1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 #include <errno.h>
6 #include <limits.h>
7 #include <signal.h>
8 #include <stdlib.h>
9 #include <pthread.h>
10 #include <unistd.h>
11 
12 #include "config.h"
13 
14 #ifdef HAVE_DL_ITERATE_PHDR
15 #include <link.h>
16 #endif
17 
18 #include "runtime.h"
19 #include "arch.h"
20 #include "defs.h"
21 
22 #ifdef USING_SPLIT_STACK
23 
24 /* FIXME: These are not declared anywhere.  */
25 
26 extern void __splitstack_getcontext(void *context[10]);
27 
28 extern void __splitstack_setcontext(void *context[10]);
29 
30 extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);
31 
32 extern void * __splitstack_resetcontext(void *context[10], size_t *);
33 
34 extern void __splitstack_releasecontext(void *context[10]);
35 
36 extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
37 			       void **);
38 
39 extern void __splitstack_block_signals (int *, int *);
40 
41 extern void __splitstack_block_signals_context (void *context[10], int *,
42 						int *);
43 
44 #endif
45 
46 #ifndef PTHREAD_STACK_MIN
47 # define PTHREAD_STACK_MIN 8192
48 #endif
49 
50 #if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
51 # define StackMin PTHREAD_STACK_MIN
52 #else
53 # define StackMin ((sizeof(char *) < 8) ? 2 * 1024 * 1024 : 4 * 1024 * 1024)
54 #endif
55 
56 uintptr runtime_stacks_sys;
57 
58 void gtraceback(G*)
59   __asm__(GOSYM_PREFIX "runtime.gtraceback");
60 
61 static void gscanstack(G*);
62 
63 #ifdef __rtems__
64 #define __thread
65 #endif
66 
67 __thread G *g __asm__(GOSYM_PREFIX "runtime.g");
68 
69 #ifndef SETCONTEXT_CLOBBERS_TLS
70 
71 static inline void
initcontext(void)72 initcontext(void)
73 {
74 }
75 
76 static inline void
fixcontext(__go_context_t * c)77 fixcontext(__go_context_t *c __attribute__ ((unused)))
78 {
79 }
80 
81 #else
82 
83 # if defined(__x86_64__) && defined(__sun__)
84 
85 // x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
86 // register to that of the thread which called getcontext.  The effect
87 // is that the address of all __thread variables changes.  This bug
88 // also affects pthread_self() and pthread_getspecific.  We work
89 // around it by clobbering the context field directly to keep %fs the
90 // same.
91 
92 static __thread greg_t fs;
93 
94 static inline void
initcontext(void)95 initcontext(void)
96 {
97 	ucontext_t c;
98 
99 	getcontext(&c);
100 	fs = c.uc_mcontext.gregs[REG_FSBASE];
101 }
102 
103 static inline void
fixcontext(ucontext_t * c)104 fixcontext(ucontext_t* c)
105 {
106 	c->uc_mcontext.gregs[REG_FSBASE] = fs;
107 }
108 
109 # elif defined(__NetBSD__)
110 
111 // NetBSD has a bug: setcontext clobbers tlsbase, we need to save
112 // and restore it ourselves.
113 
114 static __thread __greg_t tlsbase;
115 
116 static inline void
initcontext(void)117 initcontext(void)
118 {
119 	ucontext_t c;
120 
121 	getcontext(&c);
122 	tlsbase = c.uc_mcontext._mc_tlsbase;
123 }
124 
125 static inline void
fixcontext(ucontext_t * c)126 fixcontext(ucontext_t* c)
127 {
128 	c->uc_mcontext._mc_tlsbase = tlsbase;
129 }
130 
131 # elif defined(__sparc__)
132 
133 static inline void
initcontext(void)134 initcontext(void)
135 {
136 }
137 
138 static inline void
fixcontext(ucontext_t * c)139 fixcontext(ucontext_t *c)
140 {
141 	/* ??? Using
142 	     register unsigned long thread __asm__("%g7");
143 	     c->uc_mcontext.gregs[REG_G7] = thread;
144 	   results in
145 	     error: variable ‘thread’ might be clobbered by \
146 		‘longjmp’ or ‘vfork’ [-Werror=clobbered]
147 	   which ought to be false, as %g7 is a fixed register.  */
148 
149 	if (sizeof (c->uc_mcontext.gregs[REG_G7]) == 8)
150 		asm ("stx %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
151 	else
152 		asm ("st %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
153 }
154 
155 # elif defined(_AIX)
156 
157 static inline void
initcontext(void)158 initcontext(void)
159 {
160 }
161 
162 static inline void
fixcontext(ucontext_t * c)163 fixcontext(ucontext_t* c)
164 {
165 	// Thread pointer is in r13, per 64-bit ABI.
166 	if (sizeof (c->uc_mcontext.jmp_context.gpr[13]) == 8)
167 		asm ("std 13, %0" : "=m"(c->uc_mcontext.jmp_context.gpr[13]));
168 }
169 
170 # else
171 
172 #  error unknown case for SETCONTEXT_CLOBBERS_TLS
173 
174 # endif
175 
176 #endif
177 
178 // ucontext_arg returns a properly aligned ucontext_t value.  On some
179 // systems a ucontext_t value must be aligned to a 16-byte boundary.
180 // The g structure that has fields of type ucontext_t is defined in
181 // Go, and Go has no simple way to align a field to such a boundary.
182 // So we make the field larger in runtime2.go and pick an appropriate
183 // offset within the field here.
184 static __go_context_t*
ucontext_arg(uintptr_t * go_ucontext)185 ucontext_arg(uintptr_t* go_ucontext)
186 {
187 	uintptr_t p = (uintptr_t)go_ucontext;
188 	size_t align = __alignof__(__go_context_t);
189 	if(align > 16) {
190 		// We only ensured space for up to a 16 byte alignment
191 		// in libgo/go/runtime/runtime2.go.
192 		runtime_throw("required alignment of __go_context_t too large");
193 	}
194 	p = (p + align - 1) &~ (uintptr_t)(align - 1);
195 	return (__go_context_t*)p;
196 }
197 
198 // We can not always refer to the TLS variables directly.  The
199 // compiler will call tls_get_addr to get the address of the variable,
200 // and it may hold it in a register across a call to schedule.  When
201 // we get back from the call we may be running in a different thread,
202 // in which case the register now points to the TLS variable for a
203 // different thread.  We use non-inlinable functions to avoid this
204 // when necessary.
205 
206 G* runtime_g(void) __attribute__ ((noinline, no_split_stack));
207 
208 G*
runtime_g(void)209 runtime_g(void)
210 {
211 	return g;
212 }
213 
214 M* runtime_m(void) __attribute__ ((noinline, no_split_stack));
215 
216 M*
runtime_m(void)217 runtime_m(void)
218 {
219 	if(g == nil)
220 		return nil;
221 	return g->m;
222 }
223 
224 // Set g.
225 
226 void runtime_setg(G*) __attribute__ ((no_split_stack));
227 
228 void
runtime_setg(G * gp)229 runtime_setg(G* gp)
230 {
231 	g = gp;
232 }
233 
234 void runtime_newosproc(M *)
235   __asm__(GOSYM_PREFIX "runtime.newosproc");
236 
237 // Start a new thread.
238 void
runtime_newosproc(M * mp)239 runtime_newosproc(M *mp)
240 {
241 	pthread_attr_t attr;
242 	sigset_t clear, old;
243 	pthread_t tid;
244 	int tries;
245 	int ret;
246 
247 	if(pthread_attr_init(&attr) != 0)
248 		runtime_throw("pthread_attr_init");
249 	if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
250 		runtime_throw("pthread_attr_setdetachstate");
251 
252 	// Block signals during pthread_create so that the new thread
253 	// starts with signals disabled.  It will enable them in minit.
254 	sigfillset(&clear);
255 
256 #ifdef SIGTRAP
257 	// Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux.
258 	sigdelset(&clear, SIGTRAP);
259 #endif
260 
261 	sigemptyset(&old);
262 	pthread_sigmask(SIG_BLOCK, &clear, &old);
263 
264 	for (tries = 0; tries < 20; tries++) {
265 		ret = pthread_create(&tid, &attr, runtime_mstart, mp);
266 		if (ret != EAGAIN) {
267 			break;
268 		}
269 		runtime_usleep((tries + 1) * 1000); // Milliseconds.
270 	}
271 
272 	pthread_sigmask(SIG_SETMASK, &old, nil);
273 
274 	if (ret != 0) {
275 		runtime_printf("pthread_create failed: %d\n", ret);
276 		runtime_throw("pthread_create");
277 	}
278 
279 	if(pthread_attr_destroy(&attr) != 0)
280 		runtime_throw("pthread_attr_destroy");
281 }
282 
283 // Switch context to a different goroutine.  This is like longjmp.
284 void runtime_gogo(G*) __attribute__ ((noinline));
285 void
runtime_gogo(G * newg)286 runtime_gogo(G* newg)
287 {
288 #ifdef USING_SPLIT_STACK
289 	__splitstack_setcontext((void*)(&newg->stackcontext[0]));
290 #endif
291 	g = newg;
292 	newg->fromgogo = true;
293 	fixcontext(ucontext_arg(&newg->context[0]));
294 	__go_setcontext(ucontext_arg(&newg->context[0]));
295 	runtime_throw("gogo setcontext returned");
296 }
297 
298 // Save context and call fn passing g as a parameter.  This is like
299 // setjmp.  Because getcontext always returns 0, unlike setjmp, we use
300 // g->fromgogo as a code.  It will be true if we got here via
301 // setcontext.  g == nil the first time this is called in a new m.
302 void runtime_mcall(FuncVal *) __attribute__ ((noinline));
303 void
runtime_mcall(FuncVal * fv)304 runtime_mcall(FuncVal *fv)
305 {
306 	M *mp;
307 	G *gp;
308 #ifndef USING_SPLIT_STACK
309 	void *afterregs;
310 #endif
311 
312 	// Ensure that all registers are on the stack for the garbage
313 	// collector.
314 	__builtin_unwind_init();
315 	flush_registers_to_secondary_stack();
316 
317 	gp = g;
318 	mp = gp->m;
319 	if(gp == mp->g0)
320 		runtime_throw("runtime: mcall called on m->g0 stack");
321 
322 	if(gp != nil) {
323 
324 #ifdef USING_SPLIT_STACK
325 		__splitstack_getcontext((void*)(&gp->stackcontext[0]));
326 #else
327 		// We have to point to an address on the stack that is
328 		// below the saved registers.
329 		gp->gcnextsp = (uintptr)(&afterregs);
330 		gp->gcnextsp2 = (uintptr)(secondary_stack_pointer());
331 #endif
332 		gp->fromgogo = false;
333 		__go_getcontext(ucontext_arg(&gp->context[0]));
334 
335 		// When we return from getcontext, we may be running
336 		// in a new thread.  That means that g may have
337 		// changed.  It is a global variables so we will
338 		// reload it, but the address of g may be cached in
339 		// our local stack frame, and that address may be
340 		// wrong.  Call the function to reload the value for
341 		// this thread.
342 		gp = runtime_g();
343 		mp = gp->m;
344 
345 		if(gp->traceback != 0)
346 			gtraceback(gp);
347 		if(gp->scang != 0)
348 			gscanstack(gp);
349 	}
350 	if (gp == nil || !gp->fromgogo) {
351 #ifdef USING_SPLIT_STACK
352 		__splitstack_setcontext((void*)(&mp->g0->stackcontext[0]));
353 #endif
354 		mp->g0->entry = fv;
355 		mp->g0->param = gp;
356 
357 		// It's OK to set g directly here because this case
358 		// can not occur if we got here via a setcontext to
359 		// the getcontext call just above.
360 		g = mp->g0;
361 
362 		fixcontext(ucontext_arg(&mp->g0->context[0]));
363 		__go_setcontext(ucontext_arg(&mp->g0->context[0]));
364 		runtime_throw("runtime: mcall function returned");
365 	}
366 }
367 
368 // Goroutine scheduler
369 // The scheduler's job is to distribute ready-to-run goroutines over worker threads.
370 //
371 // The main concepts are:
372 // G - goroutine.
373 // M - worker thread, or machine.
374 // P - processor, a resource that is required to execute Go code.
375 //     M must have an associated P to execute Go code, however it can be
376 //     blocked or in a syscall w/o an associated P.
377 //
378 // Design doc at http://golang.org/s/go11sched.
379 
380 extern G* allocg(void)
381   __asm__ (GOSYM_PREFIX "runtime.allocg");
382 
383 bool	runtime_isarchive;
384 
385 extern void kickoff(void)
386   __asm__(GOSYM_PREFIX "runtime.kickoff");
387 extern void minit(void)
388   __asm__(GOSYM_PREFIX "runtime.minit");
389 extern void mstart1()
390   __asm__(GOSYM_PREFIX "runtime.mstart1");
391 extern void stopm(void)
392   __asm__(GOSYM_PREFIX "runtime.stopm");
393 extern void mexit(bool)
394   __asm__(GOSYM_PREFIX "runtime.mexit");
395 extern void handoffp(P*)
396   __asm__(GOSYM_PREFIX "runtime.handoffp");
397 extern void wakep(void)
398   __asm__(GOSYM_PREFIX "runtime.wakep");
399 extern void stoplockedm(void)
400   __asm__(GOSYM_PREFIX "runtime.stoplockedm");
401 extern void schedule(void)
402   __asm__(GOSYM_PREFIX "runtime.schedule");
403 extern void execute(G*, bool)
404   __asm__(GOSYM_PREFIX "runtime.execute");
405 extern void reentersyscall(uintptr, uintptr)
406   __asm__(GOSYM_PREFIX "runtime.reentersyscall");
407 extern void reentersyscallblock(uintptr, uintptr)
408   __asm__(GOSYM_PREFIX "runtime.reentersyscallblock");
409 extern G* gfget(P*)
410   __asm__(GOSYM_PREFIX "runtime.gfget");
411 extern void acquirep(P*)
412   __asm__(GOSYM_PREFIX "runtime.acquirep");
413 extern P* releasep(void)
414   __asm__(GOSYM_PREFIX "runtime.releasep");
415 extern void incidlelocked(int32)
416   __asm__(GOSYM_PREFIX "runtime.incidlelocked");
417 extern void globrunqput(G*)
418   __asm__(GOSYM_PREFIX "runtime.globrunqput");
419 extern P* pidleget(void)
420   __asm__(GOSYM_PREFIX "runtime.pidleget");
421 extern struct mstats* getMemstats(void)
422   __asm__(GOSYM_PREFIX "runtime.getMemstats");
423 
424 bool runtime_isstarted;
425 
426 // Used to determine the field alignment.
427 
428 struct field_align
429 {
430   char c;
431   Hchan *p;
432 };
433 
434 void getTraceback(G*, G*) __asm__(GOSYM_PREFIX "runtime.getTraceback");
435 
436 // getTraceback stores a traceback of gp in the g's traceback field
437 // and then returns to me.  We expect that gp's traceback is not nil.
438 // It works by saving me's current context, and checking gp's traceback field.
439 // If gp's traceback field is not nil, it starts running gp.
440 // In places where we call getcontext, we check the traceback field.
441 // If it is not nil, we collect a traceback, and then return to the
442 // goroutine stored in the traceback field, which is me.
getTraceback(G * me,G * gp)443 void getTraceback(G* me, G* gp)
444 {
445 	M* holdm;
446 
447 	holdm = gp->m;
448 	gp->m = me->m;
449 
450 #ifdef USING_SPLIT_STACK
451 	__splitstack_getcontext((void*)(&me->stackcontext[0]));
452 #endif
453 	__go_getcontext(ucontext_arg(&me->context[0]));
454 
455 	if (gp->traceback != 0) {
456 		runtime_gogo(gp);
457 	}
458 
459 	gp->m = holdm;
460 }
461 
462 // Do a stack trace of gp, and then restore the context to
463 // gp->traceback->gp.
464 
465 void
gtraceback(G * gp)466 gtraceback(G* gp)
467 {
468 	Traceback* traceback;
469 
470 	traceback = (Traceback*)gp->traceback;
471 	gp->traceback = 0;
472 	traceback->c = runtime_callers(1, traceback->locbuf,
473 		sizeof traceback->locbuf / sizeof traceback->locbuf[0], false);
474 	runtime_gogo(traceback->gp);
475 }
476 
477 void doscanstackswitch(G*, G*) __asm__(GOSYM_PREFIX "runtime.doscanstackswitch");
478 
479 // Switch to gp and let it scan its stack.
480 // The first time gp->scang is set (to me). The second time here
481 // gp is done scanning, and has unset gp->scang, so we just return.
482 void
doscanstackswitch(G * me,G * gp)483 doscanstackswitch(G* me, G* gp)
484 {
485 	M* holdm;
486 
487 	__go_assert(me->entry == nil);
488 	me->fromgogo = false;
489 
490 	holdm = gp->m;
491 	gp->m = me->m;
492 
493 #ifdef USING_SPLIT_STACK
494 	__splitstack_getcontext((void*)(&me->stackcontext[0]));
495 #endif
496 	__go_getcontext(ucontext_arg(&me->context[0]));
497 
498 	if(me->entry != nil) {
499 		// Got here from mcall.
500 		// The stack scanning code may call systemstack, which calls
501 		// mcall, which calls setcontext.
502 		// Run the function, which at the end will switch back to gp.
503 		FuncVal *fv = me->entry;
504 		void (*pfn)(G*) = (void (*)(G*))fv->fn;
505 		G* gp1 = (G*)me->param;
506 		__go_assert(gp1 == gp);
507 		me->entry = nil;
508 		me->param = nil;
509 		__builtin_call_with_static_chain(pfn(gp1), fv);
510 		abort();
511 	}
512 
513 	if (gp->scang != 0)
514 		runtime_gogo(gp);
515 
516 	gp->m = holdm;
517 }
518 
519 // Do a stack scan, then switch back to the g that triggers this scan.
520 // We come here from doscanstackswitch.
521 static void
gscanstack(G * gp)522 gscanstack(G *gp)
523 {
524 	G *oldg, *oldcurg;
525 
526 	oldg = (G*)gp->scang;
527 	oldcurg = oldg->m->curg;
528 	oldg->m->curg = gp;
529 	gp->scang = 0;
530 
531 	doscanstack(gp, (void*)gp->scangcw);
532 
533 	gp->scangcw = 0;
534 	oldg->m->curg = oldcurg;
535 	runtime_gogo(oldg);
536 }
537 
538 // Called by pthread_create to start an M.
539 void*
runtime_mstart(void * arg)540 runtime_mstart(void *arg)
541 {
542 	M* mp;
543 	G* gp;
544 
545 	mp = (M*)(arg);
546 	gp = mp->g0;
547 	gp->m = mp;
548 
549 	g = gp;
550 
551 	gp->entry = nil;
552 	gp->param = nil;
553 
554 	// We have to call minit before we call getcontext,
555 	// because getcontext will copy the signal mask.
556 	minit();
557 
558 	initcontext();
559 
560 	// Record top of stack for use by mcall.
561 	// Once we call schedule we're never coming back,
562 	// so other calls can reuse this stack space.
563 #ifdef USING_SPLIT_STACK
564 	__splitstack_getcontext((void*)(&gp->stackcontext[0]));
565 #else
566 	gp->gcinitialsp = &arg;
567 	// Setting gcstacksize to 0 is a marker meaning that gcinitialsp
568 	// is the top of the stack, not the bottom.
569 	gp->gcstacksize = 0;
570 	gp->gcnextsp = (uintptr)(&arg);
571 	gp->gcinitialsp2 = secondary_stack_pointer();
572 	gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2);
573 #endif
574 
575 	// Save the currently active context.  This will return
576 	// multiple times via the setcontext call in mcall.
577 	__go_getcontext(ucontext_arg(&gp->context[0]));
578 
579 	if(gp->traceback != 0) {
580 		// Got here from getTraceback.
581 		// I'm not sure this ever actually happens--getTraceback
582 		// may always go to the getcontext call in mcall.
583 		gtraceback(gp);
584 	}
585 	if(gp->scang != 0)
586 		// Got here from doscanswitch. Should not happen.
587 		runtime_throw("mstart with scang");
588 
589 	if(gp->entry != nil) {
590 		// Got here from mcall.
591 		FuncVal *fv = gp->entry;
592 		void (*pfn)(G*) = (void (*)(G*))fv->fn;
593 		G* gp1 = (G*)gp->param;
594 		gp->entry = nil;
595 		gp->param = nil;
596 		__builtin_call_with_static_chain(pfn(gp1), fv);
597 		*(int*)0x21 = 0x21;
598 	}
599 
600 	if(mp->exiting) {
601 		mexit(true);
602 		return nil;
603 	}
604 
605 	// Initial call to getcontext--starting thread.
606 
607 #ifdef USING_SPLIT_STACK
608 	{
609 		int dont_block_signals = 0;
610 		__splitstack_block_signals(&dont_block_signals, nil);
611 	}
612 #endif
613 
614 	mstart1();
615 
616 	// mstart1 does not return, but we need a return statement
617 	// here to avoid a compiler warning.
618 	return nil;
619 }
620 
621 typedef struct CgoThreadStart CgoThreadStart;
622 struct CgoThreadStart
623 {
624 	M *m;
625 	G *g;
626 	uintptr *tls;
627 	void (*fn)(void);
628 };
629 
630 void setGContext(void) __asm__ (GOSYM_PREFIX "runtime.setGContext");
631 
632 // setGContext sets up a new goroutine context for the current g.
633 void
setGContext(void)634 setGContext(void)
635 {
636 	int val;
637 	G *gp;
638 
639 	initcontext();
640 	gp = g;
641 	gp->entry = nil;
642 	gp->param = nil;
643 #ifdef USING_SPLIT_STACK
644 	__splitstack_getcontext((void*)(&gp->stackcontext[0]));
645 	val = 0;
646 	__splitstack_block_signals(&val, nil);
647 #else
648 	gp->gcinitialsp = &val;
649 	gp->gcstack = 0;
650 	gp->gcstacksize = 0;
651 	gp->gcnextsp = (uintptr)(&val);
652 	gp->gcinitialsp2 = secondary_stack_pointer();
653 	gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2);
654 #endif
655 	__go_getcontext(ucontext_arg(&gp->context[0]));
656 
657 	if(gp->entry != nil) {
658 		// Got here from mcall.
659 		FuncVal *fv = gp->entry;
660 		void (*pfn)(G*) = (void (*)(G*))fv->fn;
661 		G* gp1 = (G*)gp->param;
662 		gp->entry = nil;
663 		gp->param = nil;
664 		__builtin_call_with_static_chain(pfn(gp1), fv);
665 		*(int*)0x22 = 0x22;
666 	}
667 }
668 
669 void makeGContext(G*, byte*, uintptr)
670 	__asm__(GOSYM_PREFIX "runtime.makeGContext");
671 
672 // makeGContext makes a new context for a g.
673 void
makeGContext(G * gp,byte * sp,uintptr spsize)674 makeGContext(G* gp, byte* sp, uintptr spsize) {
675 	__go_context_t *uc;
676 
677 	uc = ucontext_arg(&gp->context[0]);
678 	__go_getcontext(uc);
679 	__go_makecontext(uc, kickoff, sp, (size_t)spsize);
680 }
681 
682 // The goroutine g is about to enter a system call.
683 // Record that it's not using the cpu anymore.
684 // This is called only from the go syscall library and cgocall,
685 // not from the low-level system calls used by the runtime.
686 //
687 // Entersyscall cannot split the stack: the runtime_gosave must
688 // make g->sched refer to the caller's stack segment, because
689 // entersyscall is going to return immediately after.
690 
691 void runtime_entersyscall() __attribute__ ((no_split_stack));
692 static void doentersyscall(uintptr, uintptr)
693   __attribute__ ((no_split_stack, noinline));
694 
695 void
runtime_entersyscall()696 runtime_entersyscall()
697 {
698 	// Save the registers in the g structure so that any pointers
699 	// held in registers will be seen by the garbage collector.
700 	if (!runtime_usestackmaps)
701 		__go_getcontext(ucontext_arg(&g->gcregs[0]));
702 
703 	// Note that if this function does save any registers itself,
704 	// we might store the wrong value in the call to getcontext.
705 	// FIXME: This assumes that we do not need to save any
706 	// callee-saved registers to access the TLS variable g.  We
707 	// don't want to put the ucontext_t on the stack because it is
708 	// large and we can not split the stack here.
709 	doentersyscall((uintptr)runtime_getcallerpc(),
710 		       (uintptr)runtime_getcallersp());
711 }
712 
713 static void
doentersyscall(uintptr pc,uintptr sp)714 doentersyscall(uintptr pc, uintptr sp)
715 {
716 	// Leave SP around for GC and traceback.
717 #ifdef USING_SPLIT_STACK
718 	{
719 	  size_t gcstacksize;
720 	  g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize,
721 						   (void**)(&g->gcnextsegment),
722 						   (void**)(&g->gcnextsp),
723 						   &g->gcinitialsp));
724 	  g->gcstacksize = (uintptr)gcstacksize;
725 	}
726 #else
727 	{
728 		void *v;
729 
730 		g->gcnextsp = (uintptr)(&v);
731 		g->gcnextsp2 = (uintptr)(secondary_stack_pointer());
732 	}
733 #endif
734 
735 	reentersyscall(pc, sp);
736 }
737 
738 static void doentersyscallblock(uintptr, uintptr)
739   __attribute__ ((no_split_stack, noinline));
740 
741 // The same as runtime_entersyscall(), but with a hint that the syscall is blocking.
742 void
runtime_entersyscallblock()743 runtime_entersyscallblock()
744 {
745 	// Save the registers in the g structure so that any pointers
746 	// held in registers will be seen by the garbage collector.
747 	if (!runtime_usestackmaps)
748 		__go_getcontext(ucontext_arg(&g->gcregs[0]));
749 
750 	// See comment in runtime_entersyscall.
751 	doentersyscallblock((uintptr)runtime_getcallerpc(),
752 			    (uintptr)runtime_getcallersp());
753 }
754 
755 static void
doentersyscallblock(uintptr pc,uintptr sp)756 doentersyscallblock(uintptr pc, uintptr sp)
757 {
758 	// Leave SP around for GC and traceback.
759 #ifdef USING_SPLIT_STACK
760 	{
761 	  size_t gcstacksize;
762 	  g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize,
763 						   (void**)(&g->gcnextsegment),
764 						   (void**)(&g->gcnextsp),
765 						   &g->gcinitialsp));
766 	  g->gcstacksize = (uintptr)gcstacksize;
767 	}
768 #else
769 	{
770 		void *v;
771 
772 		g->gcnextsp = (uintptr)(&v);
773 		g->gcnextsp2 = (uintptr)(secondary_stack_pointer());
774 	}
775 #endif
776 
777 	reentersyscallblock(pc, sp);
778 }
779 
780 // Allocate a new g, with a stack big enough for stacksize bytes.
781 G*
runtime_malg(bool allocatestack,bool signalstack,byte ** ret_stack,uintptr * ret_stacksize)782 runtime_malg(bool allocatestack, bool signalstack, byte** ret_stack, uintptr* ret_stacksize)
783 {
784 	uintptr stacksize;
785 	G *newg;
786 	byte* unused_stack;
787 	uintptr unused_stacksize;
788 #ifdef USING_SPLIT_STACK
789 	int dont_block_signals = 0;
790 	size_t ss_stacksize;
791 #endif
792 
793 	if (ret_stack == nil) {
794 		ret_stack = &unused_stack;
795 	}
796 	if (ret_stacksize == nil) {
797 		ret_stacksize = &unused_stacksize;
798 	}
799 	newg = allocg();
800 	if(allocatestack) {
801 		stacksize = StackMin;
802 		if(signalstack) {
803 			stacksize = 32 * 1024; // OS X wants >= 8K, GNU/Linux >= 2K
804 #ifdef SIGSTKSZ
805 			if(stacksize < (uintptr)(SIGSTKSZ))
806 				stacksize = (uintptr)(SIGSTKSZ);
807 #endif
808 		}
809 
810 #ifdef USING_SPLIT_STACK
811 		*ret_stack = __splitstack_makecontext(stacksize,
812 						      (void*)(&newg->stackcontext[0]),
813 						      &ss_stacksize);
814 		*ret_stacksize = (uintptr)ss_stacksize;
815 		__splitstack_block_signals_context((void*)(&newg->stackcontext[0]),
816 						   &dont_block_signals, nil);
817 #else
818                 // In 64-bit mode, the maximum Go allocation space is
819                 // 128G.  Our stack size is 4M, which only permits 32K
820                 // goroutines.  In order to not limit ourselves,
821                 // allocate the stacks out of separate memory.  In
822                 // 32-bit mode, the Go allocation space is all of
823                 // memory anyhow.
824 		if(sizeof(void*) == 8) {
825 			void *p = runtime_sysAlloc(stacksize, &getMemstats()->stacks_sys);
826 			if(p == nil)
827 				runtime_throw("runtime: cannot allocate memory for goroutine stack");
828 			*ret_stack = (byte*)p;
829 		} else {
830 			*ret_stack = runtime_mallocgc(stacksize, nil, false);
831 			runtime_xadd(&runtime_stacks_sys, stacksize);
832 		}
833 		*ret_stacksize = (uintptr)stacksize;
834 		newg->gcinitialsp = *ret_stack;
835 		newg->gcstacksize = (uintptr)stacksize;
836 		newg->gcinitialsp2 = initial_secondary_stack_pointer(*ret_stack);
837 #endif
838 	}
839 	return newg;
840 }
841 
842 void stackfree(G*)
843   __asm__(GOSYM_PREFIX "runtime.stackfree");
844 
845 // stackfree frees the stack of a g.
846 void
stackfree(G * gp)847 stackfree(G* gp)
848 {
849 #ifdef USING_SPLIT_STACK
850   __splitstack_releasecontext((void*)(&gp->stackcontext[0]));
851 #else
852   // If gcstacksize is 0, the stack is allocated by libc and will be
853   // released when the thread exits. Otherwise, in 64-bit mode it was
854   // allocated using sysAlloc and in 32-bit mode it was allocated
855   // using garbage collected memory.
856   if (gp->gcstacksize != 0) {
857     if (sizeof(void*) == 8) {
858       runtime_sysFree(gp->gcinitialsp, gp->gcstacksize, &getMemstats()->stacks_sys);
859     }
860     gp->gcinitialsp = nil;
861     gp->gcstacksize = 0;
862   }
863 #endif
864 }
865 
866 void resetNewG(G*, void **, uintptr*)
867   __asm__(GOSYM_PREFIX "runtime.resetNewG");
868 
869 // Reset stack information for g pulled out of the cache to start a
870 // new goroutine.
871 void
resetNewG(G * newg,void ** sp,uintptr * spsize)872 resetNewG(G *newg, void **sp, uintptr *spsize)
873 {
874 #ifdef USING_SPLIT_STACK
875   int dont_block_signals = 0;
876   size_t ss_spsize;
877 
878   *sp = __splitstack_resetcontext((void*)(&newg->stackcontext[0]), &ss_spsize);
879   *spsize = ss_spsize;
880   __splitstack_block_signals_context((void*)(&newg->stackcontext[0]),
881 				     &dont_block_signals, nil);
882 #else
883   *sp = newg->gcinitialsp;
884   *spsize = newg->gcstacksize;
885   if(*spsize == 0)
886     runtime_throw("bad spsize in resetNewG");
887   newg->gcnextsp = (uintptr)(*sp);
888   newg->gcnextsp2 = (uintptr)(newg->gcinitialsp2);
889 #endif
890 }
891