1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_MATH_FUNCTIONS_AVX_H
11 #define EIGEN_MATH_FUNCTIONS_AVX_H
12 
13 /* The sin and cos functions of this file are loosely derived from
14  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
15  */
16 
17 namespace Eigen {
18 
19 namespace internal {
20 
21 template <>
22 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
23 psin<Packet8f>(const Packet8f& _x) {
24   return psin_float(_x);
25 }
26 
27 template <>
28 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
29 pcos<Packet8f>(const Packet8f& _x) {
30   return pcos_float(_x);
31 }
32 
33 template <>
34 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
35 plog<Packet8f>(const Packet8f& _x) {
36   return plog_float(_x);
37 }
38 
39 template <>
40 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
41 plog<Packet4d>(const Packet4d& _x) {
42   return plog_double(_x);
43 }
44 
45 template <>
46 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
47 plog2<Packet8f>(const Packet8f& _x) {
48   return plog2_float(_x);
49 }
50 
51 template <>
52 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
53 plog2<Packet4d>(const Packet4d& _x) {
54   return plog2_double(_x);
55 }
56 
57 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
58 Packet8f plog1p<Packet8f>(const Packet8f& _x) {
59   return generic_plog1p(_x);
60 }
61 
62 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
63 Packet8f pexpm1<Packet8f>(const Packet8f& _x) {
64   return generic_expm1(_x);
65 }
66 
67 // Exponential function. Works by writing "x = m*log(2) + r" where
68 // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
69 // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
70 template <>
71 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
72 pexp<Packet8f>(const Packet8f& _x) {
73   return pexp_float(_x);
74 }
75 
76 // Hyperbolic Tangent function.
77 template <>
78 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
79 ptanh<Packet8f>(const Packet8f& _x) {
80   return internal::generic_fast_tanh_float(_x);
81 }
82 
83 // Exponential function for doubles.
84 template <>
85 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
86 pexp<Packet4d>(const Packet4d& _x) {
87   return pexp_double(_x);
88 }
89 
90 // Functions for sqrt.
91 // The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
92 // of Newton's method, at a cost of 1-2 bits of precision as opposed to the
93 // exact solution. It does not handle +inf, or denormalized numbers correctly.
94 // The main advantage of this approach is not just speed, but also the fact that
95 // it can be inlined and pipelined with other computations, further reducing its
96 // effective latency. This is similar to Quake3's fast inverse square root.
97 // For detail see here: http://www.beyond3d.com/content/articles/8/
98 #if EIGEN_FAST_MATH
99 template <>
100 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
101 Packet8f psqrt<Packet8f>(const Packet8f& _x) {
102   Packet8f minus_half_x = pmul(_x, pset1<Packet8f>(-0.5f));
103   Packet8f denormal_mask = pandnot(
104       pcmp_lt(_x, pset1<Packet8f>((std::numeric_limits<float>::min)())),
105       pcmp_lt(_x, pzero(_x)));
106 
107   // Compute approximate reciprocal sqrt.
108   Packet8f x = _mm256_rsqrt_ps(_x);
109   // Do a single step of Newton's iteration.
110   x = pmul(x, pmadd(minus_half_x, pmul(x,x), pset1<Packet8f>(1.5f)));
111   // Flush results for denormals to zero.
112   return pandnot(pmul(_x,x), denormal_mask);
113 }
114 
115 #else
116 
117 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
118 Packet8f psqrt<Packet8f>(const Packet8f& _x) {
119   return _mm256_sqrt_ps(_x);
120 }
121 
122 #endif
123 
124 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
125 Packet4d psqrt<Packet4d>(const Packet4d& _x) {
126   return _mm256_sqrt_pd(_x);
127 }
128 
129 #if EIGEN_FAST_MATH
130 template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
131 Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
132   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
133   _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
134   _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
135   _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
136 
137   Packet8f neg_half = pmul(_x, p8f_minus_half);
138 
139   // select only the inverse sqrt of positive normal inputs (denormals are
140   // flushed to zero and cause infs as well).
141   Packet8f lt_min_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ);
142   Packet8f inf_mask =  _mm256_cmp_ps(_x, p8f_inf, _CMP_EQ_OQ);
143   Packet8f not_normal_finite_mask = _mm256_or_ps(lt_min_mask, inf_mask);
144 
145   // Compute an approximate result using the rsqrt intrinsic.
146   Packet8f y_approx = _mm256_rsqrt_ps(_x);
147 
148   // Do a single step of Newton-Raphson iteration to improve the approximation.
149   // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
150   // It is essential to evaluate the inner term like this because forming
151   // y_n^2 may over- or underflow.
152   Packet8f y_newton = pmul(y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p8f_one_point_five));
153 
154   // Select the result of the Newton-Raphson step for positive normal arguments.
155   // For other arguments, choose the output of the intrinsic. This will
156   // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
157   // x is zero or a positive denormalized float (equivalent to flushing positive
158   // denormalized inputs to zero).
159   return pselect<Packet8f>(not_normal_finite_mask, y_approx, y_newton);
160 }
161 
162 #else
163 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
164 Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
165   _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
166   return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(_x));
167 }
168 #endif
169 
170 template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
171 Packet4d prsqrt<Packet4d>(const Packet4d& _x) {
172   _EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
173   return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(_x));
174 }
175 
F16_PACKET_FUNCTION(Packet8f,Packet8h,psin)176 F16_PACKET_FUNCTION(Packet8f, Packet8h, psin)
177 F16_PACKET_FUNCTION(Packet8f, Packet8h, pcos)
178 F16_PACKET_FUNCTION(Packet8f, Packet8h, plog)
179 F16_PACKET_FUNCTION(Packet8f, Packet8h, plog2)
180 F16_PACKET_FUNCTION(Packet8f, Packet8h, plog1p)
181 F16_PACKET_FUNCTION(Packet8f, Packet8h, pexpm1)
182 F16_PACKET_FUNCTION(Packet8f, Packet8h, pexp)
183 F16_PACKET_FUNCTION(Packet8f, Packet8h, ptanh)
184 F16_PACKET_FUNCTION(Packet8f, Packet8h, psqrt)
185 F16_PACKET_FUNCTION(Packet8f, Packet8h, prsqrt)
186 
187 template <>
188 EIGEN_STRONG_INLINE Packet8h pfrexp(const Packet8h& a, Packet8h& exponent) {
189   Packet8f fexponent;
190   const Packet8h out = float2half(pfrexp<Packet8f>(half2float(a), fexponent));
191   exponent = float2half(fexponent);
192   return out;
193 }
194 
195 template <>
pldexp(const Packet8h & a,const Packet8h & exponent)196 EIGEN_STRONG_INLINE Packet8h pldexp(const Packet8h& a, const Packet8h& exponent) {
197   return float2half(pldexp<Packet8f>(half2float(a), half2float(exponent)));
198 }
199 
BF16_PACKET_FUNCTION(Packet8f,Packet8bf,psin)200 BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psin)
201 BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pcos)
202 BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog)
203 BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog2)
204 BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog1p)
205 BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexpm1)
206 BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexp)
207 BF16_PACKET_FUNCTION(Packet8f, Packet8bf, ptanh)
208 BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psqrt)
209 BF16_PACKET_FUNCTION(Packet8f, Packet8bf, prsqrt)
210 
211 template <>
212 EIGEN_STRONG_INLINE Packet8bf pfrexp(const Packet8bf& a, Packet8bf& exponent) {
213   Packet8f fexponent;
214   const Packet8bf out = F32ToBf16(pfrexp<Packet8f>(Bf16ToF32(a), fexponent));
215   exponent = F32ToBf16(fexponent);
216   return out;
217 }
218 
219 template <>
pldexp(const Packet8bf & a,const Packet8bf & exponent)220 EIGEN_STRONG_INLINE Packet8bf pldexp(const Packet8bf& a, const Packet8bf& exponent) {
221   return F32ToBf16(pldexp<Packet8f>(Bf16ToF32(a), Bf16ToF32(exponent)));
222 }
223 
224 }  // end namespace internal
225 
226 }  // end namespace Eigen
227 
228 #endif  // EIGEN_MATH_FUNCTIONS_AVX_H
229