Automatically generated by Pod::Man 2.16 (Pod::Simple 3.07)

Standard preamble:
========================================================================

\\$1

.. ..

..
.. Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` . ds C' 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.

If the F register is turned on, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
. de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . nr % 0 . rr F .\} . de IX .. .\}
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================

Title ".::uuid 3"
.::uuid 3 "OSSP uuid 1.6.2" "04-Jul-2008" "Universally Unique Identifier"
For nroff, turn off justification. Always turn off hyphenation; it makes
way too many mistakes in technical documents.
"NAME"
\fB\s-1OSSP\s0 uuid - Universally Unique Identifier
"VERSION"
Header "VERSION" \s-1OSSP\s0 uuid \s-11.6.2 (04-Jul-2008)\s0
"DESCRIPTION"
Header "DESCRIPTION" \fB\s-1OSSP\s0 uuid is a \s-1ISO-C:1999\s0 application programming interface (\s-1API\s0) and corresponding command line interface (\s-1CLI\s0) for the generation of \s-1DCE\s0 1.1, \s-1ISO/IEC\s0 11578:1996 and \s-1IETF\s0 \s-1RFC-4122\s0 compliant Universally Unique Identifier (\s-1UUID\s0). It supports \s-1DCE\s0 1.1 variant UUIDs of version 1 (time and node based), version 3 (name based, \s-1MD5\s0), version 4 (random number based) and version 5 (name based, \s-1SHA-1\s0). Additional \s-1API\s0 bindings are provided for the languages \s-1ISO-\*(C+:1998\s0, Perl:5 and \s-1PHP:4/5\s0. Optional backward compatibility exists for the ISO-C \s-1DCE-1\s0.1 and Perl Data::UUID APIs.

UUIDs are 128 bit numbers which are intended to have a high likelihood of uniqueness over space and time and are computationally difficult to guess. They are globally unique identifiers which can be locally generated without contacting a global registration authority. UUIDs are intended as unique identifiers for both mass tagging objects with an extremely short lifetime and to reliably identifying very persistent objects across a network.

This is the ISO-C application programming interface (\s-1API\s0) of \s-1OSSP\s0 uuid. .Sh "\s-1UUID\s0 Binary Representation" Subsection "UUID Binary Representation" According to the \s-1DCE\s0 1.1, \s-1ISO/IEC\s0 11578:1996 and \s-1IETF\s0 \s-1RFC-4122\s0 standards, a \s-1DCE\s0 1.1 variant \s-1UUID\s0 is a 128 bit number defined out of 7 fields, each field a multiple of an octet in size and stored in network byte order:

.Vb 11 [4] version -->| |<-- | | | | [16] [32] [16] | |time_hi time_low time_mid | _and_version |<---------------------------->||<------------>||<------------>| | MSB || || | | | / || || | | |/ || || | | \& +------++------++------++------++------++------++------++------+~~ | 15 || 14 || 13 || 12 || 11 || 10 |####9 || 8 | | MSO || || || || || |#### || | +------++------++------++------++------++------++------++------+~~ 7654321076543210765432107654321076543210765432107654321076543210 \& ~~+------++------++------++------++------++------++------++------+ ##* 7 || 6 || 5 || 4 || 3 || 2 || 1 || 0 | ##* || || || || || || || LSO | ~~+------++------++------++------++------++------++------++------+ 7654321076543210765432107654321076543210765432107654321076543210 \& | | || || /| | | || || / | | | || || LSB | |<---->||<---->||<-------------------------------------------->| |clk_seq clk_seq node |_hi_res _low [48] |[5-6] [8] | | -->| |<-- variant [2-3] .Ve

An example of a \s-1UUID\s0 binary representation is the octet stream \*(C`0xF8 0x1D 0x4F 0xAE 0x7D 0xEC 0x11 0xD0 0xA7 0x65 0x00 0xA0 0xC9 0x1E 0x6B 0xF6\*(C'. The binary representation format is exactly what the \s-1OSSP\s0 uuid \s-1API\s0 functions uuid_import() and uuid_export() deal with under \f(CW\*(C`UUID_FMT_BIN\*(C'. .Sh "\s-1UUID\s0 \s-1ASCII\s0 String Representation" Subsection "UUID ASCII String Representation" According to the \s-1DCE\s0 1.1, \s-1ISO/IEC\s0 11578:1996 and \s-1IETF\s0 \s-1RFC-4122\s0 standards, a \s-1DCE\s0 1.1 variant \s-1UUID\s0 is represented as an \s-1ASCII\s0 string consisting of 8 hexadecimal digits followed by a hyphen, then three groups of 4 hexadecimal digits each followed by a hyphen, then 12 hexadecimal digits. Formally, the string representation is defined by the following grammar:

.Vb 10 uuid = <time_low> "-" <time_mid> "-" <time_high_and_version> "-" <clock_seq_high_and_reserved> <clock_seq_low> "-" <node> time_low = 4*<hex_octet> time_mid = 2*<hex_octet> time_high_and_version = 2*<hex_octet> clock_seq_high_and_reserved = <hex_octet> clock_seq_low = <hex_octet> node = 6*<hex_octet> hex_octet = <hex_digit> <hex_digit> hex_digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9" |"a"|"b"|"c"|"d"|"e"|"f" |"A"|"B"|"C"|"D"|"E"|"F" .Ve

An example of a \s-1UUID\s0 string representation is the \s-1ASCII\s0 string "\*(C`f81d4fae-7dec-11d0-a765-00a0c91e6bf6\*(C'". The string representation format is exactly what the \s-1OSSP\s0 uuid \s-1API\s0 functions uuid_import() and uuid_export() deal with under \*(C`UUID_FMT_STR\*(C'.

Notice: a corresponding \s-1URL\s0 can be generated out of a \s-1ASCII\s0 string representation of an \s-1UUID\s0 by prefixing with "\*(C`urn:uuid:\*(C'\*(L" as in \*(R"\*(C`urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6\*(C'". .Sh "\s-1UUID\s0 Single Integer Value Representation" Subsection "UUID Single Integer Value Representation" According to the \s-1ISO/IEC\s0 11578:1996 and ITU-T Rec. X.667 standards, a \s-1DCE\s0 1.1 variant \s-1UUID\s0 can be also represented as a single integer value consisting of a decimal number with up to 39 digits.

An example of a \s-1UUID\s0 single integer value representation is the decimal number "329800735698586629295641978511506172918". The string representation format is exactly what the \s-1OSSP\s0 uuid \s-1API\s0 functions \fBuuid_import() and uuid_export() deal with under \*(C`UUID_FMT_SIV\*(C'.

Notice: a corresponding \s-1ISO\s0 \s-1OID\s0 can be generated under the \*(L"{joint-iso-itu-t\|(2) uuid(25)}\*(R" arc out of a single integer value representation of a \s-1UUID\s0 by prefixing with "2.25.\*(L". An example \s-1OID\s0 is \*(R"2.25.329800735698586629295641978511506172918\*(L". Additionally, an \s-1URL\s0 can be generated by further prefixing with \*(R"\*(C`urn:oid:\*(C'\*(L" as in \*(R"\*(C`urn:oid:2.25.329800735698586629295641978511506172918\*(C'". .Sh "\s-1UUID\s0 Variants and Versions" Subsection "UUID Variants and Versions" A \s-1UUID\s0 has a variant and version. The variant defines the layout of the \s-1UUID\s0. The version defines the content of the \s-1UUID\s0. The \s-1UUID\s0 variant supported in \s-1OSSP\s0 uuid is the \s-1DCE\s0 1.1 variant only. The \s-1DCE\s0 1.1 \s-1UUID\s0 variant versions supported in \s-1OSSP\s0 uuid are:

"Version 1 (time and node based)" 4
Item "Version 1 (time and node based)" These are the classical UUIDs, created out of a 60-bit system time, a 14-bit local clock sequence and 48-bit system \s-1MAC\s0 address. The \s-1MAC\s0 address can be either the real one of a physical network interface card (\s-1NIC\s0) or a random multi-cast \s-1MAC\s0 address. Version 1 UUIDs are usually used as one-time global unique identifiers.
"Version 3 (name based, \s-1MD5\s0)" 4
Item "Version 3 (name based, MD5)" These are UUIDs which are based on the 128-bit \s-1MD5\s0 message digest of the concatenation of a 128-bit namespace \s-1UUID\s0 and a name string of arbitrary length. Version 3 UUIDs are usually used for non-unique but repeatable message digest identifiers.
"Version 4 (random data based)" 4
Item "Version 4 (random data based)" These are UUIDs which are based on just 128-bit of random data. Version 4 UUIDs are usually used as one-time local unique identifiers.
"Version 5 (name based, \s-1SHA-1\s0)" 4
Item "Version 5 (name based, SHA-1)" These are UUIDs which are based on the 160-bit \s-1SHA-1\s0 message digest of the concatenation of a 128-bit namespace \s-1UUID\s0 and a name string of arbitrary length. Version 5 UUIDs are usually used for non-unique but repeatable message digest identifiers. .Sh "\s-1UUID\s0 Uniqueness" Subsection "UUID Uniqueness" Version 1 UUIDs are guaranteed to be unique through combinations of hardware addresses, time stamps and random seeds. There is a reference in the \s-1UUID\s0 to the hardware (\s-1MAC\s0) address of the first network interface card (\s-1NIC\s0) on the host which generated the \s-1UUID\s0 \*(-- this reference is intended to ensure the \s-1UUID\s0 will be unique in space as the \s-1MAC\s0 address of every network card is assigned by a single global authority (\s-1IEEE\s0) and is guaranteed to be unique. The next component in a \s-1UUID\s0 is a timestamp which, as clock always (should) move forward, will be unique in time. Just in case some part of the above goes wrong (the hardware address cannot be determined or the clock moved steps backward), there is a random clock sequence component placed into the \s-1UUID\s0 as a \*(L"catch-all\*(R" for uniqueness.

Version 3 and version 5 UUIDs are guaranteed to be inherently globally unique if the combination of namespace and name used to generate them is unique.

Version 4 UUIDs are not guaranteed to be globally unique, because they are generated out of locally gathered pseudo-random numbers only. Nevertheless there is still a high likelihood of uniqueness over space and time and that they are computationally difficult to guess. .Sh "Nil \s-1UUID\s0" Subsection "Nil UUID" There is a special Nil \s-1UUID\s0 consisting of all octets set to zero in the binary representation. It can be used as a special \s-1UUID\s0 value which does not conflict with real UUIDs.

"APPLICATION PROGRAMMING INTERFACE"
Header "APPLICATION PROGRAMMING INTERFACE" The ISO-C Application Programming Interface (\s-1API\s0) of \s-1OSSP\s0 uuid consists of the following components. .Sh "\s-1CONSTANTS\s0" Subsection "CONSTANTS" The following constants are provided:
"\s-1UUID_VERSION\s0" 4
Item "UUID_VERSION" The hexadecimal encoded \s-1OSSP\s0 uuid version. This allows compile-time checking of the \s-1OSSP\s0 uuid version. For run-time checking use \fBuuid_version() instead. .Sp The hexadecimal encoding for a version "$v.$r$t$l" is calculated with the \s-1GNU\s0 shtool version command and is (in Perl-style for concise description) "sprintf('0x%x%02x%d%02x', $v, $r, {qw(s 9 . 2 b 1 a 0)}->{$t}, ($t eq 's' ? 99 : $l))\*(L", i.e., the version 0.9.6 is encoded as \*(R"0x009206".
"\s-1UUID_LEN_BIN\s0, \s-1UUID_LEN_STR\s0, \s-1UUID_LEN_SIV\s0" 4
Item "UUID_LEN_BIN, UUID_LEN_STR, UUID_LEN_SIV" The number of octets of the \s-1UUID\s0 binary and string representations. Notice that the lengths of the string representation (\s-1UUID_LEN_STR\s0) and the lengths of the single integer value representation (\s-1UUID_LEN_SIV\s0) does not include the necessary \*(C`NUL\*(C' termination character.
"\s-1UUID_MAKE_V1\s0, \s-1UUID_MAKE_V3\s0, \s-1UUID_MAKE_V4\s0, \s-1UUID_MAKE_V5\s0, \s-1UUID_MAKE_MC\s0" 4
Item "UUID_MAKE_V1, UUID_MAKE_V3, UUID_MAKE_V4, UUID_MAKE_V5, UUID_MAKE_MC" The mode bits for use with uuid_make(). The \s-1UUID_MAKE_V\s0N specify which \s-1UUID\s0 version to generate. The \s-1UUID_MAKE_MC\s0 forces the use of a random multi-cast \s-1MAC\s0 address instead of the real physical \s-1MAC\s0 address in version 1 UUIDs.
"\s-1UUID_RC_OK\s0, \s-1UUID_RC_ARG\s0, \s-1UUID_RC_MEM\s0, \s-1UUID_RC_SYS\s0, \s-1UUID_RC_INT\s0, \s-1UUID_RC_IMP\s0" 4
Item "UUID_RC_OK, UUID_RC_ARG, UUID_RC_MEM, UUID_RC_SYS, UUID_RC_INT, UUID_RC_IMP" The possible numerical return-codes of \s-1API\s0 functions. The \*(C`UUID_RC_OK\*(C' indicates success, the others indicate errors. Use uuid_error() to translate them into string versions.
"\s-1UUID_FMT_BIN\s0, \s-1UUID_FMT_STR\s0, \s-1UUID_FMT_SIV\s0, \s-1UUID_FMT_TXT\s0" 4
Item "UUID_FMT_BIN, UUID_FMT_STR, UUID_FMT_SIV, UUID_FMT_TXT" The fmt formats for use with uuid_import() and uuid_export(). The \s-1UUID_FMT_BIN\s0 indicates the \s-1UUID\s0 binary representation (of length \s-1UUID_LEN_BIN\s0), the \s-1UUID_FMT_STR\s0 indicates the \s-1UUID\s0 string representation (of length \s-1UUID_LEN_STR\s0), the \s-1UUID_FMT_SIV\s0 indicates the \s-1UUID\s0 single integer value representation (of maximum length \s-1UUID_LEN_SIV\s0) and the \s-1UUID_FMT_TXT\s0 indicates the textual description (of arbitrary length) of a \s-1UUID\s0. .Sh "\s-1FUNCTIONS\s0" Subsection "FUNCTIONS" The following functions are provided:
"uuid_rc_t uuid_create(uuid_t **uuid);" 4
Item "uuid_rc_t uuid_create(uuid_t **uuid);" Create a new \s-1UUID\s0 object and store a pointer to it in \*(C`*\*(C'uuid. A \s-1UUID\s0 object consists of an internal representation of a \s-1UUID\s0, the internal \s-1PRNG\s0 and \s-1MD5\s0 generator contexts, and cached \s-1MAC\s0 address and timestamp information. The initial \s-1UUID\s0 is the Nil \s-1UUID\s0.
"uuid_rc_t uuid_destroy(uuid_t *uuid);" 4
Item "uuid_rc_t uuid_destroy(uuid_t *uuid);" Destroy \s-1UUID\s0 object uuid.
"uuid_rc_t uuid_clone(const uuid_t *uuid, uuid_t **uuid_clone);" 4
Item "uuid_rc_t uuid_clone(const uuid_t *uuid, uuid_t **uuid_clone);" Clone \s-1UUID\s0 object uuid and store new \s-1UUID\s0 object in uuid_clone.
"uuid_rc_t uuid_isnil(const uuid_t *uuid, int *result);" 4
Item "uuid_rc_t uuid_isnil(const uuid_t *uuid, int *result);" Checks whether the \s-1UUID\s0 in uuid is the Nil \s-1UUID\s0. If this is the case, it returns true in \*(C`*\*(C'result. Else it returns false in \*(C`*\*(C'result.
"uuid_rc_t uuid_compare(const uuid_t *uuid, const uuid_t *uuid2, int *result);" 4
Item "uuid_rc_t uuid_compare(const uuid_t *uuid, const uuid_t *uuid2, int *result);" Compares the order of the two UUIDs in uuid1 and uuid2 and returns the result in \*(C`*\*(C'result: \*(C`-1\*(C' if uuid1 is smaller than uuid2, 0 if uuid1 is equal to uuid2 and +1 if uuid1 is greater than uuid2.
"uuid_rc_t uuid_import(uuid_t *uuid, uuid_fmt_t fmt, const void *data_ptr, size_t data_len);" 4
Item "uuid_rc_t uuid_import(uuid_t *uuid, uuid_fmt_t fmt, const void *data_ptr, size_t data_len);" Imports a \s-1UUID\s0 uuid from an external representation of format fmt. The data is read from the buffer at data_ptr which contains at least \fIdata_len bytes. .Sp The format of the external representation is specified by fmt and the minimum expected length in data_len depends on it. Valid values for \fIfmt are \s-1UUID_FMT_BIN\s0, \s-1UUID_FMT_STR\s0 and \s-1UUID_FMT_SIV\s0.
"uuid_rc_t uuid_export(const uuid_t *uuid, uuid_fmt_t fmt, void *data_ptr, size_t *data_len);" 4
Item "uuid_rc_t uuid_export(const uuid_t *uuid, uuid_fmt_t fmt, void *data_ptr, size_t *data_len);" Exports a \s-1UUID\s0 uuid into an external representation of format \fIfmt. Valid values for fmt are \s-1UUID_FMT_BIN\s0, \s-1UUID_FMT_STR\s0, \fB\s-1UUID_FMT_SIV\s0 and \s-1UUID_FMT_TXT\s0. .Sp The data is written to the buffer whose location is obtained by dereferencing data_ptr after a \*(L"cast\*(R" to the appropriate pointer-to-pointer type. Hence the generic pointer argument data_ptr is expected to be a pointer to a \*(L"pointer of a particular type\*(R", i.e., it has to be of type "\*(C`unsigned char **\*(C'" for \s-1UUID_FMT_BIN\s0 and "\*(C`char **\*(C'" for \s-1UUID_FMT_STR\s0, \s-1UUID_FMT_SIV\s0 and \s-1UUID_FMT_TXT\s0. .Sp The buffer has to be room for at least \*(C`*\*(C'data_len bytes. If the value of the pointer after \*(L"casting\*(R" and dereferencing data_ptr is \*(C`NULL\*(C', data_len is ignored as input and a new buffer is allocated and returned in the pointer after \*(L"casting\*(R" and dereferencing \fIdata_ptr (the caller has to free\|(3) it later on). .Sp If data_len is not \*(C`NULL\*(C', the number of available bytes in the buffer has to be provided in \*(C`*\*(C'data_len and the number of actually written bytes are returned in \*(C`*\*(C'data_len again. The minimum required buffer length depends on the external representation as specified by fmt and is at least \s-1UUID_LEN_BIN\s0 for \s-1UUID_FMT_BIN\s0, \fB\s-1UUID_LEN_STR\s0 for \s-1UUID_FMT_STR\s0 and \s-1UUID_LEN_SIV\s0 for \fB\s-1UUID_FMT_SIV\s0. For \s-1UUID_FMT_TXT\s0 a buffer of unspecified length is required and hence it is recommended to allow \s-1OSSP\s0 uuid to allocate the buffer as necessary.
"uuid_rc_t uuid_load(uuid_t *uuid, const char *name);" 4
Item "uuid_rc_t uuid_load(uuid_t *uuid, const char *name);" Loads a pre-defined \s-1UUID\s0 value into the \s-1UUID\s0 object uuid. The following name arguments are currently known:

"name \s-1UUID\s0" 4
Item "name UUID"

0

"nil 00000000-0000-0000-0000-000000000000" 4
Item "nil 00000000-0000-0000-0000-000000000000"
"ns:DNS 6ba7b810-9dad-11d1-80b4-00c04fd430c8" 4
Item "ns:DNS 6ba7b810-9dad-11d1-80b4-00c04fd430c8"
"ns:URL 6ba7b811-9dad-11d1-80b4-00c04fd430c8" 4
Item "ns:URL 6ba7b811-9dad-11d1-80b4-00c04fd430c8"
"ns:OID 6ba7b812-9dad-11d1-80b4-00c04fd430c8" 4
Item "ns:OID 6ba7b812-9dad-11d1-80b4-00c04fd430c8"
"ns:X500 6ba7b814-9dad-11d1-80b4-00c04fd430c8" 4
Item "ns:X500 6ba7b814-9dad-11d1-80b4-00c04fd430c8"

.Sp The "\*(C`ns:\*(C'\s-1XXX\s0" are names of pre-defined name-space UUIDs for use in the generation of \s-1DCE\s0 1.1 version 3 and version 5 UUIDs.

"uuid_rc_t uuid_make(uuid_t *uuid, unsigned int mode, ...);" 4
Item "uuid_rc_t uuid_make(uuid_t *uuid, unsigned int mode, ...);" Generates a new \s-1UUID\s0 in uuid according to mode and optional arguments (dependent on mode). .Sp If mode contains the \*(C`UUID_MAKE_V1\*(C' bit, a \s-1DCE\s0 1.1 variant \s-1UUID\s0 of version 1 is generated. Then optionally the bit \*(C`UUID_MAKE_MC\*(C' forces the use of random multi-cast \s-1MAC\s0 address instead of the real physical \s-1MAC\s0 address (the default). The \s-1UUID\s0 is generated out of the 60-bit current system time, a 12-bit clock sequence and the 48-bit \s-1MAC\s0 address. .Sp If mode contains the \*(C`UUID_MAKE_V3\*(C' or \*(C`UUID_MAKE_V5\*(C' bit, a \s-1DCE\s0 1.1 variant \s-1UUID\s0 of version 3 or 5 is generated and two additional arguments are expected: first, a namespace \s-1UUID\s0 object (\*(C`uuid_t *\*(C'). Second, a name string of arbitrary length (\*(C`const char *\*(C'). The \s-1UUID\s0 is generated out of the 128-bit \s-1MD5\s0 or 160-bit \s-1SHA-1\s0 from the concatenated octet stream of namespace \s-1UUID\s0 and name string. .Sp If mode contains the \*(C`UUID_MAKE_V4\*(C' bit, a \s-1DCE\s0 1.1 variant \s-1UUID\s0 of version 4 is generated. The \s-1UUID\s0 is generated out of 128-bit random data.
"char *uuid_error(uuid_rc_t rc);" 4
Item "char *uuid_error(uuid_rc_t rc);" Returns a constant string representation corresponding to the return-code rc for use in displaying \s-1OSSP\s0 uuid errors.
"unsigned long uuid_version(void);" 4
Item "unsigned long uuid_version(void);" Returns the hexadecimal encoded \s-1OSSP\s0 uuid version as compiled into the library object files. This allows run-time checking of the \s-1OSSP\s0 uuid version. For compile-time checking use \*(C`UUID_VERSION\*(C' instead.
"EXAMPLE"
Header "EXAMPLE" The following shows an example usage of the \s-1API\s0. Error handling is omitted for code simplification and has to be re-added for production code.

.Vb 5 /* generate a DCE 1.1 v1 UUID from system environment */ char *uuid_v1(void) { uuid_t *uuid; char *str; \& uuid_create(&uuid); uuid_make(uuid, UUID_MAKE_V1); str = NULL; uuid_export(uuid, UUID_FMT_STR, &str, NULL); uuid_destroy(uuid); return str; } \& /* generate a DCE 1.1 v3 UUID from an URL */ char *uuid_v3(const char *url) { uuid_t *uuid; uuid_t *uuid_ns; char *str; \& uuid_create(&uuid); uuid_create(&uuid_ns); uuid_load(uuid_ns, "ns:URL"); uuid_make(uuid, UUID_MAKE_V3, uuid_ns, url); str = NULL; uuid_export(uuid, UUID_FMT_STR, &str, NULL); uuid_destroy(uuid_ns); uuid_destroy(uuid); return str; } .Ve

"SEE ALSO"
Header "SEE ALSO" The following are references to \s-1UUID\s0 documentation and specifications:
"\(bu" 4
\fBA Universally Unique IDentifier (\s-1UUID\s0) \s-1URN\s0 Namespace, P. Leach, M. Mealling, R. Salz, \s-1IETF\s0 \s-1RFC-4122\s0, July 2005, 32 pages, http://www.ietf.org/rfc/rfc4122.txt
"\(bu" 4
Information Technology \*(-- Open Systems Interconnection (\s-1OSI\s0), \fBProcedures for the operation of \s-1OSI\s0 Registration Authorities: Generation and Registration of Universally Unique Identifiers (UUIDs) and their Use as \s-1ASN\s0.1 Object Identifier Components, \s-1ISO/IEC\s0 9834-8:2004 / ITU-T Rec. X.667, 2004, December 2004, 25 pages, http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf
"\(bu" 4
\fB\s-1DCE\s0 1.1: Remote Procedure Call, appendix Universally Unique Identifier, Open Group Technical Standard Document Number C706, August 1997, 737 pages, (supersedes C309 \s-1DCE:\s0 Remote Procedure Call 8/1994, which was basis for \s-1ISO/IEC\s0 11578:1996 specification), http://www.opengroup.org/publications/catalog/c706.htm
"\(bu" 4
Information technology \*(-- Open Systems Interconnection (\s-1OSI\s0), \fBRemote Procedure Call (\s-1RPC\s0), \s-1ISO/IEC\s0 11578:1996, August 2001, 570 pages, (\s-1CHF\s0 340,00), http://www.iso.ch/cate/d2229.html
"\(bu" 4
\fB\s-1HTTP\s0 Extensions for Distributed Authoring (WebDAV), section 6.4.1 Node Field Generation Without the \s-1IEEE\s0 802 Address, \s-1IETF\s0 \s-1RFC-2518\s0, February 1999, 94 pages, http://www.ietf.org/rfc/rfc2518.txt
"\(bu" 4
\fB\s-1DCE\s0 1.1 compliant \s-1UUID\s0 functions, FreeBSD manual pages uuid\|(3) and uuidgen\|(2), http://www.freebsd.org/cgi/man.cgi?query=uuid&manpath=FreeBSD+6.0-RELEASE
"HISTORY"
Header "HISTORY" \fB\s-1OSSP\s0 uuid was implemented in January 2004 by Ralf S. Engelschall <rse@engelschall.com>. It was prompted by the use of UUIDs in the \s-1OSSP\s0 as and OpenPKG projects. It is a clean room implementation intended to be strictly standards compliant and maximum portable.
"SEE ALSO"
Header "SEE ALSO" \fIuuid\|(1), uuid-config\|(1), OSSP::uuid\|(3).