash-map-traits.h"
254 
255 template<typename, typename, typename> class hash_map;
256 template<typename, bool, typename> class hash_set;
257 
258 /* The ordinary memory allocator.  */
259 /* FIXME (crowl): This allocator may be extracted for wider sharing later.  */
260 
261 template <typename Type>
262 struct xcallocator
263 {
264   static Type *data_alloc (size_t count);
265   static void data_free (Type *memory);
266 };
267 
268 
269 /* Allocate memory for COUNT data blocks.  */
270 
271 template <typename Type>
272 inline Type *
data_alloc(size_t count)273 xcallocator <Type>::data_alloc (size_t count)
274 {
275   return static_cast <Type *> (xcalloc (count, sizeof (Type)));
276 }
277 
278 
279 /* Free memory for data blocks.  */
280 
281 template <typename Type>
282 inline void
data_free(Type * memory)283 xcallocator <Type>::data_free (Type *memory)
284 {
285   return ::free (memory);
286 }
287 
288 
289 /* Table of primes and their inversion information.  */
290 
291 struct prime_ent
292 {
293   hashval_t prime;
294   hashval_t inv;
295   hashval_t inv_m2;     /* inverse of prime-2 */
296   hashval_t shift;
297 };
298 
299 extern struct prime_ent const prime_tab[];
300 
301 /* Limit number of comparisons when calling hash_table<>::verify.  */
302 extern unsigned int hash_table_sanitize_eq_limit;
303 
304 /* Functions for computing hash table indexes.  */
305 
306 extern unsigned int hash_table_higher_prime_index (unsigned long n)
307    ATTRIBUTE_PURE;
308 
309 extern ATTRIBUTE_NORETURN ATTRIBUTE_COLD void hashtab_chk_error ();
310 
311 /* Return X % Y using multiplicative inverse values INV and SHIFT.
312 
313    The multiplicative inverses computed above are for 32-bit types,
314    and requires that we be able to compute a highpart multiply.
315 
316    FIX: I am not at all convinced that
317      3 loads, 2 multiplications, 3 shifts, and 3 additions
318    will be faster than
319      1 load and 1 modulus
320    on modern systems running a compiler.  */
321 
322 inline hashval_t
mul_mod(hashval_t x,hashval_t y,hashval_t inv,int shift)323 mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
324 {
325    hashval_t t1, t2, t3, t4, q, r;
326 
327    t1 = ((uint64_t)x * inv) >> 32;
328    t2 = x - t1;
329    t3 = t2 >> 1;
330    t4 = t1 + t3;
331    q  = t4 >> shift;
332    r  = x - (q * y);
333 
334    return r;
335 }
336 
337 /* Compute the primary table index for HASH given current prime index.  */
338 
339 inline hashval_t
hash_table_mod1(hashval_t hash,unsigned int index)340 hash_table_mod1 (hashval_t hash, unsigned int index)
341 {
342   const struct prime_ent *p = &prime_tab[index];
343   gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
344   return mul_mod (hash, p->prime, p->inv, p->shift);
345 }
346 
347 /* Compute the secondary table index for HASH given current prime index.  */
348 
349 inline hashval_t
hash_table_mod2(hashval_t hash,unsigned int index)350 hash_table_mod2 (hashval_t hash, unsigned int index)
351 {
352   const struct prime_ent *p = &prime_tab[index];
353   gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
354   return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
355 }
356 
357 class mem_usage;
358 
359 /* User-facing hash table type.
360 
361    The table stores elements of type Descriptor::value_type and uses
362    the static descriptor functions described at the top of the file
363    to hash, compare and remove elements.
364 
365    Specify the template Allocator to allocate and free memory.
366      The default is xcallocator.
367 
368      Storage is an implementation detail and should not be used outside the
369      hash table code.
370 
371 */
372 template <typename Descriptor, bool Lazy = false,
373 	  template<typename Type> class Allocator = xcallocator>
374 class hash_table
375 {
376   typedef typename Descriptor::value_type value_type;
377   typedef typename Descriptor::compare_type compare_type;
378 
379 public:
380   explicit hash_table (size_t, bool ggc = false,
381 		       bool sanitize_eq_and_hash = true,
382 		       bool gather_mem_stats = GATHER_STATISTICS,
383 		       mem_alloc_origin origin = HASH_TABLE_ORIGIN
384 		       CXX_MEM_STAT_INFO);
385   explicit hash_table (const hash_table &, bool ggc = false,
386 		       bool sanitize_eq_and_hash = true,
387 		       bool gather_mem_stats = GATHER_STATISTICS,
388 		       mem_alloc_origin origin = HASH_TABLE_ORIGIN
389 		       CXX_MEM_STAT_INFO);
390   ~hash_table ();
391 
392   /* Create a hash_table in gc memory.  */
393   static hash_table *
394   create_ggc (size_t n, bool sanitize_eq_and_hash = true CXX_MEM_STAT_INFO)
395   {
396     hash_table *table = ggc_alloc<hash_table> ();
397     new (table) hash_table (n, true, sanitize_eq_and_hash, GATHER_STATISTICS,
398 			    HASH_TABLE_ORIGIN PASS_MEM_STAT);
399     return table;
400   }
401 
402   /* Current size (in entries) of the hash table.  */
size()403   size_t size () const { return m_size; }
404 
405   /* Return the current number of elements in this hash table. */
elements()406   size_t elements () const { return m_n_elements - m_n_deleted; }
407 
408   /* Return the current number of elements in this hash table. */
elements_with_deleted()409   size_t elements_with_deleted () const { return m_n_elements; }
410 
411   /* This function clears all entries in this hash table.  */
empty()412   void empty () { if (elements ()) empty_slow (); }
413 
414   /* Return true when there are no elements in this hash table.  */
is_empty()415   bool is_empty () const { return elements () == 0; }
416 
417   /* This function clears a specified SLOT in a hash table.  It is
418      useful when you've already done the lookup and don't want to do it
419      again. */
420   void clear_slot (value_type *);
421 
422   /* This function searches for a hash table entry equal to the given
423      COMPARABLE element starting with the given HASH value.  It cannot
424      be used to insert or delete an element. */
425   value_type &find_with_hash (const compare_type &, hashval_t);
426 
427   /* Like find_slot_with_hash, but compute the hash value from the element.  */
find(const value_type & value)428   value_type &find (const value_type &value)
429     {
430       return find_with_hash (value, Descriptor::hash (value));
431     }
432 
find_slot(const value_type & value,insert_option insert)433   value_type *find_slot (const value_type &value, insert_option insert)
434     {
435       return find_slot_with_hash (value, Descriptor::hash (value), insert);
436     }
437 
438   /* This function searches for a hash table slot containing an entry
439      equal to the given COMPARABLE element and starting with the given
440      HASH.  To delete an entry, call this with insert=NO_INSERT, then
441      call clear_slot on the slot returned (possibly after doing some
442      checks).  To insert an entry, call this with insert=INSERT, then
443      write the value you want into the returned slot.  When inserting an
444      entry, NULL may be returned if memory allocation fails. */
445   value_type *find_slot_with_hash (const compare_type &comparable,
446 				   hashval_t hash, enum insert_option insert);
447 
448   /* This function deletes an element with the given COMPARABLE value
449      from hash table starting with the given HASH.  If there is no
450      matching element in the hash table, this function does nothing. */
451   void remove_elt_with_hash (const compare_type &, hashval_t);
452 
453   /* Like remove_elt_with_hash, but compute the hash value from the
454      element.  */
remove_elt(const value_type & value)455   void remove_elt (const value_type &value)
456     {
457       remove_elt_with_hash (value, Descriptor::hash (value));
458     }
459 
460   /* This function scans over the entire hash table calling CALLBACK for
461      each live entry.  If CALLBACK returns false, the iteration stops.
462      ARGUMENT is passed as CALLBACK's second argument. */
463   template <typename Argument,
464 	    int (*Callback) (value_type *slot, Argument argument)>
465   void traverse_noresize (Argument argument);
466 
467   /* Like traverse_noresize, but does resize the table when it is too empty
468      to improve effectivity of subsequent calls.  */
469   template <typename Argument,
470 	    int (*Callback) (value_type *slot, Argument argument)>
471   void traverse (Argument argument);
472 
473   class iterator
474   {
475   public:
iterator()476     iterator () : m_slot (NULL), m_limit (NULL) {}
477 
iterator(value_type * slot,value_type * limit)478     iterator (value_type *slot, value_type *limit) :
479       m_slot (slot), m_limit (limit) {}
480 
481     inline value_type &operator * () { return *m_slot; }
482     void slide ();
483     inline iterator &operator ++ ();
484     bool operator != (const iterator &other) const
485       {
486 	return m_slot != other.m_slot || m_limit != other.m_limit;
487       }
488 
489   private:
490     value_type *m_slot;
491     value_type *m_limit;
492   };
493 
begin()494   iterator begin () const
495     {
496       if (Lazy && m_entries == NULL)
497 	return iterator ();
498       iterator iter (m_entries, m_entries + m_size);
499       iter.slide ();
500       return iter;
501     }
502 
end()503   iterator end () const { return iterator (); }
504 
collisions()505   double collisions () const
506     {
507       return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
508     }
509 
510 private:
511   /* FIXME: Make the class assignable.  See pr90959.  */
512   void operator= (hash_table&);
513 
514   template<typename T> friend void gt_ggc_mx (hash_table<T> *);
515   template<typename T> friend void gt_pch_nx (hash_table<T> *);
516   template<typename T> friend void
517     hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
518   template<typename T, typename U, typename V> friend void
519   gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
520   template<typename T, typename U>
521   friend void gt_pch_nx (hash_set<T, false, U> *, gt_pointer_operator, void *);
522   template<typename T> friend void gt_pch_nx (hash_table<T> *,
523 					      gt_pointer_operator, void *);
524 
525   template<typename T> friend void gt_cleare_cache (hash_table<T> *);
526 
527   void empty_slow ();
528 
529   value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const;
530   value_type *find_empty_slot_for_expand (hashval_t);
531   void verify (const compare_type &comparable, hashval_t hash);
532   bool too_empty_p (unsigned int);
533   void expand ();
is_deleted(value_type & v)534   static bool is_deleted (value_type &v)
535   {
536     return Descriptor::is_deleted (v);
537   }
538 
is_empty(value_type & v)539   static bool is_empty (value_type &v)
540   {
541     return Descriptor::is_empty (v);
542   }
543 
mark_deleted(value_type & v)544   static void mark_deleted (value_type &v)
545   {
546     Descriptor::mark_deleted (v);
547   }
548 
mark_empty(value_type & v)549   static void mark_empty (value_type &v)
550   {
551     Descriptor::mark_empty (v);
552   }
553 
554   /* Table itself.  */
555   typename Descriptor::value_type *m_entries;
556 
557   size_t m_size;
558 
559   /* Current number of elements including also deleted elements.  */
560   size_t m_n_elements;
561 
562   /* Current number of deleted elements in the table.  */
563   size_t m_n_deleted;
564 
565   /* The following member is used for debugging. Its value is number
566      of all calls of `htab_find_slot' for the hash table. */
567   unsigned int m_searches;
568 
569   /* The following member is used for debugging.  Its value is number
570      of collisions fixed for time of work with the hash table. */
571   unsigned int m_collisions;
572 
573   /* Current size (in entries) of the hash table, as an index into the
574      table of primes.  */
575   unsigned int m_size_prime_index;
576 
577   /* if m_entries is stored in ggc memory.  */
578   bool m_ggc;
579 
580   /* True if the table should be sanitized for equal and hash functions.  */
581   bool m_sanitize_eq_and_hash;
582 
583   /* If we should gather memory statistics for the table.  */
584 #if GATHER_STATISTICS
585   bool m_gather_mem_stats;
586 #else
587   static const bool m_gather_mem_stats = false;
588 #endif
589 };
590 
591 /* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
592    mem-stats.h after hash_table declaration.  */
593 
594 #include "mem-stats.h"
595 #include "hash-map.h"
596 
597 extern mem_alloc_description<mem_usage>& hash_table_usage (void);
598 
599 /* Support function for statistics.  */
600 extern void dump_hash_table_loc_statistics (void);
601 
602 template<typename Descriptor, bool Lazy,
603 	 template<typename Type> class Allocator>
hash_table(size_t size,bool ggc,bool sanitize_eq_and_hash,bool gather_mem_stats ATTRIBUTE_UNUSED,mem_alloc_origin origin MEM_STAT_DECL)604 hash_table<Descriptor, Lazy, Allocator>::hash_table (size_t size, bool ggc,
605 						     bool sanitize_eq_and_hash,
606 						     bool gather_mem_stats
607 						     ATTRIBUTE_UNUSED,
608 						     mem_alloc_origin origin
609 						     MEM_STAT_DECL) :
610   m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
611   m_ggc (ggc), m_sanitize_eq_and_hash (sanitize_eq_and_hash)
612 #if GATHER_STATISTICS
613   , m_gather_mem_stats (gather_mem_stats)
614 #endif
615 {
616   unsigned int size_prime_index;
617 
618   size_prime_index = hash_table_higher_prime_index (size);
619   size = prime_tab[size_prime_index].prime;
620 
621   if (m_gather_mem_stats)
622     hash_table_usage ().register_descriptor (this, origin, ggc
623 					     FINAL_PASS_MEM_STAT);
624 
625   if (Lazy)
626     m_entries = NULL;
627   else
628     m_entries = alloc_entries (size PASS_MEM_STAT);
629   m_size = size;
630   m_size_prime_index = size_prime_index;
631 }
632 
633 template<typename Descriptor, bool Lazy,
634 	 template<typename Type> class Allocator>
hash_table(const hash_table & h,bool ggc,bool sanitize_eq_and_hash,bool gather_mem_stats ATTRIBUTE_UNUSED,mem_alloc_origin origin MEM_STAT_DECL)635 hash_table<Descriptor, Lazy, Allocator>::hash_table (const hash_table &h,
636 						     bool ggc,
637 						     bool sanitize_eq_and_hash,
638 						     bool gather_mem_stats
639 						     ATTRIBUTE_UNUSED,
640 						     mem_alloc_origin origin
641 						     MEM_STAT_DECL) :
642   m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted),
643   m_searches (0), m_collisions (0), m_ggc (ggc),
644   m_sanitize_eq_and_hash (sanitize_eq_and_hash)
645 #if GATHER_STATISTICS
646   , m_gather_mem_stats (gather_mem_stats)
647 #endif
648 {
649   size_t size = h.m_size;
650 
651   if (m_gather_mem_stats)
652     hash_table_usage ().register_descriptor (this, origin, ggc
653 					  FINAL_PASS_MEM_STAT);
654 
655   if (Lazy && h.m_entries == NULL)
656     m_entries = NULL;
657   else
658     {
659       value_type *nentries = alloc_entries (size PASS_MEM_STAT);
660       for (size_t i = 0; i < size; ++i)
661 	{
662 	  value_type &entry = h.m_entries[i];
663 	  if (is_deleted (entry))
664 	    mark_deleted (nentries[i]);
665 	  else if (!is_empty (entry))
666 	    new ((void*) (nentries + i)) value_type (entry);
667 	}
668       m_entries = nentries;
669     }
670   m_size = size;
671   m_size_prime_index = h.m_size_prime_index;
672 }
673 
674 template<typename Descriptor, bool Lazy,
675 	 template<typename Type> class Allocator>
~hash_table()676 hash_table<Descriptor, Lazy, Allocator>::~hash_table ()
677 {
678   if (!Lazy || m_entries)
679     {
680       for (size_t i = m_size - 1; i < m_size; i--)
681 	if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
682 	  Descriptor::remove (m_entries[i]);
683 
684       if (!m_ggc)
685 	Allocator <value_type> ::data_free (m_entries);
686       else
687 	ggc_free (m_entries);
688       if (m_gather_mem_stats)
689 	hash_table_usage ().release_instance_overhead (this,
690 						       sizeof (value_type)
691 						       * m_size, true);
692     }
693   else if (m_gather_mem_stats)
694     hash_table_usage ().unregister_descriptor (this);
695 }
696 
697 /* This function returns an array of empty hash table elements.  */
698 
699 template<typename Descriptor, bool Lazy,
700 	 template<typename Type> class Allocator>
701 inline typename hash_table<Descriptor, Lazy, Allocator>::value_type *
702 hash_table<Descriptor, Lazy,
alloc_entries(size_t n MEM_STAT_DECL)703 	   Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
704 {
705   value_type *nentries;
706 
707   if (m_gather_mem_stats)
708     hash_table_usage ().register_instance_overhead (sizeof (value_type) * n, this);
709 
710   if (!m_ggc)
711     nentries = Allocator <value_type> ::data_alloc (n);
712   else
713     nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT);
714 
715   gcc_assert (nentries != NULL);
716   if (!Descriptor::empty_zero_p)
717     for (size_t i = 0; i < n; i++)
718       mark_empty (nentries[i]);
719 
720   return nentries;
721 }
722 
723 /* Similar to find_slot, but without several unwanted side effects:
724     - Does not call equal when it finds an existing entry.
725     - Does not change the count of elements/searches/collisions in the
726       hash table.
727    This function also assumes there are no deleted entries in the table.
728    HASH is the hash value for the element to be inserted.  */
729 
730 template<typename Descriptor, bool Lazy,
731 	 template<typename Type> class Allocator>
732 typename hash_table<Descriptor, Lazy, Allocator>::value_type *
733 hash_table<Descriptor, Lazy,
find_empty_slot_for_expand(hashval_t hash)734 	   Allocator>::find_empty_slot_for_expand (hashval_t hash)
735 {
736   hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
737   size_t size = m_size;
738   value_type *slot = m_entries + index;
739   hashval_t hash2;
740 
741   if (is_empty (*slot))
742     return slot;
743   gcc_checking_assert (!is_deleted (*slot));
744 
745   hash2 = hash_table_mod2 (hash, m_size_prime_index);
746   for (;;)
747     {
748       index += hash2;
749       if (index >= size)
750         index -= size;
751 
752       slot = m_entries + index;
753       if (is_empty (*slot))
754         return slot;
755       gcc_checking_assert (!is_deleted (*slot));
756     }
757 }
758 
759 /* Return true if the current table is excessively big for ELTS elements.  */
760 
761 template<typename Descriptor, bool Lazy,
762 	 template<typename Type> class Allocator>
763 inline bool
too_empty_p(unsigned int elts)764 hash_table<Descriptor, Lazy, Allocator>::too_empty_p (unsigned int elts)
765 {
766   return elts * 8 < m_size && m_size > 32;
767 }
768 
769 /* The following function changes size of memory allocated for the
770    entries and repeatedly inserts the table elements.  The occupancy
771    of the table after the call will be about 50%.  Naturally the hash
772    table must already exist.  Remember also that the place of the
773    table entries is changed.  If memory allocation fails, this function
774    will abort.  */
775 
776 template<typename Descriptor, bool Lazy,
777 	 template<typename Type> class Allocator>
778 void
expand()779 hash_table<Descriptor, Lazy, Allocator>::expand ()
780 {
781   value_type *oentries = m_entries;
782   unsigned int oindex = m_size_prime_index;
783   size_t osize = size ();
784   value_type *olimit = oentries + osize;
785   size_t elts = elements ();
786 
787   /* Resize only when table after removal of unused elements is either
788      too full or too empty.  */
789   unsigned int nindex;
790   size_t nsize;
791   if (elts * 2 > osize || too_empty_p (elts))
792     {
793       nindex = hash_table_higher_prime_index (elts * 2);
794       nsize = prime_tab[nindex].prime;
795     }
796   else
797     {
798       nindex = oindex;
799       nsize = osize;
800     }
801 
802   value_type *nentries = alloc_entries (nsize);
803 
804   if (m_gather_mem_stats)
805     hash_table_usage ().release_instance_overhead (this, sizeof (value_type)
806 						    * osize);
807 
808   m_entries = nentries;
809   m_size = nsize;
810   m_size_prime_index = nindex;
811   m_n_elements -= m_n_deleted;
812   m_n_deleted = 0;
813 
814   value_type *p = oentries;
815   do
816     {
817       value_type &x = *p;
818 
819       if (!is_empty (x) && !is_deleted (x))
820         {
821           value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
822 	  new ((void*) q) value_type (std::move (x));
823         }
824 
825       p++;
826     }
827   while (p < olimit);
828 
829   if (!m_ggc)
830     Allocator <value_type> ::data_free (oentries);
831   else
832     ggc_free (oentries);
833 }
834 
835 /* Implements empty() in cases where it isn't a no-op.  */
836 
837 template<typename Descriptor, bool Lazy,
838 	 template<typename Type> class Allocator>
839 void
empty_slow()840 hash_table<Descriptor, Lazy, Allocator>::empty_slow ()
841 {
842   size_t size = m_size;
843   size_t nsize = size;
844   value_type *entries = m_entries;
845 
846   for (size_t i = size - 1; i < size; i--)
847     if (!is_empty (entries[i]) && !is_deleted (entries[i]))
848       Descriptor::remove (entries[i]);
849 
850   /* Instead of clearing megabyte, downsize the table.  */
851   if (size > 1024*1024 / sizeof (value_type))
852     nsize = 1024 / sizeof (value_type);
853   else if (too_empty_p (m_n_elements))
854     nsize = m_n_elements * 2;
855 
856   if (nsize != size)
857     {
858       unsigned int nindex = hash_table_higher_prime_index (nsize);
859 
860       nsize = prime_tab[nindex].prime;
861 
862       if (!m_ggc)
863 	Allocator <value_type> ::data_free (m_entries);
864       else
865 	ggc_free (m_entries);
866 
867       m_entries = alloc_entries (nsize);
868       m_size = nsize;
869       m_size_prime_index = nindex;
870     }
871   else if (Descriptor::empty_zero_p)
872     memset ((void *) entries, 0, size * sizeof (value_type));
873   else
874     for (size_t i = 0; i < size; i++)
875       mark_empty (entries[i]);
876 
877   m_n_deleted = 0;
878   m_n_elements = 0;
879 }
880 
881 /* This function clears a specified SLOT in a hash table.  It is
882    useful when you've already done the lookup and don't want to do it
883    again. */
884 
885 template<typename Descriptor, bool Lazy,
886 	 template<typename Type> class Allocator>
887 void
clear_slot(value_type * slot)888 hash_table<Descriptor, Lazy, Allocator>::clear_slot (value_type *slot)
889 {
890   gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
891 		         || is_empty (*slot) || is_deleted (*slot)));
892 
893   Descriptor::remove (*slot);
894 
895   mark_deleted (*slot);
896   m_n_deleted++;
897 }
898 
899 /* This function searches for a hash table entry equal to the given
900    COMPARABLE element starting with the given HASH value.  It cannot
901    be used to insert or delete an element. */
902 
903 template<typename Descriptor, bool Lazy,
904 	 template<typename Type> class Allocator>
905 typename hash_table<Descriptor, Lazy, Allocator>::value_type &
906 hash_table<Descriptor, Lazy, Allocator>
find_with_hash(const compare_type & comparable,hashval_t hash)907 ::find_with_hash (const compare_type &comparable, hashval_t hash)
908 {
909   m_searches++;
910   size_t size = m_size;
911   hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
912 
913   if (Lazy && m_entries == NULL)
914     m_entries = alloc_entries (size);
915 
916 #if CHECKING_P
917   if (m_sanitize_eq_and_hash)
918     verify (comparable, hash);
919 #endif
920 
921   value_type *entry = &m_entries[index];
922   if (is_empty (*entry)
923       || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
924     return *entry;
925 
926   hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
927   for (;;)
928     {
929       m_collisions++;
930       index += hash2;
931       if (index >= size)
932         index -= size;
933 
934       entry = &m_entries[index];
935       if (is_empty (*entry)
936           || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
937 	return *entry;
938     }
939 }
940 
941 /* This function searches for a hash table slot containing an entry
942    equal to the given COMPARABLE element and starting with the given
943    HASH.  To delete an entry, call this with insert=NO_INSERT, then
944    call clear_slot on the slot returned (possibly after doing some
945    checks).  To insert an entry, call this with insert=INSERT, then
946    write the value you want into the returned slot.  When inserting an
947    entry, NULL may be returned if memory allocation fails. */
948 
949 template<typename Descriptor, bool Lazy,
950 	 template<typename Type> class Allocator>
951 typename hash_table<Descriptor, Lazy, Allocator>::value_type *
952 hash_table<Descriptor, Lazy, Allocator>
find_slot_with_hash(const compare_type & comparable,hashval_t hash,enum insert_option insert)953 ::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
954 		       enum insert_option insert)
955 {
956   if (Lazy && m_entries == NULL)
957     {
958       if (insert == INSERT)
959 	m_entries = alloc_entries (m_size);
960       else
961 	return NULL;
962     }
963   if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
964     expand ();
965 
966 #if CHECKING_P
967   if (m_sanitize_eq_and_hash)
968     verify (comparable, hash);
969 #endif
970 
971   m_searches++;
972   value_type *first_deleted_slot = NULL;
973   hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
974   hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
975   value_type *entry = &m_entries[index];
976   size_t size = m_size;
977   if (is_empty (*entry))
978     goto empty_entry;
979   else if (is_deleted (*entry))
980     first_deleted_slot = &m_entries[index];
981   else if (Descriptor::equal (*entry, comparable))
982     return &m_entries[index];
983 
984   for (;;)
985     {
986       m_collisions++;
987       index += hash2;
988       if (index >= size)
989 	index -= size;
990 
991       entry = &m_entries[index];
992       if (is_empty (*entry))
993 	goto empty_entry;
994       else if (is_deleted (*entry))
995 	{
996 	  if (!first_deleted_slot)
997 	    first_deleted_slot = &m_entries[index];
998 	}
999       else if (Descriptor::equal (*entry, comparable))
1000 	return &m_entries[index];
1001     }
1002 
1003  empty_entry:
1004   if (insert == NO_INSERT)
1005     return NULL;
1006 
1007   if (first_deleted_slot)
1008     {
1009       m_n_deleted--;
1010       mark_empty (*first_deleted_slot);
1011       return first_deleted_slot;
1012     }
1013 
1014   m_n_elements++;
1015   return &m_entries[index];
1016 }
1017 
1018 /* Verify that all existing elements in th hash table which are
1019    equal to COMPARABLE have an equal HASH value provided as argument.  */
1020 
1021 template<typename Descriptor, bool Lazy,
1022 	 template<typename Type> class Allocator>
1023 void
1024 hash_table<Descriptor, Lazy, Allocator>
verify(const compare_type & comparable,hashval_t hash)1025 ::verify (const compare_type &comparable, hashval_t hash)
1026 {
1027   for (size_t i = 0; i < MIN (hash_table_sanitize_eq_limit, m_size); i++)
1028     {
1029       value_type *entry = &m_entries[i];
1030       if (!is_empty (*entry) && !is_deleted (*entry)
1031 	  && hash != Descriptor::hash (*entry)
1032 	  && Descriptor::equal (*entry, comparable))
1033 	hashtab_chk_error ();
1034     }
1035 }
1036 
1037 /* This function deletes an element with the given COMPARABLE value
1038    from hash table starting with the given HASH.  If there is no
1039    matching element in the hash table, this function does nothing. */
1040 
1041 template<typename Descriptor, bool Lazy,
1042 	 template<typename Type> class Allocator>
1043 void
1044 hash_table<Descriptor, Lazy, Allocator>
remove_elt_with_hash(const compare_type & comparable,hashval_t hash)1045 ::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
1046 {
1047   value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
1048   if (slot == NULL)
1049     return;
1050 
1051   Descriptor::remove (*slot);
1052 
1053   mark_deleted (*slot);
1054   m_n_deleted++;
1055 }
1056 
1057 /* This function scans over the entire hash table calling CALLBACK for
1058    each live entry.  If CALLBACK returns false, the iteration stops.
1059    ARGUMENT is passed as CALLBACK's second argument. */
1060 
1061 template<typename Descriptor, bool Lazy,
1062 	  template<typename Type> class Allocator>
1063 template<typename Argument,
1064 	 int (*Callback)
1065 	 (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
1066 	 Argument argument)>
1067 void
traverse_noresize(Argument argument)1068 hash_table<Descriptor, Lazy, Allocator>::traverse_noresize (Argument argument)
1069 {
1070   if (Lazy && m_entries == NULL)
1071     return;
1072 
1073   value_type *slot = m_entries;
1074   value_type *limit = slot + size ();
1075 
1076   do
1077     {
1078       value_type &x = *slot;
1079 
1080       if (!is_empty (x) && !is_deleted (x))
1081         if (! Callback (slot, argument))
1082           break;
1083     }
1084   while (++slot < limit);
1085 }
1086 
1087 /* Like traverse_noresize, but does resize the table when it is too empty
1088    to improve effectivity of subsequent calls.  */
1089 
1090 template <typename Descriptor, bool Lazy,
1091 	  template <typename Type> class Allocator>
1092 template <typename Argument,
1093 	  int (*Callback)
1094 	  (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
1095 	  Argument argument)>
1096 void
traverse(Argument argument)1097 hash_table<Descriptor, Lazy, Allocator>::traverse (Argument argument)
1098 {
1099   if (too_empty_p (elements ()) && (!Lazy || m_entries))
1100     expand ();
1101 
1102   traverse_noresize <Argument, Callback> (argument);
1103 }
1104 
1105 /* Slide down the iterator slots until an active entry is found.  */
1106 
1107 template<typename Descriptor, bool Lazy,
1108 	 template<typename Type> class Allocator>
1109 void
slide()1110 hash_table<Descriptor, Lazy, Allocator>::iterator::slide ()
1111 {
1112   for ( ; m_slot < m_limit; ++m_slot )
1113     {
1114       value_type &x = *m_slot;
1115       if (!is_empty (x) && !is_deleted (x))
1116         return;
1117     }
1118   m_slot = NULL;
1119   m_limit = NULL;
1120 }
1121 
1122 /* Bump the iterator.  */
1123 
1124 template<typename Descriptor, bool Lazy,
1125 	 template<typename Type> class Allocator>
1126 inline typename hash_table<Descriptor, Lazy, Allocator>::iterator &
1127 hash_table<Descriptor, Lazy, Allocator>::iterator::operator ++ ()
1128 {
1129   ++m_slot;
1130   slide ();
1131   return *this;
1132 }
1133 
1134 
1135 /* Iterate through the elements of hash_table HTAB,
1136    using hash_table <....>::iterator ITER,
1137    storing each element in RESULT, which is of type TYPE.  */
1138 
1139 #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
1140   for ((ITER) = (HTAB).begin (); \
1141        (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
1142        ++(ITER))
1143 
1144 /* ggc walking routines.  */
1145 
1146 template<typename E>
1147 static inline void
gt_ggc_mx(hash_table<E> * h)1148 gt_ggc_mx (hash_table<E> *h)
1149 {
1150   typedef hash_table<E> table;
1151 
1152   if (!ggc_test_and_set_mark (h->m_entries))
1153     return;
1154 
1155   for (size_t i = 0; i < h->m_size; i++)
1156     {
1157       if (table::is_empty (h->m_entries[i])
1158 	  || table::is_deleted (h->m_entries[i]))
1159 	continue;
1160 
1161       /* Use ggc_maxbe_mx so we don't mark right away for cache tables; we'll
1162 	 mark in gt_cleare_cache if appropriate.  */
1163       E::ggc_maybe_mx (h->m_entries[i]);
1164     }
1165 }
1166 
1167 template<typename D>
1168 static inline void
hashtab_entry_note_pointers(void * obj,void * h,gt_pointer_operator op,void * cookie)1169 hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
1170 			     void *cookie)
1171 {
1172   hash_table<D> *map = static_cast<hash_table<D> *> (h);
1173   gcc_checking_assert (map->m_entries == obj);
1174   for (size_t i = 0; i < map->m_size; i++)
1175     {
1176       typedef hash_table<D> table;
1177       if (table::is_empty (map->m_entries[i])
1178 	  || table::is_deleted (map->m_entries[i]))
1179 	continue;
1180 
1181       D::pch_nx (map->m_entries[i], op, cookie);
1182     }
1183 }
1184 
1185 template<typename D>
1186 static void
gt_pch_nx(hash_table<D> * h)1187 gt_pch_nx (hash_table<D> *h)
1188 {
1189   bool success
1190     = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
1191   gcc_checking_assert (success);
1192   for (size_t i = 0; i < h->m_size; i++)
1193     {
1194       if (hash_table<D>::is_empty (h->m_entries[i])
1195 	  || hash_table<D>::is_deleted (h->m_entries[i]))
1196 	continue;
1197 
1198       D::pch_nx (h->m_entries[i]);
1199     }
1200 }
1201 
1202 template<typename D>
1203 static inline void
gt_pch_nx(hash_table<D> * h,gt_pointer_operator op,void * cookie)1204 gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
1205 {
1206   op (&h->m_entries, cookie);
1207 }
1208 
1209 template<typename H>
1210 inline void
gt_cleare_cache(hash_table<H> * h)1211 gt_cleare_cache (hash_table<H> *h)
1212 {
1213   typedef hash_table<H> table;
1214   if (!h)
1215     return;
1216 
1217   for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter)
1218     if (!table::is_empty (*iter) && !table::is_deleted (*iter))
1219       {
1220 	int res = H::keep_cache_entry (*iter);
1221 	if (res == 0)
1222 	  h->clear_slot (&*iter);
1223 	else if (res != -1)
1224 	  H::ggc_mx (*iter);
1225       }
1226 }
1227 
1228 #endif /* TYPED_HASHTAB_H */
1229