1 /* Definitions of floating-point access for GNU compiler.
2    Copyright (C) 1989-2021 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it under
7    the terms of the GNU General Public License as published by the Free
8    Software Foundation; either version 3, or (at your option) any later
9    version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12    WARRANTY; without even the implied warranty of MERCHANTABILITY or
13    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14    for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_REAL_H
21 #define GCC_REAL_H
22 
23 /* An expanded form of the represented number.  */
24 
25 /* Enumerate the special cases of numbers that we encounter.  */
26 enum real_value_class {
27   rvc_zero,
28   rvc_normal,
29   rvc_inf,
30   rvc_nan
31 };
32 
33 #define SIGNIFICAND_BITS	(128 + HOST_BITS_PER_LONG)
34 #define EXP_BITS		(32 - 6)
35 #define MAX_EXP			((1 << (EXP_BITS - 1)) - 1)
36 #define SIGSZ			(SIGNIFICAND_BITS / HOST_BITS_PER_LONG)
37 #define SIG_MSB			((unsigned long)1 << (HOST_BITS_PER_LONG - 1))
38 
39 struct GTY(()) real_value {
40   /* Use the same underlying type for all bit-fields, so as to make
41      sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will
42      be miscomputed.  */
43   unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2;
44   /* 1 if number is decimal floating point.  */
45   unsigned int decimal : 1;
46   /* 1 if number is negative.  */
47   unsigned int sign : 1;
48   /* 1 if number is signalling.  */
49   unsigned int signalling : 1;
50   /* 1 if number is canonical
51   All are generally used for handling cases in real.c.  */
52   unsigned int canonical : 1;
53   /* unbiased exponent of the number.  */
54   unsigned int uexp : EXP_BITS;
55   /* significand of the number.  */
56   unsigned long sig[SIGSZ];
57 };
58 
59 #define REAL_EXP(REAL) \
60   ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \
61    - (1 << (EXP_BITS - 1)))
62 #define SET_REAL_EXP(REAL, EXP) \
63   ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1)))
64 
65 /* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it
66    needs to be a macro.  We do need to continue to have a structure tag
67    so that other headers can forward declare it.  */
68 #define REAL_VALUE_TYPE struct real_value
69 
70 /* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in
71    consecutive "w" slots.  Moreover, we've got to compute the number of "w"
72    slots at preprocessor time, which means we can't use sizeof.  Guess.  */
73 
74 #define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32)
75 #define REAL_WIDTH \
76   (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \
77    + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */
78 
79 /* Verify the guess.  */
80 extern char test_real_width
81   [sizeof (REAL_VALUE_TYPE) <= REAL_WIDTH * sizeof (HOST_WIDE_INT) ? 1 : -1];
82 
83 /* Calculate the format for CONST_DOUBLE.  We need as many slots as
84    are necessary to overlay a REAL_VALUE_TYPE on them.  This could be
85    as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE).
86 
87    A number of places assume that there are always at least two 'w'
88    slots in a CONST_DOUBLE, so we provide them even if one would suffice.  */
89 
90 #if REAL_WIDTH == 1
91 # define CONST_DOUBLE_FORMAT	 "ww"
92 #else
93 # if REAL_WIDTH == 2
94 #  define CONST_DOUBLE_FORMAT	 "ww"
95 # else
96 #  if REAL_WIDTH == 3
97 #   define CONST_DOUBLE_FORMAT	 "www"
98 #  else
99 #   if REAL_WIDTH == 4
100 #    define CONST_DOUBLE_FORMAT	 "wwww"
101 #   else
102 #    if REAL_WIDTH == 5
103 #     define CONST_DOUBLE_FORMAT "wwwww"
104 #    else
105 #     if REAL_WIDTH == 6
106 #      define CONST_DOUBLE_FORMAT "wwwwww"
107 #     else
108        #error "REAL_WIDTH > 6 not supported"
109 #     endif
110 #    endif
111 #   endif
112 #  endif
113 # endif
114 #endif
115 
116 
117 /* Describes the properties of the specific target format in use.  */
118 struct real_format
119 {
120   /* Move to and from the target bytes.  */
121   void (*encode) (const struct real_format *, long *,
122 		  const REAL_VALUE_TYPE *);
123   void (*decode) (const struct real_format *, REAL_VALUE_TYPE *,
124 		  const long *);
125 
126   /* The radix of the exponent and digits of the significand.  */
127   int b;
128 
129   /* Size of the significand in digits of radix B.  */
130   int p;
131 
132   /* Size of the significant of a NaN, in digits of radix B.  */
133   int pnan;
134 
135   /* The minimum negative integer, x, such that b**(x-1) is normalized.  */
136   int emin;
137 
138   /* The maximum integer, x, such that b**(x-1) is representable.  */
139   int emax;
140 
141   /* The bit position of the sign bit, for determining whether a value
142      is positive/negative, or -1 for a complex encoding.  */
143   int signbit_ro;
144 
145   /* The bit position of the sign bit, for changing the sign of a number,
146      or -1 for a complex encoding.  */
147   int signbit_rw;
148 
149   /* If this is an IEEE interchange format, the number of bits in the
150      format; otherwise, if it is an IEEE extended format, one more
151      than the greatest number of bits in an interchange format it
152      extends; otherwise 0.  Formats need not follow the IEEE 754-2008
153      recommended practice regarding how signaling NaNs are identified,
154      and may vary in the choice of default NaN, but must follow other
155      IEEE practice regarding having NaNs, infinities and subnormal
156      values, and the relation of minimum and maximum exponents, and,
157      for interchange formats, the details of the encoding.  */
158   int ieee_bits;
159 
160   /* Default rounding mode for operations on this format.  */
161   bool round_towards_zero;
162   bool has_sign_dependent_rounding;
163 
164   /* Properties of the format.  */
165   bool has_nans;
166   bool has_inf;
167   bool has_denorm;
168   bool has_signed_zero;
169   bool qnan_msb_set;
170   bool canonical_nan_lsbs_set;
171   const char *name;
172 };
173 
174 
175 /* The target format used for each floating point mode.
176    Float modes are followed by decimal float modes, with entries for
177    float modes indexed by (MODE - first float mode), and entries for
178    decimal float modes indexed by (MODE - first decimal float mode) +
179    the number of float modes.  */
180 extern const struct real_format *
181   real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1
182 		       + MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1];
183 
184 #define REAL_MODE_FORMAT(MODE)						\
185   (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE)			\
186 			? (((MODE) - MIN_MODE_DECIMAL_FLOAT)		\
187 			   + (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1))	\
188 			: GET_MODE_CLASS (MODE) == MODE_FLOAT		\
189 			? ((MODE) - MIN_MODE_FLOAT)			\
190 			: (gcc_unreachable (), 0)])
191 
192 #define FLOAT_MODE_FORMAT(MODE) \
193   (REAL_MODE_FORMAT (as_a <scalar_float_mode> (GET_MODE_INNER (MODE))))
194 
195 /* The following macro determines whether the floating point format is
196    composite, i.e. may contain non-consecutive mantissa bits, in which
197    case compile-time FP overflow may not model run-time overflow.  */
198 #define MODE_COMPOSITE_P(MODE) \
199   (FLOAT_MODE_P (MODE) \
200    && FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p)
201 
202 /* Accessor macros for format properties.  */
203 #define MODE_HAS_NANS(MODE) \
204   (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans)
205 #define MODE_HAS_INFINITIES(MODE) \
206   (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf)
207 #define MODE_HAS_SIGNED_ZEROS(MODE) \
208   (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero)
209 #define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \
210   (FLOAT_MODE_P (MODE) \
211    && FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding)
212 
213 /* This class allows functions in this file to accept a floating-point
214    format as either a mode or an explicit real_format pointer.  In the
215    former case the mode must be VOIDmode (which means "no particular
216    format") or must satisfy SCALAR_FLOAT_MODE_P.  */
217 class format_helper
218 {
219 public:
format_helper(const real_format * format)220   format_helper (const real_format *format) : m_format (format) {}
221   template<typename T> format_helper (const T &);
222   const real_format *operator-> () const { return m_format; }
223   operator const real_format *() const { return m_format; }
224 
decimal_p()225   bool decimal_p () const { return m_format && m_format->b == 10; }
226   bool can_represent_integral_type_p (tree type) const;
227 
228 private:
229   const real_format *m_format;
230 };
231 
232 template<typename T>
format_helper(const T & m)233 inline format_helper::format_helper (const T &m)
234   : m_format (m == VOIDmode ? 0 : REAL_MODE_FORMAT (m))
235 {}
236 
237 /* Declare functions in real.c.  */
238 
239 /* True if the given mode has a NaN representation and the treatment of
240    NaN operands is important.  Certain optimizations, such as folding
241    x * 0 into 0, are not correct for NaN operands, and are normally
242    disabled for modes with NaNs.  The user can ask for them to be
243    done anyway using the -funsafe-math-optimizations switch.  */
244 extern bool HONOR_NANS (machine_mode);
245 extern bool HONOR_NANS (const_tree);
246 extern bool HONOR_NANS (const_rtx);
247 
248 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs).  */
249 extern bool HONOR_SNANS (machine_mode);
250 extern bool HONOR_SNANS (const_tree);
251 extern bool HONOR_SNANS (const_rtx);
252 
253 /* As for HONOR_NANS, but true if the mode can represent infinity and
254    the treatment of infinite values is important.  */
255 extern bool HONOR_INFINITIES (machine_mode);
256 extern bool HONOR_INFINITIES (const_tree);
257 extern bool HONOR_INFINITIES (const_rtx);
258 
259 /* Like HONOR_NANS, but true if the given mode distinguishes between
260    positive and negative zero, and the sign of zero is important.  */
261 extern bool HONOR_SIGNED_ZEROS (machine_mode);
262 extern bool HONOR_SIGNED_ZEROS (const_tree);
263 extern bool HONOR_SIGNED_ZEROS (const_rtx);
264 
265 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
266    and the rounding mode is important.  */
267 extern bool HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode);
268 extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_tree);
269 extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx);
270 
271 /* Binary or unary arithmetic on tree_code.  */
272 extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *,
273 			     const REAL_VALUE_TYPE *);
274 
275 /* Compare reals by tree_code.  */
276 extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
277 
278 /* Determine whether a floating-point value X is infinite.  */
279 extern bool real_isinf (const REAL_VALUE_TYPE *);
280 
281 /* Determine whether a floating-point value X is a NaN.  */
282 extern bool real_isnan (const REAL_VALUE_TYPE *);
283 
284 /* Determine whether a floating-point value X is a signaling NaN.  */
285 extern bool real_issignaling_nan (const REAL_VALUE_TYPE *);
286 
287 /* Determine whether a floating-point value X is finite.  */
288 extern bool real_isfinite (const REAL_VALUE_TYPE *);
289 
290 /* Determine whether a floating-point value X is negative.  */
291 extern bool real_isneg (const REAL_VALUE_TYPE *);
292 
293 /* Determine whether a floating-point value X is minus zero.  */
294 extern bool real_isnegzero (const REAL_VALUE_TYPE *);
295 
296 /* Test relationships between reals.  */
297 extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
298 extern bool real_equal (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
299 extern bool real_less (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
300 
301 /* Extend or truncate to a new format.  */
302 extern void real_convert (REAL_VALUE_TYPE *, format_helper,
303 			  const REAL_VALUE_TYPE *);
304 
305 /* Return true if truncating to NEW is exact.  */
306 extern bool exact_real_truncate (format_helper, const REAL_VALUE_TYPE *);
307 
308 /* Render R as a decimal floating point constant.  */
309 extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t,
310 			     size_t, int);
311 
312 /* Render R as a decimal floating point constant, rounded so as to be
313    parsed back to the same value when interpreted in mode MODE.  */
314 extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t,
315 				      size_t, int, machine_mode);
316 
317 /* Render R as a hexadecimal floating point constant.  */
318 extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *,
319 				 size_t, size_t, int);
320 
321 /* Render R as an integer.  */
322 extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *);
323 
324 /* Initialize R from a decimal or hexadecimal string.  Return -1 if
325    the value underflows, +1 if overflows, and 0 otherwise.  */
326 extern int real_from_string (REAL_VALUE_TYPE *, const char *);
327 /* Wrapper to allow different internal representation for decimal floats. */
328 extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, format_helper);
329 
330 extern long real_to_target (long *, const REAL_VALUE_TYPE *, format_helper);
331 
332 extern void real_from_target (REAL_VALUE_TYPE *, const long *,
333 			      format_helper);
334 
335 extern void real_inf (REAL_VALUE_TYPE *);
336 
337 extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, format_helper);
338 
339 extern void real_maxval (REAL_VALUE_TYPE *, int, machine_mode);
340 
341 extern void real_2expN (REAL_VALUE_TYPE *, int, format_helper);
342 
343 extern unsigned int real_hash (const REAL_VALUE_TYPE *);
344 
345 
346 /* Target formats defined in real.c.  */
347 extern const struct real_format ieee_single_format;
348 extern const struct real_format mips_single_format;
349 extern const struct real_format motorola_single_format;
350 extern const struct real_format spu_single_format;
351 extern const struct real_format ieee_double_format;
352 extern const struct real_format mips_double_format;
353 extern const struct real_format motorola_double_format;
354 extern const struct real_format ieee_extended_motorola_format;
355 extern const struct real_format ieee_extended_intel_96_format;
356 extern const struct real_format ieee_extended_intel_96_round_53_format;
357 extern const struct real_format ieee_extended_intel_128_format;
358 extern const struct real_format ibm_extended_format;
359 extern const struct real_format mips_extended_format;
360 extern const struct real_format ieee_quad_format;
361 extern const struct real_format mips_quad_format;
362 extern const struct real_format vax_f_format;
363 extern const struct real_format vax_d_format;
364 extern const struct real_format vax_g_format;
365 extern const struct real_format real_internal_format;
366 extern const struct real_format decimal_single_format;
367 extern const struct real_format decimal_double_format;
368 extern const struct real_format decimal_quad_format;
369 extern const struct real_format ieee_half_format;
370 extern const struct real_format arm_half_format;
371 extern const struct real_format arm_bfloat_half_format;
372 
373 
374 /* ====================================================================== */
375 /* Crap.  */
376 
377 /* Determine whether a floating-point value X is infinite.  */
378 #define REAL_VALUE_ISINF(x)		real_isinf (&(x))
379 
380 /* Determine whether a floating-point value X is a NaN.  */
381 #define REAL_VALUE_ISNAN(x)		real_isnan (&(x))
382 
383 /* Determine whether a floating-point value X is a signaling NaN.  */
384 #define REAL_VALUE_ISSIGNALING_NAN(x)  real_issignaling_nan (&(x))
385 
386 /* Determine whether a floating-point value X is negative.  */
387 #define REAL_VALUE_NEGATIVE(x)		real_isneg (&(x))
388 
389 /* Determine whether a floating-point value X is minus zero.  */
390 #define REAL_VALUE_MINUS_ZERO(x)	real_isnegzero (&(x))
391 
392 /* IN is a REAL_VALUE_TYPE.  OUT is an array of longs.  */
393 #define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT)			\
394   real_to_target (OUT, &(IN),						\
395 		  float_mode_for_size (LONG_DOUBLE_TYPE_SIZE).require ())
396 
397 #define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
398   real_to_target (OUT, &(IN), float_mode_for_size (64).require ())
399 
400 /* IN is a REAL_VALUE_TYPE.  OUT is a long.  */
401 #define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
402   ((OUT) = real_to_target (NULL, &(IN), float_mode_for_size (32).require ()))
403 
404 /* Real values to IEEE 754 decimal floats.  */
405 
406 /* IN is a REAL_VALUE_TYPE.  OUT is an array of longs.  */
407 #define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \
408   real_to_target (OUT, &(IN), decimal_float_mode_for_size (128).require ())
409 
410 #define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \
411   real_to_target (OUT, &(IN), decimal_float_mode_for_size (64).require ())
412 
413 /* IN is a REAL_VALUE_TYPE.  OUT is a long.  */
414 #define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \
415   ((OUT) = real_to_target (NULL, &(IN), \
416 			   decimal_float_mode_for_size (32).require ()))
417 
418 extern REAL_VALUE_TYPE real_value_truncate (format_helper, REAL_VALUE_TYPE);
419 
420 extern REAL_VALUE_TYPE real_value_negate (const REAL_VALUE_TYPE *);
421 extern REAL_VALUE_TYPE real_value_abs (const REAL_VALUE_TYPE *);
422 
423 extern int significand_size (format_helper);
424 
425 extern REAL_VALUE_TYPE real_from_string2 (const char *, format_helper);
426 
427 #define REAL_VALUE_ATOF(s, m) \
428   real_from_string2 (s, m)
429 
430 #define CONST_DOUBLE_ATOF(s, m) \
431   const_double_from_real_value (real_from_string2 (s, m), m)
432 
433 #define REAL_VALUE_FIX(r) \
434   real_to_integer (&(r))
435 
436 /* ??? Not quite right.  */
437 #define REAL_VALUE_UNSIGNED_FIX(r) \
438   real_to_integer (&(r))
439 
440 /* ??? These were added for Paranoia support.  */
441 
442 /* Return floor log2(R).  */
443 extern int real_exponent (const REAL_VALUE_TYPE *);
444 
445 /* R = A * 2**EXP.  */
446 extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
447 
448 /* **** End of software floating point emulator interface macros **** */
449 
450 /* Constant real values 0, 1, 2, -1 and 0.5.  */
451 
452 extern REAL_VALUE_TYPE dconst0;
453 extern REAL_VALUE_TYPE dconst1;
454 extern REAL_VALUE_TYPE dconst2;
455 extern REAL_VALUE_TYPE dconstm1;
456 extern REAL_VALUE_TYPE dconsthalf;
457 
458 #define dconst_e() (*dconst_e_ptr ())
459 #define dconst_third() (*dconst_third_ptr ())
460 #define dconst_quarter() (*dconst_quarter_ptr ())
461 #define dconst_sixth() (*dconst_sixth_ptr ())
462 #define dconst_ninth() (*dconst_ninth_ptr ())
463 #define dconst_sqrt2() (*dconst_sqrt2_ptr ())
464 
465 /* Function to return the real value special constant 'e'.  */
466 extern const REAL_VALUE_TYPE * dconst_e_ptr (void);
467 
468 /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n.  */
469 extern const REAL_VALUE_TYPE *dconst_third_ptr (void);
470 extern const REAL_VALUE_TYPE *dconst_quarter_ptr (void);
471 extern const REAL_VALUE_TYPE *dconst_sixth_ptr (void);
472 extern const REAL_VALUE_TYPE *dconst_ninth_ptr (void);
473 
474 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2).  */
475 extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void);
476 
477 /* Function to return a real value (not a tree node)
478    from a given integer constant.  */
479 REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree);
480 
481 /* Return a CONST_DOUBLE with value R and mode M.  */
482 extern rtx const_double_from_real_value (REAL_VALUE_TYPE, machine_mode);
483 
484 /* Replace R by 1/R in the given format, if the result is exact.  */
485 extern bool exact_real_inverse (format_helper, REAL_VALUE_TYPE *);
486 
487 /* Return true if arithmetic on values in IMODE that were promoted
488    from values in TMODE is equivalent to direct arithmetic on values
489    in TMODE.  */
490 bool real_can_shorten_arithmetic (machine_mode, machine_mode);
491 
492 /* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node.  */
493 extern tree build_real (tree, REAL_VALUE_TYPE);
494 
495 /* Likewise, but first truncate the value to the type.  */
496 extern tree build_real_truncate (tree, REAL_VALUE_TYPE);
497 
498 /* Calculate R as X raised to the integer exponent N in format FMT.  */
499 extern bool real_powi (REAL_VALUE_TYPE *, format_helper,
500 		       const REAL_VALUE_TYPE *, HOST_WIDE_INT);
501 
502 /* Standard round to integer value functions.  */
503 extern void real_trunc (REAL_VALUE_TYPE *, format_helper,
504 			const REAL_VALUE_TYPE *);
505 extern void real_floor (REAL_VALUE_TYPE *, format_helper,
506 			const REAL_VALUE_TYPE *);
507 extern void real_ceil (REAL_VALUE_TYPE *, format_helper,
508 		       const REAL_VALUE_TYPE *);
509 extern void real_round (REAL_VALUE_TYPE *, format_helper,
510 			const REAL_VALUE_TYPE *);
511 extern void real_roundeven (REAL_VALUE_TYPE *, format_helper,
512 			    const REAL_VALUE_TYPE *);
513 
514 /* Set the sign of R to the sign of X.  */
515 extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
516 
517 /* Check whether the real constant value given is an integer.  */
518 extern bool real_isinteger (const REAL_VALUE_TYPE *, format_helper);
519 extern bool real_isinteger (const REAL_VALUE_TYPE *, HOST_WIDE_INT *);
520 
521 /* Calculate nextafter (X, Y) in format FMT.  */
522 extern bool real_nextafter (REAL_VALUE_TYPE *, format_helper,
523 			    const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
524 
525 /* Write into BUF the maximum representable finite floating-point
526    number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
527    float string.  BUF must be large enough to contain the result.  */
528 extern void get_max_float (const struct real_format *, char *, size_t, bool);
529 
530 #ifndef GENERATOR_FILE
531 /* real related routines.  */
532 extern wide_int real_to_integer (const REAL_VALUE_TYPE *, bool *, int);
533 extern void real_from_integer (REAL_VALUE_TYPE *, format_helper,
534 			       const wide_int_ref &, signop);
535 #endif
536 
537 /* Fills r with the largest value such that 1 + r*r won't overflow.
538    This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */
539 extern void build_sinatan_real (REAL_VALUE_TYPE *, tree);
540 
541 #endif /* ! GCC_REAL_H */
542