1 //
2 // DenseConvolutionTiledExecutor.cpp
3 // MNN
4 //
5 // Created by MNN on 2018/07/16.
6 // Copyright © 2018, Alibaba Group Holding Limited
7 //
8
9 #include "DenseConvolutionTiledExecutor.hpp"
10 #include <MNN/AutoTime.hpp>
11 #include "backend/cpu/CPUBackend.hpp"
12 #include "CommonOptFunction.h"
13 #include "core/Concurrency.h"
14 #include "ConvOpt.h"
15 #include "core/Macro.h"
16 #include "core/TensorUtils.hpp"
17 #include "math/Vec.hpp"
18 #include "core/BufferAllocator.hpp"
19 #include "core/MemoryFormater.h"
20
21 using Vec4 = MNN::Math::Vec<float, 4>;
22 namespace MNN {
23
initWeight(float * dest,const float * source,float * cache,int depth,int outputCount,int kernelSize,const CoreFunctions * function)24 void DenseConvolutionTiledExecutor::initWeight(float *dest, const float *source, float* cache, int depth, int outputCount, int kernelSize, const CoreFunctions* function) {
25 ConvolutionTiledExecutor::initWeight(source, cache, depth, outputCount, kernelSize, function);
26 function->MNNPackForMatMul_B(dest, cache, outputCount, kernelSize * depth, true);
27 /*MNN_PRINT("dense weight matrix tile:");
28 formatMatrix(dest, {UP_DIV(outputCount, 4), kernelSize * depth, 4});*/
29 }
30
DenseConvolutionTiledExecutor(const Convolution2DCommon * common,Backend * b,const float * originWeight,size_t originWeightSize,const float * bias,size_t biasSize)31 DenseConvolutionTiledExecutor::DenseConvolutionTiledExecutor(const Convolution2DCommon* common, Backend* b,
32 const float* originWeight, size_t originWeightSize,
33 const float* bias, size_t biasSize)
34 : ConvolutionTiledExecutor(b, bias, biasSize) {
35
36 auto outputCount = (int)biasSize;
37 int eP, lP, hP;
38 auto core = static_cast<CPUBackend*>(b)->functions();
39 int bytes = core->bytes;
40 core->MNNGetMatMulPackMode(&eP, &lP, &hP);
41 // Don't use common->inputCount for old model common->inputCount is zero
42 auto srcCount = (int)originWeightSize / outputCount / common->kernelX() / common->kernelY();
43 auto lSize = srcCount * common->kernelX() * common->kernelY();
44 mResource->mWeight.reset(Tensor::createDevice<uint8_t>(
45 {UP_DIV(outputCount, hP) * UP_DIV(lSize, lP) * hP * lP * bytes}));
46 std::shared_ptr<Tensor> cache(Tensor::createDevice<uint8_t>({outputCount * srcCount * common->kernelX() * common->kernelY() * (int)sizeof(float)})); // cache must be float
47
48 mValid = mValid && backend()->onAcquireBuffer(mResource->mWeight.get(), Backend::STATIC);
49 mValid = mValid && backend()->onAcquireBuffer(cache.get(), Backend::STATIC);
50 if (!mValid) {
51 return;
52 }
53 initWeight(mResource->mWeight->host<float>(), originWeight, cache->host<float>(), srcCount, outputCount, common->kernelX() * common->kernelY(), core);
54 backend()->onReleaseBuffer(cache.get(), Backend::STATIC);
55 mProxy.reset(new DenseConvolutionTiledImpl(common, b));
56 }
57
DenseConvolutionTiledExecutor(std::shared_ptr<CPUConvolution::Resource> res,const Convolution2DCommon * common,Backend * b)58 DenseConvolutionTiledExecutor::DenseConvolutionTiledExecutor(std::shared_ptr<CPUConvolution::Resource> res, const Convolution2DCommon* common, Backend* b) : ConvolutionTiledExecutor(res, b) {
59 mProxy.reset(new DenseConvolutionTiledImpl(common, b));
60 }
61
~DenseConvolutionTiledExecutor()62 DenseConvolutionTiledExecutor::~DenseConvolutionTiledExecutor() {
63 // Do nothing
64 }
onClone(Backend * bn,const Op * op,Execution ** dst)65 bool DenseConvolutionTiledExecutor::onClone(Backend* bn, const Op* op, Execution** dst) {
66 if (!mValid) {
67 return false;
68 }
69 if (nullptr == dst) {
70 return true;
71 }
72 *dst = new DenseConvolutionTiledExecutor(mResource, op->main_as_Convolution2D()->common(), bn);
73 return true;
74 }
75
onExecute(const std::vector<Tensor * > & inputs,const std::vector<Tensor * > & outputs)76 ErrorCode ConvolutionTiledExecutorMultiInput::onExecute(const std::vector<Tensor*>& inputs,
77 const std::vector<Tensor*>& outputs) {
78 int depth = inputs[1]->channel();
79 int outputCount = inputs[1]->batch();
80 auto function = static_cast<CPUBackend*>(backend())->functions();
81 if (nullptr != mTempBias) {
82 ::memset(mTempBias->host<float>(), 0, mTempBias->elementSize() * function->bytes);
83 if (inputs.size() > 2) {
84 ::memcpy(mTempBias->host<float>(), inputs[2]->host<float>(), inputs[2]->elementSize() * function->bytes);
85 }
86 }
87 auto cache = mTempWeightCache->host<float>();
88 auto source = inputs[1]->host<float>();
89 auto kernelSize = inputs[1]->width() * inputs[1]->height();
90 // Swap k, ic
91 int dims[4] = {
92 depth,
93 kernelSize,
94 kernelSize,
95 depth
96 };
97 if (function->bytes < 4) {
98 // TODO: Opt it
99 // Lowp
100 source = mTempWeightCache->host<float>() + mTempWeightCache->stride(0);
101 function->MNNLowpToFp32(inputs[1]->host<int16_t>(), source, inputs[1]->elementSize());
102 for (int o=0; o<outputCount; ++o) {
103 auto dO = cache + o * depth * kernelSize;
104 auto sO = source + o * depth * kernelSize;
105 MNNTranspose32Bit((int32_t*)dO, (const int32_t*)sO, &dims[0]);
106 }
107 function->MNNFp32ToLowp(cache, (int16_t*)cache, inputs[1]->elementSize());
108 } else {
109 for (int o=0; o<outputCount; ++o) {
110 auto dO = cache + o * depth * kernelSize;
111 auto sO = source + o * depth * kernelSize;
112 MNNTranspose32Bit((int32_t*)dO, (const int32_t*)sO, &dims[0]);
113 }
114 }
115 function->MNNPackForMatMul_B(mTempWeight->host<float>(), mTempWeightCache->host<float>(), outputCount, inputs[1]->width() * inputs[1]->height() * depth, true);
116 return mProxy->onExecute(mInputs, outputs);
117 }
onResize(const std::vector<Tensor * > & inputs,const std::vector<Tensor * > & outputs)118 ErrorCode ConvolutionTiledExecutorMultiInput::onResize(const std::vector<Tensor*>& inputs,
119 const std::vector<Tensor*>& outputs) {
120 int depth = inputs[1]->channel();
121 int outputCount = outputs[0]->channel();
122 auto function = static_cast<CPUBackend*>(backend())->functions();
123 int eP, lP, hP;
124 function->MNNGetMatMulPackMode(&eP, &lP, &hP);
125 auto kernelSize = depth * inputs[1]->width() * inputs[1]->height();
126 mTempWeight.reset(Tensor::createDevice<float>(
127 {UP_DIV(outputCount, hP), UP_DIV(kernelSize, lP), lP * hP}));
128 if (function->bytes < 4) {
129 mTempWeightCache.reset(Tensor::createDevice<int32_t>({2, outputCount * kernelSize}));
130 } else {
131 mTempWeightCache.reset(Tensor::createDevice<float>({outputCount * kernelSize}));
132 }
133 auto res = backend()->onAcquireBuffer(mTempWeight.get(), Backend::DYNAMIC);
134 res = res && backend()->onAcquireBuffer(mTempWeightCache.get(), Backend::DYNAMIC);
135 mTempBias.reset();
136 if (!res) {
137 return OUT_OF_MEMORY;
138 }
139 if (inputs.size() > 2 && inputs[2]->elementSize() % function->pack == 0) {
140 mInputs = {inputs[0], mTempWeight.get(), inputs[2]};
141 } else {
142 mTempBias.reset(Tensor::createDevice<float>({UP_DIV(outputCount, function->pack) * function->pack}));
143 backend()->onAcquireBuffer(mTempBias.get(), Backend::DYNAMIC);
144 mInputs = {inputs[0], mTempWeight.get(), mTempBias.get()};
145 }
146 backend()->onReleaseBuffer(mTempWeightCache.get(), Backend::DYNAMIC);
147 auto errorCode = mProxy->onResize(mInputs, outputs);
148 backend()->onReleaseBuffer(mTempWeight.get(), Backend::DYNAMIC);
149 if (nullptr != mTempBias) {
150 backend()->onReleaseBuffer(mTempBias.get(), Backend::DYNAMIC);
151 }
152 return errorCode;
153 }
154
155
getPackParameter(int * eP,int * lP,int * hP,const CoreFunctions * core)156 void DenseConvolutionTiledImpl::getPackParameter(int* eP, int* lP, int* hP, const CoreFunctions* core) {
157 core->MNNGetMatMulPackMode(eP, lP, hP);
158 return;
159 }
160
161 #define GENERATE_FUNCTOR() \
162 auto matmulUnit = core->MNNPackedMatMul; \
163 auto matmulRemain = core->MNNPackedMatMulRemain;
164
165 #define GENERATE_WEIGHT() \
166 auto weightPtr = weight->host<float>();
167
168 #define GENERATE_MM() \
169 if (xC == CONVOLUTION_TILED_NUMBER) { \
170 matmulUnit((float*)(dstOrigin + start * unit * bytes), (float*)gemmBuffer, weightPtr, parameters.data(), \
171 postParameters.data(), biasPtr); \
172 } else { \
173 matmulRemain((float*)(dstOrigin + start * unit * bytes), (float*)gemmBuffer, weightPtr, xC, parameters.data(), \
174 postParameters.data(), biasPtr); \
175 } \
176 /*MNN_PRINT("formatMatrix gemm. xC:%d, eP:%d\n", xC, eP);*/ \
177 /*formatMatrix((float*)(dstOrigin + start * 4 * bytes), {UP_DIV(outputChannel, hP), xC, hP});*/
178
onResize(const std::vector<Tensor * > & inputs,const std::vector<Tensor * > & outputs)179 ErrorCode DenseConvolutionTiledImpl::onResize(const std::vector<Tensor*>& inputs,
180 const std::vector<Tensor*>& outputs) {
181 GENERATE_RESIZE();
182 }
183
184 #undef GENERATE_FUNCTOR
185 #undef GENERATE_WEIGHT
186 #undef GENERATE_MM
187
188 } // namespace MNN
189