1// Copyright 2016 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// +build ignore
6
7// Generate tables for small malloc size classes.
8//
9// See malloc.go for overview.
10//
11// The size classes are chosen so that rounding an allocation
12// request up to the next size class wastes at most 12.5% (1.125x).
13//
14// Each size class has its own page count that gets allocated
15// and chopped up when new objects of the size class are needed.
16// That page count is chosen so that chopping up the run of
17// pages into objects of the given size wastes at most 12.5% (1.125x)
18// of the memory. It is not necessary that the cutoff here be
19// the same as above.
20//
21// The two sources of waste multiply, so the worst possible case
22// for the above constraints would be that allocations of some
23// size might have a 26.6% (1.266x) overhead.
24// In practice, only one of the wastes comes into play for a
25// given size (sizes < 512 waste mainly on the round-up,
26// sizes > 512 waste mainly on the page chopping).
27// For really small sizes, alignment constraints force the
28// overhead higher.
29
30package main
31
32import (
33	"bytes"
34	"flag"
35	"fmt"
36	"go/format"
37	"io"
38	"log"
39	"os"
40)
41
42// Generate msize.go
43
44var stdout = flag.Bool("stdout", false, "write to stdout instead of sizeclasses.go")
45
46func main() {
47	flag.Parse()
48
49	var b bytes.Buffer
50	fmt.Fprintln(&b, "// Code generated by mksizeclasses.go; DO NOT EDIT.")
51	fmt.Fprintln(&b, "//go:generate go run mksizeclasses.go")
52	fmt.Fprintln(&b)
53	fmt.Fprintln(&b, "package runtime")
54	classes := makeClasses()
55
56	printComment(&b, classes)
57
58	printClasses(&b, classes)
59
60	out, err := format.Source(b.Bytes())
61	if err != nil {
62		log.Fatal(err)
63	}
64	if *stdout {
65		_, err = os.Stdout.Write(out)
66	} else {
67		err = os.WriteFile("sizeclasses.go", out, 0666)
68	}
69	if err != nil {
70		log.Fatal(err)
71	}
72}
73
74const (
75	// Constants that we use and will transfer to the runtime.
76	maxSmallSize = 32 << 10
77	smallSizeDiv = 8
78	smallSizeMax = 1024
79	largeSizeDiv = 128
80	pageShift    = 13
81
82	// Derived constants.
83	pageSize = 1 << pageShift
84)
85
86type class struct {
87	size   int // max size
88	npages int // number of pages
89
90	mul    int
91	shift  uint
92	shift2 uint
93	mask   int
94}
95
96func powerOfTwo(x int) bool {
97	return x != 0 && x&(x-1) == 0
98}
99
100func makeClasses() []class {
101	var classes []class
102
103	classes = append(classes, class{}) // class #0 is a dummy entry
104
105	align := 8
106	for size := align; size <= maxSmallSize; size += align {
107		if powerOfTwo(size) { // bump alignment once in a while
108			if size >= 2048 {
109				align = 256
110			} else if size >= 128 {
111				align = size / 8
112			} else if size >= 32 {
113				align = 16 // heap bitmaps assume 16 byte alignment for allocations >= 32 bytes.
114			}
115		}
116		if !powerOfTwo(align) {
117			panic("incorrect alignment")
118		}
119
120		// Make the allocnpages big enough that
121		// the leftover is less than 1/8 of the total,
122		// so wasted space is at most 12.5%.
123		allocsize := pageSize
124		for allocsize%size > allocsize/8 {
125			allocsize += pageSize
126		}
127		npages := allocsize / pageSize
128
129		// If the previous sizeclass chose the same
130		// allocation size and fit the same number of
131		// objects into the page, we might as well
132		// use just this size instead of having two
133		// different sizes.
134		if len(classes) > 1 && npages == classes[len(classes)-1].npages && allocsize/size == allocsize/classes[len(classes)-1].size {
135			classes[len(classes)-1].size = size
136			continue
137		}
138		classes = append(classes, class{size: size, npages: npages})
139	}
140
141	// Increase object sizes if we can fit the same number of larger objects
142	// into the same number of pages. For example, we choose size 8448 above
143	// with 6 objects in 7 pages. But we can well use object size 9472,
144	// which is also 6 objects in 7 pages but +1024 bytes (+12.12%).
145	// We need to preserve at least largeSizeDiv alignment otherwise
146	// sizeToClass won't work.
147	for i := range classes {
148		if i == 0 {
149			continue
150		}
151		c := &classes[i]
152		psize := c.npages * pageSize
153		new_size := (psize / (psize / c.size)) &^ (largeSizeDiv - 1)
154		if new_size > c.size {
155			c.size = new_size
156		}
157	}
158
159	if len(classes) != 68 {
160		panic("number of size classes has changed")
161	}
162
163	for i := range classes {
164		computeDivMagic(&classes[i])
165	}
166
167	return classes
168}
169
170// computeDivMagic computes some magic constants to implement
171// the division required to compute object number from span offset.
172// n / c.size is implemented as n >> c.shift * c.mul >> c.shift2
173// for all 0 <= n <= c.npages * pageSize
174func computeDivMagic(c *class) {
175	// divisor
176	d := c.size
177	if d == 0 {
178		return
179	}
180
181	// maximum input value for which the formula needs to work.
182	max := c.npages * pageSize
183
184	if powerOfTwo(d) {
185		// If the size is a power of two, heapBitsForObject can divide even faster by masking.
186		// Compute this mask.
187		if max >= 1<<16 {
188			panic("max too big for power of two size")
189		}
190		c.mask = 1<<16 - d
191	}
192
193	// Compute pre-shift by factoring power of 2 out of d.
194	for d%2 == 0 {
195		c.shift++
196		d >>= 1
197		max >>= 1
198	}
199
200	// Find the smallest k that works.
201	// A small k allows us to fit the math required into 32 bits
202	// so we can use 32-bit multiplies and shifts on 32-bit platforms.
203nextk:
204	for k := uint(0); ; k++ {
205		mul := (int(1)<<k + d - 1) / d //  ⌈2^k / d⌉
206
207		// Test to see if mul works.
208		for n := 0; n <= max; n++ {
209			if n*mul>>k != n/d {
210				continue nextk
211			}
212		}
213		if mul >= 1<<16 {
214			panic("mul too big")
215		}
216		if uint64(mul)*uint64(max) >= 1<<32 {
217			panic("mul*max too big")
218		}
219		c.mul = mul
220		c.shift2 = k
221		break
222	}
223
224	// double-check.
225	for n := 0; n <= max; n++ {
226		if n*c.mul>>c.shift2 != n/d {
227			fmt.Printf("d=%d max=%d mul=%d shift2=%d n=%d\n", d, max, c.mul, c.shift2, n)
228			panic("bad multiply magic")
229		}
230		// Also check the exact computations that will be done by the runtime,
231		// for both 32 and 64 bit operations.
232		if uint32(n)*uint32(c.mul)>>uint8(c.shift2) != uint32(n/d) {
233			fmt.Printf("d=%d max=%d mul=%d shift2=%d n=%d\n", d, max, c.mul, c.shift2, n)
234			panic("bad 32-bit multiply magic")
235		}
236		if uint64(n)*uint64(c.mul)>>uint8(c.shift2) != uint64(n/d) {
237			fmt.Printf("d=%d max=%d mul=%d shift2=%d n=%d\n", d, max, c.mul, c.shift2, n)
238			panic("bad 64-bit multiply magic")
239		}
240	}
241}
242
243func printComment(w io.Writer, classes []class) {
244	fmt.Fprintf(w, "// %-5s  %-9s  %-10s  %-7s  %-10s  %-9s\n", "class", "bytes/obj", "bytes/span", "objects", "tail waste", "max waste")
245	prevSize := 0
246	for i, c := range classes {
247		if i == 0 {
248			continue
249		}
250		spanSize := c.npages * pageSize
251		objects := spanSize / c.size
252		tailWaste := spanSize - c.size*(spanSize/c.size)
253		maxWaste := float64((c.size-prevSize-1)*objects+tailWaste) / float64(spanSize)
254		prevSize = c.size
255		fmt.Fprintf(w, "// %5d  %9d  %10d  %7d  %10d  %8.2f%%\n", i, c.size, spanSize, objects, tailWaste, 100*maxWaste)
256	}
257	fmt.Fprintf(w, "\n")
258}
259
260func printClasses(w io.Writer, classes []class) {
261	fmt.Fprintln(w, "const (")
262	fmt.Fprintf(w, "_MaxSmallSize = %d\n", maxSmallSize)
263	fmt.Fprintf(w, "smallSizeDiv = %d\n", smallSizeDiv)
264	fmt.Fprintf(w, "smallSizeMax = %d\n", smallSizeMax)
265	fmt.Fprintf(w, "largeSizeDiv = %d\n", largeSizeDiv)
266	fmt.Fprintf(w, "_NumSizeClasses = %d\n", len(classes))
267	fmt.Fprintf(w, "_PageShift = %d\n", pageShift)
268	fmt.Fprintln(w, ")")
269
270	fmt.Fprint(w, "var class_to_size = [_NumSizeClasses]uint16 {")
271	for _, c := range classes {
272		fmt.Fprintf(w, "%d,", c.size)
273	}
274	fmt.Fprintln(w, "}")
275
276	fmt.Fprint(w, "var class_to_allocnpages = [_NumSizeClasses]uint8 {")
277	for _, c := range classes {
278		fmt.Fprintf(w, "%d,", c.npages)
279	}
280	fmt.Fprintln(w, "}")
281
282	fmt.Fprintln(w, "type divMagic struct {")
283	fmt.Fprintln(w, "  shift uint8")
284	fmt.Fprintln(w, "  shift2 uint8")
285	fmt.Fprintln(w, "  mul uint16")
286	fmt.Fprintln(w, "  baseMask uint16")
287	fmt.Fprintln(w, "}")
288	fmt.Fprint(w, "var class_to_divmagic = [_NumSizeClasses]divMagic {")
289	for _, c := range classes {
290		fmt.Fprintf(w, "{%d,%d,%d,%d},", c.shift, c.shift2, c.mul, c.mask)
291	}
292	fmt.Fprintln(w, "}")
293
294	// map from size to size class, for small sizes.
295	sc := make([]int, smallSizeMax/smallSizeDiv+1)
296	for i := range sc {
297		size := i * smallSizeDiv
298		for j, c := range classes {
299			if c.size >= size {
300				sc[i] = j
301				break
302			}
303		}
304	}
305	fmt.Fprint(w, "var size_to_class8 = [smallSizeMax/smallSizeDiv+1]uint8 {")
306	for _, v := range sc {
307		fmt.Fprintf(w, "%d,", v)
308	}
309	fmt.Fprintln(w, "}")
310
311	// map from size to size class, for large sizes.
312	sc = make([]int, (maxSmallSize-smallSizeMax)/largeSizeDiv+1)
313	for i := range sc {
314		size := smallSizeMax + i*largeSizeDiv
315		for j, c := range classes {
316			if c.size >= size {
317				sc[i] = j
318				break
319			}
320		}
321	}
322	fmt.Fprint(w, "var size_to_class128 = [(_MaxSmallSize-smallSizeMax)/largeSizeDiv+1]uint8 {")
323	for _, v := range sc {
324		fmt.Fprintf(w, "%d,", v)
325	}
326	fmt.Fprintln(w, "}")
327}
328