1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD: src/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c,v 1.10.2.1 2009/08/03 08:13:06 kensmith Exp $
22  */
23 
24 /*
25  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 /* #pragma ident	"%Z%%M%	%I%	%E% SMI" */
30 
31 /*
32  * DTrace - Dynamic Tracing for Solaris
33  *
34  * This is the implementation of the Solaris Dynamic Tracing framework
35  * (DTrace).  The user-visible interface to DTrace is described at length in
36  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37  * library, the in-kernel DTrace framework, and the DTrace providers are
38  * described in the block comments in the <sys/dtrace.h> header file.  The
39  * internal architecture of DTrace is described in the block comments in the
40  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41  * implementation very much assume mastery of all of these sources; if one has
42  * an unanswered question about the implementation, one should consult them
43  * first.
44  *
45  * The functions here are ordered roughly as follows:
46  *
47  *   - Probe context functions
48  *   - Probe hashing functions
49  *   - Non-probe context utility functions
50  *   - Matching functions
51  *   - Provider-to-Framework API functions
52  *   - Probe management functions
53  *   - DIF object functions
54  *   - Format functions
55  *   - Predicate functions
56  *   - ECB functions
57  *   - Buffer functions
58  *   - Enabling functions
59  *   - DOF functions
60  *   - Anonymous enabling functions
61  *   - Consumer state functions
62  *   - Helper functions
63  *   - Hook functions
64  *   - Driver cookbook functions
65  *
66  * Each group of functions begins with a block comment labelled the "DTrace
67  * [Group] Functions", allowing one to find each block by searching forward
68  * on capital-f functions.
69  */
70 #if !defined(sun)
71 /* we need internal access to mutexes for state inspection */
72 #define	__MUTEX_PRIVATE
73 #define __RWLOCK_PRIVATE
74 #endif
75 
76 #include <sys/errno.h>
77 #if !defined(sun)
78 #include <sys/time.h>
79 #endif
80 #include <sys/stat.h>
81 #include <sys/conf.h>
82 #include <sys/systm.h>
83 #if defined(sun)
84 #include <sys/modctl.h>
85 #include <sys/ddi.h>
86 #include <sys/sunddi.h>
87 #endif
88 #include <sys/cpuvar.h>
89 #include <sys/kmem.h>
90 #if defined(sun)
91 #include <sys/strsubr.h>
92 #endif
93 #include <sys/sysmacros.h>
94 #include <sys/dtrace_impl.h>
95 #include <sys/atomic.h>
96 #include <sys/cmn_err.h>
97 #include <sys/mutex_impl.h>
98 #include <sys/rwlock_impl.h>
99 #include <sys/ctf_api.h>
100 #if defined(sun)
101 #include <sys/panic.h>
102 #include <sys/priv_impl.h>
103 #endif
104 #include <sys/policy.h>
105 #if defined(sun)
106 #include <sys/cred_impl.h>
107 #include <sys/procfs_isa.h>
108 #endif
109 #include <sys/taskq.h>
110 #if defined(sun)
111 #include <sys/mkdev.h>
112 #include <sys/kdi.h>
113 #endif
114 #include <sys/zone.h>
115 #include <sys/socket.h>
116 #include <netinet/in.h>
117 
118 /* FreeBSD includes: */
119 #if !defined(sun)
120 
121 #include <sys/ctype.h>
122 #include <sys/limits.h>
123 //#include <sys/kdb.h>
124 #include <sys/kernel.h>
125 #include <sys/malloc.h>
126 #include <sys/sysctl.h>
127 #include <sys/lock.h>
128 #include <sys/mutex.h>
129 #include <sys/rwlock.h>
130 //#include <sys/sx.h>
131 #include <sys/file.h>
132 #include <sys/filedesc.h>
133 #include <sys/dtrace_bsd.h>
134 #include <sys/vmem.h>
135 #include <sys/module.h>
136 #include <sys/cpu.h>
137 #include <netinet/in.h>
138 #include "dtrace_cddl.h"
139 #include "dtrace_debug.c"
140 #endif
141 
142 #if !defined(sun)
143 /* fake module entry for netbsd */
144 module_t *mod_nbsd = NULL;
145 #endif
146 
147 /*
148  * DTrace Tunable Variables
149  *
150  * The following variables may be tuned by adding a line to /etc/system that
151  * includes both the name of the DTrace module ("dtrace") and the name of the
152  * variable.  For example:
153  *
154  *   set dtrace:dtrace_destructive_disallow = 1
155  *
156  * In general, the only variables that one should be tuning this way are those
157  * that affect system-wide DTrace behavior, and for which the default behavior
158  * is undesirable.  Most of these variables are tunable on a per-consumer
159  * basis using DTrace options, and need not be tuned on a system-wide basis.
160  * When tuning these variables, avoid pathological values; while some attempt
161  * is made to verify the integrity of these variables, they are not considered
162  * part of the supported interface to DTrace, and they are therefore not
163  * checked comprehensively.  Further, these variables should not be tuned
164  * dynamically via "mdb -kw" or other means; they should only be tuned via
165  * /etc/system.
166  */
167 int		dtrace_destructive_disallow = 0;
168 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
169 size_t		dtrace_difo_maxsize = (256 * 1024);
170 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
171 size_t		dtrace_global_maxsize = (16 * 1024);
172 size_t		dtrace_actions_max = (16 * 1024);
173 size_t		dtrace_retain_max = 1024;
174 dtrace_optval_t	dtrace_helper_actions_max = 32;
175 dtrace_optval_t	dtrace_helper_providers_max = 32;
176 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
177 size_t		dtrace_strsize_default = 256;
178 dtrace_optval_t	dtrace_cleanrate_default = 99009900;		/* 101 hz */
179 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
180 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
181 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
182 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
183 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
184 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
185 dtrace_optval_t	dtrace_nspec_default = 1;
186 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
187 dtrace_optval_t dtrace_stackframes_default = 20;
188 dtrace_optval_t dtrace_ustackframes_default = 20;
189 dtrace_optval_t dtrace_jstackframes_default = 50;
190 dtrace_optval_t dtrace_jstackstrsize_default = 512;
191 int		dtrace_msgdsize_max = 128;
192 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
193 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
194 int		dtrace_devdepth_max = 32;
195 int		dtrace_err_verbose;
196 hrtime_t	dtrace_deadman_interval = NANOSEC;
197 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
198 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
199 
200 /*
201  * DTrace External Variables
202  *
203  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
204  * available to DTrace consumers via the backtick (`) syntax.  One of these,
205  * dtrace_zero, is made deliberately so:  it is provided as a source of
206  * well-known, zero-filled memory.  While this variable is not documented,
207  * it is used by some translators as an implementation detail.
208  */
209 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
210 
211 /*
212  * DTrace Internal Variables
213  */
214 #if defined(sun)
215 static dev_info_t	*dtrace_devi;		/* device info */
216 #endif
217 static vmem_t		*dtrace_arena;		/* probe ID arena */
218 #if defined(sun)
219 static vmem_t		*dtrace_minor;		/* minor number arena */
220 static taskq_t		*dtrace_taskq;		/* task queue */
221 #endif
222 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
223 int			dtrace_probes_size=0;	/* size for kmem_free */
224 static int		dtrace_nprobes;		/* number of probes */
225 static dtrace_provider_t *dtrace_provider;	/* provider list */
226 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
227 static int		dtrace_opens;		/* number of opens */
228 static int		dtrace_helpers;		/* number of helpers */
229 #if defined(sun)
230 static void		*dtrace_softstate;	/* softstate pointer */
231 #endif
232 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
233 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
234 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
235 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
236 static int		dtrace_toxranges;	/* number of toxic ranges */
237 static int		dtrace_toxranges_max;	/* size of toxic range array */
238 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
239 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
240 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
241 static kthread_t	*dtrace_panicked;	/* panicking thread */
242 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
243 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
244 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
245 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
246 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
247 #if !defined(sun)
248 int		dtrace_in_probe;	/* non-zero if executing a probe */
249 #if defined(__i386__) || defined(__amd64__)
250 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
251 #endif
252 #endif
253 
254 /*
255  * DTrace Locking
256  * DTrace is protected by three (relatively coarse-grained) locks:
257  *
258  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
259  *     including enabling state, probes, ECBs, consumer state, helper state,
260  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
261  *     probe context is lock-free -- synchronization is handled via the
262  *     dtrace_sync() cross call mechanism.
263  *
264  * (2) dtrace_provider_lock is required when manipulating provider state, or
265  *     when provider state must be held constant.
266  *
267  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
268  *     when meta provider state must be held constant.
269  *
270  * The lock ordering between these three locks is dtrace_meta_lock before
271  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
272  * several places where dtrace_provider_lock is held by the framework as it
273  * calls into the providers -- which then call back into the framework,
274  * grabbing dtrace_lock.)
275  *
276  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
277  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
278  * role as a coarse-grained lock; it is acquired before both of these locks.
279  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
280  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
281  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
282  * acquired _between_ dtrace_provider_lock and dtrace_lock.
283  */
284 static kmutex_t		dtrace_lock;		/* probe state lock */
285 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
286 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
287 
288 #if !defined(sun)
289 /* XXX FreeBSD hacks. */
290 static kmutex_t		mod_lock;
291 
292 #define cr_suid		cr_svuid
293 #define cr_sgid		cr_svgid
294 #define	ipaddr_t	in_addr_t
295 #define mod_modname	pathname
296 #define vuprintf	vprintf
297 #define ttoproc(_a)	((_a)->l_proc)
298 #define crgetzoneid(_a)	0
299 //#define	NCPU		MAXCPUS
300 #define	NCPU		ncpu
301 #define SNOCD		0
302 #define CPU_ON_INTR(_a)	0
303 
304 #define PRIV_EFFECTIVE		(1 << 0)
305 #define PRIV_DTRACE_KERNEL	(1 << 1)
306 #define PRIV_DTRACE_PROC	(1 << 2)
307 #define PRIV_DTRACE_USER	(1 << 3)
308 #define PRIV_PROC_OWNER		(1 << 4)
309 #define PRIV_PROC_ZONE		(1 << 5)
310 #define PRIV_ALL		~0
311 
312 //SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
313 #endif
314 
315 #if defined(sun)
316 #define curcpu_id	CPU->cpu_id
317 #else
318 #define curcpu_id	cpu_number()
319 #endif
320 
321 
322 /*
323  * DTrace Provider Variables
324  *
325  * These are the variables relating to DTrace as a provider (that is, the
326  * provider of the BEGIN, END, and ERROR probes).
327  */
328 static dtrace_pattr_t	dtrace_provider_attr = {
329 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
330 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
331 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
332 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
333 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
334 };
335 
336 static void
dtrace_nullop(void)337 dtrace_nullop(void)
338 {}
339 
340 static int
dtrace_enable_nullop(void)341 dtrace_enable_nullop(void)
342 {
343 	return (0);
344 }
345 
346 static dtrace_pops_t	dtrace_provider_ops = {
347 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
348 #if defined(sun)
349 	(void (*)(void *, modctl_t *))dtrace_nullop,
350 #else
351 	(void (*)(void *, dtrace_modctl_t *))dtrace_nullop,
352 #endif
353 	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
354 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
355 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
356 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
357 	NULL,
358 	NULL,
359 	NULL,
360 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
361 };
362 
363 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
364 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
365 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
366 
367 /*
368  * DTrace Helper Tracing Variables
369  */
370 uint32_t dtrace_helptrace_next = 0;
371 uint32_t dtrace_helptrace_nlocals;
372 char	*dtrace_helptrace_buffer;
373 int	dtrace_helptrace_bufsize = 512 * 1024;
374 
375 #ifdef DEBUG
376 int	dtrace_helptrace_enabled = 1;
377 #else
378 int	dtrace_helptrace_enabled = 0;
379 #endif
380 
381 /*
382  * DTrace Error Hashing
383  *
384  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
385  * table.  This is very useful for checking coverage of tests that are
386  * expected to induce DIF or DOF processing errors, and may be useful for
387  * debugging problems in the DIF code generator or in DOF generation .  The
388  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
389  */
390 #ifdef DEBUG
391 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
392 static const char *dtrace_errlast;
393 static kthread_t *dtrace_errthread;
394 static kmutex_t dtrace_errlock;
395 #endif
396 
397 /*
398  * DTrace Macros and Constants
399  *
400  * These are various macros that are useful in various spots in the
401  * implementation, along with a few random constants that have no meaning
402  * outside of the implementation.  There is no real structure to this cpp
403  * mishmash -- but is there ever?
404  */
405 #define	DTRACE_HASHSTR(hash, probe)	\
406 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
407 
408 #define	DTRACE_HASHNEXT(hash, probe)	\
409 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
410 
411 #define	DTRACE_HASHPREV(hash, probe)	\
412 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
413 
414 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
415 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
416 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
417 
418 #define	DTRACE_AGGHASHSIZE_SLEW		17
419 
420 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
421 
422 /*
423  * The key for a thread-local variable consists of the lower 61 bits of the
424  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
425  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
426  * equal to a variable identifier.  This is necessary (but not sufficient) to
427  * assure that global associative arrays never collide with thread-local
428  * variables.  To guarantee that they cannot collide, we must also define the
429  * order for keying dynamic variables.  That order is:
430  *
431  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
432  *
433  * Because the variable-key and the tls-key are in orthogonal spaces, there is
434  * no way for a global variable key signature to match a thread-local key
435  * signature.
436  */
437 #if defined(sun)
438 #define	DTRACE_TLS_THRKEY(where) { \
439 	uint_t intr = 0; \
440 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
441 	for (; actv; actv >>= 1) \
442 		intr++; \
443 	ASSERT(intr < (1 << 3)); \
444 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
445 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
446 }
447 #else
448 #define	DTRACE_TLS_THRKEY(where) { \
449 	uint_t intr = 0; \
450 	(where) = ((curthread->l_lid + (curthread->l_proc->p_pid << 16) + \
451 		    DIF_VARIABLE_MAX) & \
452 		    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
453 }
454 #if 0
455 #define	DTRACE_TLS_THRKEY(where) { \
456 	solaris_cpu_t *_c = &solaris_cpu[curcpu_id]; \
457 	uint_t intr = 0; \
458 	uint_t actv = _c->cpu_intr_actv; \
459 	for (; actv; actv >>= 1) \
460 		intr++; \
461 	ASSERT(intr < (1 << 3)); \
462 	(where) = ((curthread->l_lid + (curthread->l_proc->p_pid << 16) + \
463 		    DIF_VARIABLE_MAX) & \
464 		    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
465 }
466 #endif
467 #endif
468 
469 #define	DT_BSWAP_8(x)	((x) & 0xff)
470 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
471 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
472 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
473 
474 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
475 
476 #define	DTRACE_STORE(type, tomax, offset, what) \
477 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
478 
479 #ifndef __i386
480 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
481 	if (addr & (size - 1)) {					\
482 		*flags |= CPU_DTRACE_BADALIGN;				\
483 		cpu_core[curcpu_id].cpuc_dtrace_illval = addr;	\
484 		return (0);						\
485 	}
486 #else
487 #define	DTRACE_ALIGNCHECK(addr, size, flags)
488 #endif
489 
490 /*
491  * Test whether a range of memory starting at testaddr of size testsz falls
492  * within the range of memory described by addr, sz.  We take care to avoid
493  * problems with overflow and underflow of the unsigned quantities, and
494  * disallow all negative sizes.  Ranges of size 0 are allowed.
495  */
496 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
497 	((testaddr) - (baseaddr) < (basesz) && \
498 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
499 	(testaddr) + (testsz) >= (testaddr))
500 
501 /*
502  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
503  * alloc_sz on the righthand side of the comparison in order to avoid overflow
504  * or underflow in the comparison with it.  This is simpler than the INRANGE
505  * check above, because we know that the dtms_scratch_ptr is valid in the
506  * range.  Allocations of size zero are allowed.
507  */
508 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
509 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
510 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
511 
512 #define	DTRACE_LOADFUNC(bits)						\
513 /*CSTYLED*/								\
514 uint##bits##_t								\
515 dtrace_load##bits(uintptr_t addr)					\
516 {									\
517 	size_t size = bits / NBBY;					\
518 	/*CSTYLED*/							\
519 	uint##bits##_t rval;						\
520 	int i;								\
521 	volatile uint16_t *flags = (volatile uint16_t *)		\
522 	    &cpu_core[curcpu_id].cpuc_dtrace_flags;			\
523 									\
524 	DTRACE_ALIGNCHECK(addr, size, flags);				\
525 									\
526 	for (i = 0; i < dtrace_toxranges; i++) {			\
527 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
528 			continue;					\
529 									\
530 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
531 			continue;					\
532 									\
533 		/*							\
534 		 * This address falls within a toxic region; return 0.	\
535 		 */							\
536 		*flags |= CPU_DTRACE_BADADDR;				\
537 		cpu_core[curcpu_id].cpuc_dtrace_illval = addr;		\
538 		return (0);						\
539 	}								\
540 									\
541 	*flags |= CPU_DTRACE_NOFAULT;					\
542 	/*CSTYLED*/							\
543 	rval = *((volatile uint##bits##_t *)addr);			\
544 	*flags &= ~CPU_DTRACE_NOFAULT;					\
545 									\
546 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
547 }
548 
549 #ifdef _LP64
550 #define	dtrace_loadptr	dtrace_load64
551 #else
552 #define	dtrace_loadptr	dtrace_load32
553 #endif
554 
555 #define	DTRACE_DYNHASH_FREE	0
556 #define	DTRACE_DYNHASH_SINK	1
557 #define	DTRACE_DYNHASH_VALID	2
558 
559 #define	DTRACE_MATCH_FAIL	-1
560 #define	DTRACE_MATCH_NEXT	0
561 #define	DTRACE_MATCH_DONE	1
562 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
563 #define	DTRACE_STATE_ALIGN	64
564 
565 #define	DTRACE_FLAGS2FLT(flags)						\
566 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
567 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
568 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
569 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
570 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
571 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
572 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
573 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
574 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
575 	DTRACEFLT_UNKNOWN)
576 
577 #define	DTRACEACT_ISSTRING(act)						\
578 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
579 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
580 
581 /* Function prototype definitions: */
582 static size_t dtrace_strlen(const char *, size_t);
583 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
584 static void dtrace_enabling_provide(dtrace_provider_t *);
585 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
586 static void dtrace_enabling_matchall(void);
587 static dtrace_state_t *dtrace_anon_grab(void);
588 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
589     dtrace_state_t *, uint64_t, uint64_t);
590 #if defined(sun)
591 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
592 #endif
593 static void dtrace_buffer_drop(dtrace_buffer_t *);
594 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
595     dtrace_state_t *, dtrace_mstate_t *);
596 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
597     dtrace_optval_t);
598 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
599 #if defined(sun)
600 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
601 #endif
602 uint16_t dtrace_load16(uintptr_t);
603 uint32_t dtrace_load32(uintptr_t);
604 uint64_t dtrace_load64(uintptr_t);
605 uint8_t dtrace_load8(uintptr_t);
606 void dtrace_dynvar_clean(dtrace_dstate_t *);
607 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
608     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
609 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
610 
611 /*
612  * DTrace Probe Context Functions
613  *
614  * These functions are called from probe context.  Because probe context is
615  * any context in which C may be called, arbitrarily locks may be held,
616  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
617  * As a result, functions called from probe context may only call other DTrace
618  * support functions -- they may not interact at all with the system at large.
619  * (Note that the ASSERT macro is made probe-context safe by redefining it in
620  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
621  * loads are to be performed from probe context, they _must_ be in terms of
622  * the safe dtrace_load*() variants.
623  *
624  * Some functions in this block are not actually called from probe context;
625  * for these functions, there will be a comment above the function reading
626  * "Note:  not called from probe context."
627  */
628 void
dtrace_panic(const char * format,...)629 dtrace_panic(const char *format, ...)
630 {
631 	va_list alist;
632 
633 	va_start(alist, format);
634 #ifdef __NetBSD__
635 	vpanic(format, alist);
636 #else
637 	dtrace_vpanic(format, alist);
638 #endif
639 	va_end(alist);
640 }
641 
642 int
dtrace_assfail(const char * a,const char * f,int l)643 dtrace_assfail(const char *a, const char *f, int l)
644 {
645 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
646 
647 	/*
648 	 * We just need something here that even the most clever compiler
649 	 * cannot optimize away.
650 	 */
651 	return (a[(uintptr_t)f]);
652 }
653 
654 /*
655  * Atomically increment a specified error counter from probe context.
656  */
657 static void
dtrace_error(uint32_t * counter)658 dtrace_error(uint32_t *counter)
659 {
660 	/*
661 	 * Most counters stored to in probe context are per-CPU counters.
662 	 * However, there are some error conditions that are sufficiently
663 	 * arcane that they don't merit per-CPU storage.  If these counters
664 	 * are incremented concurrently on different CPUs, scalability will be
665 	 * adversely affected -- but we don't expect them to be white-hot in a
666 	 * correctly constructed enabling...
667 	 */
668 	uint32_t oval, nval;
669 
670 	do {
671 		oval = *counter;
672 
673 		if ((nval = oval + 1) == 0) {
674 			/*
675 			 * If the counter would wrap, set it to 1 -- assuring
676 			 * that the counter is never zero when we have seen
677 			 * errors.  (The counter must be 32-bits because we
678 			 * aren't guaranteed a 64-bit compare&swap operation.)
679 			 * To save this code both the infamy of being fingered
680 			 * by a priggish news story and the indignity of being
681 			 * the target of a neo-puritan witch trial, we're
682 			 * carefully avoiding any colorful description of the
683 			 * likelihood of this condition -- but suffice it to
684 			 * say that it is only slightly more likely than the
685 			 * overflow of predicate cache IDs, as discussed in
686 			 * dtrace_predicate_create().
687 			 */
688 			nval = 1;
689 		}
690 	} while (dtrace_cas32(counter, oval, nval) != oval);
691 }
692 
693 /*
694  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
695  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
696  */
697 DTRACE_LOADFUNC(8)
698 DTRACE_LOADFUNC(16)
699 DTRACE_LOADFUNC(32)
700 DTRACE_LOADFUNC(64)
701 
702 static int
dtrace_inscratch(uintptr_t dest,size_t size,dtrace_mstate_t * mstate)703 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
704 {
705 	if (dest < mstate->dtms_scratch_base)
706 		return (0);
707 
708 	if (dest + size < dest)
709 		return (0);
710 
711 	if (dest + size > mstate->dtms_scratch_ptr)
712 		return (0);
713 
714 	return (1);
715 }
716 
717 static int
dtrace_canstore_statvar(uint64_t addr,size_t sz,dtrace_statvar_t ** svars,int nsvars)718 dtrace_canstore_statvar(uint64_t addr, size_t sz,
719     dtrace_statvar_t **svars, int nsvars)
720 {
721 	int i;
722 
723 	for (i = 0; i < nsvars; i++) {
724 		dtrace_statvar_t *svar = svars[i];
725 
726 		if (svar == NULL || svar->dtsv_size == 0)
727 			continue;
728 
729 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
730 			return (1);
731 	}
732 
733 	return (0);
734 }
735 
736 /*
737  * Check to see if the address is within a memory region to which a store may
738  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
739  * region.  The caller of dtrace_canstore() is responsible for performing any
740  * alignment checks that are needed before stores are actually executed.
741  */
742 static int
dtrace_canstore(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)743 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
744     dtrace_vstate_t *vstate)
745 {
746 	/*
747 	 * First, check to see if the address is in scratch space...
748 	 */
749 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
750 	    mstate->dtms_scratch_size))
751 		return (1);
752 
753 	/*
754 	 * Now check to see if it's a dynamic variable.  This check will pick
755 	 * up both thread-local variables and any global dynamically-allocated
756 	 * variables.
757 	 */
758 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
759 	    vstate->dtvs_dynvars.dtds_size)) {
760 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
761 		uintptr_t base = (uintptr_t)dstate->dtds_base +
762 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
763 		uintptr_t chunkoffs;
764 
765 		/*
766 		 * Before we assume that we can store here, we need to make
767 		 * sure that it isn't in our metadata -- storing to our
768 		 * dynamic variable metadata would corrupt our state.  For
769 		 * the range to not include any dynamic variable metadata,
770 		 * it must:
771 		 *
772 		 *	(1) Start above the hash table that is at the base of
773 		 *	the dynamic variable space
774 		 *
775 		 *	(2) Have a starting chunk offset that is beyond the
776 		 *	dtrace_dynvar_t that is at the base of every chunk
777 		 *
778 		 *	(3) Not span a chunk boundary
779 		 *
780 		 */
781 		if (addr < base)
782 			return (0);
783 
784 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
785 
786 		if (chunkoffs < sizeof (dtrace_dynvar_t))
787 			return (0);
788 
789 		if (chunkoffs + sz > dstate->dtds_chunksize)
790 			return (0);
791 
792 		return (1);
793 	}
794 
795 	/*
796 	 * Finally, check the static local and global variables.  These checks
797 	 * take the longest, so we perform them last.
798 	 */
799 	if (dtrace_canstore_statvar(addr, sz,
800 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
801 		return (1);
802 
803 	if (dtrace_canstore_statvar(addr, sz,
804 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
805 		return (1);
806 
807 	return (0);
808 }
809 
810 
811 /*
812  * Convenience routine to check to see if the address is within a memory
813  * region in which a load may be issued given the user's privilege level;
814  * if not, it sets the appropriate error flags and loads 'addr' into the
815  * illegal value slot.
816  *
817  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
818  * appropriate memory access protection.
819  */
820 static int
dtrace_canload(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)821 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
822     dtrace_vstate_t *vstate)
823 {
824 	volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval;
825 
826 	/*
827 	 * If we hold the privilege to read from kernel memory, then
828 	 * everything is readable.
829 	 */
830 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
831 		return (1);
832 
833 	/*
834 	 * You can obviously read that which you can store.
835 	 */
836 	if (dtrace_canstore(addr, sz, mstate, vstate))
837 		return (1);
838 
839 	/*
840 	 * We're allowed to read from our own string table.
841 	 */
842 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
843 	    mstate->dtms_difo->dtdo_strlen))
844 		return (1);
845 
846 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
847 	*illval = addr;
848 	return (0);
849 }
850 
851 /*
852  * Convenience routine to check to see if a given string is within a memory
853  * region in which a load may be issued given the user's privilege level;
854  * this exists so that we don't need to issue unnecessary dtrace_strlen()
855  * calls in the event that the user has all privileges.
856  */
857 static int
dtrace_strcanload(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)858 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
859     dtrace_vstate_t *vstate)
860 {
861 	size_t strsz;
862 
863 	/*
864 	 * If we hold the privilege to read from kernel memory, then
865 	 * everything is readable.
866 	 */
867 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
868 		return (1);
869 
870 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
871 	if (dtrace_canload(addr, strsz, mstate, vstate))
872 		return (1);
873 
874 	return (0);
875 }
876 
877 /*
878  * Convenience routine to check to see if a given variable is within a memory
879  * region in which a load may be issued given the user's privilege level.
880  */
881 static int
dtrace_vcanload(void * src,dtrace_diftype_t * type,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)882 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
883     dtrace_vstate_t *vstate)
884 {
885 	size_t sz;
886 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
887 
888 	/*
889 	 * If we hold the privilege to read from kernel memory, then
890 	 * everything is readable.
891 	 */
892 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
893 		return (1);
894 
895 	if (type->dtdt_kind == DIF_TYPE_STRING)
896 		sz = dtrace_strlen(src,
897 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
898 	else
899 		sz = type->dtdt_size;
900 
901 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
902 }
903 
904 /*
905  * Compare two strings using safe loads.
906  */
907 static int
dtrace_strncmp(char * s1,char * s2,size_t limit)908 dtrace_strncmp(char *s1, char *s2, size_t limit)
909 {
910 	uint8_t c1, c2;
911 	volatile uint16_t *flags;
912 
913 	if (s1 == s2 || limit == 0)
914 		return (0);
915 
916 	flags = (volatile uint16_t *)&cpu_core[curcpu_id].cpuc_dtrace_flags;
917 
918 	do {
919 		if (s1 == NULL) {
920 			c1 = '\0';
921 		} else {
922 			c1 = dtrace_load8((uintptr_t)s1++);
923 		}
924 
925 		if (s2 == NULL) {
926 			c2 = '\0';
927 		} else {
928 			c2 = dtrace_load8((uintptr_t)s2++);
929 		}
930 
931 		if (c1 != c2)
932 			return (c1 - c2);
933 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
934 
935 	return (0);
936 }
937 
938 /*
939  * Compute strlen(s) for a string using safe memory accesses.  The additional
940  * len parameter is used to specify a maximum length to ensure completion.
941  */
942 static size_t
dtrace_strlen(const char * s,size_t lim)943 dtrace_strlen(const char *s, size_t lim)
944 {
945 	uint_t len;
946 
947 	for (len = 0; len != lim; len++) {
948 		if (dtrace_load8((uintptr_t)s++) == '\0')
949 			break;
950 	}
951 
952 	return (len);
953 }
954 
955 /*
956  * Check if an address falls within a toxic region.
957  */
958 static int
dtrace_istoxic(uintptr_t kaddr,size_t size)959 dtrace_istoxic(uintptr_t kaddr, size_t size)
960 {
961 	uintptr_t taddr, tsize;
962 	int i;
963 
964 	for (i = 0; i < dtrace_toxranges; i++) {
965 		taddr = dtrace_toxrange[i].dtt_base;
966 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
967 
968 		if (kaddr - taddr < tsize) {
969 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
970 			cpu_core[curcpu_id].cpuc_dtrace_illval = kaddr;
971 			return (1);
972 		}
973 
974 		if (taddr - kaddr < size) {
975 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
976 			cpu_core[curcpu_id].cpuc_dtrace_illval = taddr;
977 			return (1);
978 		}
979 	}
980 
981 	return (0);
982 }
983 
984 /*
985  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
986  * memory specified by the DIF program.  The dst is assumed to be safe memory
987  * that we can store to directly because it is managed by DTrace.  As with
988  * standard bcopy, overlapping copies are handled properly.
989  */
990 static void
dtrace_bcopy(const void * src,void * dst,size_t len)991 dtrace_bcopy(const void *src, void *dst, size_t len)
992 {
993 	if (len != 0) {
994 		uint8_t *s1 = dst;
995 		const uint8_t *s2 = src;
996 
997 		if (s1 <= s2) {
998 			do {
999 				*s1++ = dtrace_load8((uintptr_t)s2++);
1000 			} while (--len != 0);
1001 		} else {
1002 			s2 += len;
1003 			s1 += len;
1004 
1005 			do {
1006 				*--s1 = dtrace_load8((uintptr_t)--s2);
1007 			} while (--len != 0);
1008 		}
1009 	}
1010 }
1011 
1012 /*
1013  * Copy src to dst using safe memory accesses, up to either the specified
1014  * length, or the point that a nul byte is encountered.  The src is assumed to
1015  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1016  * safe memory that we can store to directly because it is managed by DTrace.
1017  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1018  */
1019 static void
dtrace_strcpy(const void * src,void * dst,size_t len)1020 dtrace_strcpy(const void *src, void *dst, size_t len)
1021 {
1022 	if (len != 0) {
1023 		uint8_t *s1 = dst, c;
1024 		const uint8_t *s2 = src;
1025 
1026 		do {
1027 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1028 		} while (--len != 0 && c != '\0');
1029 	}
1030 }
1031 
1032 /*
1033  * Copy src to dst, deriving the size and type from the specified (BYREF)
1034  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1035  * program.  The dst is assumed to be DTrace variable memory that is of the
1036  * specified type; we assume that we can store to directly.
1037  */
1038 static void
dtrace_vcopy(void * src,void * dst,dtrace_diftype_t * type)1039 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1040 {
1041 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1042 
1043 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1044 		dtrace_strcpy(src, dst, type->dtdt_size);
1045 	} else {
1046 		dtrace_bcopy(src, dst, type->dtdt_size);
1047 	}
1048 }
1049 
1050 /*
1051  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1052  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1053  * safe memory that we can access directly because it is managed by DTrace.
1054  */
1055 static int
dtrace_bcmp(const void * s1,const void * s2,size_t len)1056 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1057 {
1058 	volatile uint16_t *flags;
1059 
1060 	flags = (volatile uint16_t *)&cpu_core[curcpu_id].cpuc_dtrace_flags;
1061 
1062 	if (s1 == s2)
1063 		return (0);
1064 
1065 	if (s1 == NULL || s2 == NULL)
1066 		return (1);
1067 
1068 	if (s1 != s2 && len != 0) {
1069 		const uint8_t *ps1 = s1;
1070 		const uint8_t *ps2 = s2;
1071 
1072 		do {
1073 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1074 				return (1);
1075 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1076 	}
1077 	return (0);
1078 }
1079 
1080 /*
1081  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1082  * is for safe DTrace-managed memory only.
1083  */
1084 static void
dtrace_bzero(void * dst,size_t len)1085 dtrace_bzero(void *dst, size_t len)
1086 {
1087 	uchar_t *cp;
1088 
1089 	for (cp = dst; len != 0; len--)
1090 		*cp++ = 0;
1091 }
1092 
1093 static void
dtrace_add_128(uint64_t * addend1,uint64_t * addend2,uint64_t * sum)1094 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1095 {
1096 	uint64_t result[2];
1097 
1098 	result[0] = addend1[0] + addend2[0];
1099 	result[1] = addend1[1] + addend2[1] +
1100 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1101 
1102 	sum[0] = result[0];
1103 	sum[1] = result[1];
1104 }
1105 
1106 /*
1107  * Shift the 128-bit value in a by b. If b is positive, shift left.
1108  * If b is negative, shift right.
1109  */
1110 static void
dtrace_shift_128(uint64_t * a,int b)1111 dtrace_shift_128(uint64_t *a, int b)
1112 {
1113 	uint64_t mask;
1114 
1115 	if (b == 0)
1116 		return;
1117 
1118 	if (b < 0) {
1119 		b = -b;
1120 		if (b >= 64) {
1121 			a[0] = a[1] >> (b - 64);
1122 			a[1] = 0;
1123 		} else {
1124 			a[0] >>= b;
1125 			mask = 1LL << (64 - b);
1126 			mask -= 1;
1127 			a[0] |= ((a[1] & mask) << (64 - b));
1128 			a[1] >>= b;
1129 		}
1130 	} else {
1131 		if (b >= 64) {
1132 			a[1] = a[0] << (b - 64);
1133 			a[0] = 0;
1134 		} else {
1135 			a[1] <<= b;
1136 			mask = a[0] >> (64 - b);
1137 			a[1] |= mask;
1138 			a[0] <<= b;
1139 		}
1140 	}
1141 }
1142 
1143 /*
1144  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1145  * use native multiplication on those, and then re-combine into the
1146  * resulting 128-bit value.
1147  *
1148  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1149  *     hi1 * hi2 << 64 +
1150  *     hi1 * lo2 << 32 +
1151  *     hi2 * lo1 << 32 +
1152  *     lo1 * lo2
1153  */
1154 static void
dtrace_multiply_128(uint64_t factor1,uint64_t factor2,uint64_t * product)1155 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1156 {
1157 	uint64_t hi1, hi2, lo1, lo2;
1158 	uint64_t tmp[2];
1159 
1160 	hi1 = factor1 >> 32;
1161 	hi2 = factor2 >> 32;
1162 
1163 	lo1 = factor1 & DT_MASK_LO;
1164 	lo2 = factor2 & DT_MASK_LO;
1165 
1166 	product[0] = lo1 * lo2;
1167 	product[1] = hi1 * hi2;
1168 
1169 	tmp[0] = hi1 * lo2;
1170 	tmp[1] = 0;
1171 	dtrace_shift_128(tmp, 32);
1172 	dtrace_add_128(product, tmp, product);
1173 
1174 	tmp[0] = hi2 * lo1;
1175 	tmp[1] = 0;
1176 	dtrace_shift_128(tmp, 32);
1177 	dtrace_add_128(product, tmp, product);
1178 }
1179 
1180 /*
1181  * This privilege check should be used by actions and subroutines to
1182  * verify that the user credentials of the process that enabled the
1183  * invoking ECB match the target credentials
1184  */
1185 static int
dtrace_priv_proc_common_user(dtrace_state_t * state)1186 dtrace_priv_proc_common_user(dtrace_state_t *state)
1187 {
1188 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1189 
1190 	/*
1191 	 * We should always have a non-NULL state cred here, since if cred
1192 	 * is null (anonymous tracing), we fast-path bypass this routine.
1193 	 */
1194 	ASSERT(s_cr != NULL);
1195 
1196 #if defined(sun)
1197 	if ((cr = CRED()) != NULL &&
1198 	    s_cr->cr_uid == cr->cr_uid &&
1199 	    s_cr->cr_uid == cr->cr_ruid &&
1200 	    s_cr->cr_uid == cr->cr_suid &&
1201 	    s_cr->cr_gid == cr->cr_gid &&
1202 	    s_cr->cr_gid == cr->cr_rgid &&
1203 	    s_cr->cr_gid == cr->cr_sgid)
1204 		return (1);
1205 #else
1206 	if ((cr = CRED()) != NULL) {
1207 	    uid_t uid;
1208 	    gid_t gid;
1209 
1210 	    uid = kauth_cred_getuid(s_cr);
1211 	    gid = kauth_cred_getgid(s_cr);
1212 
1213 		if (uid == kauth_cred_getuid(cr) &&
1214 		    uid == kauth_cred_geteuid(cr) &&
1215 		    uid == kauth_cred_getsvuid(cr) &&
1216 		    gid == kauth_cred_getgid(cr) &&
1217 		    gid == kauth_cred_getegid(cr) &&
1218 		    gid == kauth_cred_getsvgid(cr)) {
1219 			return 1;
1220 		}
1221 	}
1222 #endif
1223 
1224 	return (0);
1225 }
1226 
1227 /*
1228  * This privilege check should be used by actions and subroutines to
1229  * verify that the zone of the process that enabled the invoking ECB
1230  * matches the target credentials
1231  */
1232 static int
dtrace_priv_proc_common_zone(dtrace_state_t * state)1233 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1234 {
1235 #if defined(sun)
1236 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1237 
1238 	/*
1239 	 * We should always have a non-NULL state cred here, since if cred
1240 	 * is null (anonymous tracing), we fast-path bypass this routine.
1241 	 */
1242 	ASSERT(s_cr != NULL);
1243 
1244 	if ((cr = CRED()) != NULL &&
1245 	    s_cr->cr_zone == cr->cr_zone)
1246 		return (1);
1247 
1248 	return (0);
1249 #else
1250 	return (1);
1251 #endif
1252 }
1253 
1254 /*
1255  * This privilege check should be used by actions and subroutines to
1256  * verify that the process has not setuid or changed credentials.
1257  */
1258 static int
dtrace_priv_proc_common_nocd(void)1259 dtrace_priv_proc_common_nocd(void)
1260 {
1261 	proc_t *proc;
1262 
1263 	if ((proc = ttoproc(curthread)) != NULL &&
1264 	    !(proc->p_flag & SNOCD))
1265 		return (1);
1266 
1267 	return (0);
1268 }
1269 
1270 static int
dtrace_priv_proc_destructive(dtrace_state_t * state)1271 dtrace_priv_proc_destructive(dtrace_state_t *state)
1272 {
1273 	int action = state->dts_cred.dcr_action;
1274 
1275 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1276 	    dtrace_priv_proc_common_zone(state) == 0)
1277 		goto bad;
1278 
1279 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1280 	    dtrace_priv_proc_common_user(state) == 0)
1281 		goto bad;
1282 
1283 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1284 	    dtrace_priv_proc_common_nocd() == 0)
1285 		goto bad;
1286 
1287 	return (1);
1288 
1289 bad:
1290 	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1291 
1292 	return (0);
1293 }
1294 
1295 static int
dtrace_priv_proc_control(dtrace_state_t * state)1296 dtrace_priv_proc_control(dtrace_state_t *state)
1297 {
1298 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1299 		return (1);
1300 
1301 	if (dtrace_priv_proc_common_zone(state) &&
1302 	    dtrace_priv_proc_common_user(state) &&
1303 	    dtrace_priv_proc_common_nocd())
1304 		return (1);
1305 
1306 	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1307 
1308 	return (0);
1309 }
1310 
1311 static int
dtrace_priv_proc(dtrace_state_t * state)1312 dtrace_priv_proc(dtrace_state_t *state)
1313 {
1314 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1315 		return (1);
1316 
1317 	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1318 
1319 	return (0);
1320 }
1321 
1322 static int
dtrace_priv_kernel(dtrace_state_t * state)1323 dtrace_priv_kernel(dtrace_state_t *state)
1324 {
1325 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1326 		return (1);
1327 
1328 	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1329 
1330 	return (0);
1331 }
1332 
1333 static int
dtrace_priv_kernel_destructive(dtrace_state_t * state)1334 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1335 {
1336 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1337 		return (1);
1338 
1339 	cpu_core[curcpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1340 
1341 	return (0);
1342 }
1343 
1344 /*
1345  * Note:  not called from probe context.  This function is called
1346  * asynchronously (and at a regular interval) from outside of probe context to
1347  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1348  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1349  */
1350 void
dtrace_dynvar_clean(dtrace_dstate_t * dstate)1351 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1352 {
1353 	dtrace_dynvar_t *dirty;
1354 	dtrace_dstate_percpu_t *dcpu;
1355 	int i, work = 0;
1356 
1357 	for (i = 0; i < NCPU; i++) {
1358 		dcpu = &dstate->dtds_percpu[i];
1359 
1360 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1361 
1362 		/*
1363 		 * If the dirty list is NULL, there is no dirty work to do.
1364 		 */
1365 		if (dcpu->dtdsc_dirty == NULL)
1366 			continue;
1367 
1368 		/*
1369 		 * If the clean list is non-NULL, then we're not going to do
1370 		 * any work for this CPU -- it means that there has not been
1371 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1372 		 * since the last time we cleaned house.
1373 		 */
1374 		if (dcpu->dtdsc_clean != NULL)
1375 			continue;
1376 
1377 		work = 1;
1378 
1379 		/*
1380 		 * Atomically move the dirty list aside.
1381 		 */
1382 		do {
1383 			dirty = dcpu->dtdsc_dirty;
1384 
1385 			/*
1386 			 * Before we zap the dirty list, set the rinsing list.
1387 			 * (This allows for a potential assertion in
1388 			 * dtrace_dynvar():  if a free dynamic variable appears
1389 			 * on a hash chain, either the dirty list or the
1390 			 * rinsing list for some CPU must be non-NULL.)
1391 			 */
1392 			dcpu->dtdsc_rinsing = dirty;
1393 			dtrace_membar_producer();
1394 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1395 		    dirty, NULL) != dirty);
1396 	}
1397 
1398 	if (!work) {
1399 		/*
1400 		 * We have no work to do; we can simply return.
1401 		 */
1402 		return;
1403 	}
1404 
1405 	dtrace_sync();
1406 
1407 	for (i = 0; i < NCPU; i++) {
1408 		dcpu = &dstate->dtds_percpu[i];
1409 
1410 		if (dcpu->dtdsc_rinsing == NULL)
1411 			continue;
1412 
1413 		/*
1414 		 * We are now guaranteed that no hash chain contains a pointer
1415 		 * into this dirty list; we can make it clean.
1416 		 */
1417 		ASSERT(dcpu->dtdsc_clean == NULL);
1418 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1419 		dcpu->dtdsc_rinsing = NULL;
1420 	}
1421 
1422 	/*
1423 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1424 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1425 	 * This prevents a race whereby a CPU incorrectly decides that
1426 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1427 	 * after dtrace_dynvar_clean() has completed.
1428 	 */
1429 	dtrace_sync();
1430 
1431 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1432 }
1433 
1434 /*
1435  * Depending on the value of the op parameter, this function looks-up,
1436  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1437  * allocation is requested, this function will return a pointer to a
1438  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1439  * variable can be allocated.  If NULL is returned, the appropriate counter
1440  * will be incremented.
1441  */
1442 dtrace_dynvar_t *
dtrace_dynvar(dtrace_dstate_t * dstate,uint_t nkeys,dtrace_key_t * key,size_t dsize,dtrace_dynvar_op_t op,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1443 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1444     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1445     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1446 {
1447 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1448 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1449 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1450 	processorid_t me = curcpu_id, cpu = me;
1451 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1452 	size_t bucket, ksize;
1453 	size_t chunksize = dstate->dtds_chunksize;
1454 	uintptr_t kdata, lock, nstate;
1455 	uint_t i;
1456 
1457 	ASSERT(nkeys != 0);
1458 
1459 	/*
1460 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1461 	 * algorithm.  For the by-value portions, we perform the algorithm in
1462 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1463 	 * bit, and seems to have only a minute effect on distribution.  For
1464 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1465 	 * over each referenced byte.  It's painful to do this, but it's much
1466 	 * better than pathological hash distribution.  The efficacy of the
1467 	 * hashing algorithm (and a comparison with other algorithms) may be
1468 	 * found by running the ::dtrace_dynstat MDB dcmd.
1469 	 */
1470 	for (i = 0; i < nkeys; i++) {
1471 		if (key[i].dttk_size == 0) {
1472 			uint64_t val = key[i].dttk_value;
1473 
1474 			hashval += (val >> 48) & 0xffff;
1475 			hashval += (hashval << 10);
1476 			hashval ^= (hashval >> 6);
1477 
1478 			hashval += (val >> 32) & 0xffff;
1479 			hashval += (hashval << 10);
1480 			hashval ^= (hashval >> 6);
1481 
1482 			hashval += (val >> 16) & 0xffff;
1483 			hashval += (hashval << 10);
1484 			hashval ^= (hashval >> 6);
1485 
1486 			hashval += val & 0xffff;
1487 			hashval += (hashval << 10);
1488 			hashval ^= (hashval >> 6);
1489 		} else {
1490 			/*
1491 			 * This is incredibly painful, but it beats the hell
1492 			 * out of the alternative.
1493 			 */
1494 			uint64_t j, size = key[i].dttk_size;
1495 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1496 
1497 			if (!dtrace_canload(base, size, mstate, vstate))
1498 				break;
1499 
1500 			for (j = 0; j < size; j++) {
1501 				hashval += dtrace_load8(base + j);
1502 				hashval += (hashval << 10);
1503 				hashval ^= (hashval >> 6);
1504 			}
1505 		}
1506 	}
1507 
1508 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1509 		return (NULL);
1510 
1511 	hashval += (hashval << 3);
1512 	hashval ^= (hashval >> 11);
1513 	hashval += (hashval << 15);
1514 
1515 	/*
1516 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1517 	 * comes out to be one of our two sentinel hash values.  If this
1518 	 * actually happens, we set the hashval to be a value known to be a
1519 	 * non-sentinel value.
1520 	 */
1521 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1522 		hashval = DTRACE_DYNHASH_VALID;
1523 
1524 	/*
1525 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1526 	 * important here, tricks can be pulled to reduce it.  (However, it's
1527 	 * critical that hash collisions be kept to an absolute minimum;
1528 	 * they're much more painful than a divide.)  It's better to have a
1529 	 * solution that generates few collisions and still keeps things
1530 	 * relatively simple.
1531 	 */
1532 	bucket = hashval % dstate->dtds_hashsize;
1533 
1534 	if (op == DTRACE_DYNVAR_DEALLOC) {
1535 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1536 
1537 		for (;;) {
1538 			while ((lock = *lockp) & 1)
1539 				continue;
1540 
1541 			if (dtrace_casptr((volatile void *)lockp,
1542 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1543 				break;
1544 		}
1545 
1546 		dtrace_membar_producer();
1547 	}
1548 
1549 top:
1550 	prev = NULL;
1551 	lock = hash[bucket].dtdh_lock;
1552 
1553 	dtrace_membar_consumer();
1554 
1555 	start = hash[bucket].dtdh_chain;
1556 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1557 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1558 	    op != DTRACE_DYNVAR_DEALLOC));
1559 
1560 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1561 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1562 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1563 
1564 		if (dvar->dtdv_hashval != hashval) {
1565 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1566 				/*
1567 				 * We've reached the sink, and therefore the
1568 				 * end of the hash chain; we can kick out of
1569 				 * the loop knowing that we have seen a valid
1570 				 * snapshot of state.
1571 				 */
1572 				ASSERT(dvar->dtdv_next == NULL);
1573 				ASSERT(dvar == &dtrace_dynhash_sink);
1574 				break;
1575 			}
1576 
1577 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1578 				/*
1579 				 * We've gone off the rails:  somewhere along
1580 				 * the line, one of the members of this hash
1581 				 * chain was deleted.  Note that we could also
1582 				 * detect this by simply letting this loop run
1583 				 * to completion, as we would eventually hit
1584 				 * the end of the dirty list.  However, we
1585 				 * want to avoid running the length of the
1586 				 * dirty list unnecessarily (it might be quite
1587 				 * long), so we catch this as early as
1588 				 * possible by detecting the hash marker.  In
1589 				 * this case, we simply set dvar to NULL and
1590 				 * break; the conditional after the loop will
1591 				 * send us back to top.
1592 				 */
1593 				dvar = NULL;
1594 				break;
1595 			}
1596 
1597 			goto next;
1598 		}
1599 
1600 		if (dtuple->dtt_nkeys != nkeys)
1601 			goto next;
1602 
1603 		for (i = 0; i < nkeys; i++, dkey++) {
1604 			if (dkey->dttk_size != key[i].dttk_size)
1605 				goto next; /* size or type mismatch */
1606 
1607 			if (dkey->dttk_size != 0) {
1608 				if (dtrace_bcmp(
1609 				    (void *)(uintptr_t)key[i].dttk_value,
1610 				    (void *)(uintptr_t)dkey->dttk_value,
1611 				    dkey->dttk_size))
1612 					goto next;
1613 			} else {
1614 				if (dkey->dttk_value != key[i].dttk_value)
1615 					goto next;
1616 			}
1617 		}
1618 
1619 		if (op != DTRACE_DYNVAR_DEALLOC)
1620 			return (dvar);
1621 
1622 		ASSERT(dvar->dtdv_next == NULL ||
1623 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1624 
1625 		if (prev != NULL) {
1626 			ASSERT(hash[bucket].dtdh_chain != dvar);
1627 			ASSERT(start != dvar);
1628 			ASSERT(prev->dtdv_next == dvar);
1629 			prev->dtdv_next = dvar->dtdv_next;
1630 		} else {
1631 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1632 			    start, dvar->dtdv_next) != start) {
1633 				/*
1634 				 * We have failed to atomically swing the
1635 				 * hash table head pointer, presumably because
1636 				 * of a conflicting allocation on another CPU.
1637 				 * We need to reread the hash chain and try
1638 				 * again.
1639 				 */
1640 				goto top;
1641 			}
1642 		}
1643 
1644 		dtrace_membar_producer();
1645 
1646 		/*
1647 		 * Now set the hash value to indicate that it's free.
1648 		 */
1649 		ASSERT(hash[bucket].dtdh_chain != dvar);
1650 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1651 
1652 		dtrace_membar_producer();
1653 
1654 		/*
1655 		 * Set the next pointer to point at the dirty list, and
1656 		 * atomically swing the dirty pointer to the newly freed dvar.
1657 		 */
1658 		do {
1659 			next = dcpu->dtdsc_dirty;
1660 			dvar->dtdv_next = next;
1661 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1662 
1663 		/*
1664 		 * Finally, unlock this hash bucket.
1665 		 */
1666 		ASSERT(hash[bucket].dtdh_lock == lock);
1667 		ASSERT(lock & 1);
1668 		hash[bucket].dtdh_lock++;
1669 
1670 		return (NULL);
1671 next:
1672 		prev = dvar;
1673 		continue;
1674 	}
1675 
1676 	if (dvar == NULL) {
1677 		/*
1678 		 * If dvar is NULL, it is because we went off the rails:
1679 		 * one of the elements that we traversed in the hash chain
1680 		 * was deleted while we were traversing it.  In this case,
1681 		 * we assert that we aren't doing a dealloc (deallocs lock
1682 		 * the hash bucket to prevent themselves from racing with
1683 		 * one another), and retry the hash chain traversal.
1684 		 */
1685 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1686 		goto top;
1687 	}
1688 
1689 	if (op != DTRACE_DYNVAR_ALLOC) {
1690 		/*
1691 		 * If we are not to allocate a new variable, we want to
1692 		 * return NULL now.  Before we return, check that the value
1693 		 * of the lock word hasn't changed.  If it has, we may have
1694 		 * seen an inconsistent snapshot.
1695 		 */
1696 		if (op == DTRACE_DYNVAR_NOALLOC) {
1697 			if (hash[bucket].dtdh_lock != lock)
1698 				goto top;
1699 		} else {
1700 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1701 			ASSERT(hash[bucket].dtdh_lock == lock);
1702 			ASSERT(lock & 1);
1703 			hash[bucket].dtdh_lock++;
1704 		}
1705 
1706 		return (NULL);
1707 	}
1708 
1709 	/*
1710 	 * We need to allocate a new dynamic variable.  The size we need is the
1711 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1712 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1713 	 * the size of any referred-to data (dsize).  We then round the final
1714 	 * size up to the chunksize for allocation.
1715 	 */
1716 	for (ksize = 0, i = 0; i < nkeys; i++)
1717 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1718 
1719 	/*
1720 	 * This should be pretty much impossible, but could happen if, say,
1721 	 * strange DIF specified the tuple.  Ideally, this should be an
1722 	 * assertion and not an error condition -- but that requires that the
1723 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1724 	 * bullet-proof.  (That is, it must not be able to be fooled by
1725 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1726 	 * solving this would presumably not amount to solving the Halting
1727 	 * Problem -- but it still seems awfully hard.
1728 	 */
1729 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1730 	    ksize + dsize > chunksize) {
1731 		dcpu->dtdsc_drops++;
1732 		return (NULL);
1733 	}
1734 
1735 	nstate = DTRACE_DSTATE_EMPTY;
1736 
1737 	do {
1738 retry:
1739 		free = dcpu->dtdsc_free;
1740 
1741 		if (free == NULL) {
1742 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1743 			void *rval;
1744 
1745 			if (clean == NULL) {
1746 				/*
1747 				 * We're out of dynamic variable space on
1748 				 * this CPU.  Unless we have tried all CPUs,
1749 				 * we'll try to allocate from a different
1750 				 * CPU.
1751 				 */
1752 				switch (dstate->dtds_state) {
1753 				case DTRACE_DSTATE_CLEAN: {
1754 					void *sp = &dstate->dtds_state;
1755 
1756 					if (++cpu >= NCPU)
1757 						cpu = 0;
1758 
1759 					if (dcpu->dtdsc_dirty != NULL &&
1760 					    nstate == DTRACE_DSTATE_EMPTY)
1761 						nstate = DTRACE_DSTATE_DIRTY;
1762 
1763 					if (dcpu->dtdsc_rinsing != NULL)
1764 						nstate = DTRACE_DSTATE_RINSING;
1765 
1766 					dcpu = &dstate->dtds_percpu[cpu];
1767 
1768 					if (cpu != me)
1769 						goto retry;
1770 
1771 					(void) dtrace_cas32(sp,
1772 					    DTRACE_DSTATE_CLEAN, nstate);
1773 
1774 					/*
1775 					 * To increment the correct bean
1776 					 * counter, take another lap.
1777 					 */
1778 					goto retry;
1779 				}
1780 
1781 				case DTRACE_DSTATE_DIRTY:
1782 					dcpu->dtdsc_dirty_drops++;
1783 					break;
1784 
1785 				case DTRACE_DSTATE_RINSING:
1786 					dcpu->dtdsc_rinsing_drops++;
1787 					break;
1788 
1789 				case DTRACE_DSTATE_EMPTY:
1790 					dcpu->dtdsc_drops++;
1791 					break;
1792 				}
1793 
1794 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1795 				return (NULL);
1796 			}
1797 
1798 			/*
1799 			 * The clean list appears to be non-empty.  We want to
1800 			 * move the clean list to the free list; we start by
1801 			 * moving the clean pointer aside.
1802 			 */
1803 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1804 			    clean, NULL) != clean) {
1805 				/*
1806 				 * We are in one of two situations:
1807 				 *
1808 				 *  (a)	The clean list was switched to the
1809 				 *	free list by another CPU.
1810 				 *
1811 				 *  (b)	The clean list was added to by the
1812 				 *	cleansing cyclic.
1813 				 *
1814 				 * In either of these situations, we can
1815 				 * just reattempt the free list allocation.
1816 				 */
1817 				goto retry;
1818 			}
1819 
1820 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1821 
1822 			/*
1823 			 * Now we'll move the clean list to the free list.
1824 			 * It's impossible for this to fail:  the only way
1825 			 * the free list can be updated is through this
1826 			 * code path, and only one CPU can own the clean list.
1827 			 * Thus, it would only be possible for this to fail if
1828 			 * this code were racing with dtrace_dynvar_clean().
1829 			 * (That is, if dtrace_dynvar_clean() updated the clean
1830 			 * list, and we ended up racing to update the free
1831 			 * list.)  This race is prevented by the dtrace_sync()
1832 			 * in dtrace_dynvar_clean() -- which flushes the
1833 			 * owners of the clean lists out before resetting
1834 			 * the clean lists.
1835 			 */
1836 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1837 			ASSERT(rval == NULL);
1838 			goto retry;
1839 		}
1840 
1841 		dvar = free;
1842 		new_free = dvar->dtdv_next;
1843 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1844 
1845 	/*
1846 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1847 	 * tuple array and copy any referenced key data into the data space
1848 	 * following the tuple array.  As we do this, we relocate dttk_value
1849 	 * in the final tuple to point to the key data address in the chunk.
1850 	 */
1851 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1852 	dvar->dtdv_data = (void *)(kdata + ksize);
1853 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1854 
1855 	for (i = 0; i < nkeys; i++) {
1856 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1857 		size_t kesize = key[i].dttk_size;
1858 
1859 		if (kesize != 0) {
1860 			dtrace_bcopy(
1861 			    (const void *)(uintptr_t)key[i].dttk_value,
1862 			    (void *)kdata, kesize);
1863 			dkey->dttk_value = kdata;
1864 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1865 		} else {
1866 			dkey->dttk_value = key[i].dttk_value;
1867 		}
1868 
1869 		dkey->dttk_size = kesize;
1870 	}
1871 
1872 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1873 	dvar->dtdv_hashval = hashval;
1874 	dvar->dtdv_next = start;
1875 
1876 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1877 		return (dvar);
1878 
1879 	/*
1880 	 * The cas has failed.  Either another CPU is adding an element to
1881 	 * this hash chain, or another CPU is deleting an element from this
1882 	 * hash chain.  The simplest way to deal with both of these cases
1883 	 * (though not necessarily the most efficient) is to free our
1884 	 * allocated block and tail-call ourselves.  Note that the free is
1885 	 * to the dirty list and _not_ to the free list.  This is to prevent
1886 	 * races with allocators, above.
1887 	 */
1888 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1889 
1890 	dtrace_membar_producer();
1891 
1892 	do {
1893 		free = dcpu->dtdsc_dirty;
1894 		dvar->dtdv_next = free;
1895 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1896 
1897 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1898 }
1899 
1900 /*ARGSUSED*/
1901 static void
dtrace_aggregate_min(uint64_t * oval,uint64_t nval,uint64_t arg)1902 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1903 {
1904 	if ((int64_t)nval < (int64_t)*oval)
1905 		*oval = nval;
1906 }
1907 
1908 /*ARGSUSED*/
1909 static void
dtrace_aggregate_max(uint64_t * oval,uint64_t nval,uint64_t arg)1910 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1911 {
1912 	if ((int64_t)nval > (int64_t)*oval)
1913 		*oval = nval;
1914 }
1915 
1916 static void
dtrace_aggregate_quantize(uint64_t * quanta,uint64_t nval,uint64_t incr)1917 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1918 {
1919 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1920 	int64_t val = (int64_t)nval;
1921 
1922 	if (val < 0) {
1923 		for (i = 0; i < zero; i++) {
1924 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1925 				quanta[i] += incr;
1926 				return;
1927 			}
1928 		}
1929 	} else {
1930 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1931 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1932 				quanta[i - 1] += incr;
1933 				return;
1934 			}
1935 		}
1936 
1937 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1938 		return;
1939 	}
1940 
1941 	ASSERT(0);
1942 }
1943 
1944 static void
dtrace_aggregate_lquantize(uint64_t * lquanta,uint64_t nval,uint64_t incr)1945 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1946 {
1947 	uint64_t arg = *lquanta++;
1948 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1949 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1950 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1951 	int32_t val = (int32_t)nval, level;
1952 
1953 	ASSERT(step != 0);
1954 	ASSERT(levels != 0);
1955 
1956 	if (val < base) {
1957 		/*
1958 		 * This is an underflow.
1959 		 */
1960 		lquanta[0] += incr;
1961 		return;
1962 	}
1963 
1964 	level = (val - base) / step;
1965 
1966 	if (level < levels) {
1967 		lquanta[level + 1] += incr;
1968 		return;
1969 	}
1970 
1971 	/*
1972 	 * This is an overflow.
1973 	 */
1974 	lquanta[levels + 1] += incr;
1975 }
1976 
1977 /*ARGSUSED*/
1978 static void
dtrace_aggregate_avg(uint64_t * data,uint64_t nval,uint64_t arg)1979 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1980 {
1981 	data[0]++;
1982 	data[1] += nval;
1983 }
1984 
1985 /*ARGSUSED*/
1986 static void
dtrace_aggregate_stddev(uint64_t * data,uint64_t nval,uint64_t arg)1987 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1988 {
1989 	int64_t snval = (int64_t)nval;
1990 	uint64_t tmp[2];
1991 
1992 	data[0]++;
1993 	data[1] += nval;
1994 
1995 	/*
1996 	 * What we want to say here is:
1997 	 *
1998 	 * data[2] += nval * nval;
1999 	 *
2000 	 * But given that nval is 64-bit, we could easily overflow, so
2001 	 * we do this as 128-bit arithmetic.
2002 	 */
2003 	if (snval < 0)
2004 		snval = -snval;
2005 
2006 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2007 	dtrace_add_128(data + 2, tmp, data + 2);
2008 }
2009 
2010 /*ARGSUSED*/
2011 static void
dtrace_aggregate_count(uint64_t * oval,uint64_t nval,uint64_t arg)2012 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2013 {
2014 	*oval = *oval + 1;
2015 }
2016 
2017 /*ARGSUSED*/
2018 static void
dtrace_aggregate_sum(uint64_t * oval,uint64_t nval,uint64_t arg)2019 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2020 {
2021 	*oval += nval;
2022 }
2023 
2024 /*
2025  * Aggregate given the tuple in the principal data buffer, and the aggregating
2026  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2027  * buffer is specified as the buf parameter.  This routine does not return
2028  * failure; if there is no space in the aggregation buffer, the data will be
2029  * dropped, and a corresponding counter incremented.
2030  */
2031 static void
dtrace_aggregate(dtrace_aggregation_t * agg,dtrace_buffer_t * dbuf,intptr_t offset,dtrace_buffer_t * buf,uint64_t expr,uint64_t arg)2032 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2033     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2034 {
2035 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2036 	uint32_t i, ndx, size, fsize;
2037 	uint32_t align = sizeof (uint64_t) - 1;
2038 	dtrace_aggbuffer_t *agb;
2039 	dtrace_aggkey_t *key;
2040 	uint32_t hashval = 0, limit, isstr;
2041 	caddr_t tomax, data, kdata;
2042 	dtrace_actkind_t action;
2043 	dtrace_action_t *act;
2044 	uintptr_t offs;
2045 
2046 	if (buf == NULL)
2047 		return;
2048 
2049 	if (!agg->dtag_hasarg) {
2050 		/*
2051 		 * Currently, only quantize() and lquantize() take additional
2052 		 * arguments, and they have the same semantics:  an increment
2053 		 * value that defaults to 1 when not present.  If additional
2054 		 * aggregating actions take arguments, the setting of the
2055 		 * default argument value will presumably have to become more
2056 		 * sophisticated...
2057 		 */
2058 		arg = 1;
2059 	}
2060 
2061 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2062 	size = rec->dtrd_offset - agg->dtag_base;
2063 	fsize = size + rec->dtrd_size;
2064 
2065 	ASSERT(dbuf->dtb_tomax != NULL);
2066 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2067 
2068 	if ((tomax = buf->dtb_tomax) == NULL) {
2069 		dtrace_buffer_drop(buf);
2070 		return;
2071 	}
2072 
2073 	/*
2074 	 * The metastructure is always at the bottom of the buffer.
2075 	 */
2076 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2077 	    sizeof (dtrace_aggbuffer_t));
2078 
2079 	if (buf->dtb_offset == 0) {
2080 		/*
2081 		 * We just kludge up approximately 1/8th of the size to be
2082 		 * buckets.  If this guess ends up being routinely
2083 		 * off-the-mark, we may need to dynamically readjust this
2084 		 * based on past performance.
2085 		 */
2086 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2087 
2088 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2089 		    (uintptr_t)tomax || hashsize == 0) {
2090 			/*
2091 			 * We've been given a ludicrously small buffer;
2092 			 * increment our drop count and leave.
2093 			 */
2094 			dtrace_buffer_drop(buf);
2095 			return;
2096 		}
2097 
2098 		/*
2099 		 * And now, a pathetic attempt to try to get a an odd (or
2100 		 * perchance, a prime) hash size for better hash distribution.
2101 		 */
2102 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2103 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2104 
2105 		agb->dtagb_hashsize = hashsize;
2106 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2107 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2108 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2109 
2110 		for (i = 0; i < agb->dtagb_hashsize; i++)
2111 			agb->dtagb_hash[i] = NULL;
2112 	}
2113 
2114 	ASSERT(agg->dtag_first != NULL);
2115 	ASSERT(agg->dtag_first->dta_intuple);
2116 
2117 	/*
2118 	 * Calculate the hash value based on the key.  Note that we _don't_
2119 	 * include the aggid in the hashing (but we will store it as part of
2120 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2121 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2122 	 * gets good distribution in practice.  The efficacy of the hashing
2123 	 * algorithm (and a comparison with other algorithms) may be found by
2124 	 * running the ::dtrace_aggstat MDB dcmd.
2125 	 */
2126 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2127 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2128 		limit = i + act->dta_rec.dtrd_size;
2129 		ASSERT(limit <= size);
2130 		isstr = DTRACEACT_ISSTRING(act);
2131 
2132 		for (; i < limit; i++) {
2133 			hashval += data[i];
2134 			hashval += (hashval << 10);
2135 			hashval ^= (hashval >> 6);
2136 
2137 			if (isstr && data[i] == '\0')
2138 				break;
2139 		}
2140 	}
2141 
2142 	hashval += (hashval << 3);
2143 	hashval ^= (hashval >> 11);
2144 	hashval += (hashval << 15);
2145 
2146 	/*
2147 	 * Yes, the divide here is expensive -- but it's generally the least
2148 	 * of the performance issues given the amount of data that we iterate
2149 	 * over to compute hash values, compare data, etc.
2150 	 */
2151 	ndx = hashval % agb->dtagb_hashsize;
2152 
2153 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2154 		ASSERT((caddr_t)key >= tomax);
2155 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2156 
2157 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2158 			continue;
2159 
2160 		kdata = key->dtak_data;
2161 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2162 
2163 		for (act = agg->dtag_first; act->dta_intuple;
2164 		    act = act->dta_next) {
2165 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2166 			limit = i + act->dta_rec.dtrd_size;
2167 			ASSERT(limit <= size);
2168 			isstr = DTRACEACT_ISSTRING(act);
2169 
2170 			for (; i < limit; i++) {
2171 				if (kdata[i] != data[i])
2172 					goto next;
2173 
2174 				if (isstr && data[i] == '\0')
2175 					break;
2176 			}
2177 		}
2178 
2179 		if (action != key->dtak_action) {
2180 			/*
2181 			 * We are aggregating on the same value in the same
2182 			 * aggregation with two different aggregating actions.
2183 			 * (This should have been picked up in the compiler,
2184 			 * so we may be dealing with errant or devious DIF.)
2185 			 * This is an error condition; we indicate as much,
2186 			 * and return.
2187 			 */
2188 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2189 			return;
2190 		}
2191 
2192 		/*
2193 		 * This is a hit:  we need to apply the aggregator to
2194 		 * the value at this key.
2195 		 */
2196 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2197 		return;
2198 next:
2199 		continue;
2200 	}
2201 
2202 	/*
2203 	 * We didn't find it.  We need to allocate some zero-filled space,
2204 	 * link it into the hash table appropriately, and apply the aggregator
2205 	 * to the (zero-filled) value.
2206 	 */
2207 	offs = buf->dtb_offset;
2208 	while (offs & (align - 1))
2209 		offs += sizeof (uint32_t);
2210 
2211 	/*
2212 	 * If we don't have enough room to both allocate a new key _and_
2213 	 * its associated data, increment the drop count and return.
2214 	 */
2215 	if ((uintptr_t)tomax + offs + fsize >
2216 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2217 		dtrace_buffer_drop(buf);
2218 		return;
2219 	}
2220 
2221 	/*CONSTCOND*/
2222 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2223 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2224 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2225 
2226 	key->dtak_data = kdata = tomax + offs;
2227 	buf->dtb_offset = offs + fsize;
2228 
2229 	/*
2230 	 * Now copy the data across.
2231 	 */
2232 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2233 
2234 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2235 		kdata[i] = data[i];
2236 
2237 	/*
2238 	 * Because strings are not zeroed out by default, we need to iterate
2239 	 * looking for actions that store strings, and we need to explicitly
2240 	 * pad these strings out with zeroes.
2241 	 */
2242 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2243 		int nul;
2244 
2245 		if (!DTRACEACT_ISSTRING(act))
2246 			continue;
2247 
2248 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2249 		limit = i + act->dta_rec.dtrd_size;
2250 		ASSERT(limit <= size);
2251 
2252 		for (nul = 0; i < limit; i++) {
2253 			if (nul) {
2254 				kdata[i] = '\0';
2255 				continue;
2256 			}
2257 
2258 			if (data[i] != '\0')
2259 				continue;
2260 
2261 			nul = 1;
2262 		}
2263 	}
2264 
2265 	for (i = size; i < fsize; i++)
2266 		kdata[i] = 0;
2267 
2268 	key->dtak_hashval = hashval;
2269 	key->dtak_size = size;
2270 	key->dtak_action = action;
2271 	key->dtak_next = agb->dtagb_hash[ndx];
2272 	agb->dtagb_hash[ndx] = key;
2273 
2274 	/*
2275 	 * Finally, apply the aggregator.
2276 	 */
2277 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2278 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2279 }
2280 
2281 /*
2282  * Given consumer state, this routine finds a speculation in the INACTIVE
2283  * state and transitions it into the ACTIVE state.  If there is no speculation
2284  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2285  * incremented -- it is up to the caller to take appropriate action.
2286  */
2287 static int
dtrace_speculation(dtrace_state_t * state)2288 dtrace_speculation(dtrace_state_t *state)
2289 {
2290 	int i = 0;
2291 	dtrace_speculation_state_t current;
2292 	uint32_t *stat = &state->dts_speculations_unavail, count;
2293 
2294 	while (i < state->dts_nspeculations) {
2295 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2296 
2297 		current = spec->dtsp_state;
2298 
2299 		if (current != DTRACESPEC_INACTIVE) {
2300 			if (current == DTRACESPEC_COMMITTINGMANY ||
2301 			    current == DTRACESPEC_COMMITTING ||
2302 			    current == DTRACESPEC_DISCARDING)
2303 				stat = &state->dts_speculations_busy;
2304 			i++;
2305 			continue;
2306 		}
2307 
2308 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2309 		    current, DTRACESPEC_ACTIVE) == current)
2310 			return (i + 1);
2311 	}
2312 
2313 	/*
2314 	 * We couldn't find a speculation.  If we found as much as a single
2315 	 * busy speculation buffer, we'll attribute this failure as "busy"
2316 	 * instead of "unavail".
2317 	 */
2318 	do {
2319 		count = *stat;
2320 	} while (dtrace_cas32(stat, count, count + 1) != count);
2321 
2322 	return (0);
2323 }
2324 
2325 /*
2326  * This routine commits an active speculation.  If the specified speculation
2327  * is not in a valid state to perform a commit(), this routine will silently do
2328  * nothing.  The state of the specified speculation is transitioned according
2329  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2330  */
2331 static void
dtrace_speculation_commit(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2332 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2333     dtrace_specid_t which)
2334 {
2335 	dtrace_speculation_t *spec;
2336 	dtrace_buffer_t *src, *dest;
2337 	uintptr_t daddr, saddr, dlimit;
2338 	dtrace_speculation_state_t current, new = 0;
2339 	intptr_t offs;
2340 
2341 	if (which == 0)
2342 		return;
2343 
2344 	if (which > state->dts_nspeculations) {
2345 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2346 		return;
2347 	}
2348 
2349 	spec = &state->dts_speculations[which - 1];
2350 	src = &spec->dtsp_buffer[cpu];
2351 	dest = &state->dts_buffer[cpu];
2352 
2353 	do {
2354 		current = spec->dtsp_state;
2355 
2356 		if (current == DTRACESPEC_COMMITTINGMANY)
2357 			break;
2358 
2359 		switch (current) {
2360 		case DTRACESPEC_INACTIVE:
2361 		case DTRACESPEC_DISCARDING:
2362 			return;
2363 
2364 		case DTRACESPEC_COMMITTING:
2365 			/*
2366 			 * This is only possible if we are (a) commit()'ing
2367 			 * without having done a prior speculate() on this CPU
2368 			 * and (b) racing with another commit() on a different
2369 			 * CPU.  There's nothing to do -- we just assert that
2370 			 * our offset is 0.
2371 			 */
2372 			ASSERT(src->dtb_offset == 0);
2373 			return;
2374 
2375 		case DTRACESPEC_ACTIVE:
2376 			new = DTRACESPEC_COMMITTING;
2377 			break;
2378 
2379 		case DTRACESPEC_ACTIVEONE:
2380 			/*
2381 			 * This speculation is active on one CPU.  If our
2382 			 * buffer offset is non-zero, we know that the one CPU
2383 			 * must be us.  Otherwise, we are committing on a
2384 			 * different CPU from the speculate(), and we must
2385 			 * rely on being asynchronously cleaned.
2386 			 */
2387 			if (src->dtb_offset != 0) {
2388 				new = DTRACESPEC_COMMITTING;
2389 				break;
2390 			}
2391 			/*FALLTHROUGH*/
2392 
2393 		case DTRACESPEC_ACTIVEMANY:
2394 			new = DTRACESPEC_COMMITTINGMANY;
2395 			break;
2396 
2397 		default:
2398 			ASSERT(0);
2399 		}
2400 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2401 	    current, new) != current);
2402 
2403 	/*
2404 	 * We have set the state to indicate that we are committing this
2405 	 * speculation.  Now reserve the necessary space in the destination
2406 	 * buffer.
2407 	 */
2408 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2409 	    sizeof (uint64_t), state, NULL)) < 0) {
2410 		dtrace_buffer_drop(dest);
2411 		goto out;
2412 	}
2413 
2414 	/*
2415 	 * We have the space; copy the buffer across.  (Note that this is a
2416 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2417 	 * a serious performance issue, a high-performance DTrace-specific
2418 	 * bcopy() should obviously be invented.)
2419 	 */
2420 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2421 	dlimit = daddr + src->dtb_offset;
2422 	saddr = (uintptr_t)src->dtb_tomax;
2423 
2424 	/*
2425 	 * First, the aligned portion.
2426 	 */
2427 	while (dlimit - daddr >= sizeof (uint64_t)) {
2428 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2429 
2430 		daddr += sizeof (uint64_t);
2431 		saddr += sizeof (uint64_t);
2432 	}
2433 
2434 	/*
2435 	 * Now any left-over bit...
2436 	 */
2437 	while (dlimit - daddr)
2438 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2439 
2440 	/*
2441 	 * Finally, commit the reserved space in the destination buffer.
2442 	 */
2443 	dest->dtb_offset = offs + src->dtb_offset;
2444 
2445 out:
2446 	/*
2447 	 * If we're lucky enough to be the only active CPU on this speculation
2448 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2449 	 */
2450 	if (current == DTRACESPEC_ACTIVE ||
2451 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2452 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2453 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2454 
2455 		ASSERT(rval == DTRACESPEC_COMMITTING);
2456 	}
2457 
2458 	src->dtb_offset = 0;
2459 	src->dtb_xamot_drops += src->dtb_drops;
2460 	src->dtb_drops = 0;
2461 }
2462 
2463 /*
2464  * This routine discards an active speculation.  If the specified speculation
2465  * is not in a valid state to perform a discard(), this routine will silently
2466  * do nothing.  The state of the specified speculation is transitioned
2467  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2468  */
2469 static void
dtrace_speculation_discard(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2470 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2471     dtrace_specid_t which)
2472 {
2473 	dtrace_speculation_t *spec;
2474 	dtrace_speculation_state_t current, new = 0;
2475 	dtrace_buffer_t *buf;
2476 
2477 	if (which == 0)
2478 		return;
2479 
2480 	if (which > state->dts_nspeculations) {
2481 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2482 		return;
2483 	}
2484 
2485 	spec = &state->dts_speculations[which - 1];
2486 	buf = &spec->dtsp_buffer[cpu];
2487 
2488 	do {
2489 		current = spec->dtsp_state;
2490 
2491 		switch (current) {
2492 		case DTRACESPEC_INACTIVE:
2493 		case DTRACESPEC_COMMITTINGMANY:
2494 		case DTRACESPEC_COMMITTING:
2495 		case DTRACESPEC_DISCARDING:
2496 			return;
2497 
2498 		case DTRACESPEC_ACTIVE:
2499 		case DTRACESPEC_ACTIVEMANY:
2500 			new = DTRACESPEC_DISCARDING;
2501 			break;
2502 
2503 		case DTRACESPEC_ACTIVEONE:
2504 			if (buf->dtb_offset != 0) {
2505 				new = DTRACESPEC_INACTIVE;
2506 			} else {
2507 				new = DTRACESPEC_DISCARDING;
2508 			}
2509 			break;
2510 
2511 		default:
2512 			ASSERT(0);
2513 		}
2514 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2515 	    current, new) != current);
2516 
2517 	buf->dtb_offset = 0;
2518 	buf->dtb_drops = 0;
2519 }
2520 
2521 /*
2522  * Note:  not called from probe context.  This function is called
2523  * asynchronously from cross call context to clean any speculations that are
2524  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2525  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2526  * speculation.
2527  */
2528 static void
dtrace_speculation_clean_here(dtrace_state_t * state)2529 dtrace_speculation_clean_here(dtrace_state_t *state)
2530 {
2531 	dtrace_icookie_t cookie;
2532 	processorid_t cpu = curcpu_id;
2533 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2534 	dtrace_specid_t i;
2535 
2536 	cookie = dtrace_interrupt_disable();
2537 
2538 	if (dest->dtb_tomax == NULL) {
2539 		dtrace_interrupt_enable(cookie);
2540 		return;
2541 	}
2542 
2543 	for (i = 0; i < state->dts_nspeculations; i++) {
2544 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2545 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2546 
2547 		if (src->dtb_tomax == NULL)
2548 			continue;
2549 
2550 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2551 			src->dtb_offset = 0;
2552 			continue;
2553 		}
2554 
2555 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2556 			continue;
2557 
2558 		if (src->dtb_offset == 0)
2559 			continue;
2560 
2561 		dtrace_speculation_commit(state, cpu, i + 1);
2562 	}
2563 
2564 	dtrace_interrupt_enable(cookie);
2565 }
2566 
2567 /*
2568  * Note:  not called from probe context.  This function is called
2569  * asynchronously (and at a regular interval) to clean any speculations that
2570  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2571  * is work to be done, it cross calls all CPUs to perform that work;
2572  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2573  * INACTIVE state until they have been cleaned by all CPUs.
2574  */
2575 static void
dtrace_speculation_clean(dtrace_state_t * state)2576 dtrace_speculation_clean(dtrace_state_t *state)
2577 {
2578 	int work = 0, rv;
2579 	dtrace_specid_t i;
2580 
2581 	for (i = 0; i < state->dts_nspeculations; i++) {
2582 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2583 
2584 		ASSERT(!spec->dtsp_cleaning);
2585 
2586 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2587 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2588 			continue;
2589 
2590 		work++;
2591 		spec->dtsp_cleaning = 1;
2592 	}
2593 
2594 	if (!work)
2595 		return;
2596 
2597 	dtrace_xcall(DTRACE_CPUALL,
2598 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2599 
2600 	/*
2601 	 * We now know that all CPUs have committed or discarded their
2602 	 * speculation buffers, as appropriate.  We can now set the state
2603 	 * to inactive.
2604 	 */
2605 	for (i = 0; i < state->dts_nspeculations; i++) {
2606 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2607 		dtrace_speculation_state_t current, new;
2608 
2609 		if (!spec->dtsp_cleaning)
2610 			continue;
2611 
2612 		current = spec->dtsp_state;
2613 		ASSERT(current == DTRACESPEC_DISCARDING ||
2614 		    current == DTRACESPEC_COMMITTINGMANY);
2615 
2616 		new = DTRACESPEC_INACTIVE;
2617 
2618 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2619 		ASSERT(rv == current);
2620 		spec->dtsp_cleaning = 0;
2621 	}
2622 }
2623 
2624 /*
2625  * Called as part of a speculate() to get the speculative buffer associated
2626  * with a given speculation.  Returns NULL if the specified speculation is not
2627  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2628  * the active CPU is not the specified CPU -- the speculation will be
2629  * atomically transitioned into the ACTIVEMANY state.
2630  */
2631 static dtrace_buffer_t *
dtrace_speculation_buffer(dtrace_state_t * state,processorid_t cpuid,dtrace_specid_t which)2632 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2633     dtrace_specid_t which)
2634 {
2635 	dtrace_speculation_t *spec;
2636 	dtrace_speculation_state_t current, new = 0;
2637 	dtrace_buffer_t *buf;
2638 
2639 	if (which == 0)
2640 		return (NULL);
2641 
2642 	if (which > state->dts_nspeculations) {
2643 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2644 		return (NULL);
2645 	}
2646 
2647 	spec = &state->dts_speculations[which - 1];
2648 	buf = &spec->dtsp_buffer[cpuid];
2649 
2650 	do {
2651 		current = spec->dtsp_state;
2652 
2653 		switch (current) {
2654 		case DTRACESPEC_INACTIVE:
2655 		case DTRACESPEC_COMMITTINGMANY:
2656 		case DTRACESPEC_DISCARDING:
2657 			return (NULL);
2658 
2659 		case DTRACESPEC_COMMITTING:
2660 			ASSERT(buf->dtb_offset == 0);
2661 			return (NULL);
2662 
2663 		case DTRACESPEC_ACTIVEONE:
2664 			/*
2665 			 * This speculation is currently active on one CPU.
2666 			 * Check the offset in the buffer; if it's non-zero,
2667 			 * that CPU must be us (and we leave the state alone).
2668 			 * If it's zero, assume that we're starting on a new
2669 			 * CPU -- and change the state to indicate that the
2670 			 * speculation is active on more than one CPU.
2671 			 */
2672 			if (buf->dtb_offset != 0)
2673 				return (buf);
2674 
2675 			new = DTRACESPEC_ACTIVEMANY;
2676 			break;
2677 
2678 		case DTRACESPEC_ACTIVEMANY:
2679 			return (buf);
2680 
2681 		case DTRACESPEC_ACTIVE:
2682 			new = DTRACESPEC_ACTIVEONE;
2683 			break;
2684 
2685 		default:
2686 			ASSERT(0);
2687 		}
2688 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2689 	    current, new) != current);
2690 
2691 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2692 	return (buf);
2693 }
2694 
2695 /*
2696  * Return a string.  In the event that the user lacks the privilege to access
2697  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2698  * don't fail access checking.
2699  *
2700  * dtrace_dif_variable() uses this routine as a helper for various
2701  * builtin values such as 'execname' and 'probefunc.'
2702  */
2703 uintptr_t
dtrace_dif_varstr(uintptr_t addr,dtrace_state_t * state,dtrace_mstate_t * mstate)2704 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2705     dtrace_mstate_t *mstate)
2706 {
2707 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2708 	uintptr_t ret;
2709 	size_t strsz;
2710 
2711 	/*
2712 	 * The easy case: this probe is allowed to read all of memory, so
2713 	 * we can just return this as a vanilla pointer.
2714 	 */
2715 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2716 		return (addr);
2717 
2718 	/*
2719 	 * This is the tougher case: we copy the string in question from
2720 	 * kernel memory into scratch memory and return it that way: this
2721 	 * ensures that we won't trip up when access checking tests the
2722 	 * BYREF return value.
2723 	 */
2724 	strsz = dtrace_strlen((char *)addr, size) + 1;
2725 
2726 	if (mstate->dtms_scratch_ptr + strsz >
2727 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2728 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2729 		return (0);
2730 	}
2731 
2732 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2733 	    strsz);
2734 	ret = mstate->dtms_scratch_ptr;
2735 	mstate->dtms_scratch_ptr += strsz;
2736 	return (ret);
2737 }
2738 
2739 #ifdef notyet
2740 /*
2741  * Return a string from a memoy address which is known to have one or
2742  * more concatenated, individually zero terminated, sub-strings.
2743  * In the event that the user lacks the privilege to access
2744  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2745  * don't fail access checking.
2746  *
2747  * dtrace_dif_variable() uses this routine as a helper for various
2748  * builtin values such as 'execargs'.
2749  */
2750 static uintptr_t
dtrace_dif_varstrz(uintptr_t addr,size_t strsz,dtrace_state_t * state,dtrace_mstate_t * mstate)2751 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2752     dtrace_mstate_t *mstate)
2753 {
2754 	char *p;
2755 	size_t i;
2756 	uintptr_t ret;
2757 
2758 	if (mstate->dtms_scratch_ptr + strsz >
2759 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2760 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2761 		return (0);
2762 	}
2763 
2764 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2765 	    strsz);
2766 
2767 	/* Replace sub-string termination characters with a space. */
2768 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2769 	    p++, i++)
2770 		if (*p == '\0')
2771 			*p = ' ';
2772 
2773 	ret = mstate->dtms_scratch_ptr;
2774 	mstate->dtms_scratch_ptr += strsz;
2775 	return (ret);
2776 }
2777 #endif
2778 
2779 /*
2780  * This function implements the DIF emulator's variable lookups.  The emulator
2781  * passes a reserved variable identifier and optional built-in array index.
2782  */
2783 static uint64_t
dtrace_dif_variable(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t v,uint64_t ndx)2784 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2785     uint64_t ndx)
2786 {
2787 	/*
2788 	 * If we're accessing one of the uncached arguments, we'll turn this
2789 	 * into a reference in the args array.
2790 	 */
2791 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2792 		ndx = v - DIF_VAR_ARG0;
2793 		v = DIF_VAR_ARGS;
2794 	}
2795 
2796 	switch (v) {
2797 	case DIF_VAR_ARGS:
2798 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2799 		if (ndx >= sizeof (mstate->dtms_arg) /
2800 		    sizeof (mstate->dtms_arg[0])) {
2801 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2802 			dtrace_provider_t *pv;
2803 			uint64_t val;
2804 
2805 			pv = mstate->dtms_probe->dtpr_provider;
2806 			if (pv->dtpv_pops.dtps_getargval != NULL)
2807 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2808 				    mstate->dtms_probe->dtpr_id,
2809 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2810 			else
2811 				val = dtrace_getarg(ndx, aframes);
2812 
2813 			/*
2814 			 * This is regrettably required to keep the compiler
2815 			 * from tail-optimizing the call to dtrace_getarg().
2816 			 * The condition always evaluates to true, but the
2817 			 * compiler has no way of figuring that out a priori.
2818 			 * (None of this would be necessary if the compiler
2819 			 * could be relied upon to _always_ tail-optimize
2820 			 * the call to dtrace_getarg() -- but it can't.)
2821 			 */
2822 			if (mstate->dtms_probe != NULL)
2823 				return (val);
2824 
2825 			ASSERT(0);
2826 		}
2827 
2828 		return (mstate->dtms_arg[ndx]);
2829 
2830 #if defined(sun)
2831 	case DIF_VAR_UREGS: {
2832 		klwp_t *lwp;
2833 
2834 		if (!dtrace_priv_proc(state))
2835 			return (0);
2836 
2837 		if ((lwp = curthread->t_lwp) == NULL) {
2838 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2839 			cpu_core[curcpu_id].cpuc_dtrace_illval = NULL;
2840 			return (0);
2841 		}
2842 
2843 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2844 		return (0);
2845 	}
2846 #endif
2847 
2848 	case DIF_VAR_CURTHREAD:
2849 		if (!dtrace_priv_kernel(state))
2850 			return (0);
2851 		return ((uint64_t)(uintptr_t)curthread);
2852 
2853 	case DIF_VAR_TIMESTAMP:
2854 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2855 			mstate->dtms_timestamp = dtrace_gethrtime();
2856 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2857 		}
2858 		return (mstate->dtms_timestamp);
2859 
2860 	case DIF_VAR_VTIMESTAMP:
2861 		ASSERT(dtrace_vtime_references != 0);
2862 		return (curthread->t_dtrace_vtime);
2863 
2864 	case DIF_VAR_WALLTIMESTAMP:
2865 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2866 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2867 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2868 		}
2869 		return (mstate->dtms_walltimestamp);
2870 
2871 #if defined(sun)
2872 	case DIF_VAR_IPL:
2873 		if (!dtrace_priv_kernel(state))
2874 			return (0);
2875 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2876 			mstate->dtms_ipl = dtrace_getipl();
2877 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2878 		}
2879 		return (mstate->dtms_ipl);
2880 #endif
2881 
2882 	case DIF_VAR_EPID:
2883 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2884 		return (mstate->dtms_epid);
2885 
2886 	case DIF_VAR_ID:
2887 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2888 		return (mstate->dtms_probe->dtpr_id);
2889 
2890 	case DIF_VAR_STACKDEPTH:
2891 		if (!dtrace_priv_kernel(state))
2892 			return (0);
2893 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2894 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2895 
2896 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2897 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2898 		}
2899 		return (mstate->dtms_stackdepth);
2900 
2901 	case DIF_VAR_USTACKDEPTH:
2902 		if (!dtrace_priv_proc(state))
2903 			return (0);
2904 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2905 			/*
2906 			 * See comment in DIF_VAR_PID.
2907 			 */
2908 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2909 			    CPU_ON_INTR(CPU)) {
2910 				mstate->dtms_ustackdepth = 0;
2911 			} else {
2912 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2913 				mstate->dtms_ustackdepth =
2914 				    dtrace_getustackdepth();
2915 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2916 			}
2917 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2918 		}
2919 		return (mstate->dtms_ustackdepth);
2920 
2921 	case DIF_VAR_CALLER:
2922 		if (!dtrace_priv_kernel(state))
2923 			return (0);
2924 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2925 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2926 
2927 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2928 				/*
2929 				 * If this is an unanchored probe, we are
2930 				 * required to go through the slow path:
2931 				 * dtrace_caller() only guarantees correct
2932 				 * results for anchored probes.
2933 				 */
2934 				pc_t caller[2] = {0, 0};
2935 
2936 				dtrace_getpcstack(caller, 2, aframes,
2937 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2938 				mstate->dtms_caller = caller[1];
2939 			} else if ((mstate->dtms_caller =
2940 			    dtrace_caller(aframes)) == -1) {
2941 				/*
2942 				 * We have failed to do this the quick way;
2943 				 * we must resort to the slower approach of
2944 				 * calling dtrace_getpcstack().
2945 				 */
2946 				pc_t caller = 0;
2947 
2948 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2949 				mstate->dtms_caller = caller;
2950 			}
2951 
2952 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2953 		}
2954 		return (mstate->dtms_caller);
2955 
2956 	case DIF_VAR_UCALLER:
2957 		if (!dtrace_priv_proc(state))
2958 			return (0);
2959 
2960 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2961 			uint64_t ustack[3];
2962 
2963 			/*
2964 			 * dtrace_getupcstack() fills in the first uint64_t
2965 			 * with the current PID.  The second uint64_t will
2966 			 * be the program counter at user-level.  The third
2967 			 * uint64_t will contain the caller, which is what
2968 			 * we're after.
2969 			 */
2970 			ustack[2] = 0;
2971 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2972 			dtrace_getupcstack(ustack, 3);
2973 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2974 			mstate->dtms_ucaller = ustack[2];
2975 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2976 		}
2977 
2978 		return (mstate->dtms_ucaller);
2979 
2980 	case DIF_VAR_PROBEPROV:
2981 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2982 		return (dtrace_dif_varstr(
2983 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
2984 		    state, mstate));
2985 
2986 	case DIF_VAR_PROBEMOD:
2987 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2988 		return (dtrace_dif_varstr(
2989 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
2990 		    state, mstate));
2991 
2992 	case DIF_VAR_PROBEFUNC:
2993 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2994 		return (dtrace_dif_varstr(
2995 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
2996 		    state, mstate));
2997 
2998 	case DIF_VAR_PROBENAME:
2999 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3000 		return (dtrace_dif_varstr(
3001 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3002 		    state, mstate));
3003 
3004 	case DIF_VAR_PID:
3005 		if (!dtrace_priv_proc(state))
3006 			return (0);
3007 
3008 #if defined(sun)
3009 		/*
3010 		 * Note that we are assuming that an unanchored probe is
3011 		 * always due to a high-level interrupt.  (And we're assuming
3012 		 * that there is only a single high level interrupt.)
3013 		 */
3014 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3015 			return (pid0.pid_id);
3016 
3017 		/*
3018 		 * It is always safe to dereference one's own t_procp pointer:
3019 		 * it always points to a valid, allocated proc structure.
3020 		 * Further, it is always safe to dereference the p_pidp member
3021 		 * of one's own proc structure.  (These are truisms becuase
3022 		 * threads and processes don't clean up their own state --
3023 		 * they leave that task to whomever reaps them.)
3024 		 */
3025 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3026 #else
3027 		return ((uint64_t)curproc->p_pid);
3028 #endif
3029 
3030 	case DIF_VAR_PPID:
3031 		if (!dtrace_priv_proc(state))
3032 			return (0);
3033 
3034 #if defined(sun)
3035 		/*
3036 		 * See comment in DIF_VAR_PID.
3037 		 */
3038 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3039 			return (pid0.pid_id);
3040 
3041 		/*
3042 		 * It is always safe to dereference one's own t_procp pointer:
3043 		 * it always points to a valid, allocated proc structure.
3044 		 * (This is true because threads don't clean up their own
3045 		 * state -- they leave that task to whomever reaps them.)
3046 		 */
3047 		return ((uint64_t)curthread->t_procp->p_ppid);
3048 #else
3049 		return ((uint64_t)curproc->p_pptr->p_pid);
3050 #endif
3051 
3052 	case DIF_VAR_TID:
3053 #if defined(sun)
3054 		/*
3055 		 * See comment in DIF_VAR_PID.
3056 		 */
3057 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3058 			return (0);
3059 #endif
3060 
3061 		return ((uint64_t)curthread->t_tid);
3062 
3063 	case DIF_VAR_EXECARGS: {
3064 #if 0
3065 		struct pargs *p_args = curthread->td_proc->p_args;
3066 
3067 		if (p_args == NULL)
3068 			return(0);
3069 
3070 		return (dtrace_dif_varstrz(
3071 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3072 #endif
3073 		/* XXX FreeBSD extension */
3074 		return 0;
3075 	}
3076 
3077 	case DIF_VAR_EXECNAME:
3078 #if defined(sun)
3079 		if (!dtrace_priv_proc(state))
3080 			return (0);
3081 
3082 		/*
3083 		 * See comment in DIF_VAR_PID.
3084 		 */
3085 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3086 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3087 
3088 		/*
3089 		 * It is always safe to dereference one's own t_procp pointer:
3090 		 * it always points to a valid, allocated proc structure.
3091 		 * (This is true because threads don't clean up their own
3092 		 * state -- they leave that task to whomever reaps them.)
3093 		 */
3094 		return (dtrace_dif_varstr(
3095 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3096 		    state, mstate));
3097 #else
3098 		return (dtrace_dif_varstr(
3099 		    (uintptr_t) curthread->l_proc->p_comm, state, mstate));
3100 #endif
3101 
3102 	case DIF_VAR_ZONENAME:
3103 #if defined(sun)
3104 		if (!dtrace_priv_proc(state))
3105 			return (0);
3106 
3107 		/*
3108 		 * See comment in DIF_VAR_PID.
3109 		 */
3110 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3111 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3112 
3113 		/*
3114 		 * It is always safe to dereference one's own t_procp pointer:
3115 		 * it always points to a valid, allocated proc structure.
3116 		 * (This is true because threads don't clean up their own
3117 		 * state -- they leave that task to whomever reaps them.)
3118 		 */
3119 		return (dtrace_dif_varstr(
3120 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3121 		    state, mstate));
3122 #else
3123 		return (0);
3124 #endif
3125 
3126 	case DIF_VAR_UID:
3127 		if (!dtrace_priv_proc(state))
3128 			return (0);
3129 
3130 #if defined(sun)
3131 		/*
3132 		 * See comment in DIF_VAR_PID.
3133 		 */
3134 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3135 			return ((uint64_t)p0.p_cred->cr_uid);
3136 
3137 		/*
3138 		 * It is always safe to dereference one's own t_procp pointer:
3139 		 * it always points to a valid, allocated proc structure.
3140 		 * (This is true because threads don't clean up their own
3141 		 * state -- they leave that task to whomever reaps them.)
3142 		 *
3143 		 * Additionally, it is safe to dereference one's own process
3144 		 * credential, since this is never NULL after process birth.
3145 		 */
3146 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3147 #else
3148 		return (uint64_t)kauth_cred_getuid(curthread->t_procp->p_cred);
3149 #endif
3150 
3151 	case DIF_VAR_GID:
3152 		if (!dtrace_priv_proc(state))
3153 			return (0);
3154 
3155 #if defined(sun)
3156 		/*
3157 		 * See comment in DIF_VAR_PID.
3158 		 */
3159 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3160 			return ((uint64_t)p0.p_cred->cr_gid);
3161 
3162 		/*
3163 		 * It is always safe to dereference one's own t_procp pointer:
3164 		 * it always points to a valid, allocated proc structure.
3165 		 * (This is true because threads don't clean up their own
3166 		 * state -- they leave that task to whomever reaps them.)
3167 		 *
3168 		 * Additionally, it is safe to dereference one's own process
3169 		 * credential, since this is never NULL after process birth.
3170 		 */
3171 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3172 #else
3173 		return (uint64_t)kauth_cred_getgid(curthread->t_procp->p_cred);
3174 #endif
3175 
3176 	case DIF_VAR_ERRNO: {
3177 #if defined(sun)
3178 		klwp_t *lwp;
3179 		if (!dtrace_priv_proc(state))
3180 			return (0);
3181 
3182 		/*
3183 		 * See comment in DIF_VAR_PID.
3184 		 */
3185 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3186 			return (0);
3187 
3188 		/*
3189 		 * It is always safe to dereference one's own t_lwp pointer in
3190 		 * the event that this pointer is non-NULL.  (This is true
3191 		 * because threads and lwps don't clean up their own state --
3192 		 * they leave that task to whomever reaps them.)
3193 		 */
3194 		if ((lwp = curthread->t_lwp) == NULL)
3195 			return (0);
3196 
3197 		return ((uint64_t)lwp->lwp_errno);
3198 #else
3199 #if 0
3200 		return (curthread->l_errno);
3201 #else
3202 		return 0;	/* XXX TBD errno support at lwp level? */
3203 #endif
3204 #endif
3205 	}
3206 	default:
3207 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3208 		return (0);
3209 	}
3210 }
3211 
3212 /*
3213  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3214  * Notice that we don't bother validating the proper number of arguments or
3215  * their types in the tuple stack.  This isn't needed because all argument
3216  * interpretation is safe because of our load safety -- the worst that can
3217  * happen is that a bogus program can obtain bogus results.
3218  */
3219 static void
dtrace_dif_subr(uint_t subr,uint_t rd,uint64_t * regs,dtrace_key_t * tupregs,int nargs,dtrace_mstate_t * mstate,dtrace_state_t * state)3220 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3221     dtrace_key_t *tupregs, int nargs,
3222     dtrace_mstate_t *mstate, dtrace_state_t *state)
3223 {
3224 	volatile uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
3225 	volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval;
3226 	dtrace_vstate_t *vstate = &state->dts_vstate;
3227 
3228 #if defined(sun)
3229 	union {
3230 		mutex_impl_t mi;
3231 		uint64_t mx;
3232 	} m;
3233 
3234 	union {
3235 		krwlock_t ri;
3236 		uintptr_t rw;
3237 	} r;
3238 #else
3239 	union {
3240 		kmutex_t mi;
3241 		uint64_t mx;
3242 	} m;
3243 
3244 	union {
3245 		krwlock_t ri;
3246 		uintptr_t rw;
3247 	} r;
3248 #endif
3249 
3250 	switch (subr) {
3251 	case DIF_SUBR_RAND:
3252 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3253 		break;
3254 
3255 #if defined(sun)
3256 	case DIF_SUBR_MUTEX_OWNED:
3257 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3258 		    mstate, vstate)) {
3259 			regs[rd] = 0;
3260 			break;
3261 		}
3262 
3263 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3264 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3265 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3266 		else
3267 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3268 		break;
3269 
3270 	case DIF_SUBR_MUTEX_OWNER:
3271 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3272 		    mstate, vstate)) {
3273 			regs[rd] = 0;
3274 			break;
3275 		}
3276 
3277 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3278 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3279 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3280 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3281 		else
3282 			regs[rd] = 0;
3283 		break;
3284 
3285 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3286 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3287 		    mstate, vstate)) {
3288 			regs[rd] = 0;
3289 			break;
3290 		}
3291 
3292 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3293 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3294 		break;
3295 
3296 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3297 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3298 		    mstate, vstate)) {
3299 			regs[rd] = 0;
3300 			break;
3301 		}
3302 
3303 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3304 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3305 		break;
3306 
3307 	case DIF_SUBR_RW_READ_HELD: {
3308 		uintptr_t tmp;
3309 
3310 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3311 		    mstate, vstate)) {
3312 			regs[rd] = 0;
3313 			break;
3314 		}
3315 
3316 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3317 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3318 		break;
3319 	}
3320 
3321 	case DIF_SUBR_RW_WRITE_HELD:
3322 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3323 		    mstate, vstate)) {
3324 			regs[rd] = 0;
3325 			break;
3326 		}
3327 
3328 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3329 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3330 		break;
3331 
3332 	case DIF_SUBR_RW_ISWRITER:
3333 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3334 		    mstate, vstate)) {
3335 			regs[rd] = 0;
3336 			break;
3337 		}
3338 
3339 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3340 		regs[rd] = _RW_ISWRITER(&r.ri);
3341 		break;
3342 
3343 #else
3344 	case DIF_SUBR_MUTEX_OWNED:
3345 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3346 		    mstate, vstate)) {
3347 			regs[rd] = 0;
3348 			break;
3349 		}
3350 
3351 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3352 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3353 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3354 		else
3355 			regs[rd] = __SIMPLELOCK_LOCKED_P(&m.mi.mtx_lock);
3356 		break;
3357 
3358 	case DIF_SUBR_MUTEX_OWNER:
3359 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3360 		    mstate, vstate)) {
3361 			regs[rd] = 0;
3362 			break;
3363 		}
3364 
3365 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3366 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3367 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3368 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3369 		else
3370 			regs[rd] = 0;
3371 		break;
3372 
3373 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3374 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3375 		    mstate, vstate)) {
3376 			regs[rd] = 0;
3377 			break;
3378 		}
3379 
3380 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3381 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3382 		break;
3383 
3384 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3385 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3386 		    mstate, vstate)) {
3387 			regs[rd] = 0;
3388 			break;
3389 		}
3390 
3391 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3392 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3393 		break;
3394 
3395 	case DIF_SUBR_RW_READ_HELD: {
3396 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3397 		    mstate, vstate)) {
3398 			regs[rd] = 0;
3399 			break;
3400 		}
3401 
3402 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3403 		regs[rd] = _RW_READ_HELD(&r.ri);
3404 		break;
3405 	}
3406 
3407 	case DIF_SUBR_RW_WRITE_HELD:
3408 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3409 		    mstate, vstate)) {
3410 			regs[rd] = 0;
3411 			break;
3412 		}
3413 
3414 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3415 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3416 		break;
3417 
3418 	case DIF_SUBR_RW_ISWRITER:
3419 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3420 		    mstate, vstate)) {
3421 			regs[rd] = 0;
3422 			break;
3423 		}
3424 
3425 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3426 		regs[rd] = _RW_ISWRITER(&r.ri);
3427 		break;
3428 
3429 #endif /* ! defined(sun) */
3430 
3431 	case DIF_SUBR_BCOPY: {
3432 		/*
3433 		 * We need to be sure that the destination is in the scratch
3434 		 * region -- no other region is allowed.
3435 		 */
3436 		uintptr_t src = tupregs[0].dttk_value;
3437 		uintptr_t dest = tupregs[1].dttk_value;
3438 		size_t size = tupregs[2].dttk_value;
3439 
3440 		if (!dtrace_inscratch(dest, size, mstate)) {
3441 			*flags |= CPU_DTRACE_BADADDR;
3442 			*illval = regs[rd];
3443 			break;
3444 		}
3445 
3446 		if (!dtrace_canload(src, size, mstate, vstate)) {
3447 			regs[rd] = 0;
3448 			break;
3449 		}
3450 
3451 		dtrace_bcopy((void *)src, (void *)dest, size);
3452 		break;
3453 	}
3454 
3455 	case DIF_SUBR_ALLOCA:
3456 	case DIF_SUBR_COPYIN: {
3457 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3458 		uint64_t size =
3459 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3460 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3461 
3462 		/*
3463 		 * This action doesn't require any credential checks since
3464 		 * probes will not activate in user contexts to which the
3465 		 * enabling user does not have permissions.
3466 		 */
3467 
3468 		/*
3469 		 * Rounding up the user allocation size could have overflowed
3470 		 * a large, bogus allocation (like -1ULL) to 0.
3471 		 */
3472 		if (scratch_size < size ||
3473 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3474 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3475 			regs[rd] = 0;
3476 			break;
3477 		}
3478 
3479 		if (subr == DIF_SUBR_COPYIN) {
3480 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3481 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3482 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3483 		}
3484 
3485 		mstate->dtms_scratch_ptr += scratch_size;
3486 		regs[rd] = dest;
3487 		break;
3488 	}
3489 
3490 	case DIF_SUBR_COPYINTO: {
3491 		uint64_t size = tupregs[1].dttk_value;
3492 		uintptr_t dest = tupregs[2].dttk_value;
3493 
3494 		/*
3495 		 * This action doesn't require any credential checks since
3496 		 * probes will not activate in user contexts to which the
3497 		 * enabling user does not have permissions.
3498 		 */
3499 		if (!dtrace_inscratch(dest, size, mstate)) {
3500 			*flags |= CPU_DTRACE_BADADDR;
3501 			*illval = regs[rd];
3502 			break;
3503 		}
3504 
3505 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3506 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3507 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3508 		break;
3509 	}
3510 
3511 	case DIF_SUBR_COPYINSTR: {
3512 		uintptr_t dest = mstate->dtms_scratch_ptr;
3513 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3514 
3515 		if (nargs > 1 && tupregs[1].dttk_value < size)
3516 			size = tupregs[1].dttk_value + 1;
3517 
3518 		/*
3519 		 * This action doesn't require any credential checks since
3520 		 * probes will not activate in user contexts to which the
3521 		 * enabling user does not have permissions.
3522 		 */
3523 		if (!DTRACE_INSCRATCH(mstate, size)) {
3524 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3525 			regs[rd] = 0;
3526 			break;
3527 		}
3528 
3529 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3530 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3531 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3532 
3533 		((char *)dest)[size - 1] = '\0';
3534 		mstate->dtms_scratch_ptr += size;
3535 		regs[rd] = dest;
3536 		break;
3537 	}
3538 
3539 #if defined(sun)
3540 	case DIF_SUBR_MSGSIZE:
3541 	case DIF_SUBR_MSGDSIZE: {
3542 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3543 		uintptr_t wptr, rptr;
3544 		size_t count = 0;
3545 		int cont = 0;
3546 
3547 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3548 
3549 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3550 			    vstate)) {
3551 				regs[rd] = 0;
3552 				break;
3553 			}
3554 
3555 			wptr = dtrace_loadptr(baddr +
3556 			    offsetof(mblk_t, b_wptr));
3557 
3558 			rptr = dtrace_loadptr(baddr +
3559 			    offsetof(mblk_t, b_rptr));
3560 
3561 			if (wptr < rptr) {
3562 				*flags |= CPU_DTRACE_BADADDR;
3563 				*illval = tupregs[0].dttk_value;
3564 				break;
3565 			}
3566 
3567 			daddr = dtrace_loadptr(baddr +
3568 			    offsetof(mblk_t, b_datap));
3569 
3570 			baddr = dtrace_loadptr(baddr +
3571 			    offsetof(mblk_t, b_cont));
3572 
3573 			/*
3574 			 * We want to prevent against denial-of-service here,
3575 			 * so we're only going to search the list for
3576 			 * dtrace_msgdsize_max mblks.
3577 			 */
3578 			if (cont++ > dtrace_msgdsize_max) {
3579 				*flags |= CPU_DTRACE_ILLOP;
3580 				break;
3581 			}
3582 
3583 			if (subr == DIF_SUBR_MSGDSIZE) {
3584 				if (dtrace_load8(daddr +
3585 				    offsetof(dblk_t, db_type)) != M_DATA)
3586 					continue;
3587 			}
3588 
3589 			count += wptr - rptr;
3590 		}
3591 
3592 		if (!(*flags & CPU_DTRACE_FAULT))
3593 			regs[rd] = count;
3594 
3595 		break;
3596 	}
3597 #endif
3598 
3599 	case DIF_SUBR_PROGENYOF: {
3600 		pid_t pid = tupregs[0].dttk_value;
3601 		proc_t *p;
3602 		int rval = 0;
3603 
3604 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3605 
3606 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3607 #if defined(sun)
3608 			if (p->p_pidp->pid_id == pid) {
3609 #else
3610 			if (p->p_pid == pid) {
3611 #endif
3612 				rval = 1;
3613 				break;
3614 			}
3615 		}
3616 
3617 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3618 
3619 		regs[rd] = rval;
3620 		break;
3621 	}
3622 
3623 	case DIF_SUBR_SPECULATION:
3624 		regs[rd] = dtrace_speculation(state);
3625 		break;
3626 
3627 	case DIF_SUBR_COPYOUT: {
3628 		uintptr_t kaddr = tupregs[0].dttk_value;
3629 		uintptr_t uaddr = tupregs[1].dttk_value;
3630 		uint64_t size = tupregs[2].dttk_value;
3631 
3632 		if (!dtrace_destructive_disallow &&
3633 		    dtrace_priv_proc_control(state) &&
3634 		    !dtrace_istoxic(kaddr, size)) {
3635 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3636 			dtrace_copyout(kaddr, uaddr, size, flags);
3637 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3638 		}
3639 		break;
3640 	}
3641 
3642 	case DIF_SUBR_COPYOUTSTR: {
3643 		uintptr_t kaddr = tupregs[0].dttk_value;
3644 		uintptr_t uaddr = tupregs[1].dttk_value;
3645 		uint64_t size = tupregs[2].dttk_value;
3646 
3647 		if (!dtrace_destructive_disallow &&
3648 		    dtrace_priv_proc_control(state) &&
3649 		    !dtrace_istoxic(kaddr, size)) {
3650 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3651 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3652 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3653 		}
3654 		break;
3655 	}
3656 
3657 	case DIF_SUBR_STRLEN: {
3658 		size_t sz;
3659 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3660 		sz = dtrace_strlen((char *)addr,
3661 		    state->dts_options[DTRACEOPT_STRSIZE]);
3662 
3663 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3664 			regs[rd] = 0;
3665 			break;
3666 		}
3667 
3668 		regs[rd] = sz;
3669 
3670 		break;
3671 	}
3672 
3673 	case DIF_SUBR_STRCHR:
3674 	case DIF_SUBR_STRRCHR: {
3675 		/*
3676 		 * We're going to iterate over the string looking for the
3677 		 * specified character.  We will iterate until we have reached
3678 		 * the string length or we have found the character.  If this
3679 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3680 		 * of the specified character instead of the first.
3681 		 */
3682 		uintptr_t saddr = tupregs[0].dttk_value;
3683 		uintptr_t addr = tupregs[0].dttk_value;
3684 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3685 		char c, target = (char)tupregs[1].dttk_value;
3686 
3687 		for (regs[rd] = 0; addr < limit; addr++) {
3688 			if ((c = dtrace_load8(addr)) == target) {
3689 				regs[rd] = addr;
3690 
3691 				if (subr == DIF_SUBR_STRCHR)
3692 					break;
3693 			}
3694 
3695 			if (c == '\0')
3696 				break;
3697 		}
3698 
3699 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3700 			regs[rd] = 0;
3701 			break;
3702 		}
3703 
3704 		break;
3705 	}
3706 
3707 	case DIF_SUBR_STRSTR:
3708 	case DIF_SUBR_INDEX:
3709 	case DIF_SUBR_RINDEX: {
3710 		/*
3711 		 * We're going to iterate over the string looking for the
3712 		 * specified string.  We will iterate until we have reached
3713 		 * the string length or we have found the string.  (Yes, this
3714 		 * is done in the most naive way possible -- but considering
3715 		 * that the string we're searching for is likely to be
3716 		 * relatively short, the complexity of Rabin-Karp or similar
3717 		 * hardly seems merited.)
3718 		 */
3719 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3720 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3721 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3722 		size_t len = dtrace_strlen(addr, size);
3723 		size_t sublen = dtrace_strlen(substr, size);
3724 		char *limit = addr + len, *orig = addr;
3725 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3726 		int inc = 1;
3727 
3728 		regs[rd] = notfound;
3729 
3730 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3731 			regs[rd] = 0;
3732 			break;
3733 		}
3734 
3735 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3736 		    vstate)) {
3737 			regs[rd] = 0;
3738 			break;
3739 		}
3740 
3741 		/*
3742 		 * strstr() and index()/rindex() have similar semantics if
3743 		 * both strings are the empty string: strstr() returns a
3744 		 * pointer to the (empty) string, and index() and rindex()
3745 		 * both return index 0 (regardless of any position argument).
3746 		 */
3747 		if (sublen == 0 && len == 0) {
3748 			if (subr == DIF_SUBR_STRSTR)
3749 				regs[rd] = (uintptr_t)addr;
3750 			else
3751 				regs[rd] = 0;
3752 			break;
3753 		}
3754 
3755 		if (subr != DIF_SUBR_STRSTR) {
3756 			if (subr == DIF_SUBR_RINDEX) {
3757 				limit = orig - 1;
3758 				addr += len;
3759 				inc = -1;
3760 			}
3761 
3762 			/*
3763 			 * Both index() and rindex() take an optional position
3764 			 * argument that denotes the starting position.
3765 			 */
3766 			if (nargs == 3) {
3767 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3768 
3769 				/*
3770 				 * If the position argument to index() is
3771 				 * negative, Perl implicitly clamps it at
3772 				 * zero.  This semantic is a little surprising
3773 				 * given the special meaning of negative
3774 				 * positions to similar Perl functions like
3775 				 * substr(), but it appears to reflect a
3776 				 * notion that index() can start from a
3777 				 * negative index and increment its way up to
3778 				 * the string.  Given this notion, Perl's
3779 				 * rindex() is at least self-consistent in
3780 				 * that it implicitly clamps positions greater
3781 				 * than the string length to be the string
3782 				 * length.  Where Perl completely loses
3783 				 * coherence, however, is when the specified
3784 				 * substring is the empty string ("").  In
3785 				 * this case, even if the position is
3786 				 * negative, rindex() returns 0 -- and even if
3787 				 * the position is greater than the length,
3788 				 * index() returns the string length.  These
3789 				 * semantics violate the notion that index()
3790 				 * should never return a value less than the
3791 				 * specified position and that rindex() should
3792 				 * never return a value greater than the
3793 				 * specified position.  (One assumes that
3794 				 * these semantics are artifacts of Perl's
3795 				 * implementation and not the results of
3796 				 * deliberate design -- it beggars belief that
3797 				 * even Larry Wall could desire such oddness.)
3798 				 * While in the abstract one would wish for
3799 				 * consistent position semantics across
3800 				 * substr(), index() and rindex() -- or at the
3801 				 * very least self-consistent position
3802 				 * semantics for index() and rindex() -- we
3803 				 * instead opt to keep with the extant Perl
3804 				 * semantics, in all their broken glory.  (Do
3805 				 * we have more desire to maintain Perl's
3806 				 * semantics than Perl does?  Probably.)
3807 				 */
3808 				if (subr == DIF_SUBR_RINDEX) {
3809 					if (pos < 0) {
3810 						if (sublen == 0)
3811 							regs[rd] = 0;
3812 						break;
3813 					}
3814 
3815 					if (pos > len)
3816 						pos = len;
3817 				} else {
3818 					if (pos < 0)
3819 						pos = 0;
3820 
3821 					if (pos >= len) {
3822 						if (sublen == 0)
3823 							regs[rd] = len;
3824 						break;
3825 					}
3826 				}
3827 
3828 				addr = orig + pos;
3829 			}
3830 		}
3831 
3832 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3833 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3834 				if (subr != DIF_SUBR_STRSTR) {
3835 					/*
3836 					 * As D index() and rindex() are
3837 					 * modeled on Perl (and not on awk),
3838 					 * we return a zero-based (and not a
3839 					 * one-based) index.  (For you Perl
3840 					 * weenies: no, we're not going to add
3841 					 * $[ -- and shouldn't you be at a con
3842 					 * or something?)
3843 					 */
3844 					regs[rd] = (uintptr_t)(addr - orig);
3845 					break;
3846 				}
3847 
3848 				ASSERT(subr == DIF_SUBR_STRSTR);
3849 				regs[rd] = (uintptr_t)addr;
3850 				break;
3851 			}
3852 		}
3853 
3854 		break;
3855 	}
3856 
3857 	case DIF_SUBR_STRTOK: {
3858 		uintptr_t addr = tupregs[0].dttk_value;
3859 		uintptr_t tokaddr = tupregs[1].dttk_value;
3860 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3861 		uintptr_t limit, toklimit = tokaddr + size;
3862 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3863 		char *dest = (char *)mstate->dtms_scratch_ptr;
3864 		int i;
3865 
3866 		/*
3867 		 * Check both the token buffer and (later) the input buffer,
3868 		 * since both could be non-scratch addresses.
3869 		 */
3870 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3871 			regs[rd] = 0;
3872 			break;
3873 		}
3874 
3875 		if (!DTRACE_INSCRATCH(mstate, size)) {
3876 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3877 			regs[rd] = 0;
3878 			break;
3879 		}
3880 
3881 		if (addr == 0) {
3882 			/*
3883 			 * If the address specified is NULL, we use our saved
3884 			 * strtok pointer from the mstate.  Note that this
3885 			 * means that the saved strtok pointer is _only_
3886 			 * valid within multiple enablings of the same probe --
3887 			 * it behaves like an implicit clause-local variable.
3888 			 */
3889 			addr = mstate->dtms_strtok;
3890 		} else {
3891 			/*
3892 			 * If the user-specified address is non-NULL we must
3893 			 * access check it.  This is the only time we have
3894 			 * a chance to do so, since this address may reside
3895 			 * in the string table of this clause-- future calls
3896 			 * (when we fetch addr from mstate->dtms_strtok)
3897 			 * would fail this access check.
3898 			 */
3899 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3900 				regs[rd] = 0;
3901 				break;
3902 			}
3903 		}
3904 
3905 		/*
3906 		 * First, zero the token map, and then process the token
3907 		 * string -- setting a bit in the map for every character
3908 		 * found in the token string.
3909 		 */
3910 		for (i = 0; i < sizeof (tokmap); i++)
3911 			tokmap[i] = 0;
3912 
3913 		for (; tokaddr < toklimit; tokaddr++) {
3914 			if ((c = dtrace_load8(tokaddr)) == '\0')
3915 				break;
3916 
3917 			ASSERT((c >> 3) < sizeof (tokmap));
3918 			tokmap[c >> 3] |= (1 << (c & 0x7));
3919 		}
3920 
3921 		for (limit = addr + size; addr < limit; addr++) {
3922 			/*
3923 			 * We're looking for a character that is _not_ contained
3924 			 * in the token string.
3925 			 */
3926 			if ((c = dtrace_load8(addr)) == '\0')
3927 				break;
3928 
3929 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3930 				break;
3931 		}
3932 
3933 		if (c == '\0') {
3934 			/*
3935 			 * We reached the end of the string without finding
3936 			 * any character that was not in the token string.
3937 			 * We return NULL in this case, and we set the saved
3938 			 * address to NULL as well.
3939 			 */
3940 			regs[rd] = 0;
3941 			mstate->dtms_strtok = 0;
3942 			break;
3943 		}
3944 
3945 		/*
3946 		 * From here on, we're copying into the destination string.
3947 		 */
3948 		for (i = 0; addr < limit && i < size - 1; addr++) {
3949 			if ((c = dtrace_load8(addr)) == '\0')
3950 				break;
3951 
3952 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3953 				break;
3954 
3955 			ASSERT(i < size);
3956 			dest[i++] = c;
3957 		}
3958 
3959 		ASSERT(i < size);
3960 		dest[i] = '\0';
3961 		regs[rd] = (uintptr_t)dest;
3962 		mstate->dtms_scratch_ptr += size;
3963 		mstate->dtms_strtok = addr;
3964 		break;
3965 	}
3966 
3967 	case DIF_SUBR_SUBSTR: {
3968 		uintptr_t s = tupregs[0].dttk_value;
3969 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3970 		char *d = (char *)mstate->dtms_scratch_ptr;
3971 		int64_t index = (int64_t)tupregs[1].dttk_value;
3972 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3973 		size_t len = dtrace_strlen((char *)s, size);
3974 		int64_t i = 0;
3975 
3976 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3977 			regs[rd] = 0;
3978 			break;
3979 		}
3980 
3981 		if (!DTRACE_INSCRATCH(mstate, size)) {
3982 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3983 			regs[rd] = 0;
3984 			break;
3985 		}
3986 
3987 		if (nargs <= 2)
3988 			remaining = (int64_t)size;
3989 
3990 		if (index < 0) {
3991 			index += len;
3992 
3993 			if (index < 0 && index + remaining > 0) {
3994 				remaining += index;
3995 				index = 0;
3996 			}
3997 		}
3998 
3999 		if (index >= len || index < 0) {
4000 			remaining = 0;
4001 		} else if (remaining < 0) {
4002 			remaining += len - index;
4003 		} else if (index + remaining > size) {
4004 			remaining = size - index;
4005 		}
4006 
4007 		for (i = 0; i < remaining; i++) {
4008 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4009 				break;
4010 		}
4011 
4012 		d[i] = '\0';
4013 
4014 		mstate->dtms_scratch_ptr += size;
4015 		regs[rd] = (uintptr_t)d;
4016 		break;
4017 	}
4018 
4019 #if defined(sun)
4020 	case DIF_SUBR_GETMAJOR:
4021 #ifdef _LP64
4022 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4023 #else
4024 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4025 #endif
4026 		break;
4027 
4028 	case DIF_SUBR_GETMINOR:
4029 #ifdef _LP64
4030 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4031 #else
4032 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4033 #endif
4034 		break;
4035 
4036 	case DIF_SUBR_DDI_PATHNAME: {
4037 		/*
4038 		 * This one is a galactic mess.  We are going to roughly
4039 		 * emulate ddi_pathname(), but it's made more complicated
4040 		 * by the fact that we (a) want to include the minor name and
4041 		 * (b) must proceed iteratively instead of recursively.
4042 		 */
4043 		uintptr_t dest = mstate->dtms_scratch_ptr;
4044 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4045 		char *start = (char *)dest, *end = start + size - 1;
4046 		uintptr_t daddr = tupregs[0].dttk_value;
4047 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4048 		char *s;
4049 		int i, len, depth = 0;
4050 
4051 		/*
4052 		 * Due to all the pointer jumping we do and context we must
4053 		 * rely upon, we just mandate that the user must have kernel
4054 		 * read privileges to use this routine.
4055 		 */
4056 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4057 			*flags |= CPU_DTRACE_KPRIV;
4058 			*illval = daddr;
4059 			regs[rd] = 0;
4060 		}
4061 
4062 		if (!DTRACE_INSCRATCH(mstate, size)) {
4063 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4064 			regs[rd] = 0;
4065 			break;
4066 		}
4067 
4068 		*end = '\0';
4069 
4070 		/*
4071 		 * We want to have a name for the minor.  In order to do this,
4072 		 * we need to walk the minor list from the devinfo.  We want
4073 		 * to be sure that we don't infinitely walk a circular list,
4074 		 * so we check for circularity by sending a scout pointer
4075 		 * ahead two elements for every element that we iterate over;
4076 		 * if the list is circular, these will ultimately point to the
4077 		 * same element.  You may recognize this little trick as the
4078 		 * answer to a stupid interview question -- one that always
4079 		 * seems to be asked by those who had to have it laboriously
4080 		 * explained to them, and who can't even concisely describe
4081 		 * the conditions under which one would be forced to resort to
4082 		 * this technique.  Needless to say, those conditions are
4083 		 * found here -- and probably only here.  Is this the only use
4084 		 * of this infamous trick in shipping, production code?  If it
4085 		 * isn't, it probably should be...
4086 		 */
4087 		if (minor != -1) {
4088 			uintptr_t maddr = dtrace_loadptr(daddr +
4089 			    offsetof(struct dev_info, devi_minor));
4090 
4091 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4092 			uintptr_t name = offsetof(struct ddi_minor_data,
4093 			    d_minor) + offsetof(struct ddi_minor, name);
4094 			uintptr_t dev = offsetof(struct ddi_minor_data,
4095 			    d_minor) + offsetof(struct ddi_minor, dev);
4096 			uintptr_t scout;
4097 
4098 			if (maddr != NULL)
4099 				scout = dtrace_loadptr(maddr + next);
4100 
4101 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4102 				uint64_t m;
4103 #ifdef _LP64
4104 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4105 #else
4106 				m = dtrace_load32(maddr + dev) & MAXMIN;
4107 #endif
4108 				if (m != minor) {
4109 					maddr = dtrace_loadptr(maddr + next);
4110 
4111 					if (scout == NULL)
4112 						continue;
4113 
4114 					scout = dtrace_loadptr(scout + next);
4115 
4116 					if (scout == NULL)
4117 						continue;
4118 
4119 					scout = dtrace_loadptr(scout + next);
4120 
4121 					if (scout == NULL)
4122 						continue;
4123 
4124 					if (scout == maddr) {
4125 						*flags |= CPU_DTRACE_ILLOP;
4126 						break;
4127 					}
4128 
4129 					continue;
4130 				}
4131 
4132 				/*
4133 				 * We have the minor data.  Now we need to
4134 				 * copy the minor's name into the end of the
4135 				 * pathname.
4136 				 */
4137 				s = (char *)dtrace_loadptr(maddr + name);
4138 				len = dtrace_strlen(s, size);
4139 
4140 				if (*flags & CPU_DTRACE_FAULT)
4141 					break;
4142 
4143 				if (len != 0) {
4144 					if ((end -= (len + 1)) < start)
4145 						break;
4146 
4147 					*end = ':';
4148 				}
4149 
4150 				for (i = 1; i <= len; i++)
4151 					end[i] = dtrace_load8((uintptr_t)s++);
4152 				break;
4153 			}
4154 		}
4155 
4156 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4157 			ddi_node_state_t devi_state;
4158 
4159 			devi_state = dtrace_load32(daddr +
4160 			    offsetof(struct dev_info, devi_node_state));
4161 
4162 			if (*flags & CPU_DTRACE_FAULT)
4163 				break;
4164 
4165 			if (devi_state >= DS_INITIALIZED) {
4166 				s = (char *)dtrace_loadptr(daddr +
4167 				    offsetof(struct dev_info, devi_addr));
4168 				len = dtrace_strlen(s, size);
4169 
4170 				if (*flags & CPU_DTRACE_FAULT)
4171 					break;
4172 
4173 				if (len != 0) {
4174 					if ((end -= (len + 1)) < start)
4175 						break;
4176 
4177 					*end = '@';
4178 				}
4179 
4180 				for (i = 1; i <= len; i++)
4181 					end[i] = dtrace_load8((uintptr_t)s++);
4182 			}
4183 
4184 			/*
4185 			 * Now for the node name...
4186 			 */
4187 			s = (char *)dtrace_loadptr(daddr +
4188 			    offsetof(struct dev_info, devi_node_name));
4189 
4190 			daddr = dtrace_loadptr(daddr +
4191 			    offsetof(struct dev_info, devi_parent));
4192 
4193 			/*
4194 			 * If our parent is NULL (that is, if we're the root
4195 			 * node), we're going to use the special path
4196 			 * "devices".
4197 			 */
4198 			if (daddr == 0)
4199 				s = "devices";
4200 
4201 			len = dtrace_strlen(s, size);
4202 			if (*flags & CPU_DTRACE_FAULT)
4203 				break;
4204 
4205 			if ((end -= (len + 1)) < start)
4206 				break;
4207 
4208 			for (i = 1; i <= len; i++)
4209 				end[i] = dtrace_load8((uintptr_t)s++);
4210 			*end = '/';
4211 
4212 			if (depth++ > dtrace_devdepth_max) {
4213 				*flags |= CPU_DTRACE_ILLOP;
4214 				break;
4215 			}
4216 		}
4217 
4218 		if (end < start)
4219 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4220 
4221 		if (daddr == 0) {
4222 			regs[rd] = (uintptr_t)end;
4223 			mstate->dtms_scratch_ptr += size;
4224 		}
4225 
4226 		break;
4227 	}
4228 #endif
4229 
4230 	case DIF_SUBR_STRJOIN: {
4231 		char *d = (char *)mstate->dtms_scratch_ptr;
4232 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4233 		uintptr_t s1 = tupregs[0].dttk_value;
4234 		uintptr_t s2 = tupregs[1].dttk_value;
4235 		int i = 0;
4236 
4237 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4238 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4239 			regs[rd] = 0;
4240 			break;
4241 		}
4242 
4243 		if (!DTRACE_INSCRATCH(mstate, size)) {
4244 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4245 			regs[rd] = 0;
4246 			break;
4247 		}
4248 
4249 		for (;;) {
4250 			if (i >= size) {
4251 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4252 				regs[rd] = 0;
4253 				break;
4254 			}
4255 
4256 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4257 				i--;
4258 				break;
4259 			}
4260 		}
4261 
4262 		for (;;) {
4263 			if (i >= size) {
4264 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4265 				regs[rd] = 0;
4266 				break;
4267 			}
4268 
4269 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4270 				break;
4271 		}
4272 
4273 		if (i < size) {
4274 			mstate->dtms_scratch_ptr += i;
4275 			regs[rd] = (uintptr_t)d;
4276 		}
4277 
4278 		break;
4279 	}
4280 
4281 	case DIF_SUBR_LLTOSTR: {
4282 		int64_t i = (int64_t)tupregs[0].dttk_value;
4283 		int64_t val = i < 0 ? i * -1 : i;
4284 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
4285 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4286 
4287 		if (!DTRACE_INSCRATCH(mstate, size)) {
4288 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4289 			regs[rd] = 0;
4290 			break;
4291 		}
4292 
4293 		for (*end-- = '\0'; val; val /= 10)
4294 			*end-- = '0' + (val % 10);
4295 
4296 		if (i == 0)
4297 			*end-- = '0';
4298 
4299 		if (i < 0)
4300 			*end-- = '-';
4301 
4302 		regs[rd] = (uintptr_t)end + 1;
4303 		mstate->dtms_scratch_ptr += size;
4304 		break;
4305 	}
4306 
4307 	case DIF_SUBR_HTONS:
4308 	case DIF_SUBR_NTOHS:
4309 #if BYTE_ORDER == BIG_ENDIAN
4310 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4311 #else
4312 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4313 #endif
4314 		break;
4315 
4316 
4317 	case DIF_SUBR_HTONL:
4318 	case DIF_SUBR_NTOHL:
4319 #if BYTE_ORDER == BIG_ENDIAN
4320 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4321 #else
4322 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4323 #endif
4324 		break;
4325 
4326 
4327 	case DIF_SUBR_HTONLL:
4328 	case DIF_SUBR_NTOHLL:
4329 #if BYTE_ORDER == BIG_ENDIAN
4330 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4331 #else
4332 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4333 #endif
4334 		break;
4335 
4336 
4337 	case DIF_SUBR_DIRNAME:
4338 	case DIF_SUBR_BASENAME: {
4339 		char *dest = (char *)mstate->dtms_scratch_ptr;
4340 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4341 		uintptr_t src = tupregs[0].dttk_value;
4342 		int i, j, len = dtrace_strlen((char *)src, size);
4343 		int lastbase = -1, firstbase = -1, lastdir = -1;
4344 		int start, end;
4345 
4346 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4347 			regs[rd] = 0;
4348 			break;
4349 		}
4350 
4351 		if (!DTRACE_INSCRATCH(mstate, size)) {
4352 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4353 			regs[rd] = 0;
4354 			break;
4355 		}
4356 
4357 		/*
4358 		 * The basename and dirname for a zero-length string is
4359 		 * defined to be "."
4360 		 */
4361 		if (len == 0) {
4362 			len = 1;
4363 			src = (uintptr_t)".";
4364 		}
4365 
4366 		/*
4367 		 * Start from the back of the string, moving back toward the
4368 		 * front until we see a character that isn't a slash.  That
4369 		 * character is the last character in the basename.
4370 		 */
4371 		for (i = len - 1; i >= 0; i--) {
4372 			if (dtrace_load8(src + i) != '/')
4373 				break;
4374 		}
4375 
4376 		if (i >= 0)
4377 			lastbase = i;
4378 
4379 		/*
4380 		 * Starting from the last character in the basename, move
4381 		 * towards the front until we find a slash.  The character
4382 		 * that we processed immediately before that is the first
4383 		 * character in the basename.
4384 		 */
4385 		for (; i >= 0; i--) {
4386 			if (dtrace_load8(src + i) == '/')
4387 				break;
4388 		}
4389 
4390 		if (i >= 0)
4391 			firstbase = i + 1;
4392 
4393 		/*
4394 		 * Now keep going until we find a non-slash character.  That
4395 		 * character is the last character in the dirname.
4396 		 */
4397 		for (; i >= 0; i--) {
4398 			if (dtrace_load8(src + i) != '/')
4399 				break;
4400 		}
4401 
4402 		if (i >= 0)
4403 			lastdir = i;
4404 
4405 		ASSERT(!(lastbase == -1 && firstbase != -1));
4406 		ASSERT(!(firstbase == -1 && lastdir != -1));
4407 
4408 		if (lastbase == -1) {
4409 			/*
4410 			 * We didn't find a non-slash character.  We know that
4411 			 * the length is non-zero, so the whole string must be
4412 			 * slashes.  In either the dirname or the basename
4413 			 * case, we return '/'.
4414 			 */
4415 			ASSERT(firstbase == -1);
4416 			firstbase = lastbase = lastdir = 0;
4417 		}
4418 
4419 		if (firstbase == -1) {
4420 			/*
4421 			 * The entire string consists only of a basename
4422 			 * component.  If we're looking for dirname, we need
4423 			 * to change our string to be just "."; if we're
4424 			 * looking for a basename, we'll just set the first
4425 			 * character of the basename to be 0.
4426 			 */
4427 			if (subr == DIF_SUBR_DIRNAME) {
4428 				ASSERT(lastdir == -1);
4429 				src = (uintptr_t)".";
4430 				lastdir = 0;
4431 			} else {
4432 				firstbase = 0;
4433 			}
4434 		}
4435 
4436 		if (subr == DIF_SUBR_DIRNAME) {
4437 			if (lastdir == -1) {
4438 				/*
4439 				 * We know that we have a slash in the name --
4440 				 * or lastdir would be set to 0, above.  And
4441 				 * because lastdir is -1, we know that this
4442 				 * slash must be the first character.  (That
4443 				 * is, the full string must be of the form
4444 				 * "/basename".)  In this case, the last
4445 				 * character of the directory name is 0.
4446 				 */
4447 				lastdir = 0;
4448 			}
4449 
4450 			start = 0;
4451 			end = lastdir;
4452 		} else {
4453 			ASSERT(subr == DIF_SUBR_BASENAME);
4454 			ASSERT(firstbase != -1 && lastbase != -1);
4455 			start = firstbase;
4456 			end = lastbase;
4457 		}
4458 
4459 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4460 			dest[j] = dtrace_load8(src + i);
4461 
4462 		dest[j] = '\0';
4463 		regs[rd] = (uintptr_t)dest;
4464 		mstate->dtms_scratch_ptr += size;
4465 		break;
4466 	}
4467 
4468 	case DIF_SUBR_CLEANPATH: {
4469 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4470 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4471 		uintptr_t src = tupregs[0].dttk_value;
4472 		int i = 0, j = 0;
4473 
4474 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4475 			regs[rd] = 0;
4476 			break;
4477 		}
4478 
4479 		if (!DTRACE_INSCRATCH(mstate, size)) {
4480 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4481 			regs[rd] = 0;
4482 			break;
4483 		}
4484 
4485 		/*
4486 		 * Move forward, loading each character.
4487 		 */
4488 		do {
4489 			c = dtrace_load8(src + i++);
4490 next:
4491 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4492 				break;
4493 
4494 			if (c != '/') {
4495 				dest[j++] = c;
4496 				continue;
4497 			}
4498 
4499 			c = dtrace_load8(src + i++);
4500 
4501 			if (c == '/') {
4502 				/*
4503 				 * We have two slashes -- we can just advance
4504 				 * to the next character.
4505 				 */
4506 				goto next;
4507 			}
4508 
4509 			if (c != '.') {
4510 				/*
4511 				 * This is not "." and it's not ".." -- we can
4512 				 * just store the "/" and this character and
4513 				 * drive on.
4514 				 */
4515 				dest[j++] = '/';
4516 				dest[j++] = c;
4517 				continue;
4518 			}
4519 
4520 			c = dtrace_load8(src + i++);
4521 
4522 			if (c == '/') {
4523 				/*
4524 				 * This is a "/./" component.  We're not going
4525 				 * to store anything in the destination buffer;
4526 				 * we're just going to go to the next component.
4527 				 */
4528 				goto next;
4529 			}
4530 
4531 			if (c != '.') {
4532 				/*
4533 				 * This is not ".." -- we can just store the
4534 				 * "/." and this character and continue
4535 				 * processing.
4536 				 */
4537 				dest[j++] = '/';
4538 				dest[j++] = '.';
4539 				dest[j++] = c;
4540 				continue;
4541 			}
4542 
4543 			c = dtrace_load8(src + i++);
4544 
4545 			if (c != '/' && c != '\0') {
4546 				/*
4547 				 * This is not ".." -- it's "..[mumble]".
4548 				 * We'll store the "/.." and this character
4549 				 * and continue processing.
4550 				 */
4551 				dest[j++] = '/';
4552 				dest[j++] = '.';
4553 				dest[j++] = '.';
4554 				dest[j++] = c;
4555 				continue;
4556 			}
4557 
4558 			/*
4559 			 * This is "/../" or "/..\0".  We need to back up
4560 			 * our destination pointer until we find a "/".
4561 			 */
4562 			i--;
4563 			while (j != 0 && dest[--j] != '/')
4564 				continue;
4565 
4566 			if (c == '\0')
4567 				dest[++j] = '/';
4568 		} while (c != '\0');
4569 
4570 		dest[j] = '\0';
4571 		regs[rd] = (uintptr_t)dest;
4572 		mstate->dtms_scratch_ptr += size;
4573 		break;
4574 	}
4575 
4576 	case DIF_SUBR_INET_NTOA:
4577 	case DIF_SUBR_INET_NTOA6:
4578 	case DIF_SUBR_INET_NTOP: {
4579 		size_t size;
4580 		int af, argi, i;
4581 		char *base, *end;
4582 
4583 		if (subr == DIF_SUBR_INET_NTOP) {
4584 			af = (int)tupregs[0].dttk_value;
4585 			argi = 1;
4586 		} else {
4587 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4588 			argi = 0;
4589 		}
4590 
4591 		if (af == AF_INET) {
4592 			ipaddr_t ip4;
4593 			uint8_t *ptr8, val;
4594 
4595 			/*
4596 			 * Safely load the IPv4 address.
4597 			 */
4598 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4599 
4600 			/*
4601 			 * Check an IPv4 string will fit in scratch.
4602 			 */
4603 			size = INET_ADDRSTRLEN;
4604 			if (!DTRACE_INSCRATCH(mstate, size)) {
4605 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4606 				regs[rd] = 0;
4607 				break;
4608 			}
4609 			base = (char *)mstate->dtms_scratch_ptr;
4610 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4611 
4612 			/*
4613 			 * Stringify as a dotted decimal quad.
4614 			 */
4615 			*end-- = '\0';
4616 			ptr8 = (uint8_t *)&ip4;
4617 			for (i = 3; i >= 0; i--) {
4618 				val = ptr8[i];
4619 
4620 				if (val == 0) {
4621 					*end-- = '0';
4622 				} else {
4623 					for (; val; val /= 10) {
4624 						*end-- = '0' + (val % 10);
4625 					}
4626 				}
4627 
4628 				if (i > 0)
4629 					*end-- = '.';
4630 			}
4631 			ASSERT(end + 1 >= base);
4632 
4633 		} else if (af == AF_INET6) {
4634 			struct in6_addr ip6;
4635 			int firstzero, tryzero, numzero, v6end;
4636 			uint16_t val;
4637 			const char digits[] = "0123456789abcdef";
4638 
4639 			/*
4640 			 * Stringify using RFC 1884 convention 2 - 16 bit
4641 			 * hexadecimal values with a zero-run compression.
4642 			 * Lower case hexadecimal digits are used.
4643 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4644 			 * The IPv4 embedded form is returned for inet_ntop,
4645 			 * just the IPv4 string is returned for inet_ntoa6.
4646 			 */
4647 
4648 			/*
4649 			 * Safely load the IPv6 address.
4650 			 */
4651 			dtrace_bcopy(
4652 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4653 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4654 
4655 			/*
4656 			 * Check an IPv6 string will fit in scratch.
4657 			 */
4658 			size = INET6_ADDRSTRLEN;
4659 			if (!DTRACE_INSCRATCH(mstate, size)) {
4660 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4661 				regs[rd] = 0;
4662 				break;
4663 			}
4664 			base = (char *)mstate->dtms_scratch_ptr;
4665 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4666 			*end-- = '\0';
4667 
4668 			/*
4669 			 * Find the longest run of 16 bit zero values
4670 			 * for the single allowed zero compression - "::".
4671 			 */
4672 			firstzero = -1;
4673 			tryzero = -1;
4674 			numzero = 1;
4675 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4676 #if defined(sun)
4677 				if (ip6._S6_un._S6_u8[i] == 0 &&
4678 #else
4679 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4680 #endif
4681 				    tryzero == -1 && i % 2 == 0) {
4682 					tryzero = i;
4683 					continue;
4684 				}
4685 
4686 				if (tryzero != -1 &&
4687 #if defined(sun)
4688 				    (ip6._S6_un._S6_u8[i] != 0 ||
4689 #else
4690 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4691 #endif
4692 				    i == sizeof (struct in6_addr) - 1)) {
4693 
4694 					if (i - tryzero <= numzero) {
4695 						tryzero = -1;
4696 						continue;
4697 					}
4698 
4699 					firstzero = tryzero;
4700 					numzero = i - i % 2 - tryzero;
4701 					tryzero = -1;
4702 
4703 #if defined(sun)
4704 					if (ip6._S6_un._S6_u8[i] == 0 &&
4705 #else
4706 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4707 #endif
4708 					    i == sizeof (struct in6_addr) - 1)
4709 						numzero += 2;
4710 				}
4711 			}
4712 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4713 
4714 			/*
4715 			 * Check for an IPv4 embedded address.
4716 			 */
4717 			v6end = sizeof (struct in6_addr) - 2;
4718 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4719 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4720 				for (i = sizeof (struct in6_addr) - 1;
4721 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4722 					ASSERT(end >= base);
4723 
4724 #if defined(sun)
4725 					val = ip6._S6_un._S6_u8[i];
4726 #else
4727 					val = ip6.__u6_addr.__u6_addr8[i];
4728 #endif
4729 
4730 					if (val == 0) {
4731 						*end-- = '0';
4732 					} else {
4733 						for (; val; val /= 10) {
4734 							*end-- = '0' + val % 10;
4735 						}
4736 					}
4737 
4738 					if (i > DTRACE_V4MAPPED_OFFSET)
4739 						*end-- = '.';
4740 				}
4741 
4742 				if (subr == DIF_SUBR_INET_NTOA6)
4743 					goto inetout;
4744 
4745 				/*
4746 				 * Set v6end to skip the IPv4 address that
4747 				 * we have already stringified.
4748 				 */
4749 				v6end = 10;
4750 			}
4751 
4752 			/*
4753 			 * Build the IPv6 string by working through the
4754 			 * address in reverse.
4755 			 */
4756 			for (i = v6end; i >= 0; i -= 2) {
4757 				ASSERT(end >= base);
4758 
4759 				if (i == firstzero + numzero - 2) {
4760 					*end-- = ':';
4761 					*end-- = ':';
4762 					i -= numzero - 2;
4763 					continue;
4764 				}
4765 
4766 				if (i < 14 && i != firstzero - 2)
4767 					*end-- = ':';
4768 
4769 #if defined(sun)
4770 				val = (ip6._S6_un._S6_u8[i] << 8) +
4771 				    ip6._S6_un._S6_u8[i + 1];
4772 #else
4773 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4774 				    ip6.__u6_addr.__u6_addr8[i + 1];
4775 #endif
4776 
4777 				if (val == 0) {
4778 					*end-- = '0';
4779 				} else {
4780 					for (; val; val /= 16) {
4781 						*end-- = digits[val % 16];
4782 					}
4783 				}
4784 			}
4785 			ASSERT(end + 1 >= base);
4786 
4787 		} else {
4788 			/*
4789 			 * The user didn't use AH_INET or AH_INET6.
4790 			 */
4791 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4792 			regs[rd] = 0;
4793 			break;
4794 		}
4795 
4796 inetout:	regs[rd] = (uintptr_t)end + 1;
4797 		mstate->dtms_scratch_ptr += size;
4798 		break;
4799 	}
4800 
4801 	case DIF_SUBR_MEMREF: {
4802 		uintptr_t size = 2 * sizeof(uintptr_t);
4803 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4804 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4805 
4806 		/* address and length */
4807 		memref[0] = tupregs[0].dttk_value;
4808 		memref[1] = tupregs[1].dttk_value;
4809 
4810 		regs[rd] = (uintptr_t) memref;
4811 		mstate->dtms_scratch_ptr += scratch_size;
4812 		break;
4813 	}
4814 
4815 	case DIF_SUBR_TYPEREF: {
4816 		uintptr_t size = 4 * sizeof(uintptr_t);
4817 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4818 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4819 
4820 		/* address, num_elements, type_str, type_len */
4821 		typeref[0] = tupregs[0].dttk_value;
4822 		typeref[1] = tupregs[1].dttk_value;
4823 		typeref[2] = tupregs[2].dttk_value;
4824 		typeref[3] = tupregs[3].dttk_value;
4825 
4826 		regs[rd] = (uintptr_t) typeref;
4827 		mstate->dtms_scratch_ptr += scratch_size;
4828 		break;
4829 	}
4830 	}
4831 }
4832 
4833 /*
4834  * Emulate the execution of DTrace IR instructions specified by the given
4835  * DIF object.  This function is deliberately void of assertions as all of
4836  * the necessary checks are handled by a call to dtrace_difo_validate().
4837  */
4838 static uint64_t
4839 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4840     dtrace_vstate_t *vstate, dtrace_state_t *state)
4841 {
4842 	const dif_instr_t *text = difo->dtdo_buf;
4843 	const uint_t textlen = difo->dtdo_len;
4844 	const char *strtab = difo->dtdo_strtab;
4845 	const uint64_t *inttab = difo->dtdo_inttab;
4846 
4847 	uint64_t rval = 0;
4848 	dtrace_statvar_t *svar;
4849 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4850 	dtrace_difv_t *v;
4851 	volatile uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
4852 	volatile uintptr_t *illval = &cpu_core[curcpu_id].cpuc_dtrace_illval;
4853 
4854 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4855 	uint64_t regs[DIF_DIR_NREGS];
4856 	uint64_t *tmp;
4857 
4858 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4859 	int64_t cc_r;
4860 	uint_t pc = 0, id, opc = 0;
4861 	uint8_t ttop = 0;
4862 	dif_instr_t instr;
4863 	uint_t r1, r2, rd;
4864 
4865 	/*
4866 	 * We stash the current DIF object into the machine state: we need it
4867 	 * for subsequent access checking.
4868 	 */
4869 	mstate->dtms_difo = difo;
4870 
4871 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4872 
4873 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4874 		opc = pc;
4875 
4876 		instr = text[pc++];
4877 		r1 = DIF_INSTR_R1(instr);
4878 		r2 = DIF_INSTR_R2(instr);
4879 		rd = DIF_INSTR_RD(instr);
4880 
4881 		switch (DIF_INSTR_OP(instr)) {
4882 		case DIF_OP_OR:
4883 			regs[rd] = regs[r1] | regs[r2];
4884 			break;
4885 		case DIF_OP_XOR:
4886 			regs[rd] = regs[r1] ^ regs[r2];
4887 			break;
4888 		case DIF_OP_AND:
4889 			regs[rd] = regs[r1] & regs[r2];
4890 			break;
4891 		case DIF_OP_SLL:
4892 			regs[rd] = regs[r1] << regs[r2];
4893 			break;
4894 		case DIF_OP_SRL:
4895 			regs[rd] = regs[r1] >> regs[r2];
4896 			break;
4897 		case DIF_OP_SUB:
4898 			regs[rd] = regs[r1] - regs[r2];
4899 			break;
4900 		case DIF_OP_ADD:
4901 			regs[rd] = regs[r1] + regs[r2];
4902 			break;
4903 		case DIF_OP_MUL:
4904 			regs[rd] = regs[r1] * regs[r2];
4905 			break;
4906 		case DIF_OP_SDIV:
4907 			if (regs[r2] == 0) {
4908 				regs[rd] = 0;
4909 				*flags |= CPU_DTRACE_DIVZERO;
4910 			} else {
4911 				regs[rd] = (int64_t)regs[r1] /
4912 				    (int64_t)regs[r2];
4913 			}
4914 			break;
4915 
4916 		case DIF_OP_UDIV:
4917 			if (regs[r2] == 0) {
4918 				regs[rd] = 0;
4919 				*flags |= CPU_DTRACE_DIVZERO;
4920 			} else {
4921 				regs[rd] = regs[r1] / regs[r2];
4922 			}
4923 			break;
4924 
4925 		case DIF_OP_SREM:
4926 			if (regs[r2] == 0) {
4927 				regs[rd] = 0;
4928 				*flags |= CPU_DTRACE_DIVZERO;
4929 			} else {
4930 				regs[rd] = (int64_t)regs[r1] %
4931 				    (int64_t)regs[r2];
4932 			}
4933 			break;
4934 
4935 		case DIF_OP_UREM:
4936 			if (regs[r2] == 0) {
4937 				regs[rd] = 0;
4938 				*flags |= CPU_DTRACE_DIVZERO;
4939 			} else {
4940 				regs[rd] = regs[r1] % regs[r2];
4941 			}
4942 			break;
4943 
4944 		case DIF_OP_NOT:
4945 			regs[rd] = ~regs[r1];
4946 			break;
4947 		case DIF_OP_MOV:
4948 			regs[rd] = regs[r1];
4949 			break;
4950 		case DIF_OP_CMP:
4951 			cc_r = regs[r1] - regs[r2];
4952 			cc_n = cc_r < 0;
4953 			cc_z = cc_r == 0;
4954 			cc_v = 0;
4955 			cc_c = regs[r1] < regs[r2];
4956 			break;
4957 		case DIF_OP_TST:
4958 			cc_n = cc_v = cc_c = 0;
4959 			cc_z = regs[r1] == 0;
4960 			break;
4961 		case DIF_OP_BA:
4962 			pc = DIF_INSTR_LABEL(instr);
4963 			break;
4964 		case DIF_OP_BE:
4965 			if (cc_z)
4966 				pc = DIF_INSTR_LABEL(instr);
4967 			break;
4968 		case DIF_OP_BNE:
4969 			if (cc_z == 0)
4970 				pc = DIF_INSTR_LABEL(instr);
4971 			break;
4972 		case DIF_OP_BG:
4973 			if ((cc_z | (cc_n ^ cc_v)) == 0)
4974 				pc = DIF_INSTR_LABEL(instr);
4975 			break;
4976 		case DIF_OP_BGU:
4977 			if ((cc_c | cc_z) == 0)
4978 				pc = DIF_INSTR_LABEL(instr);
4979 			break;
4980 		case DIF_OP_BGE:
4981 			if ((cc_n ^ cc_v) == 0)
4982 				pc = DIF_INSTR_LABEL(instr);
4983 			break;
4984 		case DIF_OP_BGEU:
4985 			if (cc_c == 0)
4986 				pc = DIF_INSTR_LABEL(instr);
4987 			break;
4988 		case DIF_OP_BL:
4989 			if (cc_n ^ cc_v)
4990 				pc = DIF_INSTR_LABEL(instr);
4991 			break;
4992 		case DIF_OP_BLU:
4993 			if (cc_c)
4994 				pc = DIF_INSTR_LABEL(instr);
4995 			break;
4996 		case DIF_OP_BLE:
4997 			if (cc_z | (cc_n ^ cc_v))
4998 				pc = DIF_INSTR_LABEL(instr);
4999 			break;
5000 		case DIF_OP_BLEU:
5001 			if (cc_c | cc_z)
5002 				pc = DIF_INSTR_LABEL(instr);
5003 			break;
5004 		case DIF_OP_RLDSB:
5005 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5006 				*flags |= CPU_DTRACE_KPRIV;
5007 				*illval = regs[r1];
5008 				break;
5009 			}
5010 			/*FALLTHROUGH*/
5011 		case DIF_OP_LDSB:
5012 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5013 			break;
5014 		case DIF_OP_RLDSH:
5015 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5016 				*flags |= CPU_DTRACE_KPRIV;
5017 				*illval = regs[r1];
5018 				break;
5019 			}
5020 			/*FALLTHROUGH*/
5021 		case DIF_OP_LDSH:
5022 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5023 			break;
5024 		case DIF_OP_RLDSW:
5025 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5026 				*flags |= CPU_DTRACE_KPRIV;
5027 				*illval = regs[r1];
5028 				break;
5029 			}
5030 			/*FALLTHROUGH*/
5031 		case DIF_OP_LDSW:
5032 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5033 			break;
5034 		case DIF_OP_RLDUB:
5035 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5036 				*flags |= CPU_DTRACE_KPRIV;
5037 				*illval = regs[r1];
5038 				break;
5039 			}
5040 			/*FALLTHROUGH*/
5041 		case DIF_OP_LDUB:
5042 			regs[rd] = dtrace_load8(regs[r1]);
5043 			break;
5044 		case DIF_OP_RLDUH:
5045 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5046 				*flags |= CPU_DTRACE_KPRIV;
5047 				*illval = regs[r1];
5048 				break;
5049 			}
5050 			/*FALLTHROUGH*/
5051 		case DIF_OP_LDUH:
5052 			regs[rd] = dtrace_load16(regs[r1]);
5053 			break;
5054 		case DIF_OP_RLDUW:
5055 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5056 				*flags |= CPU_DTRACE_KPRIV;
5057 				*illval = regs[r1];
5058 				break;
5059 			}
5060 			/*FALLTHROUGH*/
5061 		case DIF_OP_LDUW:
5062 			regs[rd] = dtrace_load32(regs[r1]);
5063 			break;
5064 		case DIF_OP_RLDX:
5065 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5066 				*flags |= CPU_DTRACE_KPRIV;
5067 				*illval = regs[r1];
5068 				break;
5069 			}
5070 			/*FALLTHROUGH*/
5071 		case DIF_OP_LDX:
5072 			regs[rd] = dtrace_load64(regs[r1]);
5073 			break;
5074 		case DIF_OP_ULDSB:
5075 			regs[rd] = (int8_t)
5076 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5077 			break;
5078 		case DIF_OP_ULDSH:
5079 			regs[rd] = (int16_t)
5080 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5081 			break;
5082 		case DIF_OP_ULDSW:
5083 			regs[rd] = (int32_t)
5084 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5085 			break;
5086 		case DIF_OP_ULDUB:
5087 			regs[rd] =
5088 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5089 			break;
5090 		case DIF_OP_ULDUH:
5091 			regs[rd] =
5092 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5093 			break;
5094 		case DIF_OP_ULDUW:
5095 			regs[rd] =
5096 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5097 			break;
5098 		case DIF_OP_ULDX:
5099 			regs[rd] =
5100 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5101 			break;
5102 		case DIF_OP_RET:
5103 			rval = regs[rd];
5104 			pc = textlen;
5105 			break;
5106 		case DIF_OP_NOP:
5107 			break;
5108 		case DIF_OP_SETX:
5109 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5110 			break;
5111 		case DIF_OP_SETS:
5112 			regs[rd] = (uint64_t)(uintptr_t)
5113 			    (strtab + DIF_INSTR_STRING(instr));
5114 			break;
5115 		case DIF_OP_SCMP: {
5116 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5117 			uintptr_t s1 = regs[r1];
5118 			uintptr_t s2 = regs[r2];
5119 
5120 			if (s1 != 0 &&
5121 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5122 				break;
5123 			if (s2 != 0 &&
5124 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5125 				break;
5126 
5127 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5128 
5129 			cc_n = cc_r < 0;
5130 			cc_z = cc_r == 0;
5131 			cc_v = cc_c = 0;
5132 			break;
5133 		}
5134 		case DIF_OP_LDGA:
5135 			regs[rd] = dtrace_dif_variable(mstate, state,
5136 			    r1, regs[r2]);
5137 			break;
5138 		case DIF_OP_LDGS:
5139 			id = DIF_INSTR_VAR(instr);
5140 
5141 			if (id >= DIF_VAR_OTHER_UBASE) {
5142 				uintptr_t a;
5143 
5144 				id -= DIF_VAR_OTHER_UBASE;
5145 				svar = vstate->dtvs_globals[id];
5146 				ASSERT(svar != NULL);
5147 				v = &svar->dtsv_var;
5148 
5149 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5150 					regs[rd] = svar->dtsv_data;
5151 					break;
5152 				}
5153 
5154 				a = (uintptr_t)svar->dtsv_data;
5155 
5156 				if (*(uint8_t *)a == UINT8_MAX) {
5157 					/*
5158 					 * If the 0th byte is set to UINT8_MAX
5159 					 * then this is to be treated as a
5160 					 * reference to a NULL variable.
5161 					 */
5162 					regs[rd] = 0;
5163 				} else {
5164 					regs[rd] = a + sizeof (uint64_t);
5165 				}
5166 
5167 				break;
5168 			}
5169 
5170 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5171 			break;
5172 
5173 		case DIF_OP_STGS:
5174 			id = DIF_INSTR_VAR(instr);
5175 
5176 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5177 			id -= DIF_VAR_OTHER_UBASE;
5178 
5179 			svar = vstate->dtvs_globals[id];
5180 			ASSERT(svar != NULL);
5181 			v = &svar->dtsv_var;
5182 
5183 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5184 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5185 
5186 				ASSERT(a != 0);
5187 				ASSERT(svar->dtsv_size != 0);
5188 
5189 				if (regs[rd] == 0) {
5190 					*(uint8_t *)a = UINT8_MAX;
5191 					break;
5192 				} else {
5193 					*(uint8_t *)a = 0;
5194 					a += sizeof (uint64_t);
5195 				}
5196 				if (!dtrace_vcanload(
5197 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5198 				    mstate, vstate))
5199 					break;
5200 
5201 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5202 				    (void *)a, &v->dtdv_type);
5203 				break;
5204 			}
5205 
5206 			svar->dtsv_data = regs[rd];
5207 			break;
5208 
5209 		case DIF_OP_LDTA:
5210 			/*
5211 			 * There are no DTrace built-in thread-local arrays at
5212 			 * present.  This opcode is saved for future work.
5213 			 */
5214 			*flags |= CPU_DTRACE_ILLOP;
5215 			regs[rd] = 0;
5216 			break;
5217 
5218 		case DIF_OP_LDLS:
5219 			id = DIF_INSTR_VAR(instr);
5220 
5221 			if (id < DIF_VAR_OTHER_UBASE) {
5222 				/*
5223 				 * For now, this has no meaning.
5224 				 */
5225 				regs[rd] = 0;
5226 				break;
5227 			}
5228 
5229 			id -= DIF_VAR_OTHER_UBASE;
5230 
5231 			ASSERT(id < vstate->dtvs_nlocals);
5232 			ASSERT(vstate->dtvs_locals != NULL);
5233 
5234 			svar = vstate->dtvs_locals[id];
5235 			ASSERT(svar != NULL);
5236 			v = &svar->dtsv_var;
5237 
5238 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5239 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5240 				size_t sz = v->dtdv_type.dtdt_size;
5241 
5242 				sz += sizeof (uint64_t);
5243 				ASSERT(svar->dtsv_size == NCPU * sz);
5244 				a += curcpu_id * sz;
5245 
5246 				if (*(uint8_t *)a == UINT8_MAX) {
5247 					/*
5248 					 * If the 0th byte is set to UINT8_MAX
5249 					 * then this is to be treated as a
5250 					 * reference to a NULL variable.
5251 					 */
5252 					regs[rd] = 0;
5253 				} else {
5254 					regs[rd] = a + sizeof (uint64_t);
5255 				}
5256 
5257 				break;
5258 			}
5259 
5260 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5261 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5262 			regs[rd] = tmp[curcpu_id];
5263 			break;
5264 
5265 		case DIF_OP_STLS:
5266 			id = DIF_INSTR_VAR(instr);
5267 
5268 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5269 			id -= DIF_VAR_OTHER_UBASE;
5270 			ASSERT(id < vstate->dtvs_nlocals);
5271 
5272 			ASSERT(vstate->dtvs_locals != NULL);
5273 			svar = vstate->dtvs_locals[id];
5274 			ASSERT(svar != NULL);
5275 			v = &svar->dtsv_var;
5276 
5277 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5278 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5279 				size_t sz = v->dtdv_type.dtdt_size;
5280 
5281 				sz += sizeof (uint64_t);
5282 				ASSERT(svar->dtsv_size == NCPU * sz);
5283 				a += curcpu_id * sz;
5284 
5285 				if (regs[rd] == 0) {
5286 					*(uint8_t *)a = UINT8_MAX;
5287 					break;
5288 				} else {
5289 					*(uint8_t *)a = 0;
5290 					a += sizeof (uint64_t);
5291 				}
5292 
5293 				if (!dtrace_vcanload(
5294 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5295 				    mstate, vstate))
5296 					break;
5297 
5298 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5299 				    (void *)a, &v->dtdv_type);
5300 				break;
5301 			}
5302 
5303 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5304 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5305 			tmp[curcpu_id] = regs[rd];
5306 			break;
5307 
5308 		case DIF_OP_LDTS: {
5309 			dtrace_dynvar_t *dvar;
5310 			dtrace_key_t *key;
5311 
5312 			id = DIF_INSTR_VAR(instr);
5313 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5314 			id -= DIF_VAR_OTHER_UBASE;
5315 			v = &vstate->dtvs_tlocals[id];
5316 
5317 			key = &tupregs[DIF_DTR_NREGS];
5318 			key[0].dttk_value = (uint64_t)id;
5319 			key[0].dttk_size = 0;
5320 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5321 			key[1].dttk_size = 0;
5322 
5323 			dvar = dtrace_dynvar(dstate, 2, key,
5324 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5325 			    mstate, vstate);
5326 
5327 			if (dvar == NULL) {
5328 				regs[rd] = 0;
5329 				break;
5330 			}
5331 
5332 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5333 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5334 			} else {
5335 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5336 			}
5337 
5338 			break;
5339 		}
5340 
5341 		case DIF_OP_STTS: {
5342 			dtrace_dynvar_t *dvar;
5343 			dtrace_key_t *key;
5344 
5345 			id = DIF_INSTR_VAR(instr);
5346 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5347 			id -= DIF_VAR_OTHER_UBASE;
5348 
5349 			key = &tupregs[DIF_DTR_NREGS];
5350 			key[0].dttk_value = (uint64_t)id;
5351 			key[0].dttk_size = 0;
5352 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5353 			key[1].dttk_size = 0;
5354 			v = &vstate->dtvs_tlocals[id];
5355 
5356 			dvar = dtrace_dynvar(dstate, 2, key,
5357 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5358 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5359 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5360 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5361 
5362 			/*
5363 			 * Given that we're storing to thread-local data,
5364 			 * we need to flush our predicate cache.
5365 			 */
5366 			curthread->t_predcache = 0;
5367 
5368 			if (dvar == NULL)
5369 				break;
5370 
5371 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5372 				if (!dtrace_vcanload(
5373 				    (void *)(uintptr_t)regs[rd],
5374 				    &v->dtdv_type, mstate, vstate))
5375 					break;
5376 
5377 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5378 				    dvar->dtdv_data, &v->dtdv_type);
5379 			} else {
5380 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5381 			}
5382 
5383 			break;
5384 		}
5385 
5386 		case DIF_OP_SRA:
5387 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5388 			break;
5389 
5390 		case DIF_OP_CALL:
5391 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5392 			    regs, tupregs, ttop, mstate, state);
5393 			break;
5394 
5395 		case DIF_OP_PUSHTR:
5396 			if (ttop == DIF_DTR_NREGS) {
5397 				*flags |= CPU_DTRACE_TUPOFLOW;
5398 				break;
5399 			}
5400 
5401 			if (r1 == DIF_TYPE_STRING) {
5402 				/*
5403 				 * If this is a string type and the size is 0,
5404 				 * we'll use the system-wide default string
5405 				 * size.  Note that we are _not_ looking at
5406 				 * the value of the DTRACEOPT_STRSIZE option;
5407 				 * had this been set, we would expect to have
5408 				 * a non-zero size value in the "pushtr".
5409 				 */
5410 				tupregs[ttop].dttk_size =
5411 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5412 				    regs[r2] ? regs[r2] :
5413 				    dtrace_strsize_default) + 1;
5414 			} else {
5415 				tupregs[ttop].dttk_size = regs[r2];
5416 			}
5417 
5418 			tupregs[ttop++].dttk_value = regs[rd];
5419 			break;
5420 
5421 		case DIF_OP_PUSHTV:
5422 			if (ttop == DIF_DTR_NREGS) {
5423 				*flags |= CPU_DTRACE_TUPOFLOW;
5424 				break;
5425 			}
5426 
5427 			tupregs[ttop].dttk_value = regs[rd];
5428 			tupregs[ttop++].dttk_size = 0;
5429 			break;
5430 
5431 		case DIF_OP_POPTS:
5432 			if (ttop != 0)
5433 				ttop--;
5434 			break;
5435 
5436 		case DIF_OP_FLUSHTS:
5437 			ttop = 0;
5438 			break;
5439 
5440 		case DIF_OP_LDGAA:
5441 		case DIF_OP_LDTAA: {
5442 			dtrace_dynvar_t *dvar;
5443 			dtrace_key_t *key = tupregs;
5444 			uint_t nkeys = ttop;
5445 
5446 			id = DIF_INSTR_VAR(instr);
5447 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5448 			id -= DIF_VAR_OTHER_UBASE;
5449 
5450 			key[nkeys].dttk_value = (uint64_t)id;
5451 			key[nkeys++].dttk_size = 0;
5452 
5453 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5454 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5455 				key[nkeys++].dttk_size = 0;
5456 				v = &vstate->dtvs_tlocals[id];
5457 			} else {
5458 				v = &vstate->dtvs_globals[id]->dtsv_var;
5459 			}
5460 
5461 			dvar = dtrace_dynvar(dstate, nkeys, key,
5462 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5463 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5464 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5465 
5466 			if (dvar == NULL) {
5467 				regs[rd] = 0;
5468 				break;
5469 			}
5470 
5471 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5472 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5473 			} else {
5474 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5475 			}
5476 
5477 			break;
5478 		}
5479 
5480 		case DIF_OP_STGAA:
5481 		case DIF_OP_STTAA: {
5482 			dtrace_dynvar_t *dvar;
5483 			dtrace_key_t *key = tupregs;
5484 			uint_t nkeys = ttop;
5485 
5486 			id = DIF_INSTR_VAR(instr);
5487 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5488 			id -= DIF_VAR_OTHER_UBASE;
5489 
5490 			key[nkeys].dttk_value = (uint64_t)id;
5491 			key[nkeys++].dttk_size = 0;
5492 
5493 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5494 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5495 				key[nkeys++].dttk_size = 0;
5496 				v = &vstate->dtvs_tlocals[id];
5497 			} else {
5498 				v = &vstate->dtvs_globals[id]->dtsv_var;
5499 			}
5500 
5501 			dvar = dtrace_dynvar(dstate, nkeys, key,
5502 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5503 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5504 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5505 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5506 
5507 			if (dvar == NULL)
5508 				break;
5509 
5510 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5511 				if (!dtrace_vcanload(
5512 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5513 				    mstate, vstate))
5514 					break;
5515 
5516 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5517 				    dvar->dtdv_data, &v->dtdv_type);
5518 			} else {
5519 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5520 			}
5521 
5522 			break;
5523 		}
5524 
5525 		case DIF_OP_ALLOCS: {
5526 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5527 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5528 
5529 			/*
5530 			 * Rounding up the user allocation size could have
5531 			 * overflowed large, bogus allocations (like -1ULL) to
5532 			 * 0.
5533 			 */
5534 			if (size < regs[r1] ||
5535 			    !DTRACE_INSCRATCH(mstate, size)) {
5536 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5537 				regs[rd] = 0;
5538 				break;
5539 			}
5540 
5541 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5542 			mstate->dtms_scratch_ptr += size;
5543 			regs[rd] = ptr;
5544 			break;
5545 		}
5546 
5547 		case DIF_OP_COPYS:
5548 			if (!dtrace_canstore(regs[rd], regs[r2],
5549 			    mstate, vstate)) {
5550 				*flags |= CPU_DTRACE_BADADDR;
5551 				*illval = regs[rd];
5552 				break;
5553 			}
5554 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5555 				break;
5556 
5557 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5558 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5559 			break;
5560 
5561 		case DIF_OP_STB:
5562 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5563 				*flags |= CPU_DTRACE_BADADDR;
5564 				*illval = regs[rd];
5565 				break;
5566 			}
5567 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5568 			break;
5569 
5570 		case DIF_OP_STH:
5571 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5572 				*flags |= CPU_DTRACE_BADADDR;
5573 				*illval = regs[rd];
5574 				break;
5575 			}
5576 			if (regs[rd] & 1) {
5577 				*flags |= CPU_DTRACE_BADALIGN;
5578 				*illval = regs[rd];
5579 				break;
5580 			}
5581 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5582 			break;
5583 
5584 		case DIF_OP_STW:
5585 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5586 				*flags |= CPU_DTRACE_BADADDR;
5587 				*illval = regs[rd];
5588 				break;
5589 			}
5590 			if (regs[rd] & 3) {
5591 				*flags |= CPU_DTRACE_BADALIGN;
5592 				*illval = regs[rd];
5593 				break;
5594 			}
5595 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5596 			break;
5597 
5598 		case DIF_OP_STX:
5599 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5600 				*flags |= CPU_DTRACE_BADADDR;
5601 				*illval = regs[rd];
5602 				break;
5603 			}
5604 			if (regs[rd] & 7) {
5605 				*flags |= CPU_DTRACE_BADALIGN;
5606 				*illval = regs[rd];
5607 				break;
5608 			}
5609 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5610 			break;
5611 		}
5612 	}
5613 
5614 	if (!(*flags & CPU_DTRACE_FAULT))
5615 		return (rval);
5616 
5617 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5618 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5619 
5620 	return (0);
5621 }
5622 
5623 static void
5624 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5625 {
5626 	dtrace_probe_t *probe = ecb->dte_probe;
5627 	dtrace_provider_t *prov = probe->dtpr_provider;
5628 	char c[DTRACE_FULLNAMELEN + 80], *str;
5629 	const char *msg = "dtrace: breakpoint action at probe ";
5630 	const char *ecbmsg = " (ecb ";
5631 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5632 	uintptr_t val = (uintptr_t)ecb;
5633 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5634 
5635 	if (dtrace_destructive_disallow)
5636 		return;
5637 
5638 	/*
5639 	 * It's impossible to be taking action on the NULL probe.
5640 	 */
5641 	ASSERT(probe != NULL);
5642 
5643 	/*
5644 	 * This is a poor man's (destitute man's?) snprintf():  we want to
5645 	 * print the provider name, module name, function name and name of
5646 	 * the probe, along with the hex address of the ECB with the breakpoint
5647 	 * action -- all of which we must place in the character buffer by
5648 	 * hand.
5649 	 */
5650 	while (*msg != '\0')
5651 		c[i++] = *msg++;
5652 
5653 	for (str = prov->dtpv_name; *str != '\0'; str++)
5654 		c[i++] = *str;
5655 	c[i++] = ':';
5656 
5657 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5658 		c[i++] = *str;
5659 	c[i++] = ':';
5660 
5661 	for (str = probe->dtpr_func; *str != '\0'; str++)
5662 		c[i++] = *str;
5663 	c[i++] = ':';
5664 
5665 	for (str = probe->dtpr_name; *str != '\0'; str++)
5666 		c[i++] = *str;
5667 
5668 	while (*ecbmsg != '\0')
5669 		c[i++] = *ecbmsg++;
5670 
5671 	while (shift >= 0) {
5672 		mask = (uintptr_t)0xf << shift;
5673 
5674 		if (val >= ((uintptr_t)1 << shift))
5675 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5676 		shift -= 4;
5677 	}
5678 
5679 	c[i++] = ')';
5680 	c[i] = '\0';
5681 
5682 #if defined(sun)
5683 	debug_enter(c);
5684 #else
5685 #ifdef DDB
5686 	db_printf("%s\n", c);
5687 	Debugger();
5688 #else
5689 	printf("%s ignored\n", c);
5690 #endif /* DDB */
5691 #endif
5692 }
5693 
5694 static void
5695 dtrace_action_panic(dtrace_ecb_t *ecb)
5696 {
5697 	dtrace_probe_t *probe = ecb->dte_probe;
5698 
5699 	/*
5700 	 * It's impossible to be taking action on the NULL probe.
5701 	 */
5702 	ASSERT(probe != NULL);
5703 
5704 	if (dtrace_destructive_disallow)
5705 		return;
5706 
5707 	if (dtrace_panicked != NULL)
5708 		return;
5709 
5710 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5711 		return;
5712 
5713 	/*
5714 	 * We won the right to panic.  (We want to be sure that only one
5715 	 * thread calls panic() from dtrace_probe(), and that panic() is
5716 	 * called exactly once.)
5717 	 */
5718 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5719 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5720 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5721 }
5722 
5723 static void
5724 dtrace_action_raise(uint64_t sig)
5725 {
5726 	if (dtrace_destructive_disallow)
5727 		return;
5728 
5729 	if (sig >= NSIG) {
5730 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5731 		return;
5732 	}
5733 
5734 #if defined(sun)
5735 	/*
5736 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5737 	 * invocations of the raise() action.
5738 	 */
5739 	if (curthread->t_dtrace_sig == 0)
5740 		curthread->t_dtrace_sig = (uint8_t)sig;
5741 
5742 	curthread->t_sig_check = 1;
5743 	aston(curthread);
5744 #else
5745 	struct proc *p = curproc;
5746 	mutex_enter(proc_lock);
5747 	psignal(p, sig);
5748 	mutex_exit(proc_lock);
5749 #endif
5750 }
5751 
5752 static void
5753 dtrace_action_stop(void)
5754 {
5755 	if (dtrace_destructive_disallow)
5756 		return;
5757 
5758 #if defined(sun)
5759 	if (!curthread->t_dtrace_stop) {
5760 		curthread->t_dtrace_stop = 1;
5761 		curthread->t_sig_check = 1;
5762 		aston(curthread);
5763 	}
5764 #else
5765 	struct proc *p = curproc;
5766 	mutex_enter(proc_lock);
5767 	psignal(p, SIGSTOP);
5768 	mutex_exit(proc_lock);
5769 #endif
5770 }
5771 
5772 static void
5773 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5774 {
5775 #if 0	/* XXX TBD - needs solaris_cpu */
5776 	hrtime_t now;
5777 	volatile uint16_t *flags;
5778 #if defined(sun)
5779 	cpu_t *cpu = CPU;
5780 #else
5781 	cpu_t *cpu = &solaris_cpu[curcpu_id];
5782 #endif
5783 
5784 	if (dtrace_destructive_disallow)
5785 		return;
5786 
5787 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5788 
5789 	now = dtrace_gethrtime();
5790 
5791 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5792 		/*
5793 		 * We need to advance the mark to the current time.
5794 		 */
5795 		cpu->cpu_dtrace_chillmark = now;
5796 		cpu->cpu_dtrace_chilled = 0;
5797 	}
5798 
5799 	/*
5800 	 * Now check to see if the requested chill time would take us over
5801 	 * the maximum amount of time allowed in the chill interval.  (Or
5802 	 * worse, if the calculation itself induces overflow.)
5803 	 */
5804 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5805 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5806 		*flags |= CPU_DTRACE_ILLOP;
5807 		return;
5808 	}
5809 
5810 	while (dtrace_gethrtime() - now < val)
5811 		continue;
5812 
5813 	/*
5814 	 * Normally, we assure that the value of the variable "timestamp" does
5815 	 * not change within an ECB.  The presence of chill() represents an
5816 	 * exception to this rule, however.
5817 	 */
5818 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5819 	cpu->cpu_dtrace_chilled += val;
5820 #endif
5821 }
5822 
5823 static void
5824 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5825     uint64_t *buf, uint64_t arg)
5826 {
5827 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5828 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5829 	uint64_t *pcs = &buf[1], *fps;
5830 	char *str = (char *)&pcs[nframes];
5831 	int size, offs = 0, i, j;
5832 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5833 	uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
5834 	char *sym;
5835 
5836 	/*
5837 	 * Should be taking a faster path if string space has not been
5838 	 * allocated.
5839 	 */
5840 	ASSERT(strsize != 0);
5841 
5842 	/*
5843 	 * We will first allocate some temporary space for the frame pointers.
5844 	 */
5845 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5846 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5847 	    (nframes * sizeof (uint64_t));
5848 
5849 	if (!DTRACE_INSCRATCH(mstate, size)) {
5850 		/*
5851 		 * Not enough room for our frame pointers -- need to indicate
5852 		 * that we ran out of scratch space.
5853 		 */
5854 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5855 		return;
5856 	}
5857 
5858 	mstate->dtms_scratch_ptr += size;
5859 	saved = mstate->dtms_scratch_ptr;
5860 
5861 	/*
5862 	 * Now get a stack with both program counters and frame pointers.
5863 	 */
5864 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5865 	dtrace_getufpstack(buf, fps, nframes + 1);
5866 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5867 
5868 	/*
5869 	 * If that faulted, we're cooked.
5870 	 */
5871 	if (*flags & CPU_DTRACE_FAULT)
5872 		goto out;
5873 
5874 	/*
5875 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5876 	 * each iteration, we restore the scratch pointer.
5877 	 */
5878 	for (i = 0; i < nframes; i++) {
5879 		mstate->dtms_scratch_ptr = saved;
5880 
5881 		if (offs >= strsize)
5882 			break;
5883 
5884 		sym = (char *)(uintptr_t)dtrace_helper(
5885 		    DTRACE_HELPER_ACTION_USTACK,
5886 		    mstate, state, pcs[i], fps[i]);
5887 
5888 		/*
5889 		 * If we faulted while running the helper, we're going to
5890 		 * clear the fault and null out the corresponding string.
5891 		 */
5892 		if (*flags & CPU_DTRACE_FAULT) {
5893 			*flags &= ~CPU_DTRACE_FAULT;
5894 			str[offs++] = '\0';
5895 			continue;
5896 		}
5897 
5898 		if (sym == NULL) {
5899 			str[offs++] = '\0';
5900 			continue;
5901 		}
5902 
5903 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5904 
5905 		/*
5906 		 * Now copy in the string that the helper returned to us.
5907 		 */
5908 		for (j = 0; offs + j < strsize; j++) {
5909 			if ((str[offs + j] = sym[j]) == '\0')
5910 				break;
5911 		}
5912 
5913 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5914 
5915 		offs += j + 1;
5916 	}
5917 
5918 	if (offs >= strsize) {
5919 		/*
5920 		 * If we didn't have room for all of the strings, we don't
5921 		 * abort processing -- this needn't be a fatal error -- but we
5922 		 * still want to increment a counter (dts_stkstroverflows) to
5923 		 * allow this condition to be warned about.  (If this is from
5924 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5925 		 */
5926 		dtrace_error(&state->dts_stkstroverflows);
5927 	}
5928 
5929 	while (offs < strsize)
5930 		str[offs++] = '\0';
5931 
5932 out:
5933 	mstate->dtms_scratch_ptr = old;
5934 }
5935 
5936 /*
5937  * If you're looking for the epicenter of DTrace, you just found it.  This
5938  * is the function called by the provider to fire a probe -- from which all
5939  * subsequent probe-context DTrace activity emanates.
5940  */
5941 void
5942 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
5943     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
5944 {
5945 	processorid_t cpuid;
5946 	dtrace_icookie_t cookie;
5947 	dtrace_probe_t *probe;
5948 	dtrace_mstate_t mstate;
5949 	dtrace_ecb_t *ecb;
5950 	dtrace_action_t *act;
5951 	intptr_t offs;
5952 	size_t size;
5953 	int vtime, onintr;
5954 	volatile uint16_t *flags;
5955 	hrtime_t now;
5956 
5957 #if defined(sun)
5958 	/*
5959 	 * Kick out immediately if this CPU is still being born (in which case
5960 	 * curthread will be set to -1) or the current thread can't allow
5961 	 * probes in its current context.
5962 	 */
5963 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
5964 		return;
5965 #endif
5966 
5967 	cookie = dtrace_interrupt_disable();
5968 	probe = dtrace_probes[id - 1];
5969 	cpuid = curcpu_id;
5970 	onintr = CPU_ON_INTR(CPU);
5971 
5972 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
5973 	    probe->dtpr_predcache == curthread->t_predcache) {
5974 		/*
5975 		 * We have hit in the predicate cache; we know that
5976 		 * this predicate would evaluate to be false.
5977 		 */
5978 		dtrace_interrupt_enable(cookie);
5979 		return;
5980 	}
5981 
5982 #if defined(sun)
5983 	if (panic_quiesce) {
5984 #else
5985 	if (panicstr != NULL) {
5986 #endif
5987 		/*
5988 		 * We don't trace anything if we're panicking.
5989 		 */
5990 		dtrace_interrupt_enable(cookie);
5991 		return;
5992 	}
5993 
5994 	now = dtrace_gethrtime();
5995 	vtime = dtrace_vtime_references != 0;
5996 
5997 	if (vtime && curthread->t_dtrace_start)
5998 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
5999 
6000 	mstate.dtms_difo = NULL;
6001 	mstate.dtms_probe = probe;
6002 	mstate.dtms_strtok = 0;
6003 	mstate.dtms_arg[0] = arg0;
6004 	mstate.dtms_arg[1] = arg1;
6005 	mstate.dtms_arg[2] = arg2;
6006 	mstate.dtms_arg[3] = arg3;
6007 	mstate.dtms_arg[4] = arg4;
6008 
6009 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6010 
6011 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6012 		dtrace_predicate_t *pred = ecb->dte_predicate;
6013 		dtrace_state_t *state = ecb->dte_state;
6014 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6015 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6016 		dtrace_vstate_t *vstate = &state->dts_vstate;
6017 		dtrace_provider_t *prov = probe->dtpr_provider;
6018 		int committed = 0;
6019 		caddr_t tomax;
6020 
6021 		/*
6022 		 * A little subtlety with the following (seemingly innocuous)
6023 		 * declaration of the automatic 'val':  by looking at the
6024 		 * code, you might think that it could be declared in the
6025 		 * action processing loop, below.  (That is, it's only used in
6026 		 * the action processing loop.)  However, it must be declared
6027 		 * out of that scope because in the case of DIF expression
6028 		 * arguments to aggregating actions, one iteration of the
6029 		 * action loop will use the last iteration's value.
6030 		 */
6031 		uint64_t val = 0;
6032 
6033 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6034 		*flags &= ~CPU_DTRACE_ERROR;
6035 
6036 		if (prov == dtrace_provider) {
6037 			/*
6038 			 * If dtrace itself is the provider of this probe,
6039 			 * we're only going to continue processing the ECB if
6040 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6041 			 * creating state.  (This prevents disjoint consumers
6042 			 * from seeing one another's metaprobes.)
6043 			 */
6044 			if (arg0 != (uint64_t)(uintptr_t)state)
6045 				continue;
6046 		}
6047 
6048 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6049 			/*
6050 			 * We're not currently active.  If our provider isn't
6051 			 * the dtrace pseudo provider, we're not interested.
6052 			 */
6053 			if (prov != dtrace_provider)
6054 				continue;
6055 
6056 			/*
6057 			 * Now we must further check if we are in the BEGIN
6058 			 * probe.  If we are, we will only continue processing
6059 			 * if we're still in WARMUP -- if one BEGIN enabling
6060 			 * has invoked the exit() action, we don't want to
6061 			 * evaluate subsequent BEGIN enablings.
6062 			 */
6063 			if (probe->dtpr_id == dtrace_probeid_begin &&
6064 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6065 				ASSERT(state->dts_activity ==
6066 				    DTRACE_ACTIVITY_DRAINING);
6067 				continue;
6068 			}
6069 		}
6070 
6071 		if (ecb->dte_cond) {
6072 			/*
6073 			 * If the dte_cond bits indicate that this
6074 			 * consumer is only allowed to see user-mode firings
6075 			 * of this probe, call the provider's dtps_usermode()
6076 			 * entry point to check that the probe was fired
6077 			 * while in a user context. Skip this ECB if that's
6078 			 * not the case.
6079 			 */
6080 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6081 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6082 			    probe->dtpr_id, probe->dtpr_arg) == 0)
6083 				continue;
6084 
6085 #if defined(sun)
6086 			/*
6087 			 * This is more subtle than it looks. We have to be
6088 			 * absolutely certain that CRED() isn't going to
6089 			 * change out from under us so it's only legit to
6090 			 * examine that structure if we're in constrained
6091 			 * situations. Currently, the only times we'll this
6092 			 * check is if a non-super-user has enabled the
6093 			 * profile or syscall providers -- providers that
6094 			 * allow visibility of all processes. For the
6095 			 * profile case, the check above will ensure that
6096 			 * we're examining a user context.
6097 			 */
6098 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6099 				cred_t *cr;
6100 				cred_t *s_cr =
6101 				    ecb->dte_state->dts_cred.dcr_cred;
6102 				proc_t *proc;
6103 
6104 				ASSERT(s_cr != NULL);
6105 
6106 				if ((cr = CRED()) == NULL ||
6107 				    s_cr->cr_uid != cr->cr_uid ||
6108 				    s_cr->cr_uid != cr->cr_ruid ||
6109 				    s_cr->cr_uid != cr->cr_suid ||
6110 				    s_cr->cr_gid != cr->cr_gid ||
6111 				    s_cr->cr_gid != cr->cr_rgid ||
6112 				    s_cr->cr_gid != cr->cr_sgid ||
6113 				    (proc = ttoproc(curthread)) == NULL ||
6114 				    (proc->p_flag & SNOCD))
6115 					continue;
6116 			}
6117 
6118 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6119 				cred_t *cr;
6120 				cred_t *s_cr =
6121 				    ecb->dte_state->dts_cred.dcr_cred;
6122 
6123 				ASSERT(s_cr != NULL);
6124 
6125 				if ((cr = CRED()) == NULL ||
6126 				    s_cr->cr_zone->zone_id !=
6127 				    cr->cr_zone->zone_id)
6128 					continue;
6129 			}
6130 #endif
6131 		}
6132 
6133 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6134 			/*
6135 			 * We seem to be dead.  Unless we (a) have kernel
6136 			 * destructive permissions (b) have expicitly enabled
6137 			 * destructive actions and (c) destructive actions have
6138 			 * not been disabled, we're going to transition into
6139 			 * the KILLED state, from which no further processing
6140 			 * on this state will be performed.
6141 			 */
6142 			if (!dtrace_priv_kernel_destructive(state) ||
6143 			    !state->dts_cred.dcr_destructive ||
6144 			    dtrace_destructive_disallow) {
6145 				void *activity = &state->dts_activity;
6146 				dtrace_activity_t current;
6147 
6148 				do {
6149 					current = state->dts_activity;
6150 				} while (dtrace_cas32(activity, current,
6151 				    DTRACE_ACTIVITY_KILLED) != current);
6152 
6153 				continue;
6154 			}
6155 		}
6156 
6157 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6158 		    ecb->dte_alignment, state, &mstate)) < 0)
6159 			continue;
6160 
6161 		tomax = buf->dtb_tomax;
6162 		ASSERT(tomax != NULL);
6163 
6164 		if (ecb->dte_size != 0)
6165 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6166 
6167 		mstate.dtms_epid = ecb->dte_epid;
6168 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6169 
6170 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6171 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6172 		else
6173 			mstate.dtms_access = 0;
6174 
6175 		if (pred != NULL) {
6176 			dtrace_difo_t *dp = pred->dtp_difo;
6177 			int rval;
6178 
6179 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6180 
6181 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6182 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6183 
6184 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6185 					/*
6186 					 * Update the predicate cache...
6187 					 */
6188 					ASSERT(cid == pred->dtp_cacheid);
6189 					curthread->t_predcache = cid;
6190 				}
6191 
6192 				continue;
6193 			}
6194 		}
6195 
6196 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6197 		    act != NULL; act = act->dta_next) {
6198 			size_t valoffs;
6199 			dtrace_difo_t *dp;
6200 			dtrace_recdesc_t *rec = &act->dta_rec;
6201 
6202 			size = rec->dtrd_size;
6203 			valoffs = offs + rec->dtrd_offset;
6204 
6205 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6206 				uint64_t v = 0xbad;
6207 				dtrace_aggregation_t *agg;
6208 
6209 				agg = (dtrace_aggregation_t *)act;
6210 
6211 				if ((dp = act->dta_difo) != NULL)
6212 					v = dtrace_dif_emulate(dp,
6213 					    &mstate, vstate, state);
6214 
6215 				if (*flags & CPU_DTRACE_ERROR)
6216 					continue;
6217 
6218 				/*
6219 				 * Note that we always pass the expression
6220 				 * value from the previous iteration of the
6221 				 * action loop.  This value will only be used
6222 				 * if there is an expression argument to the
6223 				 * aggregating action, denoted by the
6224 				 * dtag_hasarg field.
6225 				 */
6226 				dtrace_aggregate(agg, buf,
6227 				    offs, aggbuf, v, val);
6228 				continue;
6229 			}
6230 
6231 			switch (act->dta_kind) {
6232 			case DTRACEACT_STOP:
6233 				if (dtrace_priv_proc_destructive(state))
6234 					dtrace_action_stop();
6235 				continue;
6236 
6237 			case DTRACEACT_BREAKPOINT:
6238 				if (dtrace_priv_kernel_destructive(state))
6239 					dtrace_action_breakpoint(ecb);
6240 				continue;
6241 
6242 			case DTRACEACT_PANIC:
6243 				if (dtrace_priv_kernel_destructive(state))
6244 					dtrace_action_panic(ecb);
6245 				continue;
6246 
6247 			case DTRACEACT_STACK:
6248 				if (!dtrace_priv_kernel(state))
6249 					continue;
6250 
6251 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6252 				    size / sizeof (pc_t), probe->dtpr_aframes,
6253 				    DTRACE_ANCHORED(probe) ? NULL :
6254 				    (uint32_t *)arg0);
6255 				continue;
6256 
6257 			case DTRACEACT_JSTACK:
6258 			case DTRACEACT_USTACK:
6259 				if (!dtrace_priv_proc(state))
6260 					continue;
6261 
6262 				/*
6263 				 * See comment in DIF_VAR_PID.
6264 				 */
6265 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6266 				    CPU_ON_INTR(CPU)) {
6267 					int depth = DTRACE_USTACK_NFRAMES(
6268 					    rec->dtrd_arg) + 1;
6269 
6270 					dtrace_bzero((void *)(tomax + valoffs),
6271 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6272 					    + depth * sizeof (uint64_t));
6273 
6274 					continue;
6275 				}
6276 
6277 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6278 				    curproc->p_dtrace_helpers != NULL) {
6279 					/*
6280 					 * This is the slow path -- we have
6281 					 * allocated string space, and we're
6282 					 * getting the stack of a process that
6283 					 * has helpers.  Call into a separate
6284 					 * routine to perform this processing.
6285 					 */
6286 					dtrace_action_ustack(&mstate, state,
6287 					    (uint64_t *)(tomax + valoffs),
6288 					    rec->dtrd_arg);
6289 					continue;
6290 				}
6291 
6292 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6293 				dtrace_getupcstack((uint64_t *)
6294 				    (tomax + valoffs),
6295 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6296 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6297 				continue;
6298 
6299 			default:
6300 				break;
6301 			}
6302 
6303 			dp = act->dta_difo;
6304 			ASSERT(dp != NULL);
6305 
6306 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6307 
6308 			if (*flags & CPU_DTRACE_ERROR)
6309 				continue;
6310 
6311 			switch (act->dta_kind) {
6312 			case DTRACEACT_SPECULATE:
6313 				ASSERT(buf == &state->dts_buffer[cpuid]);
6314 				buf = dtrace_speculation_buffer(state,
6315 				    cpuid, val);
6316 
6317 				if (buf == NULL) {
6318 					*flags |= CPU_DTRACE_DROP;
6319 					continue;
6320 				}
6321 
6322 				offs = dtrace_buffer_reserve(buf,
6323 				    ecb->dte_needed, ecb->dte_alignment,
6324 				    state, NULL);
6325 
6326 				if (offs < 0) {
6327 					*flags |= CPU_DTRACE_DROP;
6328 					continue;
6329 				}
6330 
6331 				tomax = buf->dtb_tomax;
6332 				ASSERT(tomax != NULL);
6333 
6334 				if (ecb->dte_size != 0)
6335 					DTRACE_STORE(uint32_t, tomax, offs,
6336 					    ecb->dte_epid);
6337 				continue;
6338 
6339 			case DTRACEACT_PRINTM: {
6340 				/* The DIF returns a 'memref'. */
6341 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6342 
6343 				/* Get the size from the memref. */
6344 				size = memref[1];
6345 
6346 				/*
6347 				 * Check if the size exceeds the allocated
6348 				 * buffer size.
6349 				 */
6350 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6351 					/* Flag a drop! */
6352 					*flags |= CPU_DTRACE_DROP;
6353 					continue;
6354 				}
6355 
6356 				/* Store the size in the buffer first. */
6357 				DTRACE_STORE(uintptr_t, tomax,
6358 				    valoffs, size);
6359 
6360 				/*
6361 				 * Offset the buffer address to the start
6362 				 * of the data.
6363 				 */
6364 				valoffs += sizeof(uintptr_t);
6365 
6366 				/*
6367 				 * Reset to the memory address rather than
6368 				 * the memref array, then let the BYREF
6369 				 * code below do the work to store the
6370 				 * memory data in the buffer.
6371 				 */
6372 				val = memref[0];
6373 				break;
6374 			}
6375 
6376 			case DTRACEACT_PRINTT: {
6377 				/* The DIF returns a 'typeref'. */
6378 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6379 				char c = '\0' + 1;
6380 				size_t s;
6381 
6382 				/*
6383 				 * Get the type string length and round it
6384 				 * up so that the data that follows is
6385 				 * aligned for easy access.
6386 				 */
6387 				size_t typs = strlen((char *) typeref[2]) + 1;
6388 				typs = roundup(typs,  sizeof(uintptr_t));
6389 
6390 				/*
6391 				 *Get the size from the typeref using the
6392 				 * number of elements and the type size.
6393 				 */
6394 				size = typeref[1] * typeref[3];
6395 
6396 				/*
6397 				 * Check if the size exceeds the allocated
6398 				 * buffer size.
6399 				 */
6400 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6401 					/* Flag a drop! */
6402 					*flags |= CPU_DTRACE_DROP;
6403 
6404 				}
6405 
6406 				/* Store the size in the buffer first. */
6407 				DTRACE_STORE(uintptr_t, tomax,
6408 				    valoffs, size);
6409 				valoffs += sizeof(uintptr_t);
6410 
6411 				/* Store the type size in the buffer. */
6412 				DTRACE_STORE(uintptr_t, tomax,
6413 				    valoffs, typeref[3]);
6414 				valoffs += sizeof(uintptr_t);
6415 
6416 				val = typeref[2];
6417 
6418 				for (s = 0; s < typs; s++) {
6419 					if (c != '\0')
6420 						c = dtrace_load8(val++);
6421 
6422 					DTRACE_STORE(uint8_t, tomax,
6423 					    valoffs++, c);
6424 				}
6425 
6426 				/*
6427 				 * Reset to the memory address rather than
6428 				 * the typeref array, then let the BYREF
6429 				 * code below do the work to store the
6430 				 * memory data in the buffer.
6431 				 */
6432 				val = typeref[0];
6433 				break;
6434 			}
6435 
6436 			case DTRACEACT_CHILL:
6437 				if (dtrace_priv_kernel_destructive(state))
6438 					dtrace_action_chill(&mstate, val);
6439 				continue;
6440 
6441 			case DTRACEACT_RAISE:
6442 				if (dtrace_priv_proc_destructive(state))
6443 					dtrace_action_raise(val);
6444 				continue;
6445 
6446 			case DTRACEACT_COMMIT:
6447 				ASSERT(!committed);
6448 
6449 				/*
6450 				 * We need to commit our buffer state.
6451 				 */
6452 				if (ecb->dte_size)
6453 					buf->dtb_offset = offs + ecb->dte_size;
6454 				buf = &state->dts_buffer[cpuid];
6455 				dtrace_speculation_commit(state, cpuid, val);
6456 				committed = 1;
6457 				continue;
6458 
6459 			case DTRACEACT_DISCARD:
6460 				dtrace_speculation_discard(state, cpuid, val);
6461 				continue;
6462 
6463 			case DTRACEACT_DIFEXPR:
6464 			case DTRACEACT_LIBACT:
6465 			case DTRACEACT_PRINTF:
6466 			case DTRACEACT_PRINTA:
6467 			case DTRACEACT_SYSTEM:
6468 			case DTRACEACT_FREOPEN:
6469 				break;
6470 
6471 			case DTRACEACT_SYM:
6472 			case DTRACEACT_MOD:
6473 				if (!dtrace_priv_kernel(state))
6474 					continue;
6475 				break;
6476 
6477 			case DTRACEACT_USYM:
6478 			case DTRACEACT_UMOD:
6479 			case DTRACEACT_UADDR: {
6480 #if defined(sun)
6481 				struct pid *pid = curthread->t_procp->p_pidp;
6482 #endif
6483 				if (!dtrace_priv_proc(state))
6484 					continue;
6485 
6486 				DTRACE_STORE(uint64_t, tomax,
6487 #if defined(sun)
6488 				    valoffs, (uint64_t)pid->pid_id);
6489 #else
6490 				    valoffs, (uint64_t) curproc->p_pid);
6491 #endif
6492 				DTRACE_STORE(uint64_t, tomax,
6493 				    valoffs + sizeof (uint64_t), val);
6494 
6495 				continue;
6496 			}
6497 
6498 			case DTRACEACT_EXIT: {
6499 				/*
6500 				 * For the exit action, we are going to attempt
6501 				 * to atomically set our activity to be
6502 				 * draining.  If this fails (either because
6503 				 * another CPU has beat us to the exit action,
6504 				 * or because our current activity is something
6505 				 * other than ACTIVE or WARMUP), we will
6506 				 * continue.  This assures that the exit action
6507 				 * can be successfully recorded at most once
6508 				 * when we're in the ACTIVE state.  If we're
6509 				 * encountering the exit() action while in
6510 				 * COOLDOWN, however, we want to honor the new
6511 				 * status code.  (We know that we're the only
6512 				 * thread in COOLDOWN, so there is no race.)
6513 				 */
6514 				void *activity = &state->dts_activity;
6515 				dtrace_activity_t current = state->dts_activity;
6516 
6517 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6518 					break;
6519 
6520 				if (current != DTRACE_ACTIVITY_WARMUP)
6521 					current = DTRACE_ACTIVITY_ACTIVE;
6522 
6523 				if (dtrace_cas32(activity, current,
6524 				    DTRACE_ACTIVITY_DRAINING) != current) {
6525 					*flags |= CPU_DTRACE_DROP;
6526 					continue;
6527 				}
6528 
6529 				break;
6530 			}
6531 
6532 			default:
6533 				ASSERT(0);
6534 			}
6535 
6536 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6537 				uintptr_t end = valoffs + size;
6538 
6539 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6540 				    &dp->dtdo_rtype, &mstate, vstate))
6541 					continue;
6542 
6543 				/*
6544 				 * If this is a string, we're going to only
6545 				 * load until we find the zero byte -- after
6546 				 * which we'll store zero bytes.
6547 				 */
6548 				if (dp->dtdo_rtype.dtdt_kind ==
6549 				    DIF_TYPE_STRING) {
6550 					char c = '\0' + 1;
6551 					int intuple = act->dta_intuple;
6552 					size_t s;
6553 
6554 					for (s = 0; s < size; s++) {
6555 						if (c != '\0')
6556 							c = dtrace_load8(val++);
6557 
6558 						DTRACE_STORE(uint8_t, tomax,
6559 						    valoffs++, c);
6560 
6561 						if (c == '\0' && intuple)
6562 							break;
6563 					}
6564 
6565 					continue;
6566 				}
6567 
6568 				while (valoffs < end) {
6569 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6570 					    dtrace_load8(val++));
6571 				}
6572 
6573 				continue;
6574 			}
6575 
6576 			switch (size) {
6577 			case 0:
6578 				break;
6579 
6580 			case sizeof (uint8_t):
6581 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6582 				break;
6583 			case sizeof (uint16_t):
6584 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6585 				break;
6586 			case sizeof (uint32_t):
6587 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6588 				break;
6589 			case sizeof (uint64_t):
6590 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6591 				break;
6592 			default:
6593 				/*
6594 				 * Any other size should have been returned by
6595 				 * reference, not by value.
6596 				 */
6597 				ASSERT(0);
6598 				break;
6599 			}
6600 		}
6601 
6602 		if (*flags & CPU_DTRACE_DROP)
6603 			continue;
6604 
6605 		if (*flags & CPU_DTRACE_FAULT) {
6606 			int ndx;
6607 			dtrace_action_t *err;
6608 
6609 			buf->dtb_errors++;
6610 
6611 			if (probe->dtpr_id == dtrace_probeid_error) {
6612 				/*
6613 				 * There's nothing we can do -- we had an
6614 				 * error on the error probe.  We bump an
6615 				 * error counter to at least indicate that
6616 				 * this condition happened.
6617 				 */
6618 				dtrace_error(&state->dts_dblerrors);
6619 				continue;
6620 			}
6621 
6622 			if (vtime) {
6623 				/*
6624 				 * Before recursing on dtrace_probe(), we
6625 				 * need to explicitly clear out our start
6626 				 * time to prevent it from being accumulated
6627 				 * into t_dtrace_vtime.
6628 				 */
6629 				curthread->t_dtrace_start = 0;
6630 			}
6631 
6632 			/*
6633 			 * Iterate over the actions to figure out which action
6634 			 * we were processing when we experienced the error.
6635 			 * Note that act points _past_ the faulting action; if
6636 			 * act is ecb->dte_action, the fault was in the
6637 			 * predicate, if it's ecb->dte_action->dta_next it's
6638 			 * in action #1, and so on.
6639 			 */
6640 			for (err = ecb->dte_action, ndx = 0;
6641 			    err != act; err = err->dta_next, ndx++)
6642 				continue;
6643 
6644 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6645 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6646 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6647 			    cpu_core[cpuid].cpuc_dtrace_illval);
6648 
6649 			continue;
6650 		}
6651 
6652 		if (!committed)
6653 			buf->dtb_offset = offs + ecb->dte_size;
6654 	}
6655 
6656 	if (vtime)
6657 		curthread->t_dtrace_start = dtrace_gethrtime();
6658 
6659 	dtrace_interrupt_enable(cookie);
6660 }
6661 
6662 /*
6663  * DTrace Probe Hashing Functions
6664  *
6665  * The functions in this section (and indeed, the functions in remaining
6666  * sections) are not _called_ from probe context.  (Any exceptions to this are
6667  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6668  * DTrace framework to look-up probes in, add probes to and remove probes from
6669  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6670  * probe tuple -- allowing for fast lookups, regardless of what was
6671  * specified.)
6672  */
6673 static uint_t
6674 dtrace_hash_str(const char *p)
6675 {
6676 	unsigned int g;
6677 	uint_t hval = 0;
6678 
6679 	while (*p) {
6680 		hval = (hval << 4) + *p++;
6681 		if ((g = (hval & 0xf0000000)) != 0)
6682 			hval ^= g >> 24;
6683 		hval &= ~g;
6684 	}
6685 	return (hval);
6686 }
6687 
6688 static dtrace_hash_t *
6689 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6690 {
6691 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6692 
6693 	hash->dth_stroffs = stroffs;
6694 	hash->dth_nextoffs = nextoffs;
6695 	hash->dth_prevoffs = prevoffs;
6696 
6697 	hash->dth_size = 1;
6698 	hash->dth_mask = hash->dth_size - 1;
6699 
6700 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6701 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6702 
6703 	return (hash);
6704 }
6705 
6706 static void
6707 dtrace_hash_destroy(dtrace_hash_t *hash)
6708 {
6709 #ifdef DEBUG
6710 	int i;
6711 
6712 	for (i = 0; i < hash->dth_size; i++)
6713 		ASSERT(hash->dth_tab[i] == NULL);
6714 #endif
6715 
6716 	kmem_free(hash->dth_tab,
6717 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6718 	kmem_free(hash, sizeof (dtrace_hash_t));
6719 }
6720 
6721 static void
6722 dtrace_hash_resize(dtrace_hash_t *hash)
6723 {
6724 	int size = hash->dth_size, i, ndx;
6725 	int new_size = hash->dth_size << 1;
6726 	int new_mask = new_size - 1;
6727 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6728 
6729 	ASSERT((new_size & new_mask) == 0);
6730 
6731 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6732 
6733 	for (i = 0; i < size; i++) {
6734 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6735 			dtrace_probe_t *probe = bucket->dthb_chain;
6736 
6737 			ASSERT(probe != NULL);
6738 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6739 
6740 			next = bucket->dthb_next;
6741 			bucket->dthb_next = new_tab[ndx];
6742 			new_tab[ndx] = bucket;
6743 		}
6744 	}
6745 
6746 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6747 	hash->dth_tab = new_tab;
6748 	hash->dth_size = new_size;
6749 	hash->dth_mask = new_mask;
6750 }
6751 
6752 static void
6753 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6754 {
6755 	int hashval = DTRACE_HASHSTR(hash, new);
6756 	int ndx = hashval & hash->dth_mask;
6757 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6758 	dtrace_probe_t **nextp, **prevp;
6759 
6760 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6761 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6762 			goto add;
6763 	}
6764 
6765 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6766 		dtrace_hash_resize(hash);
6767 		dtrace_hash_add(hash, new);
6768 		return;
6769 	}
6770 
6771 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6772 	bucket->dthb_next = hash->dth_tab[ndx];
6773 	hash->dth_tab[ndx] = bucket;
6774 	hash->dth_nbuckets++;
6775 
6776 add:
6777 	nextp = DTRACE_HASHNEXT(hash, new);
6778 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6779 	*nextp = bucket->dthb_chain;
6780 
6781 	if (bucket->dthb_chain != NULL) {
6782 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6783 		ASSERT(*prevp == NULL);
6784 		*prevp = new;
6785 	}
6786 
6787 	bucket->dthb_chain = new;
6788 	bucket->dthb_len++;
6789 }
6790 
6791 static dtrace_probe_t *
6792 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6793 {
6794 	int hashval = DTRACE_HASHSTR(hash, template);
6795 	int ndx = hashval & hash->dth_mask;
6796 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6797 
6798 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6799 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6800 			return (bucket->dthb_chain);
6801 	}
6802 
6803 	return (NULL);
6804 }
6805 
6806 static int
6807 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6808 {
6809 	int hashval = DTRACE_HASHSTR(hash, template);
6810 	int ndx = hashval & hash->dth_mask;
6811 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6812 
6813 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6814 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6815 			return (bucket->dthb_len);
6816 	}
6817 
6818 	return (0);
6819 }
6820 
6821 static void
6822 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6823 {
6824 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6825 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6826 
6827 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6828 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6829 
6830 	/*
6831 	 * Find the bucket that we're removing this probe from.
6832 	 */
6833 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6834 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6835 			break;
6836 	}
6837 
6838 	ASSERT(bucket != NULL);
6839 
6840 	if (*prevp == NULL) {
6841 		if (*nextp == NULL) {
6842 			/*
6843 			 * The removed probe was the only probe on this
6844 			 * bucket; we need to remove the bucket.
6845 			 */
6846 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6847 
6848 			ASSERT(bucket->dthb_chain == probe);
6849 			ASSERT(b != NULL);
6850 
6851 			if (b == bucket) {
6852 				hash->dth_tab[ndx] = bucket->dthb_next;
6853 			} else {
6854 				while (b->dthb_next != bucket)
6855 					b = b->dthb_next;
6856 				b->dthb_next = bucket->dthb_next;
6857 			}
6858 
6859 			ASSERT(hash->dth_nbuckets > 0);
6860 			hash->dth_nbuckets--;
6861 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6862 			return;
6863 		}
6864 
6865 		bucket->dthb_chain = *nextp;
6866 	} else {
6867 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6868 	}
6869 
6870 	if (*nextp != NULL)
6871 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6872 }
6873 
6874 /*
6875  * DTrace Utility Functions
6876  *
6877  * These are random utility functions that are _not_ called from probe context.
6878  */
6879 static int
6880 dtrace_badattr(const dtrace_attribute_t *a)
6881 {
6882 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6883 	    a->dtat_data > DTRACE_STABILITY_MAX ||
6884 	    a->dtat_class > DTRACE_CLASS_MAX);
6885 }
6886 
6887 /*
6888  * Return a duplicate copy of a string.  If the specified string is NULL,
6889  * this function returns a zero-length string.
6890  */
6891 static char *
6892 dtrace_strdup(const char *str)
6893 {
6894 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6895 
6896 	if (str != NULL)
6897 		(void) strcpy(new, str);
6898 
6899 	return (new);
6900 }
6901 
6902 #define	DTRACE_ISALPHA(c)	\
6903 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6904 
6905 static int
6906 dtrace_badname(const char *s)
6907 {
6908 	char c;
6909 
6910 	if (s == NULL || (c = *s++) == '\0')
6911 		return (0);
6912 
6913 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6914 		return (1);
6915 
6916 	while ((c = *s++) != '\0') {
6917 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
6918 		    c != '-' && c != '_' && c != '.' && c != '`')
6919 			return (1);
6920 	}
6921 
6922 	return (0);
6923 }
6924 
6925 static void
6926 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
6927 {
6928 	uint32_t priv;
6929 
6930 #if defined(sun)
6931 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
6932 		/*
6933 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter,
6934 		 * but for GCC they do.
6935 		 */
6936 		*uidp = 0;
6937 		*zoneidp = 0;
6938 
6939 		priv = DTRACE_PRIV_ALL;
6940 	} else {
6941 		*uidp = crgetuid(cr);
6942 		*zoneidp = crgetzoneid(cr);
6943 
6944 		priv = 0;
6945 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
6946 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
6947 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
6948 			priv |= DTRACE_PRIV_USER;
6949 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
6950 			priv |= DTRACE_PRIV_PROC;
6951 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
6952 			priv |= DTRACE_PRIV_OWNER;
6953 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
6954 			priv |= DTRACE_PRIV_ZONEOWNER;
6955 	}
6956 #else
6957 	priv = DTRACE_PRIV_ALL;
6958 	*uidp = 0;
6959 	*zoneidp = 0;
6960 #endif
6961 
6962 	*privp = priv;
6963 }
6964 
6965 #ifdef DTRACE_ERRDEBUG
6966 static void
6967 dtrace_errdebug(const char *str)
6968 {
6969 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
6970 	int occupied = 0;
6971 
6972 	mutex_enter(&dtrace_errlock);
6973 	dtrace_errlast = str;
6974 	dtrace_errthread = curthread;
6975 
6976 	while (occupied++ < DTRACE_ERRHASHSZ) {
6977 		if (dtrace_errhash[hval].dter_msg == str) {
6978 			dtrace_errhash[hval].dter_count++;
6979 			goto out;
6980 		}
6981 
6982 		if (dtrace_errhash[hval].dter_msg != NULL) {
6983 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
6984 			continue;
6985 		}
6986 
6987 		dtrace_errhash[hval].dter_msg = str;
6988 		dtrace_errhash[hval].dter_count = 1;
6989 		goto out;
6990 	}
6991 
6992 	panic("dtrace: undersized error hash");
6993 out:
6994 	mutex_exit(&dtrace_errlock);
6995 }
6996 #endif
6997 
6998 /*
6999  * DTrace Matching Functions
7000  *
7001  * These functions are used to match groups of probes, given some elements of
7002  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7003  */
7004 static int
7005 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7006     zoneid_t zoneid)
7007 {
7008 	if (priv != DTRACE_PRIV_ALL) {
7009 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7010 		uint32_t match = priv & ppriv;
7011 
7012 		/*
7013 		 * No PRIV_DTRACE_* privileges...
7014 		 */
7015 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7016 		    DTRACE_PRIV_KERNEL)) == 0)
7017 			return (0);
7018 
7019 		/*
7020 		 * No matching bits, but there were bits to match...
7021 		 */
7022 		if (match == 0 && ppriv != 0)
7023 			return (0);
7024 
7025 		/*
7026 		 * Need to have permissions to the process, but don't...
7027 		 */
7028 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7029 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7030 			return (0);
7031 		}
7032 
7033 		/*
7034 		 * Need to be in the same zone unless we possess the
7035 		 * privilege to examine all zones.
7036 		 */
7037 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7038 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7039 			return (0);
7040 		}
7041 	}
7042 
7043 	return (1);
7044 }
7045 
7046 /*
7047  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7048  * consists of input pattern strings and an ops-vector to evaluate them.
7049  * This function returns >0 for match, 0 for no match, and <0 for error.
7050  */
7051 static int
7052 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7053     uint32_t priv, uid_t uid, zoneid_t zoneid)
7054 {
7055 	dtrace_provider_t *pvp = prp->dtpr_provider;
7056 	int rv;
7057 
7058 	if (pvp->dtpv_defunct)
7059 		return (0);
7060 
7061 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7062 		return (rv);
7063 
7064 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7065 		return (rv);
7066 
7067 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7068 		return (rv);
7069 
7070 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7071 		return (rv);
7072 
7073 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7074 		return (0);
7075 
7076 	return (rv);
7077 }
7078 
7079 /*
7080  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7081  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7082  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7083  * In addition, all of the recursion cases except for '*' matching have been
7084  * unwound.  For '*', we still implement recursive evaluation, but a depth
7085  * counter is maintained and matching is aborted if we recurse too deep.
7086  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7087  */
7088 static int
7089 dtrace_match_glob(const char *s, const char *p, int depth)
7090 {
7091 	const char *olds;
7092 	char s1, c;
7093 	int gs;
7094 
7095 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7096 		return (-1);
7097 
7098 	if (s == NULL)
7099 		s = ""; /* treat NULL as empty string */
7100 
7101 top:
7102 	olds = s;
7103 	s1 = *s++;
7104 
7105 	if (p == NULL)
7106 		return (0);
7107 
7108 	if ((c = *p++) == '\0')
7109 		return (s1 == '\0');
7110 
7111 	switch (c) {
7112 	case '[': {
7113 		int ok = 0, notflag = 0;
7114 		char lc = '\0';
7115 
7116 		if (s1 == '\0')
7117 			return (0);
7118 
7119 		if (*p == '!') {
7120 			notflag = 1;
7121 			p++;
7122 		}
7123 
7124 		if ((c = *p++) == '\0')
7125 			return (0);
7126 
7127 		do {
7128 			if (c == '-' && lc != '\0' && *p != ']') {
7129 				if ((c = *p++) == '\0')
7130 					return (0);
7131 				if (c == '\\' && (c = *p++) == '\0')
7132 					return (0);
7133 
7134 				if (notflag) {
7135 					if (s1 < lc || s1 > c)
7136 						ok++;
7137 					else
7138 						return (0);
7139 				} else if (lc <= s1 && s1 <= c)
7140 					ok++;
7141 
7142 			} else if (c == '\\' && (c = *p++) == '\0')
7143 				return (0);
7144 
7145 			lc = c; /* save left-hand 'c' for next iteration */
7146 
7147 			if (notflag) {
7148 				if (s1 != c)
7149 					ok++;
7150 				else
7151 					return (0);
7152 			} else if (s1 == c)
7153 				ok++;
7154 
7155 			if ((c = *p++) == '\0')
7156 				return (0);
7157 
7158 		} while (c != ']');
7159 
7160 		if (ok)
7161 			goto top;
7162 
7163 		return (0);
7164 	}
7165 
7166 	case '\\':
7167 		if ((c = *p++) == '\0')
7168 			return (0);
7169 		/*FALLTHRU*/
7170 
7171 	default:
7172 		if (c != s1)
7173 			return (0);
7174 		/*FALLTHRU*/
7175 
7176 	case '?':
7177 		if (s1 != '\0')
7178 			goto top;
7179 		return (0);
7180 
7181 	case '*':
7182 		while (*p == '*')
7183 			p++; /* consecutive *'s are identical to a single one */
7184 
7185 		if (*p == '\0')
7186 			return (1);
7187 
7188 		for (s = olds; *s != '\0'; s++) {
7189 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7190 				return (gs);
7191 		}
7192 
7193 		return (0);
7194 	}
7195 }
7196 
7197 /*ARGSUSED*/
7198 static int
7199 dtrace_match_string(const char *s, const char *p, int depth)
7200 {
7201 	return (s != NULL && strcmp(s, p) == 0);
7202 }
7203 
7204 /*ARGSUSED*/
7205 static int
7206 dtrace_match_nul(const char *s, const char *p, int depth)
7207 {
7208 	return (1); /* always match the empty pattern */
7209 }
7210 
7211 /*ARGSUSED*/
7212 static int
7213 dtrace_match_nonzero(const char *s, const char *p, int depth)
7214 {
7215 	return (s != NULL && s[0] != '\0');
7216 }
7217 
7218 static int
7219 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7220     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7221 {
7222 	dtrace_probe_t template, *probe;
7223 	dtrace_hash_t *hash = NULL;
7224 	int len, rc, best = INT_MAX, nmatched = 0;
7225 	dtrace_id_t i;
7226 
7227 	ASSERT(MUTEX_HELD(&dtrace_lock));
7228 
7229 	/*
7230 	 * If the probe ID is specified in the key, just lookup by ID and
7231 	 * invoke the match callback once if a matching probe is found.
7232 	 */
7233 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7234 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7235 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7236 			if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7237 				return (DTRACE_MATCH_FAIL);
7238 			nmatched++;
7239 		}
7240 		return (nmatched);
7241 	}
7242 
7243 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7244 	template.dtpr_func = (char *)pkp->dtpk_func;
7245 	template.dtpr_name = (char *)pkp->dtpk_name;
7246 
7247 	/*
7248 	 * We want to find the most distinct of the module name, function
7249 	 * name, and name.  So for each one that is not a glob pattern or
7250 	 * empty string, we perform a lookup in the corresponding hash and
7251 	 * use the hash table with the fewest collisions to do our search.
7252 	 */
7253 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7254 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7255 		best = len;
7256 		hash = dtrace_bymod;
7257 	}
7258 
7259 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7260 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7261 		best = len;
7262 		hash = dtrace_byfunc;
7263 	}
7264 
7265 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7266 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7267 		best = len;
7268 		hash = dtrace_byname;
7269 	}
7270 
7271 	/*
7272 	 * If we did not select a hash table, iterate over every probe and
7273 	 * invoke our callback for each one that matches our input probe key.
7274 	 */
7275 	if (hash == NULL) {
7276 		for (i = 0; i < dtrace_nprobes; i++) {
7277 			if ((probe = dtrace_probes[i]) == NULL ||
7278 			    dtrace_match_probe(probe, pkp, priv, uid,
7279 			    zoneid) <= 0)
7280 				continue;
7281 
7282 			nmatched++;
7283 
7284 			if ((rc = (*matched)(probe, arg)) !=
7285 			    DTRACE_MATCH_NEXT) {
7286 				if (rc == DTRACE_MATCH_FAIL)
7287 					return (DTRACE_MATCH_FAIL);
7288 				break;
7289 			}
7290 		}
7291 
7292 		return (nmatched);
7293 	}
7294 
7295 	/*
7296 	 * If we selected a hash table, iterate over each probe of the same key
7297 	 * name and invoke the callback for every probe that matches the other
7298 	 * attributes of our input probe key.
7299 	 */
7300 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7301 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7302 
7303 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7304 			continue;
7305 
7306 		nmatched++;
7307 
7308 		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7309 			if (rc == DTRACE_MATCH_FAIL)
7310 				return (DTRACE_MATCH_FAIL);
7311 			break;
7312 		}
7313 	}
7314 
7315 	return (nmatched);
7316 }
7317 
7318 /*
7319  * Return the function pointer dtrace_probecmp() should use to compare the
7320  * specified pattern with a string.  For NULL or empty patterns, we select
7321  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7322  * For non-empty non-glob strings, we use dtrace_match_string().
7323  */
7324 static dtrace_probekey_f *
7325 dtrace_probekey_func(const char *p)
7326 {
7327 	char c;
7328 
7329 	if (p == NULL || *p == '\0')
7330 		return (&dtrace_match_nul);
7331 
7332 	while ((c = *p++) != '\0') {
7333 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7334 			return (&dtrace_match_glob);
7335 	}
7336 
7337 	return (&dtrace_match_string);
7338 }
7339 
7340 /*
7341  * Build a probe comparison key for use with dtrace_match_probe() from the
7342  * given probe description.  By convention, a null key only matches anchored
7343  * probes: if each field is the empty string, reset dtpk_fmatch to
7344  * dtrace_match_nonzero().
7345  */
7346 static void
7347 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7348 {
7349 	pkp->dtpk_prov = pdp->dtpd_provider;
7350 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7351 
7352 	pkp->dtpk_mod = pdp->dtpd_mod;
7353 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7354 
7355 	pkp->dtpk_func = pdp->dtpd_func;
7356 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7357 
7358 	pkp->dtpk_name = pdp->dtpd_name;
7359 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7360 
7361 	pkp->dtpk_id = pdp->dtpd_id;
7362 
7363 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7364 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7365 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7366 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7367 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7368 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7369 }
7370 
7371 /*
7372  * DTrace Provider-to-Framework API Functions
7373  *
7374  * These functions implement much of the Provider-to-Framework API, as
7375  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7376  * the functions in the API for probe management (found below), and
7377  * dtrace_probe() itself (found above).
7378  */
7379 
7380 /*
7381  * Register the calling provider with the DTrace framework.  This should
7382  * generally be called by DTrace providers in their attach(9E) entry point.
7383  */
7384 int
7385 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7386     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7387 {
7388 	dtrace_provider_t *provider;
7389 
7390 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7391 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7392 		    "arguments", name ? name : "<NULL>");
7393 		return (EINVAL);
7394 	}
7395 
7396 	if (name[0] == '\0' || dtrace_badname(name)) {
7397 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7398 		    "provider name", name);
7399 		return (EINVAL);
7400 	}
7401 
7402 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7403 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7404 	    pops->dtps_destroy == NULL ||
7405 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7406 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7407 		    "provider ops", name);
7408 		return (EINVAL);
7409 	}
7410 
7411 	if (dtrace_badattr(&pap->dtpa_provider) ||
7412 	    dtrace_badattr(&pap->dtpa_mod) ||
7413 	    dtrace_badattr(&pap->dtpa_func) ||
7414 	    dtrace_badattr(&pap->dtpa_name) ||
7415 	    dtrace_badattr(&pap->dtpa_args)) {
7416 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7417 		    "provider attributes", name);
7418 		return (EINVAL);
7419 	}
7420 
7421 	if (priv & ~DTRACE_PRIV_ALL) {
7422 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7423 		    "privilege attributes", name);
7424 		return (EINVAL);
7425 	}
7426 
7427 	if ((priv & DTRACE_PRIV_KERNEL) &&
7428 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7429 	    pops->dtps_usermode == NULL) {
7430 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7431 		    "dtps_usermode() op for given privilege attributes", name);
7432 		return (EINVAL);
7433 	}
7434 
7435 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7436 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7437 	(void) strcpy(provider->dtpv_name, name);
7438 
7439 	provider->dtpv_attr = *pap;
7440 	provider->dtpv_priv.dtpp_flags = priv;
7441 	if (cr != NULL) {
7442 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7443 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7444 	}
7445 	provider->dtpv_pops = *pops;
7446 
7447 	if (pops->dtps_provide == NULL) {
7448 		ASSERT(pops->dtps_provide_module != NULL);
7449 		provider->dtpv_pops.dtps_provide =
7450 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
7451 	}
7452 
7453 	if (pops->dtps_provide_module == NULL) {
7454 		ASSERT(pops->dtps_provide != NULL);
7455 #if defined(sun)
7456 		provider->dtpv_pops.dtps_provide_module =
7457 		    (void (*)(void *, modctl_t *))dtrace_nullop;
7458 #else
7459 		provider->dtpv_pops.dtps_provide_module =
7460 		    (void (*)(void *, dtrace_modctl_t *))dtrace_nullop;
7461 #endif
7462 	}
7463 
7464 	if (pops->dtps_suspend == NULL) {
7465 		ASSERT(pops->dtps_resume == NULL);
7466 		provider->dtpv_pops.dtps_suspend =
7467 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7468 		provider->dtpv_pops.dtps_resume =
7469 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7470 	}
7471 
7472 	provider->dtpv_arg = arg;
7473 	*idp = (dtrace_provider_id_t)provider;
7474 
7475 	if (pops == &dtrace_provider_ops) {
7476 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7477 		ASSERT(MUTEX_HELD(&dtrace_lock));
7478 		ASSERT(dtrace_anon.dta_enabling == NULL);
7479 
7480 		/*
7481 		 * We make sure that the DTrace provider is at the head of
7482 		 * the provider chain.
7483 		 */
7484 		provider->dtpv_next = dtrace_provider;
7485 		dtrace_provider = provider;
7486 		return (0);
7487 	}
7488 
7489 	mutex_enter(&dtrace_provider_lock);
7490 	mutex_enter(&dtrace_lock);
7491 
7492 	/*
7493 	 * If there is at least one provider registered, we'll add this
7494 	 * provider after the first provider.
7495 	 */
7496 	if (dtrace_provider != NULL) {
7497 		provider->dtpv_next = dtrace_provider->dtpv_next;
7498 		dtrace_provider->dtpv_next = provider;
7499 	} else {
7500 		dtrace_provider = provider;
7501 	}
7502 
7503 	if (dtrace_retained != NULL) {
7504 		dtrace_enabling_provide(provider);
7505 
7506 		/*
7507 		 * Now we need to call dtrace_enabling_matchall() -- which
7508 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7509 		 * to drop all of our locks before calling into it...
7510 		 */
7511 		mutex_exit(&dtrace_lock);
7512 		mutex_exit(&dtrace_provider_lock);
7513 		dtrace_enabling_matchall();
7514 
7515 		return (0);
7516 	}
7517 
7518 	mutex_exit(&dtrace_lock);
7519 	mutex_exit(&dtrace_provider_lock);
7520 
7521 	return (0);
7522 }
7523 
7524 /*
7525  * Unregister the specified provider from the DTrace framework.  This should
7526  * generally be called by DTrace providers in their detach(9E) entry point.
7527  */
7528 int
7529 dtrace_unregister(dtrace_provider_id_t id)
7530 {
7531 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7532 	dtrace_provider_t *prev = NULL;
7533 	int i, self = 0;
7534 	dtrace_probe_t *probe, *first = NULL;
7535 
7536 	if (old->dtpv_pops.dtps_enable ==
7537 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
7538 		/*
7539 		 * If DTrace itself is the provider, we're called with locks
7540 		 * already held.
7541 		 */
7542 		ASSERT(old == dtrace_provider);
7543 #if defined(sun)
7544 		ASSERT(dtrace_devi != NULL);
7545 #endif
7546 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7547 		ASSERT(MUTEX_HELD(&dtrace_lock));
7548 		self = 1;
7549 
7550 		if (dtrace_provider->dtpv_next != NULL) {
7551 			/*
7552 			 * There's another provider here; return failure.
7553 			 */
7554 			return (EBUSY);
7555 		}
7556 	} else {
7557 		mutex_enter(&dtrace_provider_lock);
7558 		mutex_enter(&mod_lock);
7559 		mutex_enter(&dtrace_lock);
7560 	}
7561 
7562 	/*
7563 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7564 	 * probes, we refuse to let providers slither away, unless this
7565 	 * provider has already been explicitly invalidated.
7566 	 */
7567 	if (!old->dtpv_defunct &&
7568 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7569 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7570 		if (!self) {
7571 			mutex_exit(&dtrace_lock);
7572 			mutex_exit(&mod_lock);
7573 			mutex_exit(&dtrace_provider_lock);
7574 		}
7575 		return (EBUSY);
7576 	}
7577 
7578 	/*
7579 	 * Attempt to destroy the probes associated with this provider.
7580 	 */
7581 	for (i = 0; i < dtrace_nprobes; i++) {
7582 		if ((probe = dtrace_probes[i]) == NULL)
7583 			continue;
7584 
7585 		if (probe->dtpr_provider != old)
7586 			continue;
7587 
7588 		if (probe->dtpr_ecb == NULL)
7589 			continue;
7590 
7591 		/*
7592 		 * We have at least one ECB; we can't remove this provider.
7593 		 */
7594 		if (!self) {
7595 			mutex_exit(&dtrace_lock);
7596 			mutex_exit(&mod_lock);
7597 			mutex_exit(&dtrace_provider_lock);
7598 		}
7599 		return (EBUSY);
7600 	}
7601 
7602 	/*
7603 	 * All of the probes for this provider are disabled; we can safely
7604 	 * remove all of them from their hash chains and from the probe array.
7605 	 */
7606 	for (i = 0; i < dtrace_nprobes; i++) {
7607 		if ((probe = dtrace_probes[i]) == NULL)
7608 			continue;
7609 
7610 		if (probe->dtpr_provider != old)
7611 			continue;
7612 
7613 		dtrace_probes[i] = NULL;
7614 
7615 		dtrace_hash_remove(dtrace_bymod, probe);
7616 		dtrace_hash_remove(dtrace_byfunc, probe);
7617 		dtrace_hash_remove(dtrace_byname, probe);
7618 
7619 		if (first == NULL) {
7620 			first = probe;
7621 			probe->dtpr_nextmod = NULL;
7622 		} else {
7623 			probe->dtpr_nextmod = first;
7624 			first = probe;
7625 		}
7626 	}
7627 
7628 	/*
7629 	 * The provider's probes have been removed from the hash chains and
7630 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7631 	 * everyone has cleared out from any probe array processing.
7632 	 */
7633 	dtrace_sync();
7634 
7635 	for (probe = first; probe != NULL; probe = first) {
7636 		first = probe->dtpr_nextmod;
7637 
7638 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7639 		    probe->dtpr_arg);
7640 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7641 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7642 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7643 #if defined(sun)
7644 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7645 #else
7646 		vmem_free(dtrace_arena, (uintptr_t)(probe->dtpr_id), 1);
7647 #endif
7648 		kmem_free(probe, sizeof (dtrace_probe_t));
7649 	}
7650 
7651 	if ((prev = dtrace_provider) == old) {
7652 #if defined(sun)
7653 		ASSERT(self || dtrace_devi == NULL);
7654 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7655 #endif
7656 		dtrace_provider = old->dtpv_next;
7657 	} else {
7658 		while (prev != NULL && prev->dtpv_next != old)
7659 			prev = prev->dtpv_next;
7660 
7661 		if (prev == NULL) {
7662 			panic("attempt to unregister non-existent "
7663 			    "dtrace provider %p\n", (void *)id);
7664 		}
7665 
7666 		prev->dtpv_next = old->dtpv_next;
7667 	}
7668 
7669 	if (!self) {
7670 		mutex_exit(&dtrace_lock);
7671 		mutex_exit(&mod_lock);
7672 		mutex_exit(&dtrace_provider_lock);
7673 	}
7674 
7675 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7676 	kmem_free(old, sizeof (dtrace_provider_t));
7677 
7678 	return (0);
7679 }
7680 
7681 /*
7682  * Invalidate the specified provider.  All subsequent probe lookups for the
7683  * specified provider will fail, but its probes will not be removed.
7684  */
7685 void
7686 dtrace_invalidate(dtrace_provider_id_t id)
7687 {
7688 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7689 
7690 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7691 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7692 
7693 	mutex_enter(&dtrace_provider_lock);
7694 	mutex_enter(&dtrace_lock);
7695 
7696 	pvp->dtpv_defunct = 1;
7697 
7698 	mutex_exit(&dtrace_lock);
7699 	mutex_exit(&dtrace_provider_lock);
7700 }
7701 
7702 /*
7703  * Indicate whether or not DTrace has attached.
7704  */
7705 int
7706 dtrace_attached(void)
7707 {
7708 	/*
7709 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7710 	 * attached.  (It's non-NULL because DTrace is always itself a
7711 	 * provider.)
7712 	 */
7713 	return (dtrace_provider != NULL);
7714 }
7715 
7716 /*
7717  * Remove all the unenabled probes for the given provider.  This function is
7718  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7719  * -- just as many of its associated probes as it can.
7720  */
7721 int
7722 dtrace_condense(dtrace_provider_id_t id)
7723 {
7724 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7725 	int i;
7726 	dtrace_probe_t *probe;
7727 
7728 	/*
7729 	 * Make sure this isn't the dtrace provider itself.
7730 	 */
7731 	ASSERT(prov->dtpv_pops.dtps_enable !=
7732 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
7733 
7734 	mutex_enter(&dtrace_provider_lock);
7735 	mutex_enter(&dtrace_lock);
7736 
7737 	/*
7738 	 * Attempt to destroy the probes associated with this provider.
7739 	 */
7740 	for (i = 0; i < dtrace_nprobes; i++) {
7741 		if ((probe = dtrace_probes[i]) == NULL)
7742 			continue;
7743 
7744 		if (probe->dtpr_provider != prov)
7745 			continue;
7746 
7747 		if (probe->dtpr_ecb != NULL)
7748 			continue;
7749 
7750 		dtrace_probes[i] = NULL;
7751 
7752 		dtrace_hash_remove(dtrace_bymod, probe);
7753 		dtrace_hash_remove(dtrace_byfunc, probe);
7754 		dtrace_hash_remove(dtrace_byname, probe);
7755 
7756 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7757 		    probe->dtpr_arg);
7758 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7759 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7760 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7761 		kmem_free(probe, sizeof (dtrace_probe_t));
7762 #if defined(sun)
7763 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7764 #else
7765 		vmem_free(dtrace_arena, ((uintptr_t)i + 1), 1);
7766 #endif
7767 	}
7768 
7769 	mutex_exit(&dtrace_lock);
7770 	mutex_exit(&dtrace_provider_lock);
7771 
7772 	return (0);
7773 }
7774 
7775 /*
7776  * DTrace Probe Management Functions
7777  *
7778  * The functions in this section perform the DTrace probe management,
7779  * including functions to create probes, look-up probes, and call into the
7780  * providers to request that probes be provided.  Some of these functions are
7781  * in the Provider-to-Framework API; these functions can be identified by the
7782  * fact that they are not declared "static".
7783  */
7784 
7785 /*
7786  * Create a probe with the specified module name, function name, and name.
7787  */
7788 dtrace_id_t
7789 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7790     const char *func, const char *name, int aframes, void *arg)
7791 {
7792 	dtrace_probe_t *probe, **probes;
7793 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7794 	dtrace_id_t id;
7795 	vmem_addr_t offset;
7796 
7797 	if (provider == dtrace_provider) {
7798 		ASSERT(MUTEX_HELD(&dtrace_lock));
7799 	} else {
7800 		mutex_enter(&dtrace_lock);
7801 	}
7802 
7803 	if (vmem_alloc(dtrace_arena, 1, VM_BESTFIT | VM_SLEEP, &offset) != 0)
7804 		ASSERT(0);
7805 	id = (dtrace_id_t)(uintptr_t)offset;
7806 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7807 
7808 	probe->dtpr_id = id;
7809 	probe->dtpr_gen = dtrace_probegen++;
7810 	probe->dtpr_mod = dtrace_strdup(mod);
7811 	probe->dtpr_func = dtrace_strdup(func);
7812 	probe->dtpr_name = dtrace_strdup(name);
7813 	probe->dtpr_arg = arg;
7814 	probe->dtpr_aframes = aframes;
7815 	probe->dtpr_provider = provider;
7816 
7817 	dtrace_hash_add(dtrace_bymod, probe);
7818 	dtrace_hash_add(dtrace_byfunc, probe);
7819 	dtrace_hash_add(dtrace_byname, probe);
7820 
7821 	if (id - 1 >= dtrace_nprobes) {
7822 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7823 		size_t nsize = osize << 1;
7824 
7825 		if (nsize == 0) {
7826 			ASSERT(osize == 0);
7827 			ASSERT(dtrace_probes == NULL);
7828 			nsize = sizeof (dtrace_probe_t *);
7829 		}
7830 
7831 		probes = kmem_zalloc(nsize, KM_SLEEP);
7832 		dtrace_probes_size = nsize;
7833 
7834 		if (dtrace_probes == NULL) {
7835 			ASSERT(osize == 0);
7836 			dtrace_probes = probes;
7837 			dtrace_nprobes = 1;
7838 		} else {
7839 			dtrace_probe_t **oprobes = dtrace_probes;
7840 
7841 			bcopy(oprobes, probes, osize);
7842 			dtrace_membar_producer();
7843 			dtrace_probes = probes;
7844 
7845 			dtrace_sync();
7846 
7847 			/*
7848 			 * All CPUs are now seeing the new probes array; we can
7849 			 * safely free the old array.
7850 			 */
7851 			kmem_free(oprobes, osize);
7852 			dtrace_nprobes <<= 1;
7853 		}
7854 
7855 		ASSERT(id - 1 < dtrace_nprobes);
7856 	}
7857 
7858 	ASSERT(dtrace_probes[id - 1] == NULL);
7859 	dtrace_probes[id - 1] = probe;
7860 
7861 	if (provider != dtrace_provider)
7862 		mutex_exit(&dtrace_lock);
7863 
7864 	return (id);
7865 }
7866 
7867 static dtrace_probe_t *
7868 dtrace_probe_lookup_id(dtrace_id_t id)
7869 {
7870 	ASSERT(MUTEX_HELD(&dtrace_lock));
7871 
7872 	if (id == 0 || id > dtrace_nprobes)
7873 		return (NULL);
7874 
7875 	return (dtrace_probes[id - 1]);
7876 }
7877 
7878 static int
7879 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7880 {
7881 	*((dtrace_id_t *)arg) = probe->dtpr_id;
7882 
7883 	return (DTRACE_MATCH_DONE);
7884 }
7885 
7886 /*
7887  * Look up a probe based on provider and one or more of module name, function
7888  * name and probe name.
7889  */
7890 dtrace_id_t
7891 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
7892     const char *func, const char *name)
7893 {
7894 	dtrace_probekey_t pkey;
7895 	dtrace_id_t id;
7896 	int match;
7897 
7898 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7899 	pkey.dtpk_pmatch = &dtrace_match_string;
7900 	pkey.dtpk_mod = __UNCONST(mod);
7901 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7902 	pkey.dtpk_func = __UNCONST(func);
7903 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7904 	pkey.dtpk_name = __UNCONST(name);
7905 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7906 	pkey.dtpk_id = DTRACE_IDNONE;
7907 
7908 	mutex_enter(&dtrace_lock);
7909 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7910 	    dtrace_probe_lookup_match, &id);
7911 	mutex_exit(&dtrace_lock);
7912 
7913 	ASSERT(match == 1 || match == 0);
7914 	return (match ? id : 0);
7915 }
7916 
7917 /*
7918  * Returns the probe argument associated with the specified probe.
7919  */
7920 void *
7921 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7922 {
7923 	dtrace_probe_t *probe;
7924 	void *rval = NULL;
7925 
7926 	mutex_enter(&dtrace_lock);
7927 
7928 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7929 	    probe->dtpr_provider == (dtrace_provider_t *)id)
7930 		rval = probe->dtpr_arg;
7931 
7932 	mutex_exit(&dtrace_lock);
7933 
7934 	return (rval);
7935 }
7936 
7937 /*
7938  * Copy a probe into a probe description.
7939  */
7940 static void
7941 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
7942 {
7943 	bzero(pdp, sizeof (dtrace_probedesc_t));
7944 	pdp->dtpd_id = prp->dtpr_id;
7945 
7946 	(void) strncpy(pdp->dtpd_provider,
7947 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
7948 
7949 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
7950 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
7951 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
7952 }
7953 
7954 #ifdef notyet	/* XXX TBD */
7955 #if !defined(sun)
7956 static int
7957 dtrace_probe_provide_cb(linker_file_t lf, void *arg)
7958 {
7959 	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
7960 
7961 	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
7962 
7963 	return(0);
7964 }
7965 #endif
7966 #endif /* notyet */
7967 
7968 
7969 /*
7970  * Called to indicate that a probe -- or probes -- should be provided by a
7971  * specfied provider.  If the specified description is NULL, the provider will
7972  * be told to provide all of its probes.  (This is done whenever a new
7973  * consumer comes along, or whenever a retained enabling is to be matched.) If
7974  * the specified description is non-NULL, the provider is given the
7975  * opportunity to dynamically provide the specified probe, allowing providers
7976  * to support the creation of probes on-the-fly.  (So-called _autocreated_
7977  * probes.)  If the provider is NULL, the operations will be applied to all
7978  * providers; if the provider is non-NULL the operations will only be applied
7979  * to the specified provider.  The dtrace_provider_lock must be held, and the
7980  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
7981  * will need to grab the dtrace_lock when it reenters the framework through
7982  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
7983  */
7984 static void
7985 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
7986 {
7987 #if defined(sun)
7988 	modctl_t *ctl;
7989 #else
7990 	module_t *mod;
7991 #endif
7992 	int all = 0;
7993 
7994 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7995 
7996 	if (prv == NULL) {
7997 		all = 1;
7998 		prv = dtrace_provider;
7999 	}
8000 
8001 	do {
8002 		/*
8003 		 * First, call the blanket provide operation.
8004 		 */
8005 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8006 
8007 		/*
8008 		 * Now call the per-module provide operation.  We will grab
8009 		 * mod_lock to prevent the list from being modified.  Note
8010 		 * that this also prevents the mod_busy bits from changing.
8011 		 * (mod_busy can only be changed with mod_lock held.)
8012 		 */
8013 		mutex_enter(&mod_lock);
8014 
8015 #if defined(sun)
8016 		ctl = &modules;
8017 		do {
8018 			if (ctl->mod_busy || ctl->mod_mp == NULL)
8019 				continue;
8020 
8021 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8022 
8023 		} while ((ctl = ctl->mod_next) != &modules);
8024 #else
8025 
8026 		/* Fake netbsd module first */
8027 		if (mod_nbsd == NULL) {
8028 		    mod_nbsd = kmem_zalloc(sizeof(*mod_nbsd), KM_SLEEP);
8029 		    mod_nbsd->mod_info = kmem_zalloc(sizeof(modinfo_t), KM_SLEEP);
8030 		    mod_nbsd->mod_refcnt = 1;
8031 		    *((char **)(intptr_t)&mod_nbsd->mod_info->mi_name) = __UNCONST("netbsd");
8032 		}
8033 
8034 		kernconfig_lock();
8035 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, mod_nbsd);
8036 		TAILQ_FOREACH(mod, &module_list, mod_chain) {
8037 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, mod);
8038 		}
8039 		kernconfig_unlock();
8040 #endif
8041 
8042 		mutex_exit(&mod_lock);
8043 	} while (all && (prv = prv->dtpv_next) != NULL);
8044 }
8045 
8046 #if defined(sun)
8047 /*
8048  * Iterate over each probe, and call the Framework-to-Provider API function
8049  * denoted by offs.
8050  */
8051 static void
8052 dtrace_probe_foreach(uintptr_t offs)
8053 {
8054 	dtrace_provider_t *prov;
8055 	void (*func)(void *, dtrace_id_t, void *);
8056 	dtrace_probe_t *probe;
8057 	dtrace_icookie_t cookie;
8058 	int i;
8059 
8060 	/*
8061 	 * We disable interrupts to walk through the probe array.  This is
8062 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8063 	 * won't see stale data.
8064 	 */
8065 	cookie = dtrace_interrupt_disable();
8066 
8067 	for (i = 0; i < dtrace_nprobes; i++) {
8068 		if ((probe = dtrace_probes[i]) == NULL)
8069 			continue;
8070 
8071 		if (probe->dtpr_ecb == NULL) {
8072 			/*
8073 			 * This probe isn't enabled -- don't call the function.
8074 			 */
8075 			continue;
8076 		}
8077 
8078 		prov = probe->dtpr_provider;
8079 		func = *((void(**)(void *, dtrace_id_t, void *))
8080 		    ((uintptr_t)&prov->dtpv_pops + offs));
8081 
8082 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8083 	}
8084 
8085 	dtrace_interrupt_enable(cookie);
8086 }
8087 #endif
8088 
8089 static int
8090 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8091 {
8092 	dtrace_probekey_t pkey;
8093 	uint32_t priv;
8094 	uid_t uid;
8095 	zoneid_t zoneid;
8096 
8097 	ASSERT(MUTEX_HELD(&dtrace_lock));
8098 	dtrace_ecb_create_cache = NULL;
8099 
8100 	if (desc == NULL) {
8101 		/*
8102 		 * If we're passed a NULL description, we're being asked to
8103 		 * create an ECB with a NULL probe.
8104 		 */
8105 		(void) dtrace_ecb_create_enable(NULL, enab);
8106 		return (0);
8107 	}
8108 
8109 	dtrace_probekey(desc, &pkey);
8110 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8111 	    &priv, &uid, &zoneid);
8112 
8113 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8114 	    enab));
8115 }
8116 
8117 /*
8118  * DTrace Helper Provider Functions
8119  */
8120 static void
8121 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8122 {
8123 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8124 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8125 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8126 }
8127 
8128 static void
8129 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8130     const dof_provider_t *dofprov, char *strtab)
8131 {
8132 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8133 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8134 	    dofprov->dofpv_provattr);
8135 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8136 	    dofprov->dofpv_modattr);
8137 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8138 	    dofprov->dofpv_funcattr);
8139 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8140 	    dofprov->dofpv_nameattr);
8141 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8142 	    dofprov->dofpv_argsattr);
8143 }
8144 
8145 static void
8146 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8147 {
8148 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8149 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8150 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8151 	dof_provider_t *provider;
8152 	dof_probe_t *probe;
8153 	uint32_t *off, *enoff;
8154 	uint8_t *arg;
8155 	char *strtab;
8156 	uint_t i, nprobes;
8157 	dtrace_helper_provdesc_t dhpv;
8158 	dtrace_helper_probedesc_t dhpb;
8159 	dtrace_meta_t *meta = dtrace_meta_pid;
8160 	dtrace_mops_t *mops = &meta->dtm_mops;
8161 	void *parg;
8162 
8163 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8164 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8165 	    provider->dofpv_strtab * dof->dofh_secsize);
8166 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8167 	    provider->dofpv_probes * dof->dofh_secsize);
8168 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8169 	    provider->dofpv_prargs * dof->dofh_secsize);
8170 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8171 	    provider->dofpv_proffs * dof->dofh_secsize);
8172 
8173 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8174 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8175 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8176 	enoff = NULL;
8177 
8178 	/*
8179 	 * See dtrace_helper_provider_validate().
8180 	 */
8181 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8182 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8183 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8184 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8185 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8186 	}
8187 
8188 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8189 
8190 	/*
8191 	 * Create the provider.
8192 	 */
8193 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8194 
8195 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8196 		return;
8197 
8198 	meta->dtm_count++;
8199 
8200 	/*
8201 	 * Create the probes.
8202 	 */
8203 	for (i = 0; i < nprobes; i++) {
8204 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8205 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8206 
8207 		dhpb.dthpb_mod = dhp->dofhp_mod;
8208 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8209 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8210 		dhpb.dthpb_base = probe->dofpr_addr;
8211 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8212 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8213 		if (enoff != NULL) {
8214 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8215 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8216 		} else {
8217 			dhpb.dthpb_enoffs = NULL;
8218 			dhpb.dthpb_nenoffs = 0;
8219 		}
8220 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8221 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8222 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8223 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8224 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8225 
8226 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8227 	}
8228 }
8229 
8230 static void
8231 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8232 {
8233 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8234 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8235 	int i;
8236 
8237 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8238 
8239 	for (i = 0; i < dof->dofh_secnum; i++) {
8240 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8241 		    dof->dofh_secoff + i * dof->dofh_secsize);
8242 
8243 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8244 			continue;
8245 
8246 		dtrace_helper_provide_one(dhp, sec, pid);
8247 	}
8248 
8249 	/*
8250 	 * We may have just created probes, so we must now rematch against
8251 	 * any retained enablings.  Note that this call will acquire both
8252 	 * cpu_lock and dtrace_lock; the fact that we are holding
8253 	 * dtrace_meta_lock now is what defines the ordering with respect to
8254 	 * these three locks.
8255 	 */
8256 	dtrace_enabling_matchall();
8257 }
8258 
8259 #if defined(sun)
8260 static void
8261 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8262 {
8263 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8264 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8265 	dof_sec_t *str_sec;
8266 	dof_provider_t *provider;
8267 	char *strtab;
8268 	dtrace_helper_provdesc_t dhpv;
8269 	dtrace_meta_t *meta = dtrace_meta_pid;
8270 	dtrace_mops_t *mops = &meta->dtm_mops;
8271 
8272 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8273 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8274 	    provider->dofpv_strtab * dof->dofh_secsize);
8275 
8276 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8277 
8278 	/*
8279 	 * Create the provider.
8280 	 */
8281 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8282 
8283 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8284 
8285 	meta->dtm_count--;
8286 }
8287 
8288 static void
8289 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8290 {
8291 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8292 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8293 	int i;
8294 
8295 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8296 
8297 	for (i = 0; i < dof->dofh_secnum; i++) {
8298 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8299 		    dof->dofh_secoff + i * dof->dofh_secsize);
8300 
8301 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8302 			continue;
8303 
8304 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8305 	}
8306 }
8307 #endif
8308 
8309 /*
8310  * DTrace Meta Provider-to-Framework API Functions
8311  *
8312  * These functions implement the Meta Provider-to-Framework API, as described
8313  * in <sys/dtrace.h>.
8314  */
8315 int
8316 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8317     dtrace_meta_provider_id_t *idp)
8318 {
8319 	dtrace_meta_t *meta;
8320 	dtrace_helpers_t *help, *next;
8321 	int i;
8322 
8323 	*idp = DTRACE_METAPROVNONE;
8324 
8325 	/*
8326 	 * We strictly don't need the name, but we hold onto it for
8327 	 * debuggability. All hail error queues!
8328 	 */
8329 	if (name == NULL) {
8330 		cmn_err(CE_WARN, "failed to register meta-provider: "
8331 		    "invalid name");
8332 		return (EINVAL);
8333 	}
8334 
8335 	if (mops == NULL ||
8336 	    mops->dtms_create_probe == NULL ||
8337 	    mops->dtms_provide_pid == NULL ||
8338 	    mops->dtms_remove_pid == NULL) {
8339 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8340 		    "invalid ops", name);
8341 		return (EINVAL);
8342 	}
8343 
8344 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8345 	meta->dtm_mops = *mops;
8346 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8347 	(void) strcpy(meta->dtm_name, name);
8348 	meta->dtm_arg = arg;
8349 
8350 	mutex_enter(&dtrace_meta_lock);
8351 	mutex_enter(&dtrace_lock);
8352 
8353 	if (dtrace_meta_pid != NULL) {
8354 		mutex_exit(&dtrace_lock);
8355 		mutex_exit(&dtrace_meta_lock);
8356 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8357 		    "user-land meta-provider exists", name);
8358 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8359 		kmem_free(meta, sizeof (dtrace_meta_t));
8360 		return (EINVAL);
8361 	}
8362 
8363 	dtrace_meta_pid = meta;
8364 	*idp = (dtrace_meta_provider_id_t)meta;
8365 
8366 	/*
8367 	 * If there are providers and probes ready to go, pass them
8368 	 * off to the new meta provider now.
8369 	 */
8370 
8371 	help = dtrace_deferred_pid;
8372 	dtrace_deferred_pid = NULL;
8373 
8374 	mutex_exit(&dtrace_lock);
8375 
8376 	while (help != NULL) {
8377 		for (i = 0; i < help->dthps_nprovs; i++) {
8378 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8379 			    help->dthps_pid);
8380 		}
8381 
8382 		next = help->dthps_next;
8383 		help->dthps_next = NULL;
8384 		help->dthps_prev = NULL;
8385 		help->dthps_deferred = 0;
8386 		help = next;
8387 	}
8388 
8389 	mutex_exit(&dtrace_meta_lock);
8390 
8391 	return (0);
8392 }
8393 
8394 int
8395 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8396 {
8397 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8398 
8399 	mutex_enter(&dtrace_meta_lock);
8400 	mutex_enter(&dtrace_lock);
8401 
8402 	if (old == dtrace_meta_pid) {
8403 		pp = &dtrace_meta_pid;
8404 	} else {
8405 		panic("attempt to unregister non-existent "
8406 		    "dtrace meta-provider %p\n", (void *)old);
8407 	}
8408 
8409 	if (old->dtm_count != 0) {
8410 		mutex_exit(&dtrace_lock);
8411 		mutex_exit(&dtrace_meta_lock);
8412 		return (EBUSY);
8413 	}
8414 
8415 	*pp = NULL;
8416 
8417 	mutex_exit(&dtrace_lock);
8418 	mutex_exit(&dtrace_meta_lock);
8419 
8420 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8421 	kmem_free(old, sizeof (dtrace_meta_t));
8422 
8423 	return (0);
8424 }
8425 
8426 
8427 /*
8428  * DTrace DIF Object Functions
8429  */
8430 static int
8431 dtrace_difo_err(uint_t pc, const char *format, ...)
8432 {
8433 	if (dtrace_err_verbose) {
8434 		va_list alist;
8435 
8436 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8437 		va_start(alist, format);
8438 		(void) vuprintf(format, alist);
8439 		va_end(alist);
8440 	}
8441 
8442 #ifdef DTRACE_ERRDEBUG
8443 	dtrace_errdebug(format);
8444 #endif
8445 	return (1);
8446 }
8447 
8448 /*
8449  * Validate a DTrace DIF object by checking the IR instructions.  The following
8450  * rules are currently enforced by dtrace_difo_validate():
8451  *
8452  * 1. Each instruction must have a valid opcode
8453  * 2. Each register, string, variable, or subroutine reference must be valid
8454  * 3. No instruction can modify register %r0 (must be zero)
8455  * 4. All instruction reserved bits must be set to zero
8456  * 5. The last instruction must be a "ret" instruction
8457  * 6. All branch targets must reference a valid instruction _after_ the branch
8458  */
8459 static int
8460 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8461     cred_t *cr)
8462 {
8463 	int err = 0, i;
8464 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8465 	int kcheckload;
8466 	uint_t pc;
8467 
8468 	kcheckload = cr == NULL ||
8469 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8470 
8471 	dp->dtdo_destructive = 0;
8472 
8473 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8474 		dif_instr_t instr = dp->dtdo_buf[pc];
8475 
8476 		uint_t r1 = DIF_INSTR_R1(instr);
8477 		uint_t r2 = DIF_INSTR_R2(instr);
8478 		uint_t rd = DIF_INSTR_RD(instr);
8479 		uint_t rs = DIF_INSTR_RS(instr);
8480 		uint_t label = DIF_INSTR_LABEL(instr);
8481 		uint_t v = DIF_INSTR_VAR(instr);
8482 		uint_t subr = DIF_INSTR_SUBR(instr);
8483 		uint_t type = DIF_INSTR_TYPE(instr);
8484 		uint_t op = DIF_INSTR_OP(instr);
8485 
8486 		switch (op) {
8487 		case DIF_OP_OR:
8488 		case DIF_OP_XOR:
8489 		case DIF_OP_AND:
8490 		case DIF_OP_SLL:
8491 		case DIF_OP_SRL:
8492 		case DIF_OP_SRA:
8493 		case DIF_OP_SUB:
8494 		case DIF_OP_ADD:
8495 		case DIF_OP_MUL:
8496 		case DIF_OP_SDIV:
8497 		case DIF_OP_UDIV:
8498 		case DIF_OP_SREM:
8499 		case DIF_OP_UREM:
8500 		case DIF_OP_COPYS:
8501 			if (r1 >= nregs)
8502 				err += efunc(pc, "invalid register %u\n", r1);
8503 			if (r2 >= nregs)
8504 				err += efunc(pc, "invalid register %u\n", r2);
8505 			if (rd >= nregs)
8506 				err += efunc(pc, "invalid register %u\n", rd);
8507 			if (rd == 0)
8508 				err += efunc(pc, "cannot write to %r0\n");
8509 			break;
8510 		case DIF_OP_NOT:
8511 		case DIF_OP_MOV:
8512 		case DIF_OP_ALLOCS:
8513 			if (r1 >= nregs)
8514 				err += efunc(pc, "invalid register %u\n", r1);
8515 			if (r2 != 0)
8516 				err += efunc(pc, "non-zero reserved bits\n");
8517 			if (rd >= nregs)
8518 				err += efunc(pc, "invalid register %u\n", rd);
8519 			if (rd == 0)
8520 				err += efunc(pc, "cannot write to %r0\n");
8521 			break;
8522 		case DIF_OP_LDSB:
8523 		case DIF_OP_LDSH:
8524 		case DIF_OP_LDSW:
8525 		case DIF_OP_LDUB:
8526 		case DIF_OP_LDUH:
8527 		case DIF_OP_LDUW:
8528 		case DIF_OP_LDX:
8529 			if (r1 >= nregs)
8530 				err += efunc(pc, "invalid register %u\n", r1);
8531 			if (r2 != 0)
8532 				err += efunc(pc, "non-zero reserved bits\n");
8533 			if (rd >= nregs)
8534 				err += efunc(pc, "invalid register %u\n", rd);
8535 			if (rd == 0)
8536 				err += efunc(pc, "cannot write to %r0\n");
8537 			if (kcheckload)
8538 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8539 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8540 			break;
8541 		case DIF_OP_RLDSB:
8542 		case DIF_OP_RLDSH:
8543 		case DIF_OP_RLDSW:
8544 		case DIF_OP_RLDUB:
8545 		case DIF_OP_RLDUH:
8546 		case DIF_OP_RLDUW:
8547 		case DIF_OP_RLDX:
8548 			if (r1 >= nregs)
8549 				err += efunc(pc, "invalid register %u\n", r1);
8550 			if (r2 != 0)
8551 				err += efunc(pc, "non-zero reserved bits\n");
8552 			if (rd >= nregs)
8553 				err += efunc(pc, "invalid register %u\n", rd);
8554 			if (rd == 0)
8555 				err += efunc(pc, "cannot write to %r0\n");
8556 			break;
8557 		case DIF_OP_ULDSB:
8558 		case DIF_OP_ULDSH:
8559 		case DIF_OP_ULDSW:
8560 		case DIF_OP_ULDUB:
8561 		case DIF_OP_ULDUH:
8562 		case DIF_OP_ULDUW:
8563 		case DIF_OP_ULDX:
8564 			if (r1 >= nregs)
8565 				err += efunc(pc, "invalid register %u\n", r1);
8566 			if (r2 != 0)
8567 				err += efunc(pc, "non-zero reserved bits\n");
8568 			if (rd >= nregs)
8569 				err += efunc(pc, "invalid register %u\n", rd);
8570 			if (rd == 0)
8571 				err += efunc(pc, "cannot write to %r0\n");
8572 			break;
8573 		case DIF_OP_STB:
8574 		case DIF_OP_STH:
8575 		case DIF_OP_STW:
8576 		case DIF_OP_STX:
8577 			if (r1 >= nregs)
8578 				err += efunc(pc, "invalid register %u\n", r1);
8579 			if (r2 != 0)
8580 				err += efunc(pc, "non-zero reserved bits\n");
8581 			if (rd >= nregs)
8582 				err += efunc(pc, "invalid register %u\n", rd);
8583 			if (rd == 0)
8584 				err += efunc(pc, "cannot write to 0 address\n");
8585 			break;
8586 		case DIF_OP_CMP:
8587 		case DIF_OP_SCMP:
8588 			if (r1 >= nregs)
8589 				err += efunc(pc, "invalid register %u\n", r1);
8590 			if (r2 >= nregs)
8591 				err += efunc(pc, "invalid register %u\n", r2);
8592 			if (rd != 0)
8593 				err += efunc(pc, "non-zero reserved bits\n");
8594 			break;
8595 		case DIF_OP_TST:
8596 			if (r1 >= nregs)
8597 				err += efunc(pc, "invalid register %u\n", r1);
8598 			if (r2 != 0 || rd != 0)
8599 				err += efunc(pc, "non-zero reserved bits\n");
8600 			break;
8601 		case DIF_OP_BA:
8602 		case DIF_OP_BE:
8603 		case DIF_OP_BNE:
8604 		case DIF_OP_BG:
8605 		case DIF_OP_BGU:
8606 		case DIF_OP_BGE:
8607 		case DIF_OP_BGEU:
8608 		case DIF_OP_BL:
8609 		case DIF_OP_BLU:
8610 		case DIF_OP_BLE:
8611 		case DIF_OP_BLEU:
8612 			if (label >= dp->dtdo_len) {
8613 				err += efunc(pc, "invalid branch target %u\n",
8614 				    label);
8615 			}
8616 			if (label <= pc) {
8617 				err += efunc(pc, "backward branch to %u\n",
8618 				    label);
8619 			}
8620 			break;
8621 		case DIF_OP_RET:
8622 			if (r1 != 0 || r2 != 0)
8623 				err += efunc(pc, "non-zero reserved bits\n");
8624 			if (rd >= nregs)
8625 				err += efunc(pc, "invalid register %u\n", rd);
8626 			break;
8627 		case DIF_OP_NOP:
8628 		case DIF_OP_POPTS:
8629 		case DIF_OP_FLUSHTS:
8630 			if (r1 != 0 || r2 != 0 || rd != 0)
8631 				err += efunc(pc, "non-zero reserved bits\n");
8632 			break;
8633 		case DIF_OP_SETX:
8634 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8635 				err += efunc(pc, "invalid integer ref %u\n",
8636 				    DIF_INSTR_INTEGER(instr));
8637 			}
8638 			if (rd >= nregs)
8639 				err += efunc(pc, "invalid register %u\n", rd);
8640 			if (rd == 0)
8641 				err += efunc(pc, "cannot write to %r0\n");
8642 			break;
8643 		case DIF_OP_SETS:
8644 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8645 				err += efunc(pc, "invalid string ref %u\n",
8646 				    DIF_INSTR_STRING(instr));
8647 			}
8648 			if (rd >= nregs)
8649 				err += efunc(pc, "invalid register %u\n", rd);
8650 			if (rd == 0)
8651 				err += efunc(pc, "cannot write to %r0\n");
8652 			break;
8653 		case DIF_OP_LDGA:
8654 		case DIF_OP_LDTA:
8655 			if (r1 > DIF_VAR_ARRAY_MAX)
8656 				err += efunc(pc, "invalid array %u\n", r1);
8657 			if (r2 >= nregs)
8658 				err += efunc(pc, "invalid register %u\n", r2);
8659 			if (rd >= nregs)
8660 				err += efunc(pc, "invalid register %u\n", rd);
8661 			if (rd == 0)
8662 				err += efunc(pc, "cannot write to %r0\n");
8663 			break;
8664 		case DIF_OP_LDGS:
8665 		case DIF_OP_LDTS:
8666 		case DIF_OP_LDLS:
8667 		case DIF_OP_LDGAA:
8668 		case DIF_OP_LDTAA:
8669 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8670 				err += efunc(pc, "invalid variable %u\n", v);
8671 			if (rd >= nregs)
8672 				err += efunc(pc, "invalid register %u\n", rd);
8673 			if (rd == 0)
8674 				err += efunc(pc, "cannot write to %r0\n");
8675 			break;
8676 		case DIF_OP_STGS:
8677 		case DIF_OP_STTS:
8678 		case DIF_OP_STLS:
8679 		case DIF_OP_STGAA:
8680 		case DIF_OP_STTAA:
8681 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8682 				err += efunc(pc, "invalid variable %u\n", v);
8683 			if (rs >= nregs)
8684 				err += efunc(pc, "invalid register %u\n", rd);
8685 			break;
8686 		case DIF_OP_CALL:
8687 			if (subr > DIF_SUBR_MAX)
8688 				err += efunc(pc, "invalid subr %u\n", subr);
8689 			if (rd >= nregs)
8690 				err += efunc(pc, "invalid register %u\n", rd);
8691 			if (rd == 0)
8692 				err += efunc(pc, "cannot write to %r0\n");
8693 
8694 			if (subr == DIF_SUBR_COPYOUT ||
8695 			    subr == DIF_SUBR_COPYOUTSTR) {
8696 				dp->dtdo_destructive = 1;
8697 			}
8698 			break;
8699 		case DIF_OP_PUSHTR:
8700 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8701 				err += efunc(pc, "invalid ref type %u\n", type);
8702 			if (r2 >= nregs)
8703 				err += efunc(pc, "invalid register %u\n", r2);
8704 			if (rs >= nregs)
8705 				err += efunc(pc, "invalid register %u\n", rs);
8706 			break;
8707 		case DIF_OP_PUSHTV:
8708 			if (type != DIF_TYPE_CTF)
8709 				err += efunc(pc, "invalid val type %u\n", type);
8710 			if (r2 >= nregs)
8711 				err += efunc(pc, "invalid register %u\n", r2);
8712 			if (rs >= nregs)
8713 				err += efunc(pc, "invalid register %u\n", rs);
8714 			break;
8715 		default:
8716 			err += efunc(pc, "invalid opcode %u\n",
8717 			    DIF_INSTR_OP(instr));
8718 		}
8719 	}
8720 
8721 	if (dp->dtdo_len != 0 &&
8722 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8723 		err += efunc(dp->dtdo_len - 1,
8724 		    "expected 'ret' as last DIF instruction\n");
8725 	}
8726 
8727 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8728 		/*
8729 		 * If we're not returning by reference, the size must be either
8730 		 * 0 or the size of one of the base types.
8731 		 */
8732 		switch (dp->dtdo_rtype.dtdt_size) {
8733 		case 0:
8734 		case sizeof (uint8_t):
8735 		case sizeof (uint16_t):
8736 		case sizeof (uint32_t):
8737 		case sizeof (uint64_t):
8738 			break;
8739 
8740 		default:
8741 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
8742 		}
8743 	}
8744 
8745 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8746 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8747 		dtrace_diftype_t *vt, *et;
8748 		uint_t id, ndx;
8749 
8750 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8751 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8752 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8753 			err += efunc(i, "unrecognized variable scope %d\n",
8754 			    v->dtdv_scope);
8755 			break;
8756 		}
8757 
8758 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8759 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8760 			err += efunc(i, "unrecognized variable type %d\n",
8761 			    v->dtdv_kind);
8762 			break;
8763 		}
8764 
8765 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8766 			err += efunc(i, "%d exceeds variable id limit\n", id);
8767 			break;
8768 		}
8769 
8770 		if (id < DIF_VAR_OTHER_UBASE)
8771 			continue;
8772 
8773 		/*
8774 		 * For user-defined variables, we need to check that this
8775 		 * definition is identical to any previous definition that we
8776 		 * encountered.
8777 		 */
8778 		ndx = id - DIF_VAR_OTHER_UBASE;
8779 
8780 		switch (v->dtdv_scope) {
8781 		case DIFV_SCOPE_GLOBAL:
8782 			if (ndx < vstate->dtvs_nglobals) {
8783 				dtrace_statvar_t *svar;
8784 
8785 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8786 					existing = &svar->dtsv_var;
8787 			}
8788 
8789 			break;
8790 
8791 		case DIFV_SCOPE_THREAD:
8792 			if (ndx < vstate->dtvs_ntlocals)
8793 				existing = &vstate->dtvs_tlocals[ndx];
8794 			break;
8795 
8796 		case DIFV_SCOPE_LOCAL:
8797 			if (ndx < vstate->dtvs_nlocals) {
8798 				dtrace_statvar_t *svar;
8799 
8800 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8801 					existing = &svar->dtsv_var;
8802 			}
8803 
8804 			break;
8805 		}
8806 
8807 		vt = &v->dtdv_type;
8808 
8809 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8810 			if (vt->dtdt_size == 0) {
8811 				err += efunc(i, "zero-sized variable\n");
8812 				break;
8813 			}
8814 
8815 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8816 			    vt->dtdt_size > dtrace_global_maxsize) {
8817 				err += efunc(i, "oversized by-ref global\n");
8818 				break;
8819 			}
8820 		}
8821 
8822 		if (existing == NULL || existing->dtdv_id == 0)
8823 			continue;
8824 
8825 		ASSERT(existing->dtdv_id == v->dtdv_id);
8826 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8827 
8828 		if (existing->dtdv_kind != v->dtdv_kind)
8829 			err += efunc(i, "%d changed variable kind\n", id);
8830 
8831 		et = &existing->dtdv_type;
8832 
8833 		if (vt->dtdt_flags != et->dtdt_flags) {
8834 			err += efunc(i, "%d changed variable type flags\n", id);
8835 			break;
8836 		}
8837 
8838 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8839 			err += efunc(i, "%d changed variable type size\n", id);
8840 			break;
8841 		}
8842 	}
8843 
8844 	return (err);
8845 }
8846 
8847 #if defined(sun)
8848 /*
8849  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8850  * are much more constrained than normal DIFOs.  Specifically, they may
8851  * not:
8852  *
8853  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8854  *    miscellaneous string routines
8855  * 2. Access DTrace variables other than the args[] array, and the
8856  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8857  * 3. Have thread-local variables.
8858  * 4. Have dynamic variables.
8859  */
8860 static int
8861 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8862 {
8863 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8864 	int err = 0;
8865 	uint_t pc;
8866 
8867 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8868 		dif_instr_t instr = dp->dtdo_buf[pc];
8869 
8870 		uint_t v = DIF_INSTR_VAR(instr);
8871 		uint_t subr = DIF_INSTR_SUBR(instr);
8872 		uint_t op = DIF_INSTR_OP(instr);
8873 
8874 		switch (op) {
8875 		case DIF_OP_OR:
8876 		case DIF_OP_XOR:
8877 		case DIF_OP_AND:
8878 		case DIF_OP_SLL:
8879 		case DIF_OP_SRL:
8880 		case DIF_OP_SRA:
8881 		case DIF_OP_SUB:
8882 		case DIF_OP_ADD:
8883 		case DIF_OP_MUL:
8884 		case DIF_OP_SDIV:
8885 		case DIF_OP_UDIV:
8886 		case DIF_OP_SREM:
8887 		case DIF_OP_UREM:
8888 		case DIF_OP_COPYS:
8889 		case DIF_OP_NOT:
8890 		case DIF_OP_MOV:
8891 		case DIF_OP_RLDSB:
8892 		case DIF_OP_RLDSH:
8893 		case DIF_OP_RLDSW:
8894 		case DIF_OP_RLDUB:
8895 		case DIF_OP_RLDUH:
8896 		case DIF_OP_RLDUW:
8897 		case DIF_OP_RLDX:
8898 		case DIF_OP_ULDSB:
8899 		case DIF_OP_ULDSH:
8900 		case DIF_OP_ULDSW:
8901 		case DIF_OP_ULDUB:
8902 		case DIF_OP_ULDUH:
8903 		case DIF_OP_ULDUW:
8904 		case DIF_OP_ULDX:
8905 		case DIF_OP_STB:
8906 		case DIF_OP_STH:
8907 		case DIF_OP_STW:
8908 		case DIF_OP_STX:
8909 		case DIF_OP_ALLOCS:
8910 		case DIF_OP_CMP:
8911 		case DIF_OP_SCMP:
8912 		case DIF_OP_TST:
8913 		case DIF_OP_BA:
8914 		case DIF_OP_BE:
8915 		case DIF_OP_BNE:
8916 		case DIF_OP_BG:
8917 		case DIF_OP_BGU:
8918 		case DIF_OP_BGE:
8919 		case DIF_OP_BGEU:
8920 		case DIF_OP_BL:
8921 		case DIF_OP_BLU:
8922 		case DIF_OP_BLE:
8923 		case DIF_OP_BLEU:
8924 		case DIF_OP_RET:
8925 		case DIF_OP_NOP:
8926 		case DIF_OP_POPTS:
8927 		case DIF_OP_FLUSHTS:
8928 		case DIF_OP_SETX:
8929 		case DIF_OP_SETS:
8930 		case DIF_OP_LDGA:
8931 		case DIF_OP_LDLS:
8932 		case DIF_OP_STGS:
8933 		case DIF_OP_STLS:
8934 		case DIF_OP_PUSHTR:
8935 		case DIF_OP_PUSHTV:
8936 			break;
8937 
8938 		case DIF_OP_LDGS:
8939 			if (v >= DIF_VAR_OTHER_UBASE)
8940 				break;
8941 
8942 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8943 				break;
8944 
8945 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8946 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8947 			    v == DIF_VAR_EXECARGS ||
8948 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8949 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8950 				break;
8951 
8952 			err += efunc(pc, "illegal variable %u\n", v);
8953 			break;
8954 
8955 		case DIF_OP_LDTA:
8956 		case DIF_OP_LDTS:
8957 		case DIF_OP_LDGAA:
8958 		case DIF_OP_LDTAA:
8959 			err += efunc(pc, "illegal dynamic variable load\n");
8960 			break;
8961 
8962 		case DIF_OP_STTS:
8963 		case DIF_OP_STGAA:
8964 		case DIF_OP_STTAA:
8965 			err += efunc(pc, "illegal dynamic variable store\n");
8966 			break;
8967 
8968 		case DIF_OP_CALL:
8969 			if (subr == DIF_SUBR_ALLOCA ||
8970 			    subr == DIF_SUBR_BCOPY ||
8971 			    subr == DIF_SUBR_COPYIN ||
8972 			    subr == DIF_SUBR_COPYINTO ||
8973 			    subr == DIF_SUBR_COPYINSTR ||
8974 			    subr == DIF_SUBR_INDEX ||
8975 			    subr == DIF_SUBR_INET_NTOA ||
8976 			    subr == DIF_SUBR_INET_NTOA6 ||
8977 			    subr == DIF_SUBR_INET_NTOP ||
8978 			    subr == DIF_SUBR_LLTOSTR ||
8979 			    subr == DIF_SUBR_RINDEX ||
8980 			    subr == DIF_SUBR_STRCHR ||
8981 			    subr == DIF_SUBR_STRJOIN ||
8982 			    subr == DIF_SUBR_STRRCHR ||
8983 			    subr == DIF_SUBR_STRSTR ||
8984 			    subr == DIF_SUBR_HTONS ||
8985 			    subr == DIF_SUBR_HTONL ||
8986 			    subr == DIF_SUBR_HTONLL ||
8987 			    subr == DIF_SUBR_NTOHS ||
8988 			    subr == DIF_SUBR_NTOHL ||
8989 			    subr == DIF_SUBR_NTOHLL ||
8990 			    subr == DIF_SUBR_MEMREF ||
8991 			    subr == DIF_SUBR_TYPEREF)
8992 				break;
8993 
8994 			err += efunc(pc, "invalid subr %u\n", subr);
8995 			break;
8996 
8997 		default:
8998 			err += efunc(pc, "invalid opcode %u\n",
8999 			    DIF_INSTR_OP(instr));
9000 		}
9001 	}
9002 
9003 	return (err);
9004 }
9005 #endif
9006 
9007 /*
9008  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9009  * basis; 0 if not.
9010  */
9011 static int
9012 dtrace_difo_cacheable(dtrace_difo_t *dp)
9013 {
9014 	int i;
9015 
9016 	if (dp == NULL)
9017 		return (0);
9018 
9019 	for (i = 0; i < dp->dtdo_varlen; i++) {
9020 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9021 
9022 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9023 			continue;
9024 
9025 		switch (v->dtdv_id) {
9026 		case DIF_VAR_CURTHREAD:
9027 		case DIF_VAR_PID:
9028 		case DIF_VAR_TID:
9029 		case DIF_VAR_EXECARGS:
9030 		case DIF_VAR_EXECNAME:
9031 		case DIF_VAR_ZONENAME:
9032 			break;
9033 
9034 		default:
9035 			return (0);
9036 		}
9037 	}
9038 
9039 	/*
9040 	 * This DIF object may be cacheable.  Now we need to look for any
9041 	 * array loading instructions, any memory loading instructions, or
9042 	 * any stores to thread-local variables.
9043 	 */
9044 	for (i = 0; i < dp->dtdo_len; i++) {
9045 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9046 
9047 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9048 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9049 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9050 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9051 			return (0);
9052 	}
9053 
9054 	return (1);
9055 }
9056 
9057 static void
9058 dtrace_difo_hold(dtrace_difo_t *dp)
9059 {
9060 	int i;
9061 
9062 	ASSERT(MUTEX_HELD(&dtrace_lock));
9063 
9064 	dp->dtdo_refcnt++;
9065 	ASSERT(dp->dtdo_refcnt != 0);
9066 
9067 	/*
9068 	 * We need to check this DIF object for references to the variable
9069 	 * DIF_VAR_VTIMESTAMP.
9070 	 */
9071 	for (i = 0; i < dp->dtdo_varlen; i++) {
9072 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9073 
9074 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9075 			continue;
9076 
9077 		if (dtrace_vtime_references++ == 0)
9078 			dtrace_vtime_enable();
9079 	}
9080 }
9081 
9082 /*
9083  * This routine calculates the dynamic variable chunksize for a given DIF
9084  * object.  The calculation is not fool-proof, and can probably be tricked by
9085  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9086  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9087  * if a dynamic variable size exceeds the chunksize.
9088  */
9089 static void
9090 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9091 {
9092 	uint64_t sval = 0;
9093 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9094 	const dif_instr_t *text = dp->dtdo_buf;
9095 	uint_t pc, srd = 0;
9096 	uint_t ttop = 0;
9097 	size_t size, ksize;
9098 	uint_t id, i;
9099 
9100 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9101 		dif_instr_t instr = text[pc];
9102 		uint_t op = DIF_INSTR_OP(instr);
9103 		uint_t rd = DIF_INSTR_RD(instr);
9104 		uint_t r1 = DIF_INSTR_R1(instr);
9105 		uint_t nkeys = 0;
9106 		uchar_t scope = 0;
9107 
9108 		dtrace_key_t *key = tupregs;
9109 
9110 		switch (op) {
9111 		case DIF_OP_SETX:
9112 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9113 			srd = rd;
9114 			continue;
9115 
9116 		case DIF_OP_STTS:
9117 			key = &tupregs[DIF_DTR_NREGS];
9118 			key[0].dttk_size = 0;
9119 			key[1].dttk_size = 0;
9120 			nkeys = 2;
9121 			scope = DIFV_SCOPE_THREAD;
9122 			break;
9123 
9124 		case DIF_OP_STGAA:
9125 		case DIF_OP_STTAA:
9126 			nkeys = ttop;
9127 
9128 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9129 				key[nkeys++].dttk_size = 0;
9130 
9131 			key[nkeys++].dttk_size = 0;
9132 
9133 			if (op == DIF_OP_STTAA) {
9134 				scope = DIFV_SCOPE_THREAD;
9135 			} else {
9136 				scope = DIFV_SCOPE_GLOBAL;
9137 			}
9138 
9139 			break;
9140 
9141 		case DIF_OP_PUSHTR:
9142 			if (ttop == DIF_DTR_NREGS)
9143 				return;
9144 
9145 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9146 				/*
9147 				 * If the register for the size of the "pushtr"
9148 				 * is %r0 (or the value is 0) and the type is
9149 				 * a string, we'll use the system-wide default
9150 				 * string size.
9151 				 */
9152 				tupregs[ttop++].dttk_size =
9153 				    dtrace_strsize_default;
9154 			} else {
9155 				if (srd == 0)
9156 					return;
9157 
9158 				tupregs[ttop++].dttk_size = sval;
9159 			}
9160 
9161 			break;
9162 
9163 		case DIF_OP_PUSHTV:
9164 			if (ttop == DIF_DTR_NREGS)
9165 				return;
9166 
9167 			tupregs[ttop++].dttk_size = 0;
9168 			break;
9169 
9170 		case DIF_OP_FLUSHTS:
9171 			ttop = 0;
9172 			break;
9173 
9174 		case DIF_OP_POPTS:
9175 			if (ttop != 0)
9176 				ttop--;
9177 			break;
9178 		}
9179 
9180 		sval = 0;
9181 		srd = 0;
9182 
9183 		if (nkeys == 0)
9184 			continue;
9185 
9186 		/*
9187 		 * We have a dynamic variable allocation; calculate its size.
9188 		 */
9189 		for (ksize = 0, i = 0; i < nkeys; i++)
9190 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9191 
9192 		size = sizeof (dtrace_dynvar_t);
9193 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9194 		size += ksize;
9195 
9196 		/*
9197 		 * Now we need to determine the size of the stored data.
9198 		 */
9199 		id = DIF_INSTR_VAR(instr);
9200 
9201 		for (i = 0; i < dp->dtdo_varlen; i++) {
9202 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9203 
9204 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9205 				size += v->dtdv_type.dtdt_size;
9206 				break;
9207 			}
9208 		}
9209 
9210 		if (i == dp->dtdo_varlen)
9211 			return;
9212 
9213 		/*
9214 		 * We have the size.  If this is larger than the chunk size
9215 		 * for our dynamic variable state, reset the chunk size.
9216 		 */
9217 		size = P2ROUNDUP(size, sizeof (uint64_t));
9218 
9219 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9220 			vstate->dtvs_dynvars.dtds_chunksize = size;
9221 	}
9222 }
9223 
9224 static void
9225 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9226 {
9227 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9228 	uint_t id;
9229 
9230 	ASSERT(MUTEX_HELD(&dtrace_lock));
9231 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9232 
9233 	for (i = 0; i < dp->dtdo_varlen; i++) {
9234 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9235 		dtrace_statvar_t *svar, ***svarp = NULL;
9236 		size_t dsize = 0;
9237 		uint8_t scope = v->dtdv_scope;
9238 		int *np = NULL;
9239 
9240 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9241 			continue;
9242 
9243 		id -= DIF_VAR_OTHER_UBASE;
9244 
9245 		switch (scope) {
9246 		case DIFV_SCOPE_THREAD:
9247 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9248 				dtrace_difv_t *tlocals;
9249 
9250 				if ((ntlocals = (otlocals << 1)) == 0)
9251 					ntlocals = 1;
9252 
9253 				osz = otlocals * sizeof (dtrace_difv_t);
9254 				nsz = ntlocals * sizeof (dtrace_difv_t);
9255 
9256 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9257 
9258 				if (osz != 0) {
9259 					bcopy(vstate->dtvs_tlocals,
9260 					    tlocals, osz);
9261 					kmem_free(vstate->dtvs_tlocals, osz);
9262 				}
9263 
9264 				vstate->dtvs_tlocals = tlocals;
9265 				vstate->dtvs_ntlocals = ntlocals;
9266 			}
9267 
9268 			vstate->dtvs_tlocals[id] = *v;
9269 			continue;
9270 
9271 		case DIFV_SCOPE_LOCAL:
9272 			np = &vstate->dtvs_nlocals;
9273 			svarp = &vstate->dtvs_locals;
9274 
9275 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9276 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9277 				    sizeof (uint64_t));
9278 			else
9279 				dsize = NCPU * sizeof (uint64_t);
9280 
9281 			break;
9282 
9283 		case DIFV_SCOPE_GLOBAL:
9284 			np = &vstate->dtvs_nglobals;
9285 			svarp = &vstate->dtvs_globals;
9286 
9287 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9288 				dsize = v->dtdv_type.dtdt_size +
9289 				    sizeof (uint64_t);
9290 
9291 			break;
9292 
9293 		default:
9294 			ASSERT(0);
9295 		}
9296 
9297 		while (id >= (oldsvars = *np)) {
9298 			dtrace_statvar_t **statics;
9299 			int newsvars, oldsize, newsize;
9300 
9301 			if ((newsvars = (oldsvars << 1)) == 0)
9302 				newsvars = 1;
9303 
9304 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9305 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9306 
9307 			statics = kmem_zalloc(newsize, KM_SLEEP);
9308 
9309 			if (oldsize != 0) {
9310 				bcopy(*svarp, statics, oldsize);
9311 				kmem_free(*svarp, oldsize);
9312 			}
9313 
9314 			*svarp = statics;
9315 			*np = newsvars;
9316 		}
9317 
9318 		if ((svar = (*svarp)[id]) == NULL) {
9319 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9320 			svar->dtsv_var = *v;
9321 
9322 			if ((svar->dtsv_size = dsize) != 0) {
9323 				svar->dtsv_data = (uint64_t)(uintptr_t)
9324 				    kmem_zalloc(dsize, KM_SLEEP);
9325 			}
9326 
9327 			(*svarp)[id] = svar;
9328 		}
9329 
9330 		svar->dtsv_refcnt++;
9331 	}
9332 
9333 	dtrace_difo_chunksize(dp, vstate);
9334 	dtrace_difo_hold(dp);
9335 }
9336 
9337 #if defined(sun)
9338 static dtrace_difo_t *
9339 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9340 {
9341 	dtrace_difo_t *new;
9342 	size_t sz;
9343 
9344 	ASSERT(dp->dtdo_buf != NULL);
9345 	ASSERT(dp->dtdo_refcnt != 0);
9346 
9347 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9348 
9349 	ASSERT(dp->dtdo_buf != NULL);
9350 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9351 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9352 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9353 	new->dtdo_len = dp->dtdo_len;
9354 
9355 	if (dp->dtdo_strtab != NULL) {
9356 		ASSERT(dp->dtdo_strlen != 0);
9357 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9358 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9359 		new->dtdo_strlen = dp->dtdo_strlen;
9360 	}
9361 
9362 	if (dp->dtdo_inttab != NULL) {
9363 		ASSERT(dp->dtdo_intlen != 0);
9364 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9365 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9366 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9367 		new->dtdo_intlen = dp->dtdo_intlen;
9368 	}
9369 
9370 	if (dp->dtdo_vartab != NULL) {
9371 		ASSERT(dp->dtdo_varlen != 0);
9372 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9373 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9374 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9375 		new->dtdo_varlen = dp->dtdo_varlen;
9376 	}
9377 
9378 	dtrace_difo_init(new, vstate);
9379 	return (new);
9380 }
9381 #endif
9382 
9383 static void
9384 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9385 {
9386 	int i;
9387 
9388 	ASSERT(dp->dtdo_refcnt == 0);
9389 
9390 	for (i = 0; i < dp->dtdo_varlen; i++) {
9391 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9392 		dtrace_statvar_t *svar, **svarp = NULL;
9393 		uint_t id;
9394 		uint8_t scope = v->dtdv_scope;
9395 		int *np = NULL;
9396 
9397 		switch (scope) {
9398 		case DIFV_SCOPE_THREAD:
9399 			continue;
9400 
9401 		case DIFV_SCOPE_LOCAL:
9402 			np = &vstate->dtvs_nlocals;
9403 			svarp = vstate->dtvs_locals;
9404 			break;
9405 
9406 		case DIFV_SCOPE_GLOBAL:
9407 			np = &vstate->dtvs_nglobals;
9408 			svarp = vstate->dtvs_globals;
9409 			break;
9410 
9411 		default:
9412 			ASSERT(0);
9413 		}
9414 
9415 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9416 			continue;
9417 
9418 		id -= DIF_VAR_OTHER_UBASE;
9419 		ASSERT(id < *np);
9420 
9421 		svar = svarp[id];
9422 		ASSERT(svar != NULL);
9423 		ASSERT(svar->dtsv_refcnt > 0);
9424 
9425 		if (--svar->dtsv_refcnt > 0)
9426 			continue;
9427 
9428 		if (svar->dtsv_size != 0) {
9429 			ASSERT(svar->dtsv_data != 0);
9430 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9431 			    svar->dtsv_size);
9432 		}
9433 
9434 		kmem_free(svar, sizeof (dtrace_statvar_t));
9435 		svarp[id] = NULL;
9436 	}
9437 
9438 	if (dp->dtdo_buf != NULL)
9439 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9440 	if (dp->dtdo_inttab != NULL)
9441 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9442 	if (dp->dtdo_strtab != NULL)
9443 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9444 	if (dp->dtdo_vartab != NULL)
9445 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9446 
9447 	kmem_free(dp, sizeof (dtrace_difo_t));
9448 }
9449 
9450 static void
9451 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9452 {
9453 	int i;
9454 
9455 	ASSERT(MUTEX_HELD(&dtrace_lock));
9456 	ASSERT(dp->dtdo_refcnt != 0);
9457 
9458 	for (i = 0; i < dp->dtdo_varlen; i++) {
9459 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9460 
9461 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9462 			continue;
9463 
9464 		ASSERT(dtrace_vtime_references > 0);
9465 		if (--dtrace_vtime_references == 0)
9466 			dtrace_vtime_disable();
9467 	}
9468 
9469 	if (--dp->dtdo_refcnt == 0)
9470 		dtrace_difo_destroy(dp, vstate);
9471 }
9472 
9473 /*
9474  * DTrace Format Functions
9475  */
9476 static uint16_t
9477 dtrace_format_add(dtrace_state_t *state, char *str)
9478 {
9479 	char *fmt, **new;
9480 	uint16_t ndx, len = strlen(str) + 1;
9481 
9482 	fmt = kmem_zalloc(len, KM_SLEEP);
9483 	bcopy(str, fmt, len);
9484 
9485 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9486 		if (state->dts_formats[ndx] == NULL) {
9487 			state->dts_formats[ndx] = fmt;
9488 			return (ndx + 1);
9489 		}
9490 	}
9491 
9492 	if (state->dts_nformats == USHRT_MAX) {
9493 		/*
9494 		 * This is only likely if a denial-of-service attack is being
9495 		 * attempted.  As such, it's okay to fail silently here.
9496 		 */
9497 		kmem_free(fmt, len);
9498 		return (0);
9499 	}
9500 
9501 	/*
9502 	 * For simplicity, we always resize the formats array to be exactly the
9503 	 * number of formats.
9504 	 */
9505 	ndx = state->dts_nformats++;
9506 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9507 
9508 	if (state->dts_formats != NULL) {
9509 		ASSERT(ndx != 0);
9510 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9511 		kmem_free(state->dts_formats, ndx * sizeof (char *));
9512 	}
9513 
9514 	state->dts_formats = new;
9515 	state->dts_formats[ndx] = fmt;
9516 
9517 	return (ndx + 1);
9518 }
9519 
9520 static void
9521 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9522 {
9523 	char *fmt;
9524 
9525 	ASSERT(state->dts_formats != NULL);
9526 	ASSERT(format <= state->dts_nformats);
9527 	ASSERT(state->dts_formats[format - 1] != NULL);
9528 
9529 	fmt = state->dts_formats[format - 1];
9530 	kmem_free(fmt, strlen(fmt) + 1);
9531 	state->dts_formats[format - 1] = NULL;
9532 }
9533 
9534 static void
9535 dtrace_format_destroy(dtrace_state_t *state)
9536 {
9537 	int i;
9538 
9539 	if (state->dts_nformats == 0) {
9540 		ASSERT(state->dts_formats == NULL);
9541 		return;
9542 	}
9543 
9544 	ASSERT(state->dts_formats != NULL);
9545 
9546 	for (i = 0; i < state->dts_nformats; i++) {
9547 		char *fmt = state->dts_formats[i];
9548 
9549 		if (fmt == NULL)
9550 			continue;
9551 
9552 		kmem_free(fmt, strlen(fmt) + 1);
9553 	}
9554 
9555 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9556 	state->dts_nformats = 0;
9557 	state->dts_formats = NULL;
9558 }
9559 
9560 /*
9561  * DTrace Predicate Functions
9562  */
9563 static dtrace_predicate_t *
9564 dtrace_predicate_create(dtrace_difo_t *dp)
9565 {
9566 	dtrace_predicate_t *pred;
9567 
9568 	ASSERT(MUTEX_HELD(&dtrace_lock));
9569 	ASSERT(dp->dtdo_refcnt != 0);
9570 
9571 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9572 	pred->dtp_difo = dp;
9573 	pred->dtp_refcnt = 1;
9574 
9575 	if (!dtrace_difo_cacheable(dp))
9576 		return (pred);
9577 
9578 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9579 		/*
9580 		 * This is only theoretically possible -- we have had 2^32
9581 		 * cacheable predicates on this machine.  We cannot allow any
9582 		 * more predicates to become cacheable:  as unlikely as it is,
9583 		 * there may be a thread caching a (now stale) predicate cache
9584 		 * ID. (N.B.: the temptation is being successfully resisted to
9585 		 * have this cmn_err() "Holy shit -- we executed this code!")
9586 		 */
9587 		return (pred);
9588 	}
9589 
9590 	pred->dtp_cacheid = dtrace_predcache_id++;
9591 
9592 	return (pred);
9593 }
9594 
9595 static void
9596 dtrace_predicate_hold(dtrace_predicate_t *pred)
9597 {
9598 	ASSERT(MUTEX_HELD(&dtrace_lock));
9599 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9600 	ASSERT(pred->dtp_refcnt > 0);
9601 
9602 	pred->dtp_refcnt++;
9603 }
9604 
9605 static void
9606 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9607 {
9608 	dtrace_difo_t *dp = pred->dtp_difo;
9609 
9610 	ASSERT(MUTEX_HELD(&dtrace_lock));
9611 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9612 	ASSERT(pred->dtp_refcnt > 0);
9613 
9614 	if (--pred->dtp_refcnt == 0) {
9615 		dtrace_difo_release(pred->dtp_difo, vstate);
9616 		kmem_free(pred, sizeof (dtrace_predicate_t));
9617 	}
9618 }
9619 
9620 /*
9621  * DTrace Action Description Functions
9622  */
9623 static dtrace_actdesc_t *
9624 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9625     uint64_t uarg, uint64_t arg)
9626 {
9627 	dtrace_actdesc_t *act;
9628 
9629 #if defined(sun)
9630 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9631 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9632 #endif
9633 
9634 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9635 	act->dtad_kind = kind;
9636 	act->dtad_ntuple = ntuple;
9637 	act->dtad_uarg = uarg;
9638 	act->dtad_arg = arg;
9639 	act->dtad_refcnt = 1;
9640 
9641 	return (act);
9642 }
9643 
9644 static void
9645 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9646 {
9647 	ASSERT(act->dtad_refcnt >= 1);
9648 	act->dtad_refcnt++;
9649 }
9650 
9651 static void
9652 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9653 {
9654 	dtrace_actkind_t kind = act->dtad_kind;
9655 	dtrace_difo_t *dp;
9656 
9657 	ASSERT(act->dtad_refcnt >= 1);
9658 
9659 	if (--act->dtad_refcnt != 0)
9660 		return;
9661 
9662 	if ((dp = act->dtad_difo) != NULL)
9663 		dtrace_difo_release(dp, vstate);
9664 
9665 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9666 		char *str = (char *)(uintptr_t)act->dtad_arg;
9667 
9668 #if defined(sun)
9669 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9670 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9671 #endif
9672 
9673 		if (str != NULL)
9674 			kmem_free(str, strlen(str) + 1);
9675 	}
9676 
9677 	kmem_free(act, sizeof (dtrace_actdesc_t));
9678 }
9679 
9680 /*
9681  * DTrace ECB Functions
9682  */
9683 static dtrace_ecb_t *
9684 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9685 {
9686 	dtrace_ecb_t *ecb;
9687 	dtrace_epid_t epid;
9688 
9689 	ASSERT(MUTEX_HELD(&dtrace_lock));
9690 
9691 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9692 	ecb->dte_predicate = NULL;
9693 	ecb->dte_probe = probe;
9694 
9695 	/*
9696 	 * The default size is the size of the default action: recording
9697 	 * the epid.
9698 	 */
9699 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9700 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9701 
9702 	epid = state->dts_epid++;
9703 
9704 	if (epid - 1 >= state->dts_necbs) {
9705 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9706 		int necbs = state->dts_necbs << 1;
9707 
9708 		ASSERT(epid == state->dts_necbs + 1);
9709 
9710 		if (necbs == 0) {
9711 			ASSERT(oecbs == NULL);
9712 			necbs = 1;
9713 		}
9714 
9715 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9716 
9717 		if (oecbs != NULL)
9718 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9719 
9720 		dtrace_membar_producer();
9721 		state->dts_ecbs = ecbs;
9722 
9723 		if (oecbs != NULL) {
9724 			/*
9725 			 * If this state is active, we must dtrace_sync()
9726 			 * before we can free the old dts_ecbs array:  we're
9727 			 * coming in hot, and there may be active ring
9728 			 * buffer processing (which indexes into the dts_ecbs
9729 			 * array) on another CPU.
9730 			 */
9731 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9732 				dtrace_sync();
9733 
9734 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9735 		}
9736 
9737 		dtrace_membar_producer();
9738 		state->dts_necbs = necbs;
9739 	}
9740 
9741 	ecb->dte_state = state;
9742 
9743 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9744 	dtrace_membar_producer();
9745 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9746 
9747 	return (ecb);
9748 }
9749 
9750 static int
9751 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9752 {
9753 	dtrace_probe_t *probe = ecb->dte_probe;
9754 
9755 	ASSERT(MUTEX_HELD(&cpu_lock));
9756 	ASSERT(MUTEX_HELD(&dtrace_lock));
9757 	ASSERT(ecb->dte_next == NULL);
9758 
9759 	if (probe == NULL) {
9760 		/*
9761 		 * This is the NULL probe -- there's nothing to do.
9762 		 */
9763 		return (0);
9764 	}
9765 
9766 	if (probe->dtpr_ecb == NULL) {
9767 		dtrace_provider_t *prov = probe->dtpr_provider;
9768 
9769 		/*
9770 		 * We're the first ECB on this probe.
9771 		 */
9772 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9773 
9774 		if (ecb->dte_predicate != NULL)
9775 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9776 
9777 		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9778 		    probe->dtpr_id, probe->dtpr_arg));
9779 	} else {
9780 		/*
9781 		 * This probe is already active.  Swing the last pointer to
9782 		 * point to the new ECB, and issue a dtrace_sync() to assure
9783 		 * that all CPUs have seen the change.
9784 		 */
9785 		ASSERT(probe->dtpr_ecb_last != NULL);
9786 		probe->dtpr_ecb_last->dte_next = ecb;
9787 		probe->dtpr_ecb_last = ecb;
9788 		probe->dtpr_predcache = 0;
9789 
9790 		dtrace_sync();
9791 		return (0);
9792 	}
9793 }
9794 
9795 static void
9796 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9797 {
9798 	uint32_t maxalign = sizeof (dtrace_epid_t);
9799 	uint32_t align = sizeof (uint8_t), offs, diff;
9800 	dtrace_action_t *act;
9801 	int wastuple = 0;
9802 	uint32_t aggbase = UINT32_MAX;
9803 	dtrace_state_t *state = ecb->dte_state;
9804 
9805 	/*
9806 	 * If we record anything, we always record the epid.  (And we always
9807 	 * record it first.)
9808 	 */
9809 	offs = sizeof (dtrace_epid_t);
9810 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9811 
9812 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9813 		dtrace_recdesc_t *rec = &act->dta_rec;
9814 
9815 		if ((align = rec->dtrd_alignment) > maxalign)
9816 			maxalign = align;
9817 
9818 		if (!wastuple && act->dta_intuple) {
9819 			/*
9820 			 * This is the first record in a tuple.  Align the
9821 			 * offset to be at offset 4 in an 8-byte aligned
9822 			 * block.
9823 			 */
9824 			diff = offs + sizeof (dtrace_aggid_t);
9825 
9826 			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9827 				offs += sizeof (uint64_t) - diff;
9828 
9829 			aggbase = offs - sizeof (dtrace_aggid_t);
9830 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9831 		}
9832 
9833 		/*LINTED*/
9834 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9835 			/*
9836 			 * The current offset is not properly aligned; align it.
9837 			 */
9838 			offs += align - diff;
9839 		}
9840 
9841 		rec->dtrd_offset = offs;
9842 
9843 		if (offs + rec->dtrd_size > ecb->dte_needed) {
9844 			ecb->dte_needed = offs + rec->dtrd_size;
9845 
9846 			if (ecb->dte_needed > state->dts_needed)
9847 				state->dts_needed = ecb->dte_needed;
9848 		}
9849 
9850 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9851 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9852 			dtrace_action_t *first = agg->dtag_first, *prev;
9853 
9854 			ASSERT(rec->dtrd_size != 0 && first != NULL);
9855 			ASSERT(wastuple);
9856 			ASSERT(aggbase != UINT32_MAX);
9857 
9858 			agg->dtag_base = aggbase;
9859 
9860 			while ((prev = first->dta_prev) != NULL &&
9861 			    DTRACEACT_ISAGG(prev->dta_kind)) {
9862 				agg = (dtrace_aggregation_t *)prev;
9863 				first = agg->dtag_first;
9864 			}
9865 
9866 			if (prev != NULL) {
9867 				offs = prev->dta_rec.dtrd_offset +
9868 				    prev->dta_rec.dtrd_size;
9869 			} else {
9870 				offs = sizeof (dtrace_epid_t);
9871 			}
9872 			wastuple = 0;
9873 		} else {
9874 			if (!act->dta_intuple)
9875 				ecb->dte_size = offs + rec->dtrd_size;
9876 
9877 			offs += rec->dtrd_size;
9878 		}
9879 
9880 		wastuple = act->dta_intuple;
9881 	}
9882 
9883 	if ((act = ecb->dte_action) != NULL &&
9884 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9885 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9886 		/*
9887 		 * If the size is still sizeof (dtrace_epid_t), then all
9888 		 * actions store no data; set the size to 0.
9889 		 */
9890 		ecb->dte_alignment = maxalign;
9891 		ecb->dte_size = 0;
9892 
9893 		/*
9894 		 * If the needed space is still sizeof (dtrace_epid_t), then
9895 		 * all actions need no additional space; set the needed
9896 		 * size to 0.
9897 		 */
9898 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9899 			ecb->dte_needed = 0;
9900 
9901 		return;
9902 	}
9903 
9904 	/*
9905 	 * Set our alignment, and make sure that the dte_size and dte_needed
9906 	 * are aligned to the size of an EPID.
9907 	 */
9908 	ecb->dte_alignment = maxalign;
9909 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9910 	    ~(sizeof (dtrace_epid_t) - 1);
9911 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9912 	    ~(sizeof (dtrace_epid_t) - 1);
9913 	ASSERT(ecb->dte_size <= ecb->dte_needed);
9914 }
9915 
9916 static dtrace_action_t *
9917 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9918 {
9919 	dtrace_aggregation_t *agg;
9920 	size_t size = sizeof (uint64_t);
9921 	int ntuple = desc->dtad_ntuple;
9922 	dtrace_action_t *act;
9923 	dtrace_recdesc_t *frec;
9924 	dtrace_aggid_t aggid;
9925 	dtrace_state_t *state = ecb->dte_state;
9926 	vmem_addr_t offset;
9927 
9928 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9929 	agg->dtag_ecb = ecb;
9930 
9931 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9932 
9933 	switch (desc->dtad_kind) {
9934 	case DTRACEAGG_MIN:
9935 		agg->dtag_initial = INT64_MAX;
9936 		agg->dtag_aggregate = dtrace_aggregate_min;
9937 		break;
9938 
9939 	case DTRACEAGG_MAX:
9940 		agg->dtag_initial = INT64_MIN;
9941 		agg->dtag_aggregate = dtrace_aggregate_max;
9942 		break;
9943 
9944 	case DTRACEAGG_COUNT:
9945 		agg->dtag_aggregate = dtrace_aggregate_count;
9946 		break;
9947 
9948 	case DTRACEAGG_QUANTIZE:
9949 		agg->dtag_aggregate = dtrace_aggregate_quantize;
9950 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9951 		    sizeof (uint64_t);
9952 		break;
9953 
9954 	case DTRACEAGG_LQUANTIZE: {
9955 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9956 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9957 
9958 		agg->dtag_initial = desc->dtad_arg;
9959 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9960 
9961 		if (step == 0 || levels == 0)
9962 			goto err;
9963 
9964 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
9965 		break;
9966 	}
9967 
9968 	case DTRACEAGG_AVG:
9969 		agg->dtag_aggregate = dtrace_aggregate_avg;
9970 		size = sizeof (uint64_t) * 2;
9971 		break;
9972 
9973 	case DTRACEAGG_STDDEV:
9974 		agg->dtag_aggregate = dtrace_aggregate_stddev;
9975 		size = sizeof (uint64_t) * 4;
9976 		break;
9977 
9978 	case DTRACEAGG_SUM:
9979 		agg->dtag_aggregate = dtrace_aggregate_sum;
9980 		break;
9981 
9982 	default:
9983 		goto err;
9984 	}
9985 
9986 	agg->dtag_action.dta_rec.dtrd_size = size;
9987 
9988 	if (ntuple == 0)
9989 		goto err;
9990 
9991 	/*
9992 	 * We must make sure that we have enough actions for the n-tuple.
9993 	 */
9994 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
9995 		if (DTRACEACT_ISAGG(act->dta_kind))
9996 			break;
9997 
9998 		if (--ntuple == 0) {
9999 			/*
10000 			 * This is the action with which our n-tuple begins.
10001 			 */
10002 			agg->dtag_first = act;
10003 			goto success;
10004 		}
10005 	}
10006 
10007 	/*
10008 	 * This n-tuple is short by ntuple elements.  Return failure.
10009 	 */
10010 	ASSERT(ntuple != 0);
10011 err:
10012 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10013 	return (NULL);
10014 
10015 success:
10016 	/*
10017 	 * If the last action in the tuple has a size of zero, it's actually
10018 	 * an expression argument for the aggregating action.
10019 	 */
10020 	ASSERT(ecb->dte_action_last != NULL);
10021 	act = ecb->dte_action_last;
10022 
10023 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10024 		ASSERT(act->dta_difo != NULL);
10025 
10026 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10027 			agg->dtag_hasarg = 1;
10028 	}
10029 
10030 	/*
10031 	 * We need to allocate an id for this aggregation.
10032 	 */
10033 	if (vmem_alloc(state->dts_aggid_arena, 1, VM_BESTFIT | VM_SLEEP,
10034 	    &offset) != 0)
10035 		ASSERT(0);
10036 	aggid = (dtrace_aggid_t)(uintptr_t)offset;
10037 
10038 
10039 	if (aggid - 1 >= state->dts_naggregations) {
10040 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10041 		dtrace_aggregation_t **aggs;
10042 		int naggs = state->dts_naggregations << 1;
10043 		int onaggs = state->dts_naggregations;
10044 
10045 		ASSERT(aggid == state->dts_naggregations + 1);
10046 
10047 		if (naggs == 0) {
10048 			ASSERT(oaggs == NULL);
10049 			naggs = 1;
10050 		}
10051 
10052 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10053 
10054 		if (oaggs != NULL) {
10055 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10056 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10057 		}
10058 
10059 		state->dts_aggregations = aggs;
10060 		state->dts_naggregations = naggs;
10061 	}
10062 
10063 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10064 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10065 
10066 	frec = &agg->dtag_first->dta_rec;
10067 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10068 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10069 
10070 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10071 		ASSERT(!act->dta_intuple);
10072 		act->dta_intuple = 1;
10073 	}
10074 
10075 	return (&agg->dtag_action);
10076 }
10077 
10078 static void
10079 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10080 {
10081 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10082 	dtrace_state_t *state = ecb->dte_state;
10083 	dtrace_aggid_t aggid = agg->dtag_id;
10084 
10085 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10086 #if defined(sun)
10087 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10088 #else
10089 	vmem_free(state->dts_aggid_arena, (uintptr_t)aggid, 1);
10090 #endif
10091 
10092 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10093 	state->dts_aggregations[aggid - 1] = NULL;
10094 
10095 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10096 }
10097 
10098 static int
10099 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10100 {
10101 	dtrace_action_t *action, *last;
10102 	dtrace_difo_t *dp = desc->dtad_difo;
10103 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10104 	uint16_t format = 0;
10105 	dtrace_recdesc_t *rec;
10106 	dtrace_state_t *state = ecb->dte_state;
10107 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10108 	uint64_t arg = desc->dtad_arg;
10109 
10110 	ASSERT(MUTEX_HELD(&dtrace_lock));
10111 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10112 
10113 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10114 		/*
10115 		 * If this is an aggregating action, there must be neither
10116 		 * a speculate nor a commit on the action chain.
10117 		 */
10118 		dtrace_action_t *act;
10119 
10120 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10121 			if (act->dta_kind == DTRACEACT_COMMIT)
10122 				return (EINVAL);
10123 
10124 			if (act->dta_kind == DTRACEACT_SPECULATE)
10125 				return (EINVAL);
10126 		}
10127 
10128 		action = dtrace_ecb_aggregation_create(ecb, desc);
10129 
10130 		if (action == NULL)
10131 			return (EINVAL);
10132 	} else {
10133 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10134 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10135 		    dp != NULL && dp->dtdo_destructive)) {
10136 			state->dts_destructive = 1;
10137 		}
10138 
10139 		switch (desc->dtad_kind) {
10140 		case DTRACEACT_PRINTF:
10141 		case DTRACEACT_PRINTA:
10142 		case DTRACEACT_SYSTEM:
10143 		case DTRACEACT_FREOPEN:
10144 			/*
10145 			 * We know that our arg is a string -- turn it into a
10146 			 * format.
10147 			 */
10148 			if (arg == 0) {
10149 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
10150 				format = 0;
10151 			} else {
10152 				ASSERT(arg != 0);
10153 #if defined(sun)
10154 				ASSERT(arg > KERNELBASE);
10155 #endif
10156 				format = dtrace_format_add(state,
10157 				    (char *)(uintptr_t)arg);
10158 			}
10159 
10160 			/*FALLTHROUGH*/
10161 		case DTRACEACT_LIBACT:
10162 		case DTRACEACT_DIFEXPR:
10163 			if (dp == NULL)
10164 				return (EINVAL);
10165 
10166 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10167 				break;
10168 
10169 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10170 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10171 					return (EINVAL);
10172 
10173 				size = opt[DTRACEOPT_STRSIZE];
10174 			}
10175 
10176 			break;
10177 
10178 		case DTRACEACT_STACK:
10179 			if ((nframes = arg) == 0) {
10180 				nframes = opt[DTRACEOPT_STACKFRAMES];
10181 				ASSERT(nframes > 0);
10182 				arg = nframes;
10183 			}
10184 
10185 			size = nframes * sizeof (pc_t);
10186 			break;
10187 
10188 		case DTRACEACT_JSTACK:
10189 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10190 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10191 
10192 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10193 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10194 
10195 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10196 
10197 			/*FALLTHROUGH*/
10198 		case DTRACEACT_USTACK:
10199 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10200 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10201 				strsize = DTRACE_USTACK_STRSIZE(arg);
10202 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10203 				ASSERT(nframes > 0);
10204 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10205 			}
10206 
10207 			/*
10208 			 * Save a slot for the pid.
10209 			 */
10210 			size = (nframes + 1) * sizeof (uint64_t);
10211 			size += DTRACE_USTACK_STRSIZE(arg);
10212 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10213 
10214 			break;
10215 
10216 		case DTRACEACT_SYM:
10217 		case DTRACEACT_MOD:
10218 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10219 			    sizeof (uint64_t)) ||
10220 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10221 				return (EINVAL);
10222 			break;
10223 
10224 		case DTRACEACT_USYM:
10225 		case DTRACEACT_UMOD:
10226 		case DTRACEACT_UADDR:
10227 			if (dp == NULL ||
10228 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10229 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10230 				return (EINVAL);
10231 
10232 			/*
10233 			 * We have a slot for the pid, plus a slot for the
10234 			 * argument.  To keep things simple (aligned with
10235 			 * bitness-neutral sizing), we store each as a 64-bit
10236 			 * quantity.
10237 			 */
10238 			size = 2 * sizeof (uint64_t);
10239 			break;
10240 
10241 		case DTRACEACT_STOP:
10242 		case DTRACEACT_BREAKPOINT:
10243 		case DTRACEACT_PANIC:
10244 			break;
10245 
10246 		case DTRACEACT_CHILL:
10247 		case DTRACEACT_DISCARD:
10248 		case DTRACEACT_RAISE:
10249 			if (dp == NULL)
10250 				return (EINVAL);
10251 			break;
10252 
10253 		case DTRACEACT_EXIT:
10254 			if (dp == NULL ||
10255 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10256 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10257 				return (EINVAL);
10258 			break;
10259 
10260 		case DTRACEACT_SPECULATE:
10261 			if (ecb->dte_size > sizeof (dtrace_epid_t))
10262 				return (EINVAL);
10263 
10264 			if (dp == NULL)
10265 				return (EINVAL);
10266 
10267 			state->dts_speculates = 1;
10268 			break;
10269 
10270 		case DTRACEACT_PRINTM:
10271 		    	size = dp->dtdo_rtype.dtdt_size;
10272 			break;
10273 
10274 		case DTRACEACT_PRINTT:
10275 		    	size = dp->dtdo_rtype.dtdt_size;
10276 			break;
10277 
10278 		case DTRACEACT_COMMIT: {
10279 			dtrace_action_t *act = ecb->dte_action;
10280 
10281 			for (; act != NULL; act = act->dta_next) {
10282 				if (act->dta_kind == DTRACEACT_COMMIT)
10283 					return (EINVAL);
10284 			}
10285 
10286 			if (dp == NULL)
10287 				return (EINVAL);
10288 			break;
10289 		}
10290 
10291 		default:
10292 			return (EINVAL);
10293 		}
10294 
10295 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10296 			/*
10297 			 * If this is a data-storing action or a speculate,
10298 			 * we must be sure that there isn't a commit on the
10299 			 * action chain.
10300 			 */
10301 			dtrace_action_t *act = ecb->dte_action;
10302 
10303 			for (; act != NULL; act = act->dta_next) {
10304 				if (act->dta_kind == DTRACEACT_COMMIT)
10305 					return (EINVAL);
10306 			}
10307 		}
10308 
10309 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10310 		action->dta_rec.dtrd_size = size;
10311 	}
10312 
10313 	action->dta_refcnt = 1;
10314 	rec = &action->dta_rec;
10315 	size = rec->dtrd_size;
10316 
10317 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10318 		if (!(size & mask)) {
10319 			align = mask + 1;
10320 			break;
10321 		}
10322 	}
10323 
10324 	action->dta_kind = desc->dtad_kind;
10325 
10326 	if ((action->dta_difo = dp) != NULL)
10327 		dtrace_difo_hold(dp);
10328 
10329 	rec->dtrd_action = action->dta_kind;
10330 	rec->dtrd_arg = arg;
10331 	rec->dtrd_uarg = desc->dtad_uarg;
10332 	rec->dtrd_alignment = (uint16_t)align;
10333 	rec->dtrd_format = format;
10334 
10335 	if ((last = ecb->dte_action_last) != NULL) {
10336 		ASSERT(ecb->dte_action != NULL);
10337 		action->dta_prev = last;
10338 		last->dta_next = action;
10339 	} else {
10340 		ASSERT(ecb->dte_action == NULL);
10341 		ecb->dte_action = action;
10342 	}
10343 
10344 	ecb->dte_action_last = action;
10345 
10346 	return (0);
10347 }
10348 
10349 static void
10350 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10351 {
10352 	dtrace_action_t *act = ecb->dte_action, *next;
10353 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10354 	dtrace_difo_t *dp;
10355 	uint16_t format;
10356 
10357 	if (act != NULL && act->dta_refcnt > 1) {
10358 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10359 		act->dta_refcnt--;
10360 	} else {
10361 		for (; act != NULL; act = next) {
10362 			next = act->dta_next;
10363 			ASSERT(next != NULL || act == ecb->dte_action_last);
10364 			ASSERT(act->dta_refcnt == 1);
10365 
10366 			if ((format = act->dta_rec.dtrd_format) != 0)
10367 				dtrace_format_remove(ecb->dte_state, format);
10368 
10369 			if ((dp = act->dta_difo) != NULL)
10370 				dtrace_difo_release(dp, vstate);
10371 
10372 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10373 				dtrace_ecb_aggregation_destroy(ecb, act);
10374 			} else {
10375 				kmem_free(act, sizeof (dtrace_action_t));
10376 			}
10377 		}
10378 	}
10379 
10380 	ecb->dte_action = NULL;
10381 	ecb->dte_action_last = NULL;
10382 	ecb->dte_size = sizeof (dtrace_epid_t);
10383 }
10384 
10385 static void
10386 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10387 {
10388 	/*
10389 	 * We disable the ECB by removing it from its probe.
10390 	 */
10391 	dtrace_ecb_t *pecb, *prev = NULL;
10392 	dtrace_probe_t *probe = ecb->dte_probe;
10393 
10394 	ASSERT(MUTEX_HELD(&dtrace_lock));
10395 
10396 	if (probe == NULL) {
10397 		/*
10398 		 * This is the NULL probe; there is nothing to disable.
10399 		 */
10400 		return;
10401 	}
10402 
10403 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10404 		if (pecb == ecb)
10405 			break;
10406 		prev = pecb;
10407 	}
10408 
10409 	ASSERT(pecb != NULL);
10410 
10411 	if (prev == NULL) {
10412 		probe->dtpr_ecb = ecb->dte_next;
10413 	} else {
10414 		prev->dte_next = ecb->dte_next;
10415 	}
10416 
10417 	if (ecb == probe->dtpr_ecb_last) {
10418 		ASSERT(ecb->dte_next == NULL);
10419 		probe->dtpr_ecb_last = prev;
10420 	}
10421 
10422 	/*
10423 	 * The ECB has been disconnected from the probe; now sync to assure
10424 	 * that all CPUs have seen the change before returning.
10425 	 */
10426 	dtrace_sync();
10427 
10428 	if (probe->dtpr_ecb == NULL) {
10429 		/*
10430 		 * That was the last ECB on the probe; clear the predicate
10431 		 * cache ID for the probe, disable it and sync one more time
10432 		 * to assure that we'll never hit it again.
10433 		 */
10434 		dtrace_provider_t *prov = probe->dtpr_provider;
10435 
10436 		ASSERT(ecb->dte_next == NULL);
10437 		ASSERT(probe->dtpr_ecb_last == NULL);
10438 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10439 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10440 		    probe->dtpr_id, probe->dtpr_arg);
10441 		dtrace_sync();
10442 	} else {
10443 		/*
10444 		 * There is at least one ECB remaining on the probe.  If there
10445 		 * is _exactly_ one, set the probe's predicate cache ID to be
10446 		 * the predicate cache ID of the remaining ECB.
10447 		 */
10448 		ASSERT(probe->dtpr_ecb_last != NULL);
10449 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10450 
10451 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10452 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10453 
10454 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10455 
10456 			if (p != NULL)
10457 				probe->dtpr_predcache = p->dtp_cacheid;
10458 		}
10459 
10460 		ecb->dte_next = NULL;
10461 	}
10462 }
10463 
10464 static void
10465 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10466 {
10467 	dtrace_state_t *state = ecb->dte_state;
10468 	dtrace_vstate_t *vstate = &state->dts_vstate;
10469 	dtrace_predicate_t *pred;
10470 	dtrace_epid_t epid = ecb->dte_epid;
10471 
10472 	ASSERT(MUTEX_HELD(&dtrace_lock));
10473 	ASSERT(ecb->dte_next == NULL);
10474 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10475 
10476 	if ((pred = ecb->dte_predicate) != NULL)
10477 		dtrace_predicate_release(pred, vstate);
10478 
10479 	dtrace_ecb_action_remove(ecb);
10480 
10481 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10482 	state->dts_ecbs[epid - 1] = NULL;
10483 
10484 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10485 }
10486 
10487 static dtrace_ecb_t *
10488 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10489     dtrace_enabling_t *enab)
10490 {
10491 	dtrace_ecb_t *ecb;
10492 	dtrace_predicate_t *pred;
10493 	dtrace_actdesc_t *act;
10494 	dtrace_provider_t *prov;
10495 	dtrace_ecbdesc_t *desc = enab->dten_current;
10496 
10497 	ASSERT(MUTEX_HELD(&dtrace_lock));
10498 	ASSERT(state != NULL);
10499 
10500 	ecb = dtrace_ecb_add(state, probe);
10501 	ecb->dte_uarg = desc->dted_uarg;
10502 
10503 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10504 		dtrace_predicate_hold(pred);
10505 		ecb->dte_predicate = pred;
10506 	}
10507 
10508 	if (probe != NULL) {
10509 		/*
10510 		 * If the provider shows more leg than the consumer is old
10511 		 * enough to see, we need to enable the appropriate implicit
10512 		 * predicate bits to prevent the ecb from activating at
10513 		 * revealing times.
10514 		 *
10515 		 * Providers specifying DTRACE_PRIV_USER at register time
10516 		 * are stating that they need the /proc-style privilege
10517 		 * model to be enforced, and this is what DTRACE_COND_OWNER
10518 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10519 		 */
10520 		prov = probe->dtpr_provider;
10521 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10522 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10523 			ecb->dte_cond |= DTRACE_COND_OWNER;
10524 
10525 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10526 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10527 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10528 
10529 		/*
10530 		 * If the provider shows us kernel innards and the user
10531 		 * is lacking sufficient privilege, enable the
10532 		 * DTRACE_COND_USERMODE implicit predicate.
10533 		 */
10534 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10535 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10536 			ecb->dte_cond |= DTRACE_COND_USERMODE;
10537 	}
10538 
10539 	if (dtrace_ecb_create_cache != NULL) {
10540 		/*
10541 		 * If we have a cached ecb, we'll use its action list instead
10542 		 * of creating our own (saving both time and space).
10543 		 */
10544 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10545 		dtrace_action_t *xact = cached->dte_action;
10546 
10547 		if (xact != NULL) {
10548 			ASSERT(xact->dta_refcnt > 0);
10549 			xact->dta_refcnt++;
10550 			ecb->dte_action = xact;
10551 			ecb->dte_action_last = cached->dte_action_last;
10552 			ecb->dte_needed = cached->dte_needed;
10553 			ecb->dte_size = cached->dte_size;
10554 			ecb->dte_alignment = cached->dte_alignment;
10555 		}
10556 
10557 		return (ecb);
10558 	}
10559 
10560 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10561 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10562 			dtrace_ecb_destroy(ecb);
10563 			return (NULL);
10564 		}
10565 	}
10566 
10567 	dtrace_ecb_resize(ecb);
10568 
10569 	return (dtrace_ecb_create_cache = ecb);
10570 }
10571 
10572 static int
10573 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10574 {
10575 	dtrace_ecb_t *ecb;
10576 	dtrace_enabling_t *enab = arg;
10577 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10578 
10579 	ASSERT(state != NULL);
10580 
10581 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10582 		/*
10583 		 * This probe was created in a generation for which this
10584 		 * enabling has previously created ECBs; we don't want to
10585 		 * enable it again, so just kick out.
10586 		 */
10587 		return (DTRACE_MATCH_NEXT);
10588 	}
10589 
10590 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10591 		return (DTRACE_MATCH_DONE);
10592 
10593 	if (dtrace_ecb_enable(ecb) < 0)
10594 		return (DTRACE_MATCH_FAIL);
10595 
10596 	return (DTRACE_MATCH_NEXT);
10597 }
10598 
10599 static dtrace_ecb_t *
10600 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10601 {
10602 	dtrace_ecb_t *ecb;
10603 
10604 	ASSERT(MUTEX_HELD(&dtrace_lock));
10605 
10606 	if (id == 0 || id > state->dts_necbs)
10607 		return (NULL);
10608 
10609 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10610 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10611 
10612 	return (state->dts_ecbs[id - 1]);
10613 }
10614 
10615 static dtrace_aggregation_t *
10616 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10617 {
10618 	dtrace_aggregation_t *agg;
10619 
10620 	ASSERT(MUTEX_HELD(&dtrace_lock));
10621 
10622 	if (id == 0 || id > state->dts_naggregations)
10623 		return (NULL);
10624 
10625 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10626 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10627 	    agg->dtag_id == id);
10628 
10629 	return (state->dts_aggregations[id - 1]);
10630 }
10631 
10632 /*
10633  * DTrace Buffer Functions
10634  *
10635  * The following functions manipulate DTrace buffers.  Most of these functions
10636  * are called in the context of establishing or processing consumer state;
10637  * exceptions are explicitly noted.
10638  */
10639 
10640 /*
10641  * Note:  called from cross call context.  This function switches the two
10642  * buffers on a given CPU.  The atomicity of this operation is assured by
10643  * disabling interrupts while the actual switch takes place; the disabling of
10644  * interrupts serializes the execution with any execution of dtrace_probe() on
10645  * the same CPU.
10646  */
10647 static void
10648 dtrace_buffer_switch(dtrace_buffer_t *buf)
10649 {
10650 	caddr_t tomax = buf->dtb_tomax;
10651 	caddr_t xamot = buf->dtb_xamot;
10652 	dtrace_icookie_t cookie;
10653 
10654 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10655 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10656 
10657 	cookie = dtrace_interrupt_disable();
10658 	buf->dtb_tomax = xamot;
10659 	buf->dtb_xamot = tomax;
10660 	buf->dtb_xamot_drops = buf->dtb_drops;
10661 	buf->dtb_xamot_offset = buf->dtb_offset;
10662 	buf->dtb_xamot_errors = buf->dtb_errors;
10663 	buf->dtb_xamot_flags = buf->dtb_flags;
10664 	buf->dtb_offset = 0;
10665 	buf->dtb_drops = 0;
10666 	buf->dtb_errors = 0;
10667 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10668 	dtrace_interrupt_enable(cookie);
10669 }
10670 
10671 /*
10672  * Note:  called from cross call context.  This function activates a buffer
10673  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10674  * is guaranteed by the disabling of interrupts.
10675  */
10676 static void
10677 dtrace_buffer_activate(dtrace_state_t *state)
10678 {
10679 	dtrace_buffer_t *buf;
10680 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10681 
10682 	buf = &state->dts_buffer[curcpu_id];
10683 
10684 	if (buf->dtb_tomax != NULL) {
10685 		/*
10686 		 * We might like to assert that the buffer is marked inactive,
10687 		 * but this isn't necessarily true:  the buffer for the CPU
10688 		 * that processes the BEGIN probe has its buffer activated
10689 		 * manually.  In this case, we take the (harmless) action
10690 		 * re-clearing the bit INACTIVE bit.
10691 		 */
10692 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10693 	}
10694 
10695 	dtrace_interrupt_enable(cookie);
10696 }
10697 
10698 static int
10699 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10700     processorid_t cpu)
10701 {
10702 #if defined(sun)
10703 	cpu_t *cp;
10704 #else
10705 	CPU_INFO_ITERATOR cpuind;
10706 	struct cpu_info *cinfo;
10707 #endif
10708 	dtrace_buffer_t *buf;
10709 
10710 #if defined(sun)
10711 	ASSERT(MUTEX_HELD(&cpu_lock));
10712 	ASSERT(MUTEX_HELD(&dtrace_lock));
10713 
10714 	if (size > dtrace_nonroot_maxsize &&
10715 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10716 		return (EFBIG);
10717 
10718 	cp = cpu_list;
10719 
10720 	do {
10721 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10722 			continue;
10723 
10724 		buf = &bufs[cp->cpu_id];
10725 
10726 		/*
10727 		 * If there is already a buffer allocated for this CPU, it
10728 		 * is only possible that this is a DR event.  In this case,
10729 		 */
10730 		if (buf->dtb_tomax != NULL) {
10731 			ASSERT(buf->dtb_size == size);
10732 			continue;
10733 		}
10734 
10735 		ASSERT(buf->dtb_xamot == NULL);
10736 
10737 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10738 			goto err;
10739 
10740 		buf->dtb_size = size;
10741 		buf->dtb_flags = flags;
10742 		buf->dtb_offset = 0;
10743 		buf->dtb_drops = 0;
10744 
10745 		if (flags & DTRACEBUF_NOSWITCH)
10746 			continue;
10747 
10748 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10749 			goto err;
10750 	} while ((cp = cp->cpu_next) != cpu_list);
10751 
10752 	return (0);
10753 
10754 err:
10755 	cp = cpu_list;
10756 
10757 	do {
10758 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10759 			continue;
10760 
10761 		buf = &bufs[cp->cpu_id];
10762 
10763 		if (buf->dtb_xamot != NULL) {
10764 			ASSERT(buf->dtb_tomax != NULL);
10765 			ASSERT(buf->dtb_size == size);
10766 			kmem_free(buf->dtb_xamot, size);
10767 		}
10768 
10769 		if (buf->dtb_tomax != NULL) {
10770 			ASSERT(buf->dtb_size == size);
10771 			kmem_free(buf->dtb_tomax, size);
10772 		}
10773 
10774 		buf->dtb_tomax = NULL;
10775 		buf->dtb_xamot = NULL;
10776 		buf->dtb_size = 0;
10777 	} while ((cp = cp->cpu_next) != cpu_list);
10778 
10779 	return (ENOMEM);
10780 #else
10781 
10782 #if defined(__amd64__)
10783 	/*
10784 	 * FreeBSD isn't good at limiting the amount of memory we
10785 	 * ask to malloc, so let's place a limit here before trying
10786 	 * to do something that might well end in tears at bedtime.
10787 	 */
10788 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10789 		return(ENOMEM);
10790 #endif
10791 
10792 	ASSERT(MUTEX_HELD(&dtrace_lock));
10793 	for (CPU_INFO_FOREACH(cpuind, cinfo)) {
10794 		if (cpu != DTRACE_CPUALL && cpu != cpu_index(cinfo))
10795 			continue;
10796 
10797 		buf = &bufs[cpu_index(cinfo)];
10798 
10799 		/*
10800 		 * If there is already a buffer allocated for this CPU, it
10801 		 * is only possible that this is a DR event.  In this case,
10802 		 * the buffer size must match our specified size.
10803 		 */
10804 		if (buf->dtb_tomax != NULL) {
10805 			ASSERT(buf->dtb_size == size);
10806 			continue;
10807 		}
10808 
10809 		ASSERT(buf->dtb_xamot == NULL);
10810 
10811 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10812 			goto err;
10813 
10814 		buf->dtb_size = size;
10815 		buf->dtb_flags = flags;
10816 		buf->dtb_offset = 0;
10817 		buf->dtb_drops = 0;
10818 
10819 		if (flags & DTRACEBUF_NOSWITCH)
10820 			continue;
10821 
10822 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10823 			goto err;
10824 	}
10825 
10826 	return (0);
10827 
10828 err:
10829 	/*
10830 	 * Error allocating memory, so free the buffers that were
10831 	 * allocated before the failed allocation.
10832 	 */
10833 	for (CPU_INFO_FOREACH(cpuind, cinfo)) {
10834 		if (cpu != DTRACE_CPUALL && cpu != cpu_index(cinfo))
10835 			continue;
10836 
10837 		buf = &bufs[cpu_index(cinfo)];
10838 
10839 		if (buf->dtb_xamot != NULL) {
10840 			ASSERT(buf->dtb_tomax != NULL);
10841 			ASSERT(buf->dtb_size == size);
10842 			kmem_free(buf->dtb_xamot, size);
10843 		}
10844 
10845 		if (buf->dtb_tomax != NULL) {
10846 			ASSERT(buf->dtb_size == size);
10847 			kmem_free(buf->dtb_tomax, size);
10848 		}
10849 
10850 		buf->dtb_tomax = NULL;
10851 		buf->dtb_xamot = NULL;
10852 		buf->dtb_size = 0;
10853 
10854 	}
10855 
10856 	return (ENOMEM);
10857 #endif
10858 }
10859 
10860 /*
10861  * Note:  called from probe context.  This function just increments the drop
10862  * count on a buffer.  It has been made a function to allow for the
10863  * possibility of understanding the source of mysterious drop counts.  (A
10864  * problem for which one may be particularly disappointed that DTrace cannot
10865  * be used to understand DTrace.)
10866  */
10867 static void
10868 dtrace_buffer_drop(dtrace_buffer_t *buf)
10869 {
10870 	buf->dtb_drops++;
10871 }
10872 
10873 /*
10874  * Note:  called from probe context.  This function is called to reserve space
10875  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10876  * mstate.  Returns the new offset in the buffer, or a negative value if an
10877  * error has occurred.
10878  */
10879 static intptr_t
10880 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10881     dtrace_state_t *state, dtrace_mstate_t *mstate)
10882 {
10883 	intptr_t offs = buf->dtb_offset, soffs;
10884 	intptr_t woffs;
10885 	caddr_t tomax;
10886 	size_t total;
10887 
10888 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10889 		return (-1);
10890 
10891 	if ((tomax = buf->dtb_tomax) == NULL) {
10892 		dtrace_buffer_drop(buf);
10893 		return (-1);
10894 	}
10895 
10896 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10897 		while (offs & (align - 1)) {
10898 			/*
10899 			 * Assert that our alignment is off by a number which
10900 			 * is itself sizeof (uint32_t) aligned.
10901 			 */
10902 			ASSERT(!((align - (offs & (align - 1))) &
10903 			    (sizeof (uint32_t) - 1)));
10904 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10905 			offs += sizeof (uint32_t);
10906 		}
10907 
10908 		if ((soffs = offs + needed) > buf->dtb_size) {
10909 			dtrace_buffer_drop(buf);
10910 			return (-1);
10911 		}
10912 
10913 		if (mstate == NULL)
10914 			return (offs);
10915 
10916 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10917 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10918 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10919 
10920 		return (offs);
10921 	}
10922 
10923 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10924 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10925 		    (buf->dtb_flags & DTRACEBUF_FULL))
10926 			return (-1);
10927 		goto out;
10928 	}
10929 
10930 	total = needed + (offs & (align - 1));
10931 
10932 	/*
10933 	 * For a ring buffer, life is quite a bit more complicated.  Before
10934 	 * we can store any padding, we need to adjust our wrapping offset.
10935 	 * (If we've never before wrapped or we're not about to, no adjustment
10936 	 * is required.)
10937 	 */
10938 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
10939 	    offs + total > buf->dtb_size) {
10940 		woffs = buf->dtb_xamot_offset;
10941 
10942 		if (offs + total > buf->dtb_size) {
10943 			/*
10944 			 * We can't fit in the end of the buffer.  First, a
10945 			 * sanity check that we can fit in the buffer at all.
10946 			 */
10947 			if (total > buf->dtb_size) {
10948 				dtrace_buffer_drop(buf);
10949 				return (-1);
10950 			}
10951 
10952 			/*
10953 			 * We're going to be storing at the top of the buffer,
10954 			 * so now we need to deal with the wrapped offset.  We
10955 			 * only reset our wrapped offset to 0 if it is
10956 			 * currently greater than the current offset.  If it
10957 			 * is less than the current offset, it is because a
10958 			 * previous allocation induced a wrap -- but the
10959 			 * allocation didn't subsequently take the space due
10960 			 * to an error or false predicate evaluation.  In this
10961 			 * case, we'll just leave the wrapped offset alone: if
10962 			 * the wrapped offset hasn't been advanced far enough
10963 			 * for this allocation, it will be adjusted in the
10964 			 * lower loop.
10965 			 */
10966 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
10967 				if (woffs >= offs)
10968 					woffs = 0;
10969 			} else {
10970 				woffs = 0;
10971 			}
10972 
10973 			/*
10974 			 * Now we know that we're going to be storing to the
10975 			 * top of the buffer and that there is room for us
10976 			 * there.  We need to clear the buffer from the current
10977 			 * offset to the end (there may be old gunk there).
10978 			 */
10979 			while (offs < buf->dtb_size)
10980 				tomax[offs++] = 0;
10981 
10982 			/*
10983 			 * We need to set our offset to zero.  And because we
10984 			 * are wrapping, we need to set the bit indicating as
10985 			 * much.  We can also adjust our needed space back
10986 			 * down to the space required by the ECB -- we know
10987 			 * that the top of the buffer is aligned.
10988 			 */
10989 			offs = 0;
10990 			total = needed;
10991 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
10992 		} else {
10993 			/*
10994 			 * There is room for us in the buffer, so we simply
10995 			 * need to check the wrapped offset.
10996 			 */
10997 			if (woffs < offs) {
10998 				/*
10999 				 * The wrapped offset is less than the offset.
11000 				 * This can happen if we allocated buffer space
11001 				 * that induced a wrap, but then we didn't
11002 				 * subsequently take the space due to an error
11003 				 * or false predicate evaluation.  This is
11004 				 * okay; we know that _this_ allocation isn't
11005 				 * going to induce a wrap.  We still can't
11006 				 * reset the wrapped offset to be zero,
11007 				 * however: the space may have been trashed in
11008 				 * the previous failed probe attempt.  But at
11009 				 * least the wrapped offset doesn't need to
11010 				 * be adjusted at all...
11011 				 */
11012 				goto out;
11013 			}
11014 		}
11015 
11016 		while (offs + total > woffs) {
11017 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11018 			size_t size;
11019 
11020 			if (epid == DTRACE_EPIDNONE) {
11021 				size = sizeof (uint32_t);
11022 			} else {
11023 				ASSERT(epid <= state->dts_necbs);
11024 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11025 
11026 				size = state->dts_ecbs[epid - 1]->dte_size;
11027 			}
11028 
11029 			ASSERT(woffs + size <= buf->dtb_size);
11030 			ASSERT(size != 0);
11031 
11032 			if (woffs + size == buf->dtb_size) {
11033 				/*
11034 				 * We've reached the end of the buffer; we want
11035 				 * to set the wrapped offset to 0 and break
11036 				 * out.  However, if the offs is 0, then we're
11037 				 * in a strange edge-condition:  the amount of
11038 				 * space that we want to reserve plus the size
11039 				 * of the record that we're overwriting is
11040 				 * greater than the size of the buffer.  This
11041 				 * is problematic because if we reserve the
11042 				 * space but subsequently don't consume it (due
11043 				 * to a failed predicate or error) the wrapped
11044 				 * offset will be 0 -- yet the EPID at offset 0
11045 				 * will not be committed.  This situation is
11046 				 * relatively easy to deal with:  if we're in
11047 				 * this case, the buffer is indistinguishable
11048 				 * from one that hasn't wrapped; we need only
11049 				 * finish the job by clearing the wrapped bit,
11050 				 * explicitly setting the offset to be 0, and
11051 				 * zero'ing out the old data in the buffer.
11052 				 */
11053 				if (offs == 0) {
11054 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11055 					buf->dtb_offset = 0;
11056 					woffs = total;
11057 
11058 					while (woffs < buf->dtb_size)
11059 						tomax[woffs++] = 0;
11060 				}
11061 
11062 				woffs = 0;
11063 				break;
11064 			}
11065 
11066 			woffs += size;
11067 		}
11068 
11069 		/*
11070 		 * We have a wrapped offset.  It may be that the wrapped offset
11071 		 * has become zero -- that's okay.
11072 		 */
11073 		buf->dtb_xamot_offset = woffs;
11074 	}
11075 
11076 out:
11077 	/*
11078 	 * Now we can plow the buffer with any necessary padding.
11079 	 */
11080 	while (offs & (align - 1)) {
11081 		/*
11082 		 * Assert that our alignment is off by a number which
11083 		 * is itself sizeof (uint32_t) aligned.
11084 		 */
11085 		ASSERT(!((align - (offs & (align - 1))) &
11086 		    (sizeof (uint32_t) - 1)));
11087 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11088 		offs += sizeof (uint32_t);
11089 	}
11090 
11091 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11092 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11093 			buf->dtb_flags |= DTRACEBUF_FULL;
11094 			return (-1);
11095 		}
11096 	}
11097 
11098 	if (mstate == NULL)
11099 		return (offs);
11100 
11101 	/*
11102 	 * For ring buffers and fill buffers, the scratch space is always
11103 	 * the inactive buffer.
11104 	 */
11105 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11106 	mstate->dtms_scratch_size = buf->dtb_size;
11107 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11108 
11109 	return (offs);
11110 }
11111 
11112 static void
11113 dtrace_buffer_polish(dtrace_buffer_t *buf)
11114 {
11115 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11116 	ASSERT(MUTEX_HELD(&dtrace_lock));
11117 
11118 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11119 		return;
11120 
11121 	/*
11122 	 * We need to polish the ring buffer.  There are three cases:
11123 	 *
11124 	 * - The first (and presumably most common) is that there is no gap
11125 	 *   between the buffer offset and the wrapped offset.  In this case,
11126 	 *   there is nothing in the buffer that isn't valid data; we can
11127 	 *   mark the buffer as polished and return.
11128 	 *
11129 	 * - The second (less common than the first but still more common
11130 	 *   than the third) is that there is a gap between the buffer offset
11131 	 *   and the wrapped offset, and the wrapped offset is larger than the
11132 	 *   buffer offset.  This can happen because of an alignment issue, or
11133 	 *   can happen because of a call to dtrace_buffer_reserve() that
11134 	 *   didn't subsequently consume the buffer space.  In this case,
11135 	 *   we need to zero the data from the buffer offset to the wrapped
11136 	 *   offset.
11137 	 *
11138 	 * - The third (and least common) is that there is a gap between the
11139 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11140 	 *   _less_ than the buffer offset.  This can only happen because a
11141 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11142 	 *   was not subsequently consumed.  In this case, we need to zero the
11143 	 *   space from the offset to the end of the buffer _and_ from the
11144 	 *   top of the buffer to the wrapped offset.
11145 	 */
11146 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11147 		bzero(buf->dtb_tomax + buf->dtb_offset,
11148 		    buf->dtb_xamot_offset - buf->dtb_offset);
11149 	}
11150 
11151 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11152 		bzero(buf->dtb_tomax + buf->dtb_offset,
11153 		    buf->dtb_size - buf->dtb_offset);
11154 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11155 	}
11156 }
11157 
11158 static void
11159 dtrace_buffer_free(dtrace_buffer_t *bufs)
11160 {
11161 	int i;
11162 
11163 	for (i = 0; i < NCPU; i++) {
11164 		dtrace_buffer_t *buf = &bufs[i];
11165 
11166 		if (buf->dtb_tomax == NULL) {
11167 			ASSERT(buf->dtb_xamot == NULL);
11168 			ASSERT(buf->dtb_size == 0);
11169 			continue;
11170 		}
11171 
11172 		if (buf->dtb_xamot != NULL) {
11173 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11174 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11175 		}
11176 
11177 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11178 		buf->dtb_size = 0;
11179 		buf->dtb_tomax = NULL;
11180 		buf->dtb_xamot = NULL;
11181 	}
11182 }
11183 
11184 /*
11185  * DTrace Enabling Functions
11186  */
11187 static dtrace_enabling_t *
11188 dtrace_enabling_create(dtrace_vstate_t *vstate)
11189 {
11190 	dtrace_enabling_t *enab;
11191 
11192 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11193 	enab->dten_vstate = vstate;
11194 
11195 	return (enab);
11196 }
11197 
11198 static void
11199 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11200 {
11201 	dtrace_ecbdesc_t **ndesc;
11202 	size_t osize, nsize;
11203 
11204 	/*
11205 	 * We can't add to enablings after we've enabled them, or after we've
11206 	 * retained them.
11207 	 */
11208 	ASSERT(enab->dten_probegen == 0);
11209 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11210 
11211 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11212 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11213 		return;
11214 	}
11215 
11216 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11217 
11218 	if (enab->dten_maxdesc == 0) {
11219 		enab->dten_maxdesc = 1;
11220 	} else {
11221 		enab->dten_maxdesc <<= 1;
11222 	}
11223 
11224 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11225 
11226 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11227 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11228 	bcopy(enab->dten_desc, ndesc, osize);
11229 	if (enab->dten_desc != NULL)
11230 		kmem_free(enab->dten_desc, osize);
11231 
11232 	enab->dten_desc = ndesc;
11233 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11234 }
11235 
11236 static void
11237 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11238     dtrace_probedesc_t *pd)
11239 {
11240 	dtrace_ecbdesc_t *new;
11241 	dtrace_predicate_t *pred;
11242 	dtrace_actdesc_t *act;
11243 
11244 	/*
11245 	 * We're going to create a new ECB description that matches the
11246 	 * specified ECB in every way, but has the specified probe description.
11247 	 */
11248 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11249 
11250 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11251 		dtrace_predicate_hold(pred);
11252 
11253 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11254 		dtrace_actdesc_hold(act);
11255 
11256 	new->dted_action = ecb->dted_action;
11257 	new->dted_pred = ecb->dted_pred;
11258 	new->dted_probe = *pd;
11259 	new->dted_uarg = ecb->dted_uarg;
11260 
11261 	dtrace_enabling_add(enab, new);
11262 }
11263 
11264 static void
11265 dtrace_enabling_dump(dtrace_enabling_t *enab)
11266 {
11267 	int i;
11268 
11269 	for (i = 0; i < enab->dten_ndesc; i++) {
11270 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11271 
11272 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11273 		    desc->dtpd_provider, desc->dtpd_mod,
11274 		    desc->dtpd_func, desc->dtpd_name);
11275 	}
11276 }
11277 
11278 static void
11279 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11280 {
11281 	int i;
11282 	dtrace_ecbdesc_t *ep;
11283 	dtrace_vstate_t *vstate = enab->dten_vstate;
11284 
11285 	ASSERT(MUTEX_HELD(&dtrace_lock));
11286 
11287 	for (i = 0; i < enab->dten_ndesc; i++) {
11288 		dtrace_actdesc_t *act, *next;
11289 		dtrace_predicate_t *pred;
11290 
11291 		ep = enab->dten_desc[i];
11292 
11293 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11294 			dtrace_predicate_release(pred, vstate);
11295 
11296 		for (act = ep->dted_action; act != NULL; act = next) {
11297 			next = act->dtad_next;
11298 			dtrace_actdesc_release(act, vstate);
11299 		}
11300 
11301 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11302 	}
11303 
11304 	if (enab->dten_desc != NULL)
11305 		kmem_free(enab->dten_desc,
11306 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11307 
11308 	/*
11309 	 * If this was a retained enabling, decrement the dts_nretained count
11310 	 * and take it off of the dtrace_retained list.
11311 	 */
11312 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11313 	    dtrace_retained == enab) {
11314 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11315 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11316 		enab->dten_vstate->dtvs_state->dts_nretained--;
11317 	}
11318 
11319 	if (enab->dten_prev == NULL) {
11320 		if (dtrace_retained == enab) {
11321 			dtrace_retained = enab->dten_next;
11322 
11323 			if (dtrace_retained != NULL)
11324 				dtrace_retained->dten_prev = NULL;
11325 		}
11326 	} else {
11327 		ASSERT(enab != dtrace_retained);
11328 		ASSERT(dtrace_retained != NULL);
11329 		enab->dten_prev->dten_next = enab->dten_next;
11330 	}
11331 
11332 	if (enab->dten_next != NULL) {
11333 		ASSERT(dtrace_retained != NULL);
11334 		enab->dten_next->dten_prev = enab->dten_prev;
11335 	}
11336 
11337 	kmem_free(enab, sizeof (dtrace_enabling_t));
11338 }
11339 
11340 static int
11341 dtrace_enabling_retain(dtrace_enabling_t *enab)
11342 {
11343 	dtrace_state_t *state;
11344 
11345 	ASSERT(MUTEX_HELD(&dtrace_lock));
11346 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11347 	ASSERT(enab->dten_vstate != NULL);
11348 
11349 	state = enab->dten_vstate->dtvs_state;
11350 	ASSERT(state != NULL);
11351 
11352 	/*
11353 	 * We only allow each state to retain dtrace_retain_max enablings.
11354 	 */
11355 	if (state->dts_nretained >= dtrace_retain_max)
11356 		return (ENOSPC);
11357 
11358 	state->dts_nretained++;
11359 
11360 	if (dtrace_retained == NULL) {
11361 		dtrace_retained = enab;
11362 		return (0);
11363 	}
11364 
11365 	enab->dten_next = dtrace_retained;
11366 	dtrace_retained->dten_prev = enab;
11367 	dtrace_retained = enab;
11368 
11369 	return (0);
11370 }
11371 
11372 static int
11373 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11374     dtrace_probedesc_t *create)
11375 {
11376 	dtrace_enabling_t *new, *enab;
11377 	int found = 0, err = ENOENT;
11378 
11379 	ASSERT(MUTEX_HELD(&dtrace_lock));
11380 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11381 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11382 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11383 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11384 
11385 	new = dtrace_enabling_create(&state->dts_vstate);
11386 
11387 	/*
11388 	 * Iterate over all retained enablings, looking for enablings that
11389 	 * match the specified state.
11390 	 */
11391 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11392 		int i;
11393 
11394 		/*
11395 		 * dtvs_state can only be NULL for helper enablings -- and
11396 		 * helper enablings can't be retained.
11397 		 */
11398 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11399 
11400 		if (enab->dten_vstate->dtvs_state != state)
11401 			continue;
11402 
11403 		/*
11404 		 * Now iterate over each probe description; we're looking for
11405 		 * an exact match to the specified probe description.
11406 		 */
11407 		for (i = 0; i < enab->dten_ndesc; i++) {
11408 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11409 			dtrace_probedesc_t *pd = &ep->dted_probe;
11410 
11411 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11412 				continue;
11413 
11414 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11415 				continue;
11416 
11417 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11418 				continue;
11419 
11420 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11421 				continue;
11422 
11423 			/*
11424 			 * We have a winning probe!  Add it to our growing
11425 			 * enabling.
11426 			 */
11427 			found = 1;
11428 			dtrace_enabling_addlike(new, ep, create);
11429 		}
11430 	}
11431 
11432 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11433 		dtrace_enabling_destroy(new);
11434 		return (err);
11435 	}
11436 
11437 	return (0);
11438 }
11439 
11440 static void
11441 dtrace_enabling_retract(dtrace_state_t *state)
11442 {
11443 	dtrace_enabling_t *enab, *next;
11444 
11445 	ASSERT(MUTEX_HELD(&dtrace_lock));
11446 
11447 	/*
11448 	 * Iterate over all retained enablings, destroy the enablings retained
11449 	 * for the specified state.
11450 	 */
11451 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11452 		next = enab->dten_next;
11453 
11454 		/*
11455 		 * dtvs_state can only be NULL for helper enablings -- and
11456 		 * helper enablings can't be retained.
11457 		 */
11458 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11459 
11460 		if (enab->dten_vstate->dtvs_state == state) {
11461 			ASSERT(state->dts_nretained > 0);
11462 			dtrace_enabling_destroy(enab);
11463 		}
11464 	}
11465 
11466 	ASSERT(state->dts_nretained == 0);
11467 }
11468 
11469 static int
11470 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11471 {
11472 	int i = 0;
11473 	int total_matched = 0, matched = 0;
11474 
11475 	ASSERT(MUTEX_HELD(&cpu_lock));
11476 	ASSERT(MUTEX_HELD(&dtrace_lock));
11477 
11478 	for (i = 0; i < enab->dten_ndesc; i++) {
11479 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11480 
11481 		enab->dten_current = ep;
11482 		enab->dten_error = 0;
11483 
11484 		/*
11485 		 * If a provider failed to enable a probe then get out and
11486 		 * let the consumer know we failed.
11487 		 */
11488 		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
11489 			return (EBUSY);
11490 
11491 		total_matched += matched;
11492 
11493 		if (enab->dten_error != 0) {
11494 			/*
11495 			 * If we get an error half-way through enabling the
11496 			 * probes, we kick out -- perhaps with some number of
11497 			 * them enabled.  Leaving enabled probes enabled may
11498 			 * be slightly confusing for user-level, but we expect
11499 			 * that no one will attempt to actually drive on in
11500 			 * the face of such errors.  If this is an anonymous
11501 			 * enabling (indicated with a NULL nmatched pointer),
11502 			 * we cmn_err() a message.  We aren't expecting to
11503 			 * get such an error -- such as it can exist at all,
11504 			 * it would be a result of corrupted DOF in the driver
11505 			 * properties.
11506 			 */
11507 			if (nmatched == NULL) {
11508 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11509 				    "error on %p: %d", (void *)ep,
11510 				    enab->dten_error);
11511 			}
11512 
11513 			return (enab->dten_error);
11514 		}
11515 	}
11516 
11517 	enab->dten_probegen = dtrace_probegen;
11518 	if (nmatched != NULL)
11519 		*nmatched = total_matched;
11520 
11521 	return (0);
11522 }
11523 
11524 static void
11525 dtrace_enabling_matchall(void)
11526 {
11527 	dtrace_enabling_t *enab;
11528 
11529 	mutex_enter(&cpu_lock);
11530 	mutex_enter(&dtrace_lock);
11531 
11532 	/*
11533 	 * Iterate over all retained enablings to see if any probes match
11534 	 * against them.  We only perform this operation on enablings for which
11535 	 * we have sufficient permissions by virtue of being in the global zone
11536 	 * or in the same zone as the DTrace client.  Because we can be called
11537 	 * after dtrace_detach() has been called, we cannot assert that there
11538 	 * are retained enablings.  We can safely load from dtrace_retained,
11539 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11540 	 * block pending our completion.
11541 	 */
11542 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11543 #if defined(sun)
11544 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11545 
11546 		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11547 #endif
11548 			(void) dtrace_enabling_match(enab, NULL);
11549 	}
11550 
11551 	mutex_exit(&dtrace_lock);
11552 	mutex_exit(&cpu_lock);
11553 }
11554 
11555 /*
11556  * If an enabling is to be enabled without having matched probes (that is, if
11557  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11558  * enabling must be _primed_ by creating an ECB for every ECB description.
11559  * This must be done to assure that we know the number of speculations, the
11560  * number of aggregations, the minimum buffer size needed, etc. before we
11561  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11562  * enabling any probes, we create ECBs for every ECB decription, but with a
11563  * NULL probe -- which is exactly what this function does.
11564  */
11565 static void
11566 dtrace_enabling_prime(dtrace_state_t *state)
11567 {
11568 	dtrace_enabling_t *enab;
11569 	int i;
11570 
11571 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11572 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11573 
11574 		if (enab->dten_vstate->dtvs_state != state)
11575 			continue;
11576 
11577 		/*
11578 		 * We don't want to prime an enabling more than once, lest
11579 		 * we allow a malicious user to induce resource exhaustion.
11580 		 * (The ECBs that result from priming an enabling aren't
11581 		 * leaked -- but they also aren't deallocated until the
11582 		 * consumer state is destroyed.)
11583 		 */
11584 		if (enab->dten_primed)
11585 			continue;
11586 
11587 		for (i = 0; i < enab->dten_ndesc; i++) {
11588 			enab->dten_current = enab->dten_desc[i];
11589 			(void) dtrace_probe_enable(NULL, enab);
11590 		}
11591 
11592 		enab->dten_primed = 1;
11593 	}
11594 }
11595 
11596 /*
11597  * Called to indicate that probes should be provided due to retained
11598  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11599  * must take an initial lap through the enabling calling the dtps_provide()
11600  * entry point explicitly to allow for autocreated probes.
11601  */
11602 static void
11603 dtrace_enabling_provide(dtrace_provider_t *prv)
11604 {
11605 	int i, all = 0;
11606 	dtrace_probedesc_t desc;
11607 
11608 	ASSERT(MUTEX_HELD(&dtrace_lock));
11609 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11610 
11611 	if (prv == NULL) {
11612 		all = 1;
11613 		prv = dtrace_provider;
11614 	}
11615 
11616 	do {
11617 		dtrace_enabling_t *enab = dtrace_retained;
11618 		void *parg = prv->dtpv_arg;
11619 
11620 		for (; enab != NULL; enab = enab->dten_next) {
11621 			for (i = 0; i < enab->dten_ndesc; i++) {
11622 				desc = enab->dten_desc[i]->dted_probe;
11623 				mutex_exit(&dtrace_lock);
11624 				prv->dtpv_pops.dtps_provide(parg, &desc);
11625 				mutex_enter(&dtrace_lock);
11626 			}
11627 		}
11628 	} while (all && (prv = prv->dtpv_next) != NULL);
11629 
11630 	mutex_exit(&dtrace_lock);
11631 	dtrace_probe_provide(NULL, all ? NULL : prv);
11632 	mutex_enter(&dtrace_lock);
11633 }
11634 
11635 /*
11636  * DTrace DOF Functions
11637  */
11638 /*ARGSUSED*/
11639 static void
11640 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11641 {
11642 	if (dtrace_err_verbose)
11643 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11644 
11645 #ifdef DTRACE_ERRDEBUG
11646 	dtrace_errdebug(str);
11647 #endif
11648 }
11649 
11650 /*
11651  * Create DOF out of a currently enabled state.  Right now, we only create
11652  * DOF containing the run-time options -- but this could be expanded to create
11653  * complete DOF representing the enabled state.
11654  */
11655 static dof_hdr_t *
11656 dtrace_dof_create(dtrace_state_t *state)
11657 {
11658 	dof_hdr_t *dof;
11659 	dof_sec_t *sec;
11660 	dof_optdesc_t *opt;
11661 	int i, len = sizeof (dof_hdr_t) +
11662 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11663 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11664 
11665 	ASSERT(MUTEX_HELD(&dtrace_lock));
11666 
11667 	dof = kmem_zalloc(len, KM_SLEEP);
11668 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11669 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11670 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11671 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11672 
11673 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11674 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11675 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11676 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11677 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11678 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11679 
11680 	dof->dofh_flags = 0;
11681 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11682 	dof->dofh_secsize = sizeof (dof_sec_t);
11683 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11684 	dof->dofh_secoff = sizeof (dof_hdr_t);
11685 	dof->dofh_loadsz = len;
11686 	dof->dofh_filesz = len;
11687 	dof->dofh_pad = 0;
11688 
11689 	/*
11690 	 * Fill in the option section header...
11691 	 */
11692 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11693 	sec->dofs_type = DOF_SECT_OPTDESC;
11694 	sec->dofs_align = sizeof (uint64_t);
11695 	sec->dofs_flags = DOF_SECF_LOAD;
11696 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11697 
11698 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11699 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11700 
11701 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11702 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11703 
11704 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11705 		opt[i].dofo_option = i;
11706 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11707 		opt[i].dofo_value = state->dts_options[i];
11708 	}
11709 
11710 	return (dof);
11711 }
11712 
11713 static dof_hdr_t *
11714 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11715 {
11716 	dof_hdr_t hdr, *dof;
11717 
11718 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11719 
11720 	/*
11721 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11722 	 */
11723 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11724 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11725 		*errp = EFAULT;
11726 		return (NULL);
11727 	}
11728 
11729 	/*
11730 	 * Now we'll allocate the entire DOF and copy it in -- provided
11731 	 * that the length isn't outrageous.
11732 	 */
11733 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11734 		dtrace_dof_error(&hdr, "load size exceeds maximum");
11735 		*errp = E2BIG;
11736 		return (NULL);
11737 	}
11738 
11739 	if (hdr.dofh_loadsz < sizeof (hdr)) {
11740 		dtrace_dof_error(&hdr, "invalid load size");
11741 		*errp = EINVAL;
11742 		return (NULL);
11743 	}
11744 
11745 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11746 
11747 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
11748 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
11749 		kmem_free(dof, hdr.dofh_loadsz);
11750 		*errp = EFAULT;
11751 		return (NULL);
11752 	}
11753 
11754 	return (dof);
11755 }
11756 
11757 #if 0
11758 #if !defined(sun)
11759 static __inline uchar_t
11760 dtrace_dof_char(char c) {
11761 	switch (c) {
11762 	case '0':
11763 	case '1':
11764 	case '2':
11765 	case '3':
11766 	case '4':
11767 	case '5':
11768 	case '6':
11769 	case '7':
11770 	case '8':
11771 	case '9':
11772 		return (c - '0');
11773 	case 'A':
11774 	case 'B':
11775 	case 'C':
11776 	case 'D':
11777 	case 'E':
11778 	case 'F':
11779 		return (c - 'A' + 10);
11780 	case 'a':
11781 	case 'b':
11782 	case 'c':
11783 	case 'd':
11784 	case 'e':
11785 	case 'f':
11786 		return (c - 'a' + 10);
11787 	}
11788 	/* Should not reach here. */
11789 	return (0);
11790 }
11791 #endif
11792 #endif
11793 
11794 static dof_hdr_t *
11795 dtrace_dof_property(const char *name)
11796 {
11797 	dof_hdr_t *dof = NULL;
11798 #if defined(sun)
11799 	uchar_t *buf;
11800 	uint64_t loadsz;
11801 	unsigned int len, i;
11802 
11803 	/*
11804 	 * Unfortunately, array of values in .conf files are always (and
11805 	 * only) interpreted to be integer arrays.  We must read our DOF
11806 	 * as an integer array, and then squeeze it into a byte array.
11807 	 */
11808 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11809 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11810 		return (NULL);
11811 
11812 	for (i = 0; i < len; i++)
11813 		buf[i] = (uchar_t)(((int *)buf)[i]);
11814 
11815 	if (len < sizeof (dof_hdr_t)) {
11816 		ddi_prop_free(buf);
11817 		dtrace_dof_error(NULL, "truncated header");
11818 		return (NULL);
11819 	}
11820 
11821 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11822 		ddi_prop_free(buf);
11823 		dtrace_dof_error(NULL, "truncated DOF");
11824 		return (NULL);
11825 	}
11826 
11827 	if (loadsz >= dtrace_dof_maxsize) {
11828 		ddi_prop_free(buf);
11829 		dtrace_dof_error(NULL, "oversized DOF");
11830 		return (NULL);
11831 	}
11832 
11833 	dof = kmem_alloc(loadsz, KM_SLEEP);
11834 	bcopy(buf, dof, loadsz);
11835 	ddi_prop_free(buf);
11836 #else
11837 	printf("dtrace: XXX %s not implemented (name=%s)\n", __func__, name);
11838 #if 0	/* XXX TBD dtrace_dof_provide */
11839 	char *p;
11840 	char *p_env;
11841 
11842 	if ((p_env = getenv(name)) == NULL)
11843 		return (NULL);
11844 
11845 	len = strlen(p_env) / 2;
11846 
11847 	buf = kmem_alloc(len, KM_SLEEP);
11848 
11849 	dof = (dof_hdr_t *) buf;
11850 
11851 	p = p_env;
11852 
11853 	for (i = 0; i < len; i++) {
11854 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11855 		     dtrace_dof_char(p[1]);
11856 		p += 2;
11857 	}
11858 
11859 	freeenv(p_env);
11860 
11861 	if (len < sizeof (dof_hdr_t)) {
11862 		kmem_free(buf, len);
11863 		dtrace_dof_error(NULL, "truncated header");
11864 		return (NULL);
11865 	}
11866 
11867 	if (len < (loadsz = dof->dofh_loadsz)) {
11868 		kmem_free(buf, len);
11869 		dtrace_dof_error(NULL, "truncated DOF");
11870 		return (NULL);
11871 	}
11872 
11873 	if (loadsz >= dtrace_dof_maxsize) {
11874 		kmem_free(buf, len);
11875 		dtrace_dof_error(NULL, "oversized DOF");
11876 		return (NULL);
11877 	}
11878 #endif
11879 #endif
11880 
11881 	return (dof);
11882 }
11883 
11884 static void
11885 dtrace_dof_destroy(dof_hdr_t *dof)
11886 {
11887 	kmem_free(dof, dof->dofh_loadsz);
11888 }
11889 
11890 /*
11891  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11892  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11893  * a type other than DOF_SECT_NONE is specified, the header is checked against
11894  * this type and NULL is returned if the types do not match.
11895  */
11896 static dof_sec_t *
11897 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11898 {
11899 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11900 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11901 
11902 	if (i >= dof->dofh_secnum) {
11903 		dtrace_dof_error(dof, "referenced section index is invalid");
11904 		return (NULL);
11905 	}
11906 
11907 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11908 		dtrace_dof_error(dof, "referenced section is not loadable");
11909 		return (NULL);
11910 	}
11911 
11912 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11913 		dtrace_dof_error(dof, "referenced section is the wrong type");
11914 		return (NULL);
11915 	}
11916 
11917 	return (sec);
11918 }
11919 
11920 static dtrace_probedesc_t *
11921 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11922 {
11923 	dof_probedesc_t *probe;
11924 	dof_sec_t *strtab;
11925 	uintptr_t daddr = (uintptr_t)dof;
11926 	uintptr_t str;
11927 	size_t size;
11928 
11929 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11930 		dtrace_dof_error(dof, "invalid probe section");
11931 		return (NULL);
11932 	}
11933 
11934 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11935 		dtrace_dof_error(dof, "bad alignment in probe description");
11936 		return (NULL);
11937 	}
11938 
11939 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11940 		dtrace_dof_error(dof, "truncated probe description");
11941 		return (NULL);
11942 	}
11943 
11944 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11945 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
11946 
11947 	if (strtab == NULL)
11948 		return (NULL);
11949 
11950 	str = daddr + strtab->dofs_offset;
11951 	size = strtab->dofs_size;
11952 
11953 	if (probe->dofp_provider >= strtab->dofs_size) {
11954 		dtrace_dof_error(dof, "corrupt probe provider");
11955 		return (NULL);
11956 	}
11957 
11958 	(void) strncpy(desc->dtpd_provider,
11959 	    (char *)(str + probe->dofp_provider),
11960 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
11961 
11962 	if (probe->dofp_mod >= strtab->dofs_size) {
11963 		dtrace_dof_error(dof, "corrupt probe module");
11964 		return (NULL);
11965 	}
11966 
11967 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
11968 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
11969 
11970 	if (probe->dofp_func >= strtab->dofs_size) {
11971 		dtrace_dof_error(dof, "corrupt probe function");
11972 		return (NULL);
11973 	}
11974 
11975 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
11976 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
11977 
11978 	if (probe->dofp_name >= strtab->dofs_size) {
11979 		dtrace_dof_error(dof, "corrupt probe name");
11980 		return (NULL);
11981 	}
11982 
11983 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
11984 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
11985 
11986 	return (desc);
11987 }
11988 
11989 static dtrace_difo_t *
11990 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
11991     cred_t *cr)
11992 {
11993 	dtrace_difo_t *dp;
11994 	size_t ttl = 0;
11995 	dof_difohdr_t *dofd;
11996 	uintptr_t daddr = (uintptr_t)dof;
11997 	size_t maxx = dtrace_difo_maxsize;
11998 	int i, l, n;
11999 
12000 	static const struct {
12001 		int section;
12002 		int bufoffs;
12003 		int lenoffs;
12004 		int entsize;
12005 		int align;
12006 		const char *msg;
12007 	} difo[] = {
12008 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12009 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12010 		sizeof (dif_instr_t), "multiple DIF sections" },
12011 
12012 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12013 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12014 		sizeof (uint64_t), "multiple integer tables" },
12015 
12016 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12017 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12018 		sizeof (char), "multiple string tables" },
12019 
12020 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12021 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12022 		sizeof (uint_t), "multiple variable tables" },
12023 
12024 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12025 	};
12026 
12027 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12028 		dtrace_dof_error(dof, "invalid DIFO header section");
12029 		return (NULL);
12030 	}
12031 
12032 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12033 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12034 		return (NULL);
12035 	}
12036 
12037 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12038 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12039 		dtrace_dof_error(dof, "bad size in DIFO header");
12040 		return (NULL);
12041 	}
12042 
12043 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12044 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12045 
12046 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12047 	dp->dtdo_rtype = dofd->dofd_rtype;
12048 
12049 	for (l = 0; l < n; l++) {
12050 		dof_sec_t *subsec;
12051 		void **bufp;
12052 		uint32_t *lenp;
12053 
12054 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12055 		    dofd->dofd_links[l])) == NULL)
12056 			goto err; /* invalid section link */
12057 
12058 		if (ttl + subsec->dofs_size > maxx) {
12059 			dtrace_dof_error(dof, "exceeds maximum size");
12060 			goto err;
12061 		}
12062 
12063 		ttl += subsec->dofs_size;
12064 
12065 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12066 			if (subsec->dofs_type != difo[i].section)
12067 				continue;
12068 
12069 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12070 				dtrace_dof_error(dof, "section not loaded");
12071 				goto err;
12072 			}
12073 
12074 			if (subsec->dofs_align != difo[i].align) {
12075 				dtrace_dof_error(dof, "bad alignment");
12076 				goto err;
12077 			}
12078 
12079 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12080 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12081 
12082 			if (*bufp != NULL) {
12083 				dtrace_dof_error(dof, difo[i].msg);
12084 				goto err;
12085 			}
12086 
12087 			if (difo[i].entsize != subsec->dofs_entsize) {
12088 				dtrace_dof_error(dof, "entry size mismatch");
12089 				goto err;
12090 			}
12091 
12092 			if (subsec->dofs_entsize != 0 &&
12093 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12094 				dtrace_dof_error(dof, "corrupt entry size");
12095 				goto err;
12096 			}
12097 
12098 			*lenp = subsec->dofs_size;
12099 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12100 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12101 			    *bufp, subsec->dofs_size);
12102 
12103 			if (subsec->dofs_entsize != 0)
12104 				*lenp /= subsec->dofs_entsize;
12105 
12106 			break;
12107 		}
12108 
12109 		/*
12110 		 * If we encounter a loadable DIFO sub-section that is not
12111 		 * known to us, assume this is a broken program and fail.
12112 		 */
12113 		if (difo[i].section == DOF_SECT_NONE &&
12114 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12115 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12116 			goto err;
12117 		}
12118 	}
12119 
12120 	if (dp->dtdo_buf == NULL) {
12121 		/*
12122 		 * We can't have a DIF object without DIF text.
12123 		 */
12124 		dtrace_dof_error(dof, "missing DIF text");
12125 		goto err;
12126 	}
12127 
12128 	/*
12129 	 * Before we validate the DIF object, run through the variable table
12130 	 * looking for the strings -- if any of their size are under, we'll set
12131 	 * their size to be the system-wide default string size.  Note that
12132 	 * this should _not_ happen if the "strsize" option has been set --
12133 	 * in this case, the compiler should have set the size to reflect the
12134 	 * setting of the option.
12135 	 */
12136 	for (i = 0; i < dp->dtdo_varlen; i++) {
12137 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12138 		dtrace_diftype_t *t = &v->dtdv_type;
12139 
12140 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12141 			continue;
12142 
12143 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12144 			t->dtdt_size = dtrace_strsize_default;
12145 	}
12146 
12147 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12148 		goto err;
12149 
12150 	dtrace_difo_init(dp, vstate);
12151 	return (dp);
12152 
12153 err:
12154 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12155 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12156 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12157 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12158 
12159 	kmem_free(dp, sizeof (dtrace_difo_t));
12160 	return (NULL);
12161 }
12162 
12163 static dtrace_predicate_t *
12164 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12165     cred_t *cr)
12166 {
12167 	dtrace_difo_t *dp;
12168 
12169 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12170 		return (NULL);
12171 
12172 	return (dtrace_predicate_create(dp));
12173 }
12174 
12175 static dtrace_actdesc_t *
12176 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12177     cred_t *cr)
12178 {
12179 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12180 	dof_actdesc_t *desc;
12181 	dof_sec_t *difosec;
12182 	size_t offs;
12183 	uintptr_t daddr = (uintptr_t)dof;
12184 	uint64_t arg;
12185 	dtrace_actkind_t kind;
12186 
12187 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12188 		dtrace_dof_error(dof, "invalid action section");
12189 		return (NULL);
12190 	}
12191 
12192 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12193 		dtrace_dof_error(dof, "truncated action description");
12194 		return (NULL);
12195 	}
12196 
12197 	if (sec->dofs_align != sizeof (uint64_t)) {
12198 		dtrace_dof_error(dof, "bad alignment in action description");
12199 		return (NULL);
12200 	}
12201 
12202 	if (sec->dofs_size < sec->dofs_entsize) {
12203 		dtrace_dof_error(dof, "section entry size exceeds total size");
12204 		return (NULL);
12205 	}
12206 
12207 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12208 		dtrace_dof_error(dof, "bad entry size in action description");
12209 		return (NULL);
12210 	}
12211 
12212 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12213 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12214 		return (NULL);
12215 	}
12216 
12217 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12218 		desc = (dof_actdesc_t *)(daddr +
12219 		    (uintptr_t)sec->dofs_offset + offs);
12220 		kind = (dtrace_actkind_t)desc->dofa_kind;
12221 
12222 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
12223 		    (kind != DTRACEACT_PRINTA ||
12224 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12225 			dof_sec_t *strtab;
12226 			char *str, *fmt;
12227 			uint64_t i;
12228 
12229 			/*
12230 			 * printf()-like actions must have a format string.
12231 			 */
12232 			if ((strtab = dtrace_dof_sect(dof,
12233 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12234 				goto err;
12235 
12236 			str = (char *)((uintptr_t)dof +
12237 			    (uintptr_t)strtab->dofs_offset);
12238 
12239 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12240 				if (str[i] == '\0')
12241 					break;
12242 			}
12243 
12244 			if (i >= strtab->dofs_size) {
12245 				dtrace_dof_error(dof, "bogus format string");
12246 				goto err;
12247 			}
12248 
12249 			if (i == desc->dofa_arg) {
12250 				dtrace_dof_error(dof, "empty format string");
12251 				goto err;
12252 			}
12253 
12254 			i -= desc->dofa_arg;
12255 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12256 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12257 			arg = (uint64_t)(uintptr_t)fmt;
12258 		} else {
12259 			if (kind == DTRACEACT_PRINTA) {
12260 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12261 				arg = 0;
12262 			} else {
12263 				arg = desc->dofa_arg;
12264 			}
12265 		}
12266 
12267 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12268 		    desc->dofa_uarg, arg);
12269 
12270 		if (last != NULL) {
12271 			last->dtad_next = act;
12272 		} else {
12273 			first = act;
12274 		}
12275 
12276 		last = act;
12277 
12278 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12279 			continue;
12280 
12281 		if ((difosec = dtrace_dof_sect(dof,
12282 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12283 			goto err;
12284 
12285 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12286 
12287 		if (act->dtad_difo == NULL)
12288 			goto err;
12289 	}
12290 
12291 	ASSERT(first != NULL);
12292 	return (first);
12293 
12294 err:
12295 	for (act = first; act != NULL; act = next) {
12296 		next = act->dtad_next;
12297 		dtrace_actdesc_release(act, vstate);
12298 	}
12299 
12300 	return (NULL);
12301 }
12302 
12303 static dtrace_ecbdesc_t *
12304 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12305     cred_t *cr)
12306 {
12307 	dtrace_ecbdesc_t *ep;
12308 	dof_ecbdesc_t *ecb;
12309 	dtrace_probedesc_t *desc;
12310 	dtrace_predicate_t *pred = NULL;
12311 
12312 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12313 		dtrace_dof_error(dof, "truncated ECB description");
12314 		return (NULL);
12315 	}
12316 
12317 	if (sec->dofs_align != sizeof (uint64_t)) {
12318 		dtrace_dof_error(dof, "bad alignment in ECB description");
12319 		return (NULL);
12320 	}
12321 
12322 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12323 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12324 
12325 	if (sec == NULL)
12326 		return (NULL);
12327 
12328 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12329 	ep->dted_uarg = ecb->dofe_uarg;
12330 	desc = &ep->dted_probe;
12331 
12332 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12333 		goto err;
12334 
12335 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12336 		if ((sec = dtrace_dof_sect(dof,
12337 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12338 			goto err;
12339 
12340 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12341 			goto err;
12342 
12343 		ep->dted_pred.dtpdd_predicate = pred;
12344 	}
12345 
12346 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12347 		if ((sec = dtrace_dof_sect(dof,
12348 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12349 			goto err;
12350 
12351 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12352 
12353 		if (ep->dted_action == NULL)
12354 			goto err;
12355 	}
12356 
12357 	return (ep);
12358 
12359 err:
12360 	if (pred != NULL)
12361 		dtrace_predicate_release(pred, vstate);
12362 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12363 	return (NULL);
12364 }
12365 
12366 /*
12367  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12368  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12369  * site of any user SETX relocations to account for load object base address.
12370  * In the future, if we need other relocations, this function can be extended.
12371  */
12372 static int
12373 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12374 {
12375 	uintptr_t daddr = (uintptr_t)dof;
12376 	dof_relohdr_t *dofr =
12377 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12378 	dof_sec_t *ss, *rs, *ts;
12379 	dof_relodesc_t *r;
12380 	uint_t i, n;
12381 
12382 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12383 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12384 		dtrace_dof_error(dof, "invalid relocation header");
12385 		return (-1);
12386 	}
12387 
12388 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12389 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12390 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12391 
12392 	if (ss == NULL || rs == NULL || ts == NULL)
12393 		return (-1); /* dtrace_dof_error() has been called already */
12394 
12395 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12396 	    rs->dofs_align != sizeof (uint64_t)) {
12397 		dtrace_dof_error(dof, "invalid relocation section");
12398 		return (-1);
12399 	}
12400 
12401 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12402 	n = rs->dofs_size / rs->dofs_entsize;
12403 
12404 	for (i = 0; i < n; i++) {
12405 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12406 
12407 		switch (r->dofr_type) {
12408 		case DOF_RELO_NONE:
12409 			break;
12410 		case DOF_RELO_SETX:
12411 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12412 			    sizeof (uint64_t) > ts->dofs_size) {
12413 				dtrace_dof_error(dof, "bad relocation offset");
12414 				return (-1);
12415 			}
12416 
12417 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12418 				dtrace_dof_error(dof, "misaligned setx relo");
12419 				return (-1);
12420 			}
12421 
12422 			*(uint64_t *)taddr += ubase;
12423 			break;
12424 		default:
12425 			dtrace_dof_error(dof, "invalid relocation type");
12426 			return (-1);
12427 		}
12428 
12429 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12430 	}
12431 
12432 	return (0);
12433 }
12434 
12435 /*
12436  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12437  * header:  it should be at the front of a memory region that is at least
12438  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12439  * size.  It need not be validated in any other way.
12440  */
12441 static int
12442 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12443     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12444 {
12445 	uint64_t len = dof->dofh_loadsz, seclen;
12446 	uintptr_t daddr = (uintptr_t)dof;
12447 	dtrace_ecbdesc_t *ep;
12448 	dtrace_enabling_t *enab;
12449 	uint_t i;
12450 
12451 	ASSERT(MUTEX_HELD(&dtrace_lock));
12452 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12453 
12454 	/*
12455 	 * Check the DOF header identification bytes.  In addition to checking
12456 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12457 	 * we can use them later without fear of regressing existing binaries.
12458 	 */
12459 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12460 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12461 		dtrace_dof_error(dof, "DOF magic string mismatch");
12462 		return (-1);
12463 	}
12464 
12465 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12466 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12467 		dtrace_dof_error(dof, "DOF has invalid data model");
12468 		return (-1);
12469 	}
12470 
12471 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12472 		dtrace_dof_error(dof, "DOF encoding mismatch");
12473 		return (-1);
12474 	}
12475 
12476 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12477 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12478 		dtrace_dof_error(dof, "DOF version mismatch");
12479 		return (-1);
12480 	}
12481 
12482 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12483 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12484 		return (-1);
12485 	}
12486 
12487 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12488 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12489 		return (-1);
12490 	}
12491 
12492 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12493 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12494 		return (-1);
12495 	}
12496 
12497 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12498 		if (dof->dofh_ident[i] != 0) {
12499 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12500 			return (-1);
12501 		}
12502 	}
12503 
12504 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12505 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12506 		return (-1);
12507 	}
12508 
12509 	if (dof->dofh_secsize == 0) {
12510 		dtrace_dof_error(dof, "zero section header size");
12511 		return (-1);
12512 	}
12513 
12514 	/*
12515 	 * Check that the section headers don't exceed the amount of DOF
12516 	 * data.  Note that we cast the section size and number of sections
12517 	 * to uint64_t's to prevent possible overflow in the multiplication.
12518 	 */
12519 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12520 
12521 	if (dof->dofh_secoff > len || seclen > len ||
12522 	    dof->dofh_secoff + seclen > len) {
12523 		dtrace_dof_error(dof, "truncated section headers");
12524 		return (-1);
12525 	}
12526 
12527 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12528 		dtrace_dof_error(dof, "misaligned section headers");
12529 		return (-1);
12530 	}
12531 
12532 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12533 		dtrace_dof_error(dof, "misaligned section size");
12534 		return (-1);
12535 	}
12536 
12537 	/*
12538 	 * Take an initial pass through the section headers to be sure that
12539 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12540 	 * set, do not permit sections relating to providers, probes, or args.
12541 	 */
12542 	for (i = 0; i < dof->dofh_secnum; i++) {
12543 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12544 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12545 
12546 		if (noprobes) {
12547 			switch (sec->dofs_type) {
12548 			case DOF_SECT_PROVIDER:
12549 			case DOF_SECT_PROBES:
12550 			case DOF_SECT_PRARGS:
12551 			case DOF_SECT_PROFFS:
12552 				dtrace_dof_error(dof, "illegal sections "
12553 				    "for enabling");
12554 				return (-1);
12555 			}
12556 		}
12557 
12558 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
12559 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
12560 			dtrace_dof_error(dof, "loadable section with load "
12561 			    "flag unset");
12562 			return (-1);
12563 		}
12564 
12565 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12566 			continue; /* just ignore non-loadable sections */
12567 
12568 		if (sec->dofs_align & (sec->dofs_align - 1)) {
12569 			dtrace_dof_error(dof, "bad section alignment");
12570 			return (-1);
12571 		}
12572 
12573 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12574 			dtrace_dof_error(dof, "misaligned section");
12575 			return (-1);
12576 		}
12577 
12578 		if (sec->dofs_offset > len || sec->dofs_size > len ||
12579 		    sec->dofs_offset + sec->dofs_size > len) {
12580 			dtrace_dof_error(dof, "corrupt section header");
12581 			return (-1);
12582 		}
12583 
12584 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12585 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12586 			dtrace_dof_error(dof, "non-terminating string table");
12587 			return (-1);
12588 		}
12589 	}
12590 
12591 	/*
12592 	 * Take a second pass through the sections and locate and perform any
12593 	 * relocations that are present.  We do this after the first pass to
12594 	 * be sure that all sections have had their headers validated.
12595 	 */
12596 	for (i = 0; i < dof->dofh_secnum; i++) {
12597 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12598 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12599 
12600 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12601 			continue; /* skip sections that are not loadable */
12602 
12603 		switch (sec->dofs_type) {
12604 		case DOF_SECT_URELHDR:
12605 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12606 				return (-1);
12607 			break;
12608 		}
12609 	}
12610 
12611 	if ((enab = *enabp) == NULL)
12612 		enab = *enabp = dtrace_enabling_create(vstate);
12613 
12614 	for (i = 0; i < dof->dofh_secnum; i++) {
12615 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12616 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12617 
12618 		if (sec->dofs_type != DOF_SECT_ECBDESC)
12619 			continue;
12620 
12621 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12622 			dtrace_enabling_destroy(enab);
12623 			*enabp = NULL;
12624 			return (-1);
12625 		}
12626 
12627 		dtrace_enabling_add(enab, ep);
12628 	}
12629 
12630 	return (0);
12631 }
12632 
12633 /*
12634  * Process DOF for any options.  This routine assumes that the DOF has been
12635  * at least processed by dtrace_dof_slurp().
12636  */
12637 static int
12638 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12639 {
12640 	int i, rval;
12641 	uint32_t entsize;
12642 	size_t offs;
12643 	dof_optdesc_t *desc;
12644 
12645 	for (i = 0; i < dof->dofh_secnum; i++) {
12646 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12647 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12648 
12649 		if (sec->dofs_type != DOF_SECT_OPTDESC)
12650 			continue;
12651 
12652 		if (sec->dofs_align != sizeof (uint64_t)) {
12653 			dtrace_dof_error(dof, "bad alignment in "
12654 			    "option description");
12655 			return (EINVAL);
12656 		}
12657 
12658 		if ((entsize = sec->dofs_entsize) == 0) {
12659 			dtrace_dof_error(dof, "zeroed option entry size");
12660 			return (EINVAL);
12661 		}
12662 
12663 		if (entsize < sizeof (dof_optdesc_t)) {
12664 			dtrace_dof_error(dof, "bad option entry size");
12665 			return (EINVAL);
12666 		}
12667 
12668 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12669 			desc = (dof_optdesc_t *)((uintptr_t)dof +
12670 			    (uintptr_t)sec->dofs_offset + offs);
12671 
12672 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12673 				dtrace_dof_error(dof, "non-zero option string");
12674 				return (EINVAL);
12675 			}
12676 
12677 			if (desc->dofo_value == DTRACEOPT_UNSET) {
12678 				dtrace_dof_error(dof, "unset option");
12679 				return (EINVAL);
12680 			}
12681 
12682 			if ((rval = dtrace_state_option(state,
12683 			    desc->dofo_option, desc->dofo_value)) != 0) {
12684 				dtrace_dof_error(dof, "rejected option");
12685 				return (rval);
12686 			}
12687 		}
12688 	}
12689 
12690 	return (0);
12691 }
12692 
12693 /*
12694  * DTrace Consumer State Functions
12695  */
12696 static int
12697 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12698 {
12699 	size_t hashsize, maxper, minn, chunksize = dstate->dtds_chunksize;
12700 	void *base;
12701 	uintptr_t limit;
12702 	dtrace_dynvar_t *dvar, *next, *start;
12703 	int i;
12704 
12705 	ASSERT(MUTEX_HELD(&dtrace_lock));
12706 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12707 
12708 	bzero(dstate, sizeof (dtrace_dstate_t));
12709 
12710 	if ((dstate->dtds_chunksize = chunksize) == 0)
12711 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12712 
12713 	if (size < (minn = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12714 		size = minn;
12715 
12716 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12717 		return (ENOMEM);
12718 
12719 	dstate->dtds_size = size;
12720 	dstate->dtds_base = base;
12721 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12722 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12723 
12724 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12725 
12726 	if (hashsize != 1 && (hashsize & 1))
12727 		hashsize--;
12728 
12729 	dstate->dtds_hashsize = hashsize;
12730 	dstate->dtds_hash = dstate->dtds_base;
12731 
12732 	/*
12733 	 * Set all of our hash buckets to point to the single sink, and (if
12734 	 * it hasn't already been set), set the sink's hash value to be the
12735 	 * sink sentinel value.  The sink is needed for dynamic variable
12736 	 * lookups to know that they have iterated over an entire, valid hash
12737 	 * chain.
12738 	 */
12739 	for (i = 0; i < hashsize; i++)
12740 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12741 
12742 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12743 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12744 
12745 	/*
12746 	 * Determine number of active CPUs.  Divide free list evenly among
12747 	 * active CPUs.
12748 	 */
12749 	start = (dtrace_dynvar_t *)
12750 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12751 	limit = (uintptr_t)base + size;
12752 
12753 	maxper = (limit - (uintptr_t)start) / NCPU;
12754 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12755 
12756 	for (i = 0; i < NCPU; i++) {
12757 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12758 
12759 		/*
12760 		 * If we don't even have enough chunks to make it once through
12761 		 * NCPUs, we're just going to allocate everything to the first
12762 		 * CPU.  And if we're on the last CPU, we're going to allocate
12763 		 * whatever is left over.  In either case, we set the limit to
12764 		 * be the limit of the dynamic variable space.
12765 		 */
12766 		if (maxper == 0 || i == NCPU - 1) {
12767 			limit = (uintptr_t)base + size;
12768 			start = NULL;
12769 		} else {
12770 			limit = (uintptr_t)start + maxper;
12771 			start = (dtrace_dynvar_t *)limit;
12772 		}
12773 
12774 		ASSERT(limit <= (uintptr_t)base + size);
12775 
12776 		for (;;) {
12777 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12778 			    dstate->dtds_chunksize);
12779 
12780 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12781 				break;
12782 
12783 			dvar->dtdv_next = next;
12784 			dvar = next;
12785 		}
12786 
12787 		if (maxper == 0)
12788 			break;
12789 	}
12790 
12791 	return (0);
12792 }
12793 
12794 static void
12795 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12796 {
12797 	ASSERT(MUTEX_HELD(&cpu_lock));
12798 
12799 	if (dstate->dtds_base == NULL)
12800 		return;
12801 
12802 	kmem_free(dstate->dtds_base, dstate->dtds_size);
12803 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12804 }
12805 
12806 static void
12807 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12808 {
12809 	/*
12810 	 * Logical XOR, where are you?
12811 	 */
12812 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12813 
12814 	if (vstate->dtvs_nglobals > 0) {
12815 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12816 		    sizeof (dtrace_statvar_t *));
12817 	}
12818 
12819 	if (vstate->dtvs_ntlocals > 0) {
12820 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12821 		    sizeof (dtrace_difv_t));
12822 	}
12823 
12824 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12825 
12826 	if (vstate->dtvs_nlocals > 0) {
12827 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12828 		    sizeof (dtrace_statvar_t *));
12829 	}
12830 }
12831 
12832 static void
12833 dtrace_state_clean(dtrace_state_t *state)
12834 {
12835 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12836 		return;
12837 
12838 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12839 	dtrace_speculation_clean(state);
12840 }
12841 
12842 static void
12843 dtrace_state_deadman(dtrace_state_t *state)
12844 {
12845 	hrtime_t now;
12846 
12847 	dtrace_sync();
12848 
12849 	now = dtrace_gethrtime();
12850 
12851 	if (state != dtrace_anon.dta_state &&
12852 	    now - state->dts_laststatus >= dtrace_deadman_user)
12853 		return;
12854 
12855 	/*
12856 	 * We must be sure that dts_alive never appears to be less than the
12857 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12858 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12859 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12860 	 * the new value.  This assures that dts_alive never appears to be
12861 	 * less than its true value, regardless of the order in which the
12862 	 * stores to the underlying storage are issued.
12863 	 */
12864 	state->dts_alive = INT64_MAX;
12865 	dtrace_membar_producer();
12866 	state->dts_alive = now;
12867 }
12868 
12869 #if !defined(sun)
12870 struct dtrace_state_worker *dtrace_state_worker_add(void (*)(dtrace_state_t *),
12871     dtrace_state_t *, hrtime_t);
12872 void dtrace_state_worker_remove(struct dtrace_state_worker *);
12873 #endif
12874 
12875 static dtrace_state_t *
12876 #if defined(sun)
12877 dtrace_state_create(dev_t *devp, cred_t *cr)
12878 #else
12879 dtrace_state_create(dev_t dev, cred_t *cr)
12880 #endif
12881 {
12882 #if defined(sun)
12883 	minor_t minor;
12884 	major_t major;
12885 #else
12886 	int m = 0;
12887 #endif
12888 	char c[30];
12889 	dtrace_state_t *state;
12890 	dtrace_optval_t *opt;
12891 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12892 
12893 	ASSERT(MUTEX_HELD(&dtrace_lock));
12894 	ASSERT(MUTEX_HELD(&cpu_lock));
12895 
12896 #if defined(sun)
12897 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
12898 	    VM_BESTFIT | VM_SLEEP);
12899 
12900 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
12901 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
12902 		return (NULL);
12903 	}
12904 
12905 	state = ddi_get_soft_state(dtrace_softstate, minor);
12906 #else
12907 	m = minor(dev) & 0x0F;
12908 
12909 	/* Allocate memory for the state. */
12910 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
12911 #endif
12912 
12913 	state->dts_epid = DTRACE_EPIDNONE + 1;
12914 
12915 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
12916 #if defined(sun)
12917 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
12918 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12919 
12920 	if (devp != NULL) {
12921 		major = getemajor(*devp);
12922 	} else {
12923 		major = ddi_driver_major(dtrace_devi);
12924 	}
12925 
12926 	state->dts_dev = makedevice(major, minor);
12927 
12928 	if (devp != NULL)
12929 		*devp = state->dts_dev;
12930 #else
12931 	state->dts_aggid_arena = vmem_create(c, 1, INT_MAX, 1,
12932 	    NULL, NULL, NULL, 0, VM_SLEEP, IPL_NONE);
12933 	state->dts_dev = dev;
12934 #endif
12935 
12936 	/*
12937 	 * We allocate NCPU buffers.  On the one hand, this can be quite
12938 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
12939 	 * other hand, it saves an additional memory reference in the probe
12940 	 * path.
12941 	 */
12942 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
12943 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
12944 
12945 #if defined(sun)
12946 	state->dts_cleaner = CYCLIC_NONE;
12947 	state->dts_deadman = CYCLIC_NONE;
12948 #else
12949 	state->dts_cleaner = NULL;
12950 	state->dts_deadman = NULL;
12951 #endif
12952 	state->dts_vstate.dtvs_state = state;
12953 
12954 	for (i = 0; i < DTRACEOPT_MAX; i++)
12955 		state->dts_options[i] = DTRACEOPT_UNSET;
12956 
12957 	/*
12958 	 * Set the default options.
12959 	 */
12960 	opt = state->dts_options;
12961 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
12962 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
12963 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
12964 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
12965 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
12966 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
12967 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
12968 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
12969 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
12970 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
12971 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
12972 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
12973 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
12974 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
12975 
12976 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
12977 
12978 	/*
12979 	 * Depending on the user credentials, we set flag bits which alter probe
12980 	 * visibility or the amount of destructiveness allowed.  In the case of
12981 	 * actual anonymous tracing, or the possession of all privileges, all of
12982 	 * the normal checks are bypassed.
12983 	 */
12984 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
12985 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
12986 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
12987 	} else {
12988 		/*
12989 		 * Set up the credentials for this instantiation.  We take a
12990 		 * hold on the credential to prevent it from disappearing on
12991 		 * us; this in turn prevents the zone_t referenced by this
12992 		 * credential from disappearing.  This means that we can
12993 		 * examine the credential and the zone from probe context.
12994 		 */
12995 #if defined(sun)
12996 		crhold(cr);
12997 #else
12998 		kauth_cred_hold(cr);
12999 #endif
13000 		state->dts_cred.dcr_cred = cr;
13001 
13002 		/*
13003 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13004 		 * unlocks the use of variables like pid, zonename, etc.
13005 		 */
13006 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13007 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13008 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13009 		}
13010 
13011 		/*
13012 		 * dtrace_user allows use of syscall and profile providers.
13013 		 * If the user also has proc_owner and/or proc_zone, we
13014 		 * extend the scope to include additional visibility and
13015 		 * destructive power.
13016 		 */
13017 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13018 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13019 				state->dts_cred.dcr_visible |=
13020 				    DTRACE_CRV_ALLPROC;
13021 
13022 				state->dts_cred.dcr_action |=
13023 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13024 			}
13025 
13026 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13027 				state->dts_cred.dcr_visible |=
13028 				    DTRACE_CRV_ALLZONE;
13029 
13030 				state->dts_cred.dcr_action |=
13031 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13032 			}
13033 
13034 			/*
13035 			 * If we have all privs in whatever zone this is,
13036 			 * we can do destructive things to processes which
13037 			 * have altered credentials.
13038 			 */
13039 #if defined(sun)
13040 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13041 			    cr->cr_zone->zone_privset)) {
13042 				state->dts_cred.dcr_action |=
13043 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13044 			}
13045 #endif
13046 		}
13047 
13048 		/*
13049 		 * Holding the dtrace_kernel privilege also implies that
13050 		 * the user has the dtrace_user privilege from a visibility
13051 		 * perspective.  But without further privileges, some
13052 		 * destructive actions are not available.
13053 		 */
13054 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13055 			/*
13056 			 * Make all probes in all zones visible.  However,
13057 			 * this doesn't mean that all actions become available
13058 			 * to all zones.
13059 			 */
13060 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13061 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13062 
13063 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13064 			    DTRACE_CRA_PROC;
13065 			/*
13066 			 * Holding proc_owner means that destructive actions
13067 			 * for *this* zone are allowed.
13068 			 */
13069 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13070 				state->dts_cred.dcr_action |=
13071 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13072 
13073 			/*
13074 			 * Holding proc_zone means that destructive actions
13075 			 * for this user/group ID in all zones is allowed.
13076 			 */
13077 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13078 				state->dts_cred.dcr_action |=
13079 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13080 
13081 #if defined(sun)
13082 			/*
13083 			 * If we have all privs in whatever zone this is,
13084 			 * we can do destructive things to processes which
13085 			 * have altered credentials.
13086 			 */
13087 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13088 			    cr->cr_zone->zone_privset)) {
13089 				state->dts_cred.dcr_action |=
13090 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13091 			}
13092 #endif
13093 		}
13094 
13095 		/*
13096 		 * Holding the dtrace_proc privilege gives control over fasttrap
13097 		 * and pid providers.  We need to grant wider destructive
13098 		 * privileges in the event that the user has proc_owner and/or
13099 		 * proc_zone.
13100 		 */
13101 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13102 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13103 				state->dts_cred.dcr_action |=
13104 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13105 
13106 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13107 				state->dts_cred.dcr_action |=
13108 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13109 		}
13110 	}
13111 
13112 	return (state);
13113 }
13114 
13115 static int
13116 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13117 {
13118 	dtrace_optval_t *opt = state->dts_options, size;
13119 	processorid_t cpu = 0;;
13120 	int flags = 0, rval;
13121 
13122 	ASSERT(MUTEX_HELD(&dtrace_lock));
13123 	ASSERT(MUTEX_HELD(&cpu_lock));
13124 	ASSERT(which < DTRACEOPT_MAX);
13125 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13126 	    (state == dtrace_anon.dta_state &&
13127 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13128 
13129 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13130 		return (0);
13131 
13132 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13133 		cpu = opt[DTRACEOPT_CPU];
13134 
13135 	if (which == DTRACEOPT_SPECSIZE)
13136 		flags |= DTRACEBUF_NOSWITCH;
13137 
13138 	if (which == DTRACEOPT_BUFSIZE) {
13139 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13140 			flags |= DTRACEBUF_RING;
13141 
13142 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13143 			flags |= DTRACEBUF_FILL;
13144 
13145 		if (state != dtrace_anon.dta_state ||
13146 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13147 			flags |= DTRACEBUF_INACTIVE;
13148 	}
13149 
13150 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13151 		/*
13152 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13153 		 * aligned, drop it down by the difference.
13154 		 */
13155 		if (size & (sizeof (uint64_t) - 1))
13156 			size -= size & (sizeof (uint64_t) - 1);
13157 
13158 		if (size < state->dts_reserve) {
13159 			/*
13160 			 * Buffers always must be large enough to accommodate
13161 			 * their prereserved space.  We return E2BIG instead
13162 			 * of ENOMEM in this case to allow for user-level
13163 			 * software to differentiate the cases.
13164 			 */
13165 			return (E2BIG);
13166 		}
13167 
13168 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13169 
13170 		if (rval != ENOMEM) {
13171 			opt[which] = size;
13172 			return (rval);
13173 		}
13174 
13175 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13176 			return (rval);
13177 	}
13178 
13179 	return (ENOMEM);
13180 }
13181 
13182 static int
13183 dtrace_state_buffers(dtrace_state_t *state)
13184 {
13185 	dtrace_speculation_t *spec = state->dts_speculations;
13186 	int rval, i;
13187 
13188 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13189 	    DTRACEOPT_BUFSIZE)) != 0)
13190 		return (rval);
13191 
13192 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13193 	    DTRACEOPT_AGGSIZE)) != 0)
13194 		return (rval);
13195 
13196 	for (i = 0; i < state->dts_nspeculations; i++) {
13197 		if ((rval = dtrace_state_buffer(state,
13198 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13199 			return (rval);
13200 	}
13201 
13202 	return (0);
13203 }
13204 
13205 static void
13206 dtrace_state_prereserve(dtrace_state_t *state)
13207 {
13208 	dtrace_ecb_t *ecb;
13209 	dtrace_probe_t *probe;
13210 
13211 	state->dts_reserve = 0;
13212 
13213 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13214 		return;
13215 
13216 	/*
13217 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13218 	 * prereserved space to be the space required by the END probes.
13219 	 */
13220 	probe = dtrace_probes[dtrace_probeid_end - 1];
13221 	ASSERT(probe != NULL);
13222 
13223 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13224 		if (ecb->dte_state != state)
13225 			continue;
13226 
13227 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13228 	}
13229 }
13230 
13231 static int
13232 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13233 {
13234 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13235 	dtrace_speculation_t *spec;
13236 	dtrace_buffer_t *buf;
13237 #if defined(sun)
13238 	cyc_handler_t hdlr;
13239 	cyc_time_t when;
13240 #endif
13241 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13242 	dtrace_icookie_t cookie;
13243 
13244 	mutex_enter(&cpu_lock);
13245 	mutex_enter(&dtrace_lock);
13246 
13247 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13248 		rval = EBUSY;
13249 		goto out;
13250 	}
13251 
13252 	/*
13253 	 * Before we can perform any checks, we must prime all of the
13254 	 * retained enablings that correspond to this state.
13255 	 */
13256 	dtrace_enabling_prime(state);
13257 
13258 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13259 		rval = EACCES;
13260 		goto out;
13261 	}
13262 
13263 	dtrace_state_prereserve(state);
13264 
13265 	/*
13266 	 * Now we want to do is try to allocate our speculations.
13267 	 * We do not automatically resize the number of speculations; if
13268 	 * this fails, we will fail the operation.
13269 	 */
13270 	nspec = opt[DTRACEOPT_NSPEC];
13271 	ASSERT(nspec != DTRACEOPT_UNSET);
13272 
13273 	if (nspec > INT_MAX) {
13274 		rval = ENOMEM;
13275 		goto out;
13276 	}
13277 
13278 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13279 
13280 	if (spec == NULL) {
13281 		rval = ENOMEM;
13282 		goto out;
13283 	}
13284 
13285 	state->dts_speculations = spec;
13286 	state->dts_nspeculations = (int)nspec;
13287 
13288 	for (i = 0; i < nspec; i++) {
13289 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13290 			rval = ENOMEM;
13291 			goto err;
13292 		}
13293 
13294 		spec[i].dtsp_buffer = buf;
13295 	}
13296 
13297 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13298 		if (dtrace_anon.dta_state == NULL) {
13299 			rval = ENOENT;
13300 			goto out;
13301 		}
13302 
13303 		if (state->dts_necbs != 0) {
13304 			rval = EALREADY;
13305 			goto out;
13306 		}
13307 
13308 		state->dts_anon = dtrace_anon_grab();
13309 		ASSERT(state->dts_anon != NULL);
13310 		state = state->dts_anon;
13311 
13312 		/*
13313 		 * We want "grabanon" to be set in the grabbed state, so we'll
13314 		 * copy that option value from the grabbing state into the
13315 		 * grabbed state.
13316 		 */
13317 		state->dts_options[DTRACEOPT_GRABANON] =
13318 		    opt[DTRACEOPT_GRABANON];
13319 
13320 		*cpu = dtrace_anon.dta_beganon;
13321 
13322 		/*
13323 		 * If the anonymous state is active (as it almost certainly
13324 		 * is if the anonymous enabling ultimately matched anything),
13325 		 * we don't allow any further option processing -- but we
13326 		 * don't return failure.
13327 		 */
13328 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13329 			goto out;
13330 	}
13331 
13332 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13333 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13334 		if (state->dts_aggregations == NULL) {
13335 			/*
13336 			 * We're not going to create an aggregation buffer
13337 			 * because we don't have any ECBs that contain
13338 			 * aggregations -- set this option to 0.
13339 			 */
13340 			opt[DTRACEOPT_AGGSIZE] = 0;
13341 		} else {
13342 			/*
13343 			 * If we have an aggregation buffer, we must also have
13344 			 * a buffer to use as scratch.
13345 			 */
13346 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13347 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13348 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13349 			}
13350 		}
13351 	}
13352 
13353 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13354 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13355 		if (!state->dts_speculates) {
13356 			/*
13357 			 * We're not going to create speculation buffers
13358 			 * because we don't have any ECBs that actually
13359 			 * speculate -- set the speculation size to 0.
13360 			 */
13361 			opt[DTRACEOPT_SPECSIZE] = 0;
13362 		}
13363 	}
13364 
13365 	/*
13366 	 * The bare minimum size for any buffer that we're actually going to
13367 	 * do anything to is sizeof (uint64_t).
13368 	 */
13369 	sz = sizeof (uint64_t);
13370 
13371 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13372 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13373 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13374 		/*
13375 		 * A buffer size has been explicitly set to 0 (or to a size
13376 		 * that will be adjusted to 0) and we need the space -- we
13377 		 * need to return failure.  We return ENOSPC to differentiate
13378 		 * it from failing to allocate a buffer due to failure to meet
13379 		 * the reserve (for which we return E2BIG).
13380 		 */
13381 		rval = ENOSPC;
13382 		goto out;
13383 	}
13384 
13385 	if ((rval = dtrace_state_buffers(state)) != 0)
13386 		goto err;
13387 
13388 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13389 		sz = dtrace_dstate_defsize;
13390 
13391 	do {
13392 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13393 
13394 		if (rval == 0)
13395 			break;
13396 
13397 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13398 			goto err;
13399 	} while (sz >>= 1);
13400 
13401 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13402 
13403 	if (rval != 0)
13404 		goto err;
13405 
13406 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13407 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13408 
13409 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13410 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13411 
13412 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13413 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13414 
13415 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13416 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13417 
13418 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13419 #if defined(sun)
13420 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13421 	hdlr.cyh_arg = state;
13422 	hdlr.cyh_level = CY_LOW_LEVEL;
13423 
13424 	when.cyt_when = 0;
13425 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13426 
13427 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13428 
13429 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13430 	hdlr.cyh_arg = state;
13431 	hdlr.cyh_level = CY_LOW_LEVEL;
13432 
13433 	when.cyt_when = 0;
13434 	when.cyt_interval = dtrace_deadman_interval;
13435 
13436 	state->dts_deadman = cyclic_add(&hdlr, &when);
13437 #else
13438 	state->dts_cleaner = dtrace_state_worker_add(
13439 	    dtrace_state_clean, state, opt[DTRACEOPT_CLEANRATE]);
13440 	state->dts_deadman = dtrace_state_worker_add(
13441 	    dtrace_state_deadman, state, dtrace_deadman_interval);
13442 #endif
13443 
13444 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13445 
13446 	/*
13447 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13448 	 * interrupts here both to record the CPU on which we fired the BEGIN
13449 	 * probe (the data from this CPU will be processed first at user
13450 	 * level) and to manually activate the buffer for this CPU.
13451 	 */
13452 	cookie = dtrace_interrupt_disable();
13453 	*cpu = curcpu_id;
13454 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13455 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13456 
13457 	dtrace_probe(dtrace_probeid_begin,
13458 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13459 	dtrace_interrupt_enable(cookie);
13460 	/*
13461 	 * We may have had an exit action from a BEGIN probe; only change our
13462 	 * state to ACTIVE if we're still in WARMUP.
13463 	 */
13464 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13465 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13466 
13467 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13468 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13469 
13470 	/*
13471 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13472 	 * want each CPU to transition its principal buffer out of the
13473 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13474 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13475 	 * atomically transition from processing none of a state's ECBs to
13476 	 * processing all of them.
13477 	 */
13478 	dtrace_xcall(DTRACE_CPUALL,
13479 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13480 	goto out;
13481 
13482 err:
13483 	dtrace_buffer_free(state->dts_buffer);
13484 	dtrace_buffer_free(state->dts_aggbuffer);
13485 
13486 	if ((nspec = state->dts_nspeculations) == 0) {
13487 		ASSERT(state->dts_speculations == NULL);
13488 		goto out;
13489 	}
13490 
13491 	spec = state->dts_speculations;
13492 	ASSERT(spec != NULL);
13493 
13494 	for (i = 0; i < state->dts_nspeculations; i++) {
13495 		if ((buf = spec[i].dtsp_buffer) == NULL)
13496 			break;
13497 
13498 		dtrace_buffer_free(buf);
13499 		kmem_free(buf, bufsize);
13500 	}
13501 
13502 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13503 	state->dts_nspeculations = 0;
13504 	state->dts_speculations = NULL;
13505 
13506 out:
13507 	mutex_exit(&dtrace_lock);
13508 	mutex_exit(&cpu_lock);
13509 
13510 	return (rval);
13511 }
13512 
13513 static int
13514 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13515 {
13516 	dtrace_icookie_t cookie;
13517 
13518 	ASSERT(MUTEX_HELD(&dtrace_lock));
13519 
13520 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13521 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13522 		return (EINVAL);
13523 
13524 	/*
13525 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13526 	 * to be sure that every CPU has seen it.  See below for the details
13527 	 * on why this is done.
13528 	 */
13529 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13530 	dtrace_sync();
13531 
13532 	/*
13533 	 * By this point, it is impossible for any CPU to be still processing
13534 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13535 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13536 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13537 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13538 	 * iff we're in the END probe.
13539 	 */
13540 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13541 	dtrace_sync();
13542 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13543 
13544 	/*
13545 	 * Finally, we can release the reserve and call the END probe.  We
13546 	 * disable interrupts across calling the END probe to allow us to
13547 	 * return the CPU on which we actually called the END probe.  This
13548 	 * allows user-land to be sure that this CPU's principal buffer is
13549 	 * processed last.
13550 	 */
13551 	state->dts_reserve = 0;
13552 
13553 	cookie = dtrace_interrupt_disable();
13554 	*cpu = curcpu_id;
13555 	dtrace_probe(dtrace_probeid_end,
13556 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13557 	dtrace_interrupt_enable(cookie);
13558 
13559 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13560 	dtrace_sync();
13561 
13562 	return (0);
13563 }
13564 
13565 static int
13566 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13567     dtrace_optval_t val)
13568 {
13569 	ASSERT(MUTEX_HELD(&dtrace_lock));
13570 
13571 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13572 		return (EBUSY);
13573 
13574 	if (option >= DTRACEOPT_MAX)
13575 		return (EINVAL);
13576 
13577 	if (option != DTRACEOPT_CPU && val < 0)
13578 		return (EINVAL);
13579 
13580 	switch (option) {
13581 	case DTRACEOPT_DESTRUCTIVE:
13582 		if (dtrace_destructive_disallow)
13583 			return (EACCES);
13584 
13585 		state->dts_cred.dcr_destructive = 1;
13586 		break;
13587 
13588 	case DTRACEOPT_BUFSIZE:
13589 	case DTRACEOPT_DYNVARSIZE:
13590 	case DTRACEOPT_AGGSIZE:
13591 	case DTRACEOPT_SPECSIZE:
13592 	case DTRACEOPT_STRSIZE:
13593 		if (val < 0)
13594 			return (EINVAL);
13595 
13596 		if (val >= LONG_MAX) {
13597 			/*
13598 			 * If this is an otherwise negative value, set it to
13599 			 * the highest multiple of 128m less than LONG_MAX.
13600 			 * Technically, we're adjusting the size without
13601 			 * regard to the buffer resizing policy, but in fact,
13602 			 * this has no effect -- if we set the buffer size to
13603 			 * ~LONG_MAX and the buffer policy is ultimately set to
13604 			 * be "manual", the buffer allocation is guaranteed to
13605 			 * fail, if only because the allocation requires two
13606 			 * buffers.  (We set the the size to the highest
13607 			 * multiple of 128m because it ensures that the size
13608 			 * will remain a multiple of a megabyte when
13609 			 * repeatedly halved -- all the way down to 15m.)
13610 			 */
13611 			val = LONG_MAX - (1 << 27) + 1;
13612 		}
13613 	}
13614 
13615 	state->dts_options[option] = val;
13616 
13617 	return (0);
13618 }
13619 
13620 static void
13621 dtrace_state_destroy(dtrace_state_t *state)
13622 {
13623 	dtrace_ecb_t *ecb;
13624 	dtrace_vstate_t *vstate = &state->dts_vstate;
13625 #if defined(sun)
13626 	minor_t minor = getminor(state->dts_dev);
13627 #endif
13628 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13629 	dtrace_speculation_t *spec = state->dts_speculations;
13630 	int nspec = state->dts_nspeculations;
13631 	uint32_t match;
13632 
13633 	ASSERT(MUTEX_HELD(&dtrace_lock));
13634 	ASSERT(MUTEX_HELD(&cpu_lock));
13635 
13636 	/*
13637 	 * First, retract any retained enablings for this state.
13638 	 */
13639 	dtrace_enabling_retract(state);
13640 	ASSERT(state->dts_nretained == 0);
13641 
13642 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13643 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13644 		/*
13645 		 * We have managed to come into dtrace_state_destroy() on a
13646 		 * hot enabling -- almost certainly because of a disorderly
13647 		 * shutdown of a consumer.  (That is, a consumer that is
13648 		 * exiting without having called dtrace_stop().) In this case,
13649 		 * we're going to set our activity to be KILLED, and then
13650 		 * issue a sync to be sure that everyone is out of probe
13651 		 * context before we start blowing away ECBs.
13652 		 */
13653 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13654 		dtrace_sync();
13655 	}
13656 
13657 	/*
13658 	 * Release the credential hold we took in dtrace_state_create().
13659 	 */
13660 	if (state->dts_cred.dcr_cred != NULL) {
13661 #if defined(sun)
13662 		crfree(state->dts_cred.dcr_cred);
13663 #else
13664 		kauth_cred_free(state->dts_cred.dcr_cred);
13665 #endif
13666 	}
13667 
13668 	/*
13669 	 * Now we can safely disable and destroy any enabled probes.  Because
13670 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13671 	 * (especially if they're all enabled), we take two passes through the
13672 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13673 	 * in the second we disable whatever is left over.
13674 	 */
13675 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13676 		for (i = 0; i < state->dts_necbs; i++) {
13677 			if ((ecb = state->dts_ecbs[i]) == NULL)
13678 				continue;
13679 
13680 			if (match && ecb->dte_probe != NULL) {
13681 				dtrace_probe_t *probe = ecb->dte_probe;
13682 				dtrace_provider_t *prov = probe->dtpr_provider;
13683 
13684 				if (!(prov->dtpv_priv.dtpp_flags & match))
13685 					continue;
13686 			}
13687 
13688 			dtrace_ecb_disable(ecb);
13689 			dtrace_ecb_destroy(ecb);
13690 		}
13691 
13692 		if (!match)
13693 			break;
13694 	}
13695 
13696 	/*
13697 	 * Before we free the buffers, perform one more sync to assure that
13698 	 * every CPU is out of probe context.
13699 	 */
13700 	dtrace_sync();
13701 
13702 	dtrace_buffer_free(state->dts_buffer);
13703 	dtrace_buffer_free(state->dts_aggbuffer);
13704 
13705 	for (i = 0; i < nspec; i++)
13706 		dtrace_buffer_free(spec[i].dtsp_buffer);
13707 
13708 #if defined(sun)
13709 	if (state->dts_cleaner != CYCLIC_NONE)
13710 		cyclic_remove(state->dts_cleaner);
13711 
13712 	if (state->dts_deadman != CYCLIC_NONE)
13713 		cyclic_remove(state->dts_deadman);
13714 #else
13715 	if (state->dts_cleaner != NULL)
13716 		dtrace_state_worker_remove(state->dts_cleaner);
13717 
13718 	if (state->dts_deadman != NULL)
13719 		dtrace_state_worker_remove(state->dts_deadman);
13720 #endif
13721 
13722 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13723 	dtrace_vstate_fini(vstate);
13724 	if (state->dts_ecbs != NULL)
13725 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13726 
13727 	if (state->dts_aggregations != NULL) {
13728 #ifdef DEBUG
13729 		for (i = 0; i < state->dts_naggregations; i++)
13730 			ASSERT(state->dts_aggregations[i] == NULL);
13731 #endif
13732 		ASSERT(state->dts_naggregations > 0);
13733 		kmem_free(state->dts_aggregations,
13734 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13735 	}
13736 
13737 	kmem_free(state->dts_buffer, bufsize);
13738 	kmem_free(state->dts_aggbuffer, bufsize);
13739 
13740 	for (i = 0; i < nspec; i++)
13741 		kmem_free(spec[i].dtsp_buffer, bufsize);
13742 
13743 	if (spec != NULL)
13744 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13745 
13746 	dtrace_format_destroy(state);
13747 
13748 	if (state->dts_aggid_arena != NULL) {
13749 		vmem_destroy(state->dts_aggid_arena);
13750 		state->dts_aggid_arena = NULL;
13751 	}
13752 #if defined(sun)
13753 	ddi_soft_state_free(dtrace_softstate, minor);
13754 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13755 #else
13756 	kmem_free(state, sizeof(dtrace_state_t));
13757 #endif
13758 }
13759 
13760 /*
13761  * DTrace Anonymous Enabling Functions
13762  */
13763 static dtrace_state_t *
13764 dtrace_anon_grab(void)
13765 {
13766 	dtrace_state_t *state;
13767 
13768 	ASSERT(MUTEX_HELD(&dtrace_lock));
13769 
13770 	if ((state = dtrace_anon.dta_state) == NULL) {
13771 		ASSERT(dtrace_anon.dta_enabling == NULL);
13772 		return (NULL);
13773 	}
13774 
13775 	ASSERT(dtrace_anon.dta_enabling != NULL);
13776 	ASSERT(dtrace_retained != NULL);
13777 
13778 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13779 	dtrace_anon.dta_enabling = NULL;
13780 	dtrace_anon.dta_state = NULL;
13781 
13782 	return (state);
13783 }
13784 
13785 static void
13786 dtrace_anon_property(void)
13787 {
13788 	int i, rv;
13789 	dtrace_state_t *state;
13790 	dof_hdr_t *dof;
13791 	char c[32];		/* enough for "dof-data-" + digits */
13792 
13793 	ASSERT(MUTEX_HELD(&dtrace_lock));
13794 	ASSERT(MUTEX_HELD(&cpu_lock));
13795 
13796 	for (i = 0; ; i++) {
13797 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13798 
13799 		dtrace_err_verbose = 1;
13800 
13801 		if ((dof = dtrace_dof_property(c)) == NULL) {
13802 			dtrace_err_verbose = 0;
13803 			break;
13804 		}
13805 
13806 #if defined(sun)
13807 		/*
13808 		 * We want to create anonymous state, so we need to transition
13809 		 * the kernel debugger to indicate that DTrace is active.  If
13810 		 * this fails (e.g. because the debugger has modified text in
13811 		 * some way), we won't continue with the processing.
13812 		 */
13813 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13814 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13815 			    "enabling ignored.");
13816 			dtrace_dof_destroy(dof);
13817 			break;
13818 		}
13819 #endif
13820 
13821 		/*
13822 		 * If we haven't allocated an anonymous state, we'll do so now.
13823 		 */
13824 		if ((state = dtrace_anon.dta_state) == NULL) {
13825 #if defined(sun)
13826 			state = dtrace_state_create(NULL, NULL);
13827 #endif
13828 			dtrace_anon.dta_state = state;
13829 
13830 			if (state == NULL) {
13831 				/*
13832 				 * This basically shouldn't happen:  the only
13833 				 * failure mode from dtrace_state_create() is a
13834 				 * failure of ddi_soft_state_zalloc() that
13835 				 * itself should never happen.  Still, the
13836 				 * interface allows for a failure mode, and
13837 				 * we want to fail as gracefully as possible:
13838 				 * we'll emit an error message and cease
13839 				 * processing anonymous state in this case.
13840 				 */
13841 				cmn_err(CE_WARN, "failed to create "
13842 				    "anonymous state");
13843 				dtrace_dof_destroy(dof);
13844 				break;
13845 			}
13846 		}
13847 
13848 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13849 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13850 
13851 		if (rv == 0)
13852 			rv = dtrace_dof_options(dof, state);
13853 
13854 		dtrace_err_verbose = 0;
13855 		dtrace_dof_destroy(dof);
13856 
13857 		if (rv != 0) {
13858 			/*
13859 			 * This is malformed DOF; chuck any anonymous state
13860 			 * that we created.
13861 			 */
13862 			ASSERT(dtrace_anon.dta_enabling == NULL);
13863 			dtrace_state_destroy(state);
13864 			dtrace_anon.dta_state = NULL;
13865 			break;
13866 		}
13867 
13868 		ASSERT(dtrace_anon.dta_enabling != NULL);
13869 	}
13870 
13871 	if (dtrace_anon.dta_enabling != NULL) {
13872 		int rval;
13873 
13874 		/*
13875 		 * dtrace_enabling_retain() can only fail because we are
13876 		 * trying to retain more enablings than are allowed -- but
13877 		 * we only have one anonymous enabling, and we are guaranteed
13878 		 * to be allowed at least one retained enabling; we assert
13879 		 * that dtrace_enabling_retain() returns success.
13880 		 */
13881 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13882 		ASSERT(rval == 0);
13883 
13884 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13885 	}
13886 }
13887 
13888 /*
13889  * DTrace Helper Functions
13890  */
13891 static void
13892 dtrace_helper_trace(dtrace_helper_action_t *helper,
13893     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13894 {
13895 	uint32_t size, next, nnext, i;
13896 	dtrace_helptrace_t *ent;
13897 	uint16_t flags = cpu_core[curcpu_id].cpuc_dtrace_flags;
13898 
13899 	if (!dtrace_helptrace_enabled)
13900 		return;
13901 
13902 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
13903 
13904 	/*
13905 	 * What would a tracing framework be without its own tracing
13906 	 * framework?  (Well, a hell of a lot simpler, for starters...)
13907 	 */
13908 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
13909 	    sizeof (uint64_t) - sizeof (uint64_t);
13910 
13911 	/*
13912 	 * Iterate until we can allocate a slot in the trace buffer.
13913 	 */
13914 	do {
13915 		next = dtrace_helptrace_next;
13916 
13917 		if (next + size < dtrace_helptrace_bufsize) {
13918 			nnext = next + size;
13919 		} else {
13920 			nnext = size;
13921 		}
13922 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
13923 
13924 	/*
13925 	 * We have our slot; fill it in.
13926 	 */
13927 	if (nnext == size)
13928 		next = 0;
13929 
13930 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
13931 	ent->dtht_helper = helper;
13932 	ent->dtht_where = where;
13933 	ent->dtht_nlocals = vstate->dtvs_nlocals;
13934 
13935 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
13936 	    mstate->dtms_fltoffs : -1;
13937 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
13938 	ent->dtht_illval = cpu_core[curcpu_id].cpuc_dtrace_illval;
13939 
13940 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
13941 		dtrace_statvar_t *svar;
13942 
13943 		if ((svar = vstate->dtvs_locals[i]) == NULL)
13944 			continue;
13945 
13946 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
13947 		ent->dtht_locals[i] =
13948 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu_id];
13949 	}
13950 }
13951 
13952 static uint64_t
13953 dtrace_helper(int which, dtrace_mstate_t *mstate,
13954     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
13955 {
13956 	uint16_t *flags = &cpu_core[curcpu_id].cpuc_dtrace_flags;
13957 	uint64_t sarg0 = mstate->dtms_arg[0];
13958 	uint64_t sarg1 = mstate->dtms_arg[1];
13959 	uint64_t rval = 0;
13960 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
13961 	dtrace_helper_action_t *helper;
13962 	dtrace_vstate_t *vstate;
13963 	dtrace_difo_t *pred;
13964 	int i, trace = dtrace_helptrace_enabled;
13965 
13966 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
13967 
13968 	if (helpers == NULL)
13969 		return (0);
13970 
13971 	if ((helper = helpers->dthps_actions[which]) == NULL)
13972 		return (0);
13973 
13974 	vstate = &helpers->dthps_vstate;
13975 	mstate->dtms_arg[0] = arg0;
13976 	mstate->dtms_arg[1] = arg1;
13977 
13978 	/*
13979 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
13980 	 * we'll call the corresponding actions.  Note that the below calls
13981 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
13982 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
13983 	 * the stored DIF offset with its own (which is the desired behavior).
13984 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
13985 	 * from machine state; this is okay, too.
13986 	 */
13987 	for (; helper != NULL; helper = helper->dtha_next) {
13988 		if ((pred = helper->dtha_predicate) != NULL) {
13989 			if (trace)
13990 				dtrace_helper_trace(helper, mstate, vstate, 0);
13991 
13992 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
13993 				goto next;
13994 
13995 			if (*flags & CPU_DTRACE_FAULT)
13996 				goto err;
13997 		}
13998 
13999 		for (i = 0; i < helper->dtha_nactions; i++) {
14000 			if (trace)
14001 				dtrace_helper_trace(helper,
14002 				    mstate, vstate, i + 1);
14003 
14004 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14005 			    mstate, vstate, state);
14006 
14007 			if (*flags & CPU_DTRACE_FAULT)
14008 				goto err;
14009 		}
14010 
14011 next:
14012 		if (trace)
14013 			dtrace_helper_trace(helper, mstate, vstate,
14014 			    DTRACE_HELPTRACE_NEXT);
14015 	}
14016 
14017 	if (trace)
14018 		dtrace_helper_trace(helper, mstate, vstate,
14019 		    DTRACE_HELPTRACE_DONE);
14020 
14021 	/*
14022 	 * Restore the arg0 that we saved upon entry.
14023 	 */
14024 	mstate->dtms_arg[0] = sarg0;
14025 	mstate->dtms_arg[1] = sarg1;
14026 
14027 	return (rval);
14028 
14029 err:
14030 	if (trace)
14031 		dtrace_helper_trace(helper, mstate, vstate,
14032 		    DTRACE_HELPTRACE_ERR);
14033 
14034 	/*
14035 	 * Restore the arg0 that we saved upon entry.
14036 	 */
14037 	mstate->dtms_arg[0] = sarg0;
14038 	mstate->dtms_arg[1] = sarg1;
14039 
14040 	return (0);
14041 }
14042 
14043 #if defined(sun)
14044 static void
14045 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14046     dtrace_vstate_t *vstate)
14047 {
14048 	int i;
14049 
14050 	if (helper->dtha_predicate != NULL)
14051 		dtrace_difo_release(helper->dtha_predicate, vstate);
14052 
14053 	for (i = 0; i < helper->dtha_nactions; i++) {
14054 		ASSERT(helper->dtha_actions[i] != NULL);
14055 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14056 	}
14057 
14058 	kmem_free(helper->dtha_actions,
14059 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14060 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14061 }
14062 
14063 static int
14064 dtrace_helper_destroygen(int gen)
14065 {
14066 	proc_t *p = curproc;
14067 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14068 	dtrace_vstate_t *vstate;
14069 	int i;
14070 
14071 	ASSERT(MUTEX_HELD(&dtrace_lock));
14072 
14073 	if (help == NULL || gen > help->dthps_generation)
14074 		return (EINVAL);
14075 
14076 	vstate = &help->dthps_vstate;
14077 
14078 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14079 		dtrace_helper_action_t *last = NULL, *h, *next;
14080 
14081 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14082 			next = h->dtha_next;
14083 
14084 			if (h->dtha_generation == gen) {
14085 				if (last != NULL) {
14086 					last->dtha_next = next;
14087 				} else {
14088 					help->dthps_actions[i] = next;
14089 				}
14090 
14091 				dtrace_helper_action_destroy(h, vstate);
14092 			} else {
14093 				last = h;
14094 			}
14095 		}
14096 	}
14097 
14098 	/*
14099 	 * Interate until we've cleared out all helper providers with the
14100 	 * given generation number.
14101 	 */
14102 	for (;;) {
14103 		dtrace_helper_provider_t *prov;
14104 
14105 		/*
14106 		 * Look for a helper provider with the right generation. We
14107 		 * have to start back at the beginning of the list each time
14108 		 * because we drop dtrace_lock. It's unlikely that we'll make
14109 		 * more than two passes.
14110 		 */
14111 		for (i = 0; i < help->dthps_nprovs; i++) {
14112 			prov = help->dthps_provs[i];
14113 
14114 			if (prov->dthp_generation == gen)
14115 				break;
14116 		}
14117 
14118 		/*
14119 		 * If there were no matches, we're done.
14120 		 */
14121 		if (i == help->dthps_nprovs)
14122 			break;
14123 
14124 		/*
14125 		 * Move the last helper provider into this slot.
14126 		 */
14127 		help->dthps_nprovs--;
14128 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14129 		help->dthps_provs[help->dthps_nprovs] = NULL;
14130 
14131 		mutex_exit(&dtrace_lock);
14132 
14133 		/*
14134 		 * If we have a meta provider, remove this helper provider.
14135 		 */
14136 		mutex_enter(&dtrace_meta_lock);
14137 		if (dtrace_meta_pid != NULL) {
14138 			ASSERT(dtrace_deferred_pid == NULL);
14139 			dtrace_helper_provider_remove(&prov->dthp_prov,
14140 			    p->p_pid);
14141 		}
14142 		mutex_exit(&dtrace_meta_lock);
14143 
14144 		dtrace_helper_provider_destroy(prov);
14145 
14146 		mutex_enter(&dtrace_lock);
14147 	}
14148 
14149 	return (0);
14150 }
14151 
14152 static int
14153 dtrace_helper_validate(dtrace_helper_action_t *helper)
14154 {
14155 	int err = 0, i;
14156 	dtrace_difo_t *dp;
14157 
14158 	if ((dp = helper->dtha_predicate) != NULL)
14159 		err += dtrace_difo_validate_helper(dp);
14160 
14161 	for (i = 0; i < helper->dtha_nactions; i++)
14162 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14163 
14164 	return (err == 0);
14165 }
14166 
14167 static int
14168 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14169 {
14170 	dtrace_helpers_t *help;
14171 	dtrace_helper_action_t *helper, *last;
14172 	dtrace_actdesc_t *act;
14173 	dtrace_vstate_t *vstate;
14174 	dtrace_predicate_t *pred;
14175 	int count = 0, nactions = 0, i;
14176 
14177 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14178 		return (EINVAL);
14179 
14180 	help = curproc->p_dtrace_helpers;
14181 	last = help->dthps_actions[which];
14182 	vstate = &help->dthps_vstate;
14183 
14184 	for (count = 0; last != NULL; last = last->dtha_next) {
14185 		count++;
14186 		if (last->dtha_next == NULL)
14187 			break;
14188 	}
14189 
14190 	/*
14191 	 * If we already have dtrace_helper_actions_max helper actions for this
14192 	 * helper action type, we'll refuse to add a new one.
14193 	 */
14194 	if (count >= dtrace_helper_actions_max)
14195 		return (ENOSPC);
14196 
14197 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14198 	helper->dtha_generation = help->dthps_generation;
14199 
14200 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14201 		ASSERT(pred->dtp_difo != NULL);
14202 		dtrace_difo_hold(pred->dtp_difo);
14203 		helper->dtha_predicate = pred->dtp_difo;
14204 	}
14205 
14206 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14207 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14208 			goto err;
14209 
14210 		if (act->dtad_difo == NULL)
14211 			goto err;
14212 
14213 		nactions++;
14214 	}
14215 
14216 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14217 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14218 
14219 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14220 		dtrace_difo_hold(act->dtad_difo);
14221 		helper->dtha_actions[i++] = act->dtad_difo;
14222 	}
14223 
14224 	if (!dtrace_helper_validate(helper))
14225 		goto err;
14226 
14227 	if (last == NULL) {
14228 		help->dthps_actions[which] = helper;
14229 	} else {
14230 		last->dtha_next = helper;
14231 	}
14232 
14233 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14234 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14235 		dtrace_helptrace_next = 0;
14236 	}
14237 
14238 	return (0);
14239 err:
14240 	dtrace_helper_action_destroy(helper, vstate);
14241 	return (EINVAL);
14242 }
14243 
14244 static void
14245 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14246     dof_helper_t *dofhp)
14247 {
14248 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14249 
14250 	mutex_enter(&dtrace_meta_lock);
14251 	mutex_enter(&dtrace_lock);
14252 
14253 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14254 		/*
14255 		 * If the dtrace module is loaded but not attached, or if
14256 		 * there aren't isn't a meta provider registered to deal with
14257 		 * these provider descriptions, we need to postpone creating
14258 		 * the actual providers until later.
14259 		 */
14260 
14261 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14262 		    dtrace_deferred_pid != help) {
14263 			help->dthps_deferred = 1;
14264 			help->dthps_pid = p->p_pid;
14265 			help->dthps_next = dtrace_deferred_pid;
14266 			help->dthps_prev = NULL;
14267 			if (dtrace_deferred_pid != NULL)
14268 				dtrace_deferred_pid->dthps_prev = help;
14269 			dtrace_deferred_pid = help;
14270 		}
14271 
14272 		mutex_exit(&dtrace_lock);
14273 
14274 	} else if (dofhp != NULL) {
14275 		/*
14276 		 * If the dtrace module is loaded and we have a particular
14277 		 * helper provider description, pass that off to the
14278 		 * meta provider.
14279 		 */
14280 
14281 		mutex_exit(&dtrace_lock);
14282 
14283 		dtrace_helper_provide(dofhp, p->p_pid);
14284 
14285 	} else {
14286 		/*
14287 		 * Otherwise, just pass all the helper provider descriptions
14288 		 * off to the meta provider.
14289 		 */
14290 
14291 		int i;
14292 		mutex_exit(&dtrace_lock);
14293 
14294 		for (i = 0; i < help->dthps_nprovs; i++) {
14295 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14296 			    p->p_pid);
14297 		}
14298 	}
14299 
14300 	mutex_exit(&dtrace_meta_lock);
14301 }
14302 
14303 static int
14304 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14305 {
14306 	dtrace_helpers_t *help;
14307 	dtrace_helper_provider_t *hprov, **tmp_provs;
14308 	uint_t tmp_maxprovs, i;
14309 
14310 	ASSERT(MUTEX_HELD(&dtrace_lock));
14311 
14312 	help = curproc->p_dtrace_helpers;
14313 	ASSERT(help != NULL);
14314 
14315 	/*
14316 	 * If we already have dtrace_helper_providers_max helper providers,
14317 	 * we're refuse to add a new one.
14318 	 */
14319 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14320 		return (ENOSPC);
14321 
14322 	/*
14323 	 * Check to make sure this isn't a duplicate.
14324 	 */
14325 	for (i = 0; i < help->dthps_nprovs; i++) {
14326 		if (dofhp->dofhp_addr ==
14327 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14328 			return (EALREADY);
14329 	}
14330 
14331 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14332 	hprov->dthp_prov = *dofhp;
14333 	hprov->dthp_ref = 1;
14334 	hprov->dthp_generation = gen;
14335 
14336 	/*
14337 	 * Allocate a bigger table for helper providers if it's already full.
14338 	 */
14339 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14340 		tmp_maxprovs = help->dthps_maxprovs;
14341 		tmp_provs = help->dthps_provs;
14342 
14343 		if (help->dthps_maxprovs == 0)
14344 			help->dthps_maxprovs = 2;
14345 		else
14346 			help->dthps_maxprovs *= 2;
14347 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14348 			help->dthps_maxprovs = dtrace_helper_providers_max;
14349 
14350 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14351 
14352 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14353 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14354 
14355 		if (tmp_provs != NULL) {
14356 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14357 			    sizeof (dtrace_helper_provider_t *));
14358 			kmem_free(tmp_provs, tmp_maxprovs *
14359 			    sizeof (dtrace_helper_provider_t *));
14360 		}
14361 	}
14362 
14363 	help->dthps_provs[help->dthps_nprovs] = hprov;
14364 	help->dthps_nprovs++;
14365 
14366 	return (0);
14367 }
14368 
14369 static void
14370 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14371 {
14372 	mutex_enter(&dtrace_lock);
14373 
14374 	if (--hprov->dthp_ref == 0) {
14375 		dof_hdr_t *dof;
14376 		mutex_exit(&dtrace_lock);
14377 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14378 		dtrace_dof_destroy(dof);
14379 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14380 	} else {
14381 		mutex_exit(&dtrace_lock);
14382 	}
14383 }
14384 
14385 static int
14386 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14387 {
14388 	uintptr_t daddr = (uintptr_t)dof;
14389 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14390 	dof_provider_t *provider;
14391 	dof_probe_t *probe;
14392 	uint8_t *arg;
14393 	char *strtab, *typestr;
14394 	dof_stridx_t typeidx;
14395 	size_t typesz;
14396 	uint_t nprobes, j, k;
14397 
14398 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14399 
14400 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14401 		dtrace_dof_error(dof, "misaligned section offset");
14402 		return (-1);
14403 	}
14404 
14405 	/*
14406 	 * The section needs to be large enough to contain the DOF provider
14407 	 * structure appropriate for the given version.
14408 	 */
14409 	if (sec->dofs_size <
14410 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14411 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14412 	    sizeof (dof_provider_t))) {
14413 		dtrace_dof_error(dof, "provider section too small");
14414 		return (-1);
14415 	}
14416 
14417 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14418 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14419 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14420 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14421 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14422 
14423 	if (str_sec == NULL || prb_sec == NULL ||
14424 	    arg_sec == NULL || off_sec == NULL)
14425 		return (-1);
14426 
14427 	enoff_sec = NULL;
14428 
14429 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14430 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14431 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14432 	    provider->dofpv_prenoffs)) == NULL)
14433 		return (-1);
14434 
14435 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14436 
14437 	if (provider->dofpv_name >= str_sec->dofs_size ||
14438 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14439 		dtrace_dof_error(dof, "invalid provider name");
14440 		return (-1);
14441 	}
14442 
14443 	if (prb_sec->dofs_entsize == 0 ||
14444 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14445 		dtrace_dof_error(dof, "invalid entry size");
14446 		return (-1);
14447 	}
14448 
14449 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14450 		dtrace_dof_error(dof, "misaligned entry size");
14451 		return (-1);
14452 	}
14453 
14454 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14455 		dtrace_dof_error(dof, "invalid entry size");
14456 		return (-1);
14457 	}
14458 
14459 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14460 		dtrace_dof_error(dof, "misaligned section offset");
14461 		return (-1);
14462 	}
14463 
14464 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14465 		dtrace_dof_error(dof, "invalid entry size");
14466 		return (-1);
14467 	}
14468 
14469 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14470 
14471 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14472 
14473 	/*
14474 	 * Take a pass through the probes to check for errors.
14475 	 */
14476 	for (j = 0; j < nprobes; j++) {
14477 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14478 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14479 
14480 		if (probe->dofpr_func >= str_sec->dofs_size) {
14481 			dtrace_dof_error(dof, "invalid function name");
14482 			return (-1);
14483 		}
14484 
14485 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14486 			dtrace_dof_error(dof, "function name too long");
14487 			return (-1);
14488 		}
14489 
14490 		if (probe->dofpr_name >= str_sec->dofs_size ||
14491 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14492 			dtrace_dof_error(dof, "invalid probe name");
14493 			return (-1);
14494 		}
14495 
14496 		/*
14497 		 * The offset count must not wrap the index, and the offsets
14498 		 * must also not overflow the section's data.
14499 		 */
14500 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14501 		    probe->dofpr_offidx ||
14502 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14503 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14504 			dtrace_dof_error(dof, "invalid probe offset");
14505 			return (-1);
14506 		}
14507 
14508 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14509 			/*
14510 			 * If there's no is-enabled offset section, make sure
14511 			 * there aren't any is-enabled offsets. Otherwise
14512 			 * perform the same checks as for probe offsets
14513 			 * (immediately above).
14514 			 */
14515 			if (enoff_sec == NULL) {
14516 				if (probe->dofpr_enoffidx != 0 ||
14517 				    probe->dofpr_nenoffs != 0) {
14518 					dtrace_dof_error(dof, "is-enabled "
14519 					    "offsets with null section");
14520 					return (-1);
14521 				}
14522 			} else if (probe->dofpr_enoffidx +
14523 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14524 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14525 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14526 				dtrace_dof_error(dof, "invalid is-enabled "
14527 				    "offset");
14528 				return (-1);
14529 			}
14530 
14531 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14532 				dtrace_dof_error(dof, "zero probe and "
14533 				    "is-enabled offsets");
14534 				return (-1);
14535 			}
14536 		} else if (probe->dofpr_noffs == 0) {
14537 			dtrace_dof_error(dof, "zero probe offsets");
14538 			return (-1);
14539 		}
14540 
14541 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14542 		    probe->dofpr_argidx ||
14543 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14544 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14545 			dtrace_dof_error(dof, "invalid args");
14546 			return (-1);
14547 		}
14548 
14549 		typeidx = probe->dofpr_nargv;
14550 		typestr = strtab + probe->dofpr_nargv;
14551 		for (k = 0; k < probe->dofpr_nargc; k++) {
14552 			if (typeidx >= str_sec->dofs_size) {
14553 				dtrace_dof_error(dof, "bad "
14554 				    "native argument type");
14555 				return (-1);
14556 			}
14557 
14558 			typesz = strlen(typestr) + 1;
14559 			if (typesz > DTRACE_ARGTYPELEN) {
14560 				dtrace_dof_error(dof, "native "
14561 				    "argument type too long");
14562 				return (-1);
14563 			}
14564 			typeidx += typesz;
14565 			typestr += typesz;
14566 		}
14567 
14568 		typeidx = probe->dofpr_xargv;
14569 		typestr = strtab + probe->dofpr_xargv;
14570 		for (k = 0; k < probe->dofpr_xargc; k++) {
14571 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14572 				dtrace_dof_error(dof, "bad "
14573 				    "native argument index");
14574 				return (-1);
14575 			}
14576 
14577 			if (typeidx >= str_sec->dofs_size) {
14578 				dtrace_dof_error(dof, "bad "
14579 				    "translated argument type");
14580 				return (-1);
14581 			}
14582 
14583 			typesz = strlen(typestr) + 1;
14584 			if (typesz > DTRACE_ARGTYPELEN) {
14585 				dtrace_dof_error(dof, "translated argument "
14586 				    "type too long");
14587 				return (-1);
14588 			}
14589 
14590 			typeidx += typesz;
14591 			typestr += typesz;
14592 		}
14593 	}
14594 
14595 	return (0);
14596 }
14597 
14598 static int
14599 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14600 {
14601 	dtrace_helpers_t *help;
14602 	dtrace_vstate_t *vstate;
14603 	dtrace_enabling_t *enab = NULL;
14604 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14605 	uintptr_t daddr = (uintptr_t)dof;
14606 
14607 	ASSERT(MUTEX_HELD(&dtrace_lock));
14608 
14609 	if ((help = curproc->p_dtrace_helpers) == NULL)
14610 		help = dtrace_helpers_create(curproc);
14611 
14612 	vstate = &help->dthps_vstate;
14613 
14614 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14615 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14616 		dtrace_dof_destroy(dof);
14617 		return (rv);
14618 	}
14619 
14620 	/*
14621 	 * Look for helper providers and validate their descriptions.
14622 	 */
14623 	if (dhp != NULL) {
14624 		for (i = 0; i < dof->dofh_secnum; i++) {
14625 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14626 			    dof->dofh_secoff + i * dof->dofh_secsize);
14627 
14628 			if (sec->dofs_type != DOF_SECT_PROVIDER)
14629 				continue;
14630 
14631 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14632 				dtrace_enabling_destroy(enab);
14633 				dtrace_dof_destroy(dof);
14634 				return (-1);
14635 			}
14636 
14637 			nprovs++;
14638 		}
14639 	}
14640 
14641 	/*
14642 	 * Now we need to walk through the ECB descriptions in the enabling.
14643 	 */
14644 	for (i = 0; i < enab->dten_ndesc; i++) {
14645 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14646 		dtrace_probedesc_t *desc = &ep->dted_probe;
14647 
14648 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14649 			continue;
14650 
14651 		if (strcmp(desc->dtpd_mod, "helper") != 0)
14652 			continue;
14653 
14654 		if (strcmp(desc->dtpd_func, "ustack") != 0)
14655 			continue;
14656 
14657 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14658 		    ep)) != 0) {
14659 			/*
14660 			 * Adding this helper action failed -- we are now going
14661 			 * to rip out the entire generation and return failure.
14662 			 */
14663 			(void) dtrace_helper_destroygen(help->dthps_generation);
14664 			dtrace_enabling_destroy(enab);
14665 			dtrace_dof_destroy(dof);
14666 			return (-1);
14667 		}
14668 
14669 		nhelpers++;
14670 	}
14671 
14672 	if (nhelpers < enab->dten_ndesc)
14673 		dtrace_dof_error(dof, "unmatched helpers");
14674 
14675 	gen = help->dthps_generation++;
14676 	dtrace_enabling_destroy(enab);
14677 
14678 	if (dhp != NULL && nprovs > 0) {
14679 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14680 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14681 			mutex_exit(&dtrace_lock);
14682 			dtrace_helper_provider_register(curproc, help, dhp);
14683 			mutex_enter(&dtrace_lock);
14684 
14685 			destroy = 0;
14686 		}
14687 	}
14688 
14689 	if (destroy)
14690 		dtrace_dof_destroy(dof);
14691 
14692 	return (gen);
14693 }
14694 
14695 static dtrace_helpers_t *
14696 dtrace_helpers_create(proc_t *p)
14697 {
14698 	dtrace_helpers_t *help;
14699 
14700 	ASSERT(MUTEX_HELD(&dtrace_lock));
14701 	ASSERT(p->p_dtrace_helpers == NULL);
14702 
14703 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14704 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14705 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14706 
14707 	p->p_dtrace_helpers = help;
14708 	dtrace_helpers++;
14709 
14710 	return (help);
14711 }
14712 
14713 static void
14714 dtrace_helpers_destroy(void)
14715 {
14716 	dtrace_helpers_t *help;
14717 	dtrace_vstate_t *vstate;
14718 	proc_t *p = curproc;
14719 	int i;
14720 
14721 	mutex_enter(&dtrace_lock);
14722 
14723 	ASSERT(p->p_dtrace_helpers != NULL);
14724 	ASSERT(dtrace_helpers > 0);
14725 
14726 	help = p->p_dtrace_helpers;
14727 	vstate = &help->dthps_vstate;
14728 
14729 	/*
14730 	 * We're now going to lose the help from this process.
14731 	 */
14732 	p->p_dtrace_helpers = NULL;
14733 	dtrace_sync();
14734 
14735 	/*
14736 	 * Destory the helper actions.
14737 	 */
14738 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14739 		dtrace_helper_action_t *h, *next;
14740 
14741 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14742 			next = h->dtha_next;
14743 			dtrace_helper_action_destroy(h, vstate);
14744 			h = next;
14745 		}
14746 	}
14747 
14748 	mutex_exit(&dtrace_lock);
14749 
14750 	/*
14751 	 * Destroy the helper providers.
14752 	 */
14753 	if (help->dthps_maxprovs > 0) {
14754 		mutex_enter(&dtrace_meta_lock);
14755 		if (dtrace_meta_pid != NULL) {
14756 			ASSERT(dtrace_deferred_pid == NULL);
14757 
14758 			for (i = 0; i < help->dthps_nprovs; i++) {
14759 				dtrace_helper_provider_remove(
14760 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14761 			}
14762 		} else {
14763 			mutex_enter(&dtrace_lock);
14764 			ASSERT(help->dthps_deferred == 0 ||
14765 			    help->dthps_next != NULL ||
14766 			    help->dthps_prev != NULL ||
14767 			    help == dtrace_deferred_pid);
14768 
14769 			/*
14770 			 * Remove the helper from the deferred list.
14771 			 */
14772 			if (help->dthps_next != NULL)
14773 				help->dthps_next->dthps_prev = help->dthps_prev;
14774 			if (help->dthps_prev != NULL)
14775 				help->dthps_prev->dthps_next = help->dthps_next;
14776 			if (dtrace_deferred_pid == help) {
14777 				dtrace_deferred_pid = help->dthps_next;
14778 				ASSERT(help->dthps_prev == NULL);
14779 			}
14780 
14781 			mutex_exit(&dtrace_lock);
14782 		}
14783 
14784 		mutex_exit(&dtrace_meta_lock);
14785 
14786 		for (i = 0; i < help->dthps_nprovs; i++) {
14787 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14788 		}
14789 
14790 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14791 		    sizeof (dtrace_helper_provider_t *));
14792 	}
14793 
14794 	mutex_enter(&dtrace_lock);
14795 
14796 	dtrace_vstate_fini(&help->dthps_vstate);
14797 	kmem_free(help->dthps_actions,
14798 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14799 	kmem_free(help, sizeof (dtrace_helpers_t));
14800 
14801 	--dtrace_helpers;
14802 	mutex_exit(&dtrace_lock);
14803 }
14804 
14805 static void
14806 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14807 {
14808 	dtrace_helpers_t *help, *newhelp;
14809 	dtrace_helper_action_t *helper, *new, *last;
14810 	dtrace_difo_t *dp;
14811 	dtrace_vstate_t *vstate;
14812 	int i, j, sz, hasprovs = 0;
14813 
14814 	mutex_enter(&dtrace_lock);
14815 	ASSERT(from->p_dtrace_helpers != NULL);
14816 	ASSERT(dtrace_helpers > 0);
14817 
14818 	help = from->p_dtrace_helpers;
14819 	newhelp = dtrace_helpers_create(to);
14820 	ASSERT(to->p_dtrace_helpers != NULL);
14821 
14822 	newhelp->dthps_generation = help->dthps_generation;
14823 	vstate = &newhelp->dthps_vstate;
14824 
14825 	/*
14826 	 * Duplicate the helper actions.
14827 	 */
14828 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14829 		if ((helper = help->dthps_actions[i]) == NULL)
14830 			continue;
14831 
14832 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14833 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14834 			    KM_SLEEP);
14835 			new->dtha_generation = helper->dtha_generation;
14836 
14837 			if ((dp = helper->dtha_predicate) != NULL) {
14838 				dp = dtrace_difo_duplicate(dp, vstate);
14839 				new->dtha_predicate = dp;
14840 			}
14841 
14842 			new->dtha_nactions = helper->dtha_nactions;
14843 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14844 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14845 
14846 			for (j = 0; j < new->dtha_nactions; j++) {
14847 				dp = helper->dtha_actions[j];
14848 
14849 				ASSERT(dp != NULL);
14850 				dp = dtrace_difo_duplicate(dp, vstate);
14851 				new->dtha_actions[j] = dp;
14852 			}
14853 
14854 			if (last != NULL) {
14855 				last->dtha_next = new;
14856 			} else {
14857 				newhelp->dthps_actions[i] = new;
14858 			}
14859 
14860 			last = new;
14861 		}
14862 	}
14863 
14864 	/*
14865 	 * Duplicate the helper providers and register them with the
14866 	 * DTrace framework.
14867 	 */
14868 	if (help->dthps_nprovs > 0) {
14869 		newhelp->dthps_nprovs = help->dthps_nprovs;
14870 		newhelp->dthps_maxprovs = help->dthps_nprovs;
14871 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14872 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14873 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14874 			newhelp->dthps_provs[i] = help->dthps_provs[i];
14875 			newhelp->dthps_provs[i]->dthp_ref++;
14876 		}
14877 
14878 		hasprovs = 1;
14879 	}
14880 
14881 	mutex_exit(&dtrace_lock);
14882 
14883 	if (hasprovs)
14884 		dtrace_helper_provider_register(to, newhelp, NULL);
14885 }
14886 
14887 /*
14888  * DTrace Hook Functions
14889  */
14890 static void
14891 dtrace_module_loaded(modctl_t *ctl)
14892 {
14893 	dtrace_provider_t *prv;
14894 
14895 	mutex_enter(&dtrace_provider_lock);
14896 	mutex_enter(&mod_lock);
14897 
14898 	ASSERT(ctl->mod_busy);
14899 
14900 	/*
14901 	 * We're going to call each providers per-module provide operation
14902 	 * specifying only this module.
14903 	 */
14904 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
14905 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
14906 
14907 	mutex_exit(&mod_lock);
14908 	mutex_exit(&dtrace_provider_lock);
14909 
14910 	/*
14911 	 * If we have any retained enablings, we need to match against them.
14912 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
14913 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
14914 	 * module.  (In particular, this happens when loading scheduling
14915 	 * classes.)  So if we have any retained enablings, we need to dispatch
14916 	 * our task queue to do the match for us.
14917 	 */
14918 	mutex_enter(&dtrace_lock);
14919 
14920 	if (dtrace_retained == NULL) {
14921 		mutex_exit(&dtrace_lock);
14922 		return;
14923 	}
14924 
14925 	(void) taskq_dispatch(dtrace_taskq,
14926 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
14927 
14928 	mutex_exit(&dtrace_lock);
14929 
14930 	/*
14931 	 * And now, for a little heuristic sleaze:  in general, we want to
14932 	 * match modules as soon as they load.  However, we cannot guarantee
14933 	 * this, because it would lead us to the lock ordering violation
14934 	 * outlined above.  The common case, of course, is that cpu_lock is
14935 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
14936 	 * long enough for the task queue to do its work.  If it's not, it's
14937 	 * not a serious problem -- it just means that the module that we
14938 	 * just loaded may not be immediately instrumentable.
14939 	 */
14940 	xdelay(1);
14941 }
14942 
14943 static void
14944 dtrace_module_unloaded(modctl_t *ctl)
14945 {
14946 	dtrace_probe_t template, *probe, *first, *next;
14947 	dtrace_provider_t *prov;
14948 
14949 	template.dtpr_mod = ctl->mod_modname;
14950 
14951 	mutex_enter(&dtrace_provider_lock);
14952 	mutex_enter(&mod_lock);
14953 	mutex_enter(&dtrace_lock);
14954 
14955 	if (dtrace_bymod == NULL) {
14956 		/*
14957 		 * The DTrace module is loaded (obviously) but not attached;
14958 		 * we don't have any work to do.
14959 		 */
14960 		mutex_exit(&dtrace_provider_lock);
14961 		mutex_exit(&mod_lock);
14962 		mutex_exit(&dtrace_lock);
14963 		return;
14964 	}
14965 
14966 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
14967 	    probe != NULL; probe = probe->dtpr_nextmod) {
14968 		if (probe->dtpr_ecb != NULL) {
14969 			mutex_exit(&dtrace_provider_lock);
14970 			mutex_exit(&mod_lock);
14971 			mutex_exit(&dtrace_lock);
14972 
14973 			/*
14974 			 * This shouldn't _actually_ be possible -- we're
14975 			 * unloading a module that has an enabled probe in it.
14976 			 * (It's normally up to the provider to make sure that
14977 			 * this can't happen.)  However, because dtps_enable()
14978 			 * doesn't have a failure mode, there can be an
14979 			 * enable/unload race.  Upshot:  we don't want to
14980 			 * assert, but we're not going to disable the
14981 			 * probe, either.
14982 			 */
14983 			if (dtrace_err_verbose) {
14984 				cmn_err(CE_WARN, "unloaded module '%s' had "
14985 				    "enabled probes", ctl->mod_modname);
14986 			}
14987 
14988 			return;
14989 		}
14990 	}
14991 
14992 	probe = first;
14993 
14994 	for (first = NULL; probe != NULL; probe = next) {
14995 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
14996 
14997 		dtrace_probes[probe->dtpr_id - 1] = NULL;
14998 
14999 		next = probe->dtpr_nextmod;
15000 		dtrace_hash_remove(dtrace_bymod, probe);
15001 		dtrace_hash_remove(dtrace_byfunc, probe);
15002 		dtrace_hash_remove(dtrace_byname, probe);
15003 
15004 		if (first == NULL) {
15005 			first = probe;
15006 			probe->dtpr_nextmod = NULL;
15007 		} else {
15008 			probe->dtpr_nextmod = first;
15009 			first = probe;
15010 		}
15011 	}
15012 
15013 	/*
15014 	 * We've removed all of the module's probes from the hash chains and
15015 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15016 	 * everyone has cleared out from any probe array processing.
15017 	 */
15018 	dtrace_sync();
15019 
15020 	for (probe = first; probe != NULL; probe = first) {
15021 		first = probe->dtpr_nextmod;
15022 		prov = probe->dtpr_provider;
15023 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15024 		    probe->dtpr_arg);
15025 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15026 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15027 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15028 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15029 		kmem_free(probe, sizeof (dtrace_probe_t));
15030 	}
15031 
15032 	mutex_exit(&dtrace_lock);
15033 	mutex_exit(&mod_lock);
15034 	mutex_exit(&dtrace_provider_lock);
15035 }
15036 
15037 static void
15038 dtrace_suspend(void)
15039 {
15040 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15041 }
15042 
15043 static void
15044 dtrace_resume(void)
15045 {
15046 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15047 }
15048 #endif
15049 
15050 static int
15051 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15052 {
15053 	ASSERT(MUTEX_HELD(&cpu_lock));
15054 	mutex_enter(&dtrace_lock);
15055 
15056 	switch (what) {
15057 	case CPU_CONFIG: {
15058 		dtrace_state_t *state;
15059 		dtrace_optval_t *opt, rs, c;
15060 
15061 		/*
15062 		 * For now, we only allocate a new buffer for anonymous state.
15063 		 */
15064 		if ((state = dtrace_anon.dta_state) == NULL)
15065 			break;
15066 
15067 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15068 			break;
15069 
15070 		opt = state->dts_options;
15071 		c = opt[DTRACEOPT_CPU];
15072 
15073 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15074 			break;
15075 
15076 		/*
15077 		 * Regardless of what the actual policy is, we're going to
15078 		 * temporarily set our resize policy to be manual.  We're
15079 		 * also going to temporarily set our CPU option to denote
15080 		 * the newly configured CPU.
15081 		 */
15082 		rs = opt[DTRACEOPT_BUFRESIZE];
15083 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15084 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15085 
15086 		(void) dtrace_state_buffers(state);
15087 
15088 		opt[DTRACEOPT_BUFRESIZE] = rs;
15089 		opt[DTRACEOPT_CPU] = c;
15090 
15091 		break;
15092 	}
15093 
15094 	case CPU_UNCONFIG:
15095 		/*
15096 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15097 		 * buffer will be freed when the consumer exits.)
15098 		 */
15099 		break;
15100 
15101 	default:
15102 		break;
15103 	}
15104 
15105 	mutex_exit(&dtrace_lock);
15106 	return (0);
15107 }
15108 
15109 #if defined(sun)
15110 static void
15111 dtrace_cpu_setup_initial(processorid_t cpu)
15112 {
15113 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15114 }
15115 #endif
15116 
15117 static void
15118 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15119 {
15120 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15121 		int osize, nsize;
15122 		dtrace_toxrange_t *range;
15123 
15124 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15125 
15126 		if (osize == 0) {
15127 			ASSERT(dtrace_toxrange == NULL);
15128 			ASSERT(dtrace_toxranges_max == 0);
15129 			dtrace_toxranges_max = 1;
15130 		} else {
15131 			dtrace_toxranges_max <<= 1;
15132 		}
15133 
15134 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15135 		range = kmem_zalloc(nsize, KM_SLEEP);
15136 
15137 		if (dtrace_toxrange != NULL) {
15138 			ASSERT(osize != 0);
15139 			bcopy(dtrace_toxrange, range, osize);
15140 			kmem_free(dtrace_toxrange, osize);
15141 		}
15142 
15143 		dtrace_toxrange = range;
15144 	}
15145 
15146 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15147 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15148 
15149 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15150 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15151 	dtrace_toxranges++;
15152 }
15153 
15154 /*
15155  * DTrace Driver Cookbook Functions
15156  */
15157 #if defined(sun)
15158 /*ARGSUSED*/
15159 static int
15160 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15161 {
15162 	dtrace_provider_id_t id;
15163 	dtrace_state_t *state = NULL;
15164 	dtrace_enabling_t *enab;
15165 
15166 	mutex_enter(&cpu_lock);
15167 	mutex_enter(&dtrace_provider_lock);
15168 	mutex_enter(&dtrace_lock);
15169 
15170 	if (ddi_soft_state_init(&dtrace_softstate,
15171 	    sizeof (dtrace_state_t), 0) != 0) {
15172 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15173 		mutex_exit(&cpu_lock);
15174 		mutex_exit(&dtrace_provider_lock);
15175 		mutex_exit(&dtrace_lock);
15176 		return (DDI_FAILURE);
15177 	}
15178 
15179 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15180 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15181 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15182 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15183 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15184 		ddi_remove_minor_node(devi, NULL);
15185 		ddi_soft_state_fini(&dtrace_softstate);
15186 		mutex_exit(&cpu_lock);
15187 		mutex_exit(&dtrace_provider_lock);
15188 		mutex_exit(&dtrace_lock);
15189 		return (DDI_FAILURE);
15190 	}
15191 
15192 	ddi_report_dev(devi);
15193 	dtrace_devi = devi;
15194 
15195 	dtrace_modload = dtrace_module_loaded;
15196 	dtrace_modunload = dtrace_module_unloaded;
15197 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15198 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15199 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15200 	dtrace_cpustart_init = dtrace_suspend;
15201 	dtrace_cpustart_fini = dtrace_resume;
15202 	dtrace_debugger_init = dtrace_suspend;
15203 	dtrace_debugger_fini = dtrace_resume;
15204 
15205 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15206 
15207 	ASSERT(MUTEX_HELD(&cpu_lock));
15208 
15209 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15210 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15211 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15212 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15213 	    VM_SLEEP | VMC_IDENTIFIER);
15214 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15215 	    1, INT_MAX, 0);
15216 
15217 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15218 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15219 	    NULL, NULL, NULL, NULL, NULL, 0);
15220 
15221 	ASSERT(MUTEX_HELD(&cpu_lock));
15222 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15223 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15224 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15225 
15226 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15227 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15228 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15229 
15230 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15231 	    offsetof(dtrace_probe_t, dtpr_nextname),
15232 	    offsetof(dtrace_probe_t, dtpr_prevname));
15233 
15234 	if (dtrace_retain_max < 1) {
15235 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15236 		    "setting to 1", dtrace_retain_max);
15237 		dtrace_retain_max = 1;
15238 	}
15239 
15240 	/*
15241 	 * Now discover our toxic ranges.
15242 	 */
15243 	dtrace_toxic_ranges(dtrace_toxrange_add);
15244 
15245 	/*
15246 	 * Before we register ourselves as a provider to our own framework,
15247 	 * we would like to assert that dtrace_provider is NULL -- but that's
15248 	 * not true if we were loaded as a dependency of a DTrace provider.
15249 	 * Once we've registered, we can assert that dtrace_provider is our
15250 	 * pseudo provider.
15251 	 */
15252 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15253 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15254 
15255 	ASSERT(dtrace_provider != NULL);
15256 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15257 
15258 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15259 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15260 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15261 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15262 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15263 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15264 
15265 	dtrace_anon_property();
15266 	mutex_exit(&cpu_lock);
15267 
15268 	/*
15269 	 * If DTrace helper tracing is enabled, we need to allocate the
15270 	 * trace buffer and initialize the values.
15271 	 */
15272 	if (dtrace_helptrace_enabled) {
15273 		ASSERT(dtrace_helptrace_buffer == NULL);
15274 		dtrace_helptrace_buffer =
15275 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15276 		dtrace_helptrace_next = 0;
15277 	}
15278 
15279 	/*
15280 	 * If there are already providers, we must ask them to provide their
15281 	 * probes, and then match any anonymous enabling against them.  Note
15282 	 * that there should be no other retained enablings at this time:
15283 	 * the only retained enablings at this time should be the anonymous
15284 	 * enabling.
15285 	 */
15286 	if (dtrace_anon.dta_enabling != NULL) {
15287 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15288 
15289 		dtrace_enabling_provide(NULL);
15290 		state = dtrace_anon.dta_state;
15291 
15292 		/*
15293 		 * We couldn't hold cpu_lock across the above call to
15294 		 * dtrace_enabling_provide(), but we must hold it to actually
15295 		 * enable the probes.  We have to drop all of our locks, pick
15296 		 * up cpu_lock, and regain our locks before matching the
15297 		 * retained anonymous enabling.
15298 		 */
15299 		mutex_exit(&dtrace_lock);
15300 		mutex_exit(&dtrace_provider_lock);
15301 
15302 		mutex_enter(&cpu_lock);
15303 		mutex_enter(&dtrace_provider_lock);
15304 		mutex_enter(&dtrace_lock);
15305 
15306 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15307 			(void) dtrace_enabling_match(enab, NULL);
15308 
15309 		mutex_exit(&cpu_lock);
15310 	}
15311 
15312 	mutex_exit(&dtrace_lock);
15313 	mutex_exit(&dtrace_provider_lock);
15314 
15315 	if (state != NULL) {
15316 		/*
15317 		 * If we created any anonymous state, set it going now.
15318 		 */
15319 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15320 	}
15321 
15322 	return (DDI_SUCCESS);
15323 }
15324 #endif
15325 
15326 #if !defined(sun)
15327 #if __FreeBSD_version >= 800039
15328 static void
15329 dtrace_dtr(void *data __unused)
15330 {
15331 }
15332 #endif
15333 #endif
15334 
15335 #if !defined(sun)
15336 static dev_type_open(dtrace_open);
15337 
15338 /* Pseudo Device Entry points */
15339 /* Just opens, clones to the fileops below */
15340 const struct cdevsw dtrace_cdevsw = {
15341 	.d_open		= dtrace_open,
15342 	.d_close	= noclose,
15343 	.d_read		= noread,
15344 	.d_write	= nowrite,
15345 	.d_ioctl	= noioctl,
15346 	.d_stop		= nostop,
15347 	.d_tty		= notty,
15348 	.d_poll		= nopoll,
15349 	.d_mmap		= nommap,
15350 	.d_kqfilter	= nokqfilter,
15351 	.d_discard	= nodiscard,
15352 	.d_flag		= D_OTHER | D_MPSAFE
15353 };
15354 
15355 static int dtrace_ioctl(struct file *fp, u_long cmd, void *data);
15356 static int dtrace_close(struct file *fp);
15357 
15358 static const struct fileops dtrace_fileops = {
15359 	.fo_read = fbadop_read,
15360 	.fo_write = fbadop_write,
15361 	.fo_ioctl = dtrace_ioctl,
15362 	.fo_fcntl = fnullop_fcntl,
15363 	.fo_poll = fnullop_poll,
15364 	.fo_stat = fbadop_stat,
15365 	.fo_close = dtrace_close,
15366 	.fo_kqfilter = fnullop_kqfilter,
15367 };
15368 #endif
15369 
15370 /*ARGSUSED*/
15371 static int
15372 #if defined(sun)
15373 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15374 #else
15375 dtrace_open(dev_t dev, int flags, int mode, struct lwp *l)
15376 #endif
15377 {
15378 	dtrace_state_t *state;
15379 	uint32_t priv;
15380 	uid_t uid;
15381 	zoneid_t zoneid;
15382 
15383 #if defined(sun)
15384 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15385 		return (0);
15386 
15387 	/*
15388 	 * If this wasn't an open with the "helper" minor, then it must be
15389 	 * the "dtrace" minor.
15390 	 */
15391 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15392 #else
15393 	cred_t *cred_p = NULL;
15394 	struct file *fp;
15395 	int fd;
15396 	int res;
15397 
15398 	if ((res = fd_allocfile(&fp, &fd)) != 0)
15399 		return res;
15400 #if 0
15401 #if __FreeBSD_version < 800039
15402 	/*
15403 	 * The first minor device is the one that is cloned so there is
15404 	 * nothing more to do here.
15405 	 */
15406 	if (dev2unit(dev) == 0)
15407 		return 0;
15408 
15409 	/*
15410 	 * Devices are cloned, so if the DTrace state has already
15411 	 * been allocated, that means this device belongs to a
15412 	 * different client. Each client should open '/dev/dtrace'
15413 	 * to get a cloned device.
15414 	 */
15415 	if (dev->si_drv1 != NULL)
15416 		return (EBUSY);
15417 #endif
15418 
15419 	cred_p = dev->si_cred;
15420 #endif
15421 	cred_p = l->l_cred;
15422 #endif
15423 
15424 	/*
15425 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15426 	 * caller lacks sufficient permission to do anything with DTrace.
15427 	 */
15428 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15429 	if (priv == DTRACE_PRIV_NONE) {
15430 		return (EACCES);
15431 	}
15432 
15433 	/*
15434 	 * Ask all providers to provide all their probes.
15435 	 */
15436 	mutex_enter(&dtrace_provider_lock);
15437 	dtrace_probe_provide(NULL, NULL);
15438 	mutex_exit(&dtrace_provider_lock);
15439 
15440 	mutex_enter(&cpu_lock);
15441 	mutex_enter(&dtrace_lock);
15442 	dtrace_opens++;
15443 	dtrace_membar_producer();
15444 
15445 #if defined(sun)
15446 	/*
15447 	 * If the kernel debugger is active (that is, if the kernel debugger
15448 	 * modified text in some way), we won't allow the open.
15449 	 */
15450 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15451 		dtrace_opens--;
15452 		mutex_exit(&cpu_lock);
15453 		mutex_exit(&dtrace_lock);
15454 		return (EBUSY);
15455 	}
15456 
15457 	state = dtrace_state_create(devp, cred_p);
15458 #else
15459 	state = dtrace_state_create(dev, cred_p);
15460 #endif
15461 
15462 	mutex_exit(&cpu_lock);
15463 
15464 	if (state == NULL) {
15465 #if defined(sun)
15466 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15467 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15468 #else
15469 		--dtrace_opens;
15470 #endif
15471 		mutex_exit(&dtrace_lock);
15472 		return (EAGAIN);
15473 	}
15474 
15475 	mutex_exit(&dtrace_lock);
15476 
15477 #if defined(sun)
15478 	return (0);
15479 #else
15480 	return fd_clone(fp, fd, flags, &dtrace_fileops, state);
15481 #endif
15482 }
15483 
15484 /*ARGSUSED*/
15485 static int
15486 #if defined(sun)
15487 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15488 #else
15489 dtrace_close(struct file *fp)
15490 #endif
15491 {
15492 #if defined(sun)
15493 	minor_t minor = getminor(dev);
15494 	dtrace_state_t *state;
15495 
15496 	if (minor == DTRACEMNRN_HELPER)
15497 		return (0);
15498 
15499 	state = ddi_get_soft_state(dtrace_softstate, minor);
15500 #else
15501 	dtrace_state_t *state = (dtrace_state_t *)fp->f_data;
15502 #endif
15503 
15504 	mutex_enter(&cpu_lock);
15505 	mutex_enter(&dtrace_lock);
15506 
15507 	if (state != NULL) {
15508 		if (state->dts_anon) {
15509 			/*
15510 			 * There is anonymous state. Destroy that first.
15511 			 */
15512 			ASSERT(dtrace_anon.dta_state == NULL);
15513 			dtrace_state_destroy(state->dts_anon);
15514 		}
15515 
15516 		dtrace_state_destroy(state);
15517 
15518 #if !defined(sun)
15519 		fp->f_data = NULL;
15520 #endif
15521 	}
15522 
15523 	ASSERT(dtrace_opens > 0);
15524 #if defined(sun)
15525 	/*
15526 	 * Only relinquish control of the kernel debugger interface when there
15527 	 * are no consumers and no anonymous enablings.
15528 	 */
15529 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15530 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15531 #else
15532 	--dtrace_opens;
15533 #endif
15534 
15535 	mutex_exit(&dtrace_lock);
15536 	mutex_exit(&cpu_lock);
15537 
15538 	return (0);
15539 }
15540 
15541 #if defined(sun)
15542 /*ARGSUSED*/
15543 static int
15544 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15545 {
15546 	int rval;
15547 	dof_helper_t help, *dhp = NULL;
15548 
15549 	switch (cmd) {
15550 	case DTRACEHIOC_ADDDOF:
15551 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15552 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15553 			return (EFAULT);
15554 		}
15555 
15556 		dhp = &help;
15557 		arg = (intptr_t)help.dofhp_dof;
15558 		/*FALLTHROUGH*/
15559 
15560 	case DTRACEHIOC_ADD: {
15561 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15562 
15563 		if (dof == NULL)
15564 			return (rval);
15565 
15566 		mutex_enter(&dtrace_lock);
15567 
15568 		/*
15569 		 * dtrace_helper_slurp() takes responsibility for the dof --
15570 		 * it may free it now or it may save it and free it later.
15571 		 */
15572 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15573 			*rv = rval;
15574 			rval = 0;
15575 		} else {
15576 			rval = EINVAL;
15577 		}
15578 
15579 		mutex_exit(&dtrace_lock);
15580 		return (rval);
15581 	}
15582 
15583 	case DTRACEHIOC_REMOVE: {
15584 		mutex_enter(&dtrace_lock);
15585 		rval = dtrace_helper_destroygen(arg);
15586 		mutex_exit(&dtrace_lock);
15587 
15588 		return (rval);
15589 	}
15590 
15591 	default:
15592 		break;
15593 	}
15594 
15595 	return (ENOTTY);
15596 }
15597 
15598 /*ARGSUSED*/
15599 static int
15600 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15601 {
15602 	minor_t minor = getminor(dev);
15603 	dtrace_state_t *state;
15604 	int rval;
15605 
15606 	if (minor == DTRACEMNRN_HELPER)
15607 		return (dtrace_ioctl_helper(cmd, arg, rv));
15608 
15609 	state = ddi_get_soft_state(dtrace_softstate, minor);
15610 
15611 	if (state->dts_anon) {
15612 		ASSERT(dtrace_anon.dta_state == NULL);
15613 		state = state->dts_anon;
15614 	}
15615 
15616 	switch (cmd) {
15617 	case DTRACEIOC_PROVIDER: {
15618 		dtrace_providerdesc_t pvd;
15619 		dtrace_provider_t *pvp;
15620 
15621 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15622 			return (EFAULT);
15623 
15624 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15625 		mutex_enter(&dtrace_provider_lock);
15626 
15627 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15628 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15629 				break;
15630 		}
15631 
15632 		mutex_exit(&dtrace_provider_lock);
15633 
15634 		if (pvp == NULL)
15635 			return (ESRCH);
15636 
15637 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15638 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15639 
15640 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15641 			return (EFAULT);
15642 
15643 		return (0);
15644 	}
15645 
15646 	case DTRACEIOC_EPROBE: {
15647 		dtrace_eprobedesc_t epdesc;
15648 		dtrace_ecb_t *ecb;
15649 		dtrace_action_t *act;
15650 		void *buf;
15651 		size_t size;
15652 		uintptr_t dest;
15653 		int nrecs;
15654 
15655 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15656 			return (EFAULT);
15657 
15658 		mutex_enter(&dtrace_lock);
15659 
15660 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15661 			mutex_exit(&dtrace_lock);
15662 			return (EINVAL);
15663 		}
15664 
15665 		if (ecb->dte_probe == NULL) {
15666 			mutex_exit(&dtrace_lock);
15667 			return (EINVAL);
15668 		}
15669 
15670 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15671 		epdesc.dtepd_uarg = ecb->dte_uarg;
15672 		epdesc.dtepd_size = ecb->dte_size;
15673 
15674 		nrecs = epdesc.dtepd_nrecs;
15675 		epdesc.dtepd_nrecs = 0;
15676 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15677 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15678 				continue;
15679 
15680 			epdesc.dtepd_nrecs++;
15681 		}
15682 
15683 		/*
15684 		 * Now that we have the size, we need to allocate a temporary
15685 		 * buffer in which to store the complete description.  We need
15686 		 * the temporary buffer to be able to drop dtrace_lock()
15687 		 * across the copyout(), below.
15688 		 */
15689 		size = sizeof (dtrace_eprobedesc_t) +
15690 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15691 
15692 		buf = kmem_alloc(size, KM_SLEEP);
15693 		dest = (uintptr_t)buf;
15694 
15695 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15696 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15697 
15698 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15699 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15700 				continue;
15701 
15702 			if (nrecs-- == 0)
15703 				break;
15704 
15705 			bcopy(&act->dta_rec, (void *)dest,
15706 			    sizeof (dtrace_recdesc_t));
15707 			dest += sizeof (dtrace_recdesc_t);
15708 		}
15709 
15710 		mutex_exit(&dtrace_lock);
15711 
15712 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15713 			kmem_free(buf, size);
15714 			return (EFAULT);
15715 		}
15716 
15717 		kmem_free(buf, size);
15718 		return (0);
15719 	}
15720 
15721 	case DTRACEIOC_AGGDESC: {
15722 		dtrace_aggdesc_t aggdesc;
15723 		dtrace_action_t *act;
15724 		dtrace_aggregation_t *agg;
15725 		int nrecs;
15726 		uint32_t offs;
15727 		dtrace_recdesc_t *lrec;
15728 		void *buf;
15729 		size_t size;
15730 		uintptr_t dest;
15731 
15732 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15733 			return (EFAULT);
15734 
15735 		mutex_enter(&dtrace_lock);
15736 
15737 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15738 			mutex_exit(&dtrace_lock);
15739 			return (EINVAL);
15740 		}
15741 
15742 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15743 
15744 		nrecs = aggdesc.dtagd_nrecs;
15745 		aggdesc.dtagd_nrecs = 0;
15746 
15747 		offs = agg->dtag_base;
15748 		lrec = &agg->dtag_action.dta_rec;
15749 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15750 
15751 		for (act = agg->dtag_first; ; act = act->dta_next) {
15752 			ASSERT(act->dta_intuple ||
15753 			    DTRACEACT_ISAGG(act->dta_kind));
15754 
15755 			/*
15756 			 * If this action has a record size of zero, it
15757 			 * denotes an argument to the aggregating action.
15758 			 * Because the presence of this record doesn't (or
15759 			 * shouldn't) affect the way the data is interpreted,
15760 			 * we don't copy it out to save user-level the
15761 			 * confusion of dealing with a zero-length record.
15762 			 */
15763 			if (act->dta_rec.dtrd_size == 0) {
15764 				ASSERT(agg->dtag_hasarg);
15765 				continue;
15766 			}
15767 
15768 			aggdesc.dtagd_nrecs++;
15769 
15770 			if (act == &agg->dtag_action)
15771 				break;
15772 		}
15773 
15774 		/*
15775 		 * Now that we have the size, we need to allocate a temporary
15776 		 * buffer in which to store the complete description.  We need
15777 		 * the temporary buffer to be able to drop dtrace_lock()
15778 		 * across the copyout(), below.
15779 		 */
15780 		size = sizeof (dtrace_aggdesc_t) +
15781 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15782 
15783 		buf = kmem_alloc(size, KM_SLEEP);
15784 		dest = (uintptr_t)buf;
15785 
15786 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15787 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15788 
15789 		for (act = agg->dtag_first; ; act = act->dta_next) {
15790 			dtrace_recdesc_t rec = act->dta_rec;
15791 
15792 			/*
15793 			 * See the comment in the above loop for why we pass
15794 			 * over zero-length records.
15795 			 */
15796 			if (rec.dtrd_size == 0) {
15797 				ASSERT(agg->dtag_hasarg);
15798 				continue;
15799 			}
15800 
15801 			if (nrecs-- == 0)
15802 				break;
15803 
15804 			rec.dtrd_offset -= offs;
15805 			bcopy(&rec, (void *)dest, sizeof (rec));
15806 			dest += sizeof (dtrace_recdesc_t);
15807 
15808 			if (act == &agg->dtag_action)
15809 				break;
15810 		}
15811 
15812 		mutex_exit(&dtrace_lock);
15813 
15814 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15815 			kmem_free(buf, size);
15816 			return (EFAULT);
15817 		}
15818 
15819 		kmem_free(buf, size);
15820 		return (0);
15821 	}
15822 
15823 	case DTRACEIOC_ENABLE: {
15824 		dof_hdr_t *dof;
15825 		dtrace_enabling_t *enab = NULL;
15826 		dtrace_vstate_t *vstate;
15827 		int err = 0;
15828 
15829 		*rv = 0;
15830 
15831 		/*
15832 		 * If a NULL argument has been passed, we take this as our
15833 		 * cue to reevaluate our enablings.
15834 		 */
15835 		if (arg == NULL) {
15836 			dtrace_enabling_matchall();
15837 
15838 			return (0);
15839 		}
15840 
15841 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15842 			return (rval);
15843 
15844 		mutex_enter(&cpu_lock);
15845 		mutex_enter(&dtrace_lock);
15846 		vstate = &state->dts_vstate;
15847 
15848 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15849 			mutex_exit(&dtrace_lock);
15850 			mutex_exit(&cpu_lock);
15851 			dtrace_dof_destroy(dof);
15852 			return (EBUSY);
15853 		}
15854 
15855 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15856 			mutex_exit(&dtrace_lock);
15857 			mutex_exit(&cpu_lock);
15858 			dtrace_dof_destroy(dof);
15859 			return (EINVAL);
15860 		}
15861 
15862 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15863 			dtrace_enabling_destroy(enab);
15864 			mutex_exit(&dtrace_lock);
15865 			mutex_exit(&cpu_lock);
15866 			dtrace_dof_destroy(dof);
15867 			return (rval);
15868 		}
15869 
15870 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15871 			err = dtrace_enabling_retain(enab);
15872 		} else {
15873 			dtrace_enabling_destroy(enab);
15874 		}
15875 
15876 		mutex_exit(&cpu_lock);
15877 		mutex_exit(&dtrace_lock);
15878 		dtrace_dof_destroy(dof);
15879 
15880 		return (err);
15881 	}
15882 
15883 	case DTRACEIOC_REPLICATE: {
15884 		dtrace_repldesc_t desc;
15885 		dtrace_probedesc_t *match = &desc.dtrpd_match;
15886 		dtrace_probedesc_t *create = &desc.dtrpd_create;
15887 		int err;
15888 
15889 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15890 			return (EFAULT);
15891 
15892 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15893 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15894 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15895 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15896 
15897 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15898 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15899 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15900 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15901 
15902 		mutex_enter(&dtrace_lock);
15903 		err = dtrace_enabling_replicate(state, match, create);
15904 		mutex_exit(&dtrace_lock);
15905 
15906 		return (err);
15907 	}
15908 
15909 	case DTRACEIOC_PROBEMATCH:
15910 	case DTRACEIOC_PROBES: {
15911 		dtrace_probe_t *probe = NULL;
15912 		dtrace_probedesc_t desc;
15913 		dtrace_probekey_t pkey;
15914 		dtrace_id_t i;
15915 		int m = 0;
15916 		uint32_t priv;
15917 		uid_t uid;
15918 		zoneid_t zoneid;
15919 
15920 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15921 			return (EFAULT);
15922 
15923 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15924 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15925 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15926 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15927 
15928 		/*
15929 		 * Before we attempt to match this probe, we want to give
15930 		 * all providers the opportunity to provide it.
15931 		 */
15932 		if (desc.dtpd_id == DTRACE_IDNONE) {
15933 			mutex_enter(&dtrace_provider_lock);
15934 			dtrace_probe_provide(&desc, NULL);
15935 			mutex_exit(&dtrace_provider_lock);
15936 			desc.dtpd_id++;
15937 		}
15938 
15939 		if (cmd == DTRACEIOC_PROBEMATCH)  {
15940 			dtrace_probekey(&desc, &pkey);
15941 			pkey.dtpk_id = DTRACE_IDNONE;
15942 		}
15943 
15944 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
15945 
15946 		mutex_enter(&dtrace_lock);
15947 
15948 		if (cmd == DTRACEIOC_PROBEMATCH) {
15949 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15950 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15951 				    (m = dtrace_match_probe(probe, &pkey,
15952 				    priv, uid, zoneid)) != 0)
15953 					break;
15954 			}
15955 
15956 			if (m < 0) {
15957 				mutex_exit(&dtrace_lock);
15958 				return (EINVAL);
15959 			}
15960 
15961 		} else {
15962 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
15963 				if ((probe = dtrace_probes[i - 1]) != NULL &&
15964 				    dtrace_match_priv(probe, priv, uid, zoneid))
15965 					break;
15966 			}
15967 		}
15968 
15969 		if (probe == NULL) {
15970 			mutex_exit(&dtrace_lock);
15971 			return (ESRCH);
15972 		}
15973 
15974 		dtrace_probe_description(probe, &desc);
15975 		mutex_exit(&dtrace_lock);
15976 
15977 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
15978 			return (EFAULT);
15979 
15980 		return (0);
15981 	}
15982 
15983 	case DTRACEIOC_PROBEARG: {
15984 		dtrace_argdesc_t desc;
15985 		dtrace_probe_t *probe;
15986 		dtrace_provider_t *prov;
15987 
15988 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15989 			return (EFAULT);
15990 
15991 		if (desc.dtargd_id == DTRACE_IDNONE)
15992 			return (EINVAL);
15993 
15994 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
15995 			return (EINVAL);
15996 
15997 		mutex_enter(&dtrace_provider_lock);
15998 		mutex_enter(&mod_lock);
15999 		mutex_enter(&dtrace_lock);
16000 
16001 		if (desc.dtargd_id > dtrace_nprobes) {
16002 			mutex_exit(&dtrace_lock);
16003 			mutex_exit(&mod_lock);
16004 			mutex_exit(&dtrace_provider_lock);
16005 			return (EINVAL);
16006 		}
16007 
16008 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16009 			mutex_exit(&dtrace_lock);
16010 			mutex_exit(&mod_lock);
16011 			mutex_exit(&dtrace_provider_lock);
16012 			return (EINVAL);
16013 		}
16014 
16015 		mutex_exit(&dtrace_lock);
16016 
16017 		prov = probe->dtpr_provider;
16018 
16019 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16020 			/*
16021 			 * There isn't any typed information for this probe.
16022 			 * Set the argument number to DTRACE_ARGNONE.
16023 			 */
16024 			desc.dtargd_ndx = DTRACE_ARGNONE;
16025 		} else {
16026 			desc.dtargd_native[0] = '\0';
16027 			desc.dtargd_xlate[0] = '\0';
16028 			desc.dtargd_mapping = desc.dtargd_ndx;
16029 
16030 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16031 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16032 		}
16033 
16034 		mutex_exit(&mod_lock);
16035 		mutex_exit(&dtrace_provider_lock);
16036 
16037 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16038 			return (EFAULT);
16039 
16040 		return (0);
16041 	}
16042 
16043 	case DTRACEIOC_GO: {
16044 		processorid_t cpuid;
16045 		rval = dtrace_state_go(state, &cpuid);
16046 
16047 		if (rval != 0)
16048 			return (rval);
16049 
16050 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16051 			return (EFAULT);
16052 
16053 		return (0);
16054 	}
16055 
16056 	case DTRACEIOC_STOP: {
16057 		processorid_t cpuid;
16058 
16059 		mutex_enter(&dtrace_lock);
16060 		rval = dtrace_state_stop(state, &cpuid);
16061 		mutex_exit(&dtrace_lock);
16062 
16063 		if (rval != 0)
16064 			return (rval);
16065 
16066 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16067 			return (EFAULT);
16068 
16069 		return (0);
16070 	}
16071 
16072 	case DTRACEIOC_DOFGET: {
16073 		dof_hdr_t hdr, *dof;
16074 		uint64_t len;
16075 
16076 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16077 			return (EFAULT);
16078 
16079 		mutex_enter(&dtrace_lock);
16080 		dof = dtrace_dof_create(state);
16081 		mutex_exit(&dtrace_lock);
16082 
16083 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16084 		rval = copyout(dof, (void *)arg, len);
16085 		dtrace_dof_destroy(dof);
16086 
16087 		return (rval == 0 ? 0 : EFAULT);
16088 	}
16089 
16090 	case DTRACEIOC_AGGSNAP:
16091 	case DTRACEIOC_BUFSNAP: {
16092 		dtrace_bufdesc_t desc;
16093 		caddr_t cached;
16094 		dtrace_buffer_t *buf;
16095 
16096 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16097 			return (EFAULT);
16098 
16099 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16100 			return (EINVAL);
16101 
16102 		mutex_enter(&dtrace_lock);
16103 
16104 		if (cmd == DTRACEIOC_BUFSNAP) {
16105 			buf = &state->dts_buffer[desc.dtbd_cpu];
16106 		} else {
16107 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16108 		}
16109 
16110 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16111 			size_t sz = buf->dtb_offset;
16112 
16113 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16114 				mutex_exit(&dtrace_lock);
16115 				return (EBUSY);
16116 			}
16117 
16118 			/*
16119 			 * If this buffer has already been consumed, we're
16120 			 * going to indicate that there's nothing left here
16121 			 * to consume.
16122 			 */
16123 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16124 				mutex_exit(&dtrace_lock);
16125 
16126 				desc.dtbd_size = 0;
16127 				desc.dtbd_drops = 0;
16128 				desc.dtbd_errors = 0;
16129 				desc.dtbd_oldest = 0;
16130 				sz = sizeof (desc);
16131 
16132 				if (copyout(&desc, (void *)arg, sz) != 0)
16133 					return (EFAULT);
16134 
16135 				return (0);
16136 			}
16137 
16138 			/*
16139 			 * If this is a ring buffer that has wrapped, we want
16140 			 * to copy the whole thing out.
16141 			 */
16142 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16143 				dtrace_buffer_polish(buf);
16144 				sz = buf->dtb_size;
16145 			}
16146 
16147 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16148 				mutex_exit(&dtrace_lock);
16149 				return (EFAULT);
16150 			}
16151 
16152 			desc.dtbd_size = sz;
16153 			desc.dtbd_drops = buf->dtb_drops;
16154 			desc.dtbd_errors = buf->dtb_errors;
16155 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16156 
16157 			mutex_exit(&dtrace_lock);
16158 
16159 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16160 				return (EFAULT);
16161 
16162 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16163 
16164 			return (0);
16165 		}
16166 
16167 		if (buf->dtb_tomax == NULL) {
16168 			ASSERT(buf->dtb_xamot == NULL);
16169 			mutex_exit(&dtrace_lock);
16170 			return (ENOENT);
16171 		}
16172 
16173 		cached = buf->dtb_tomax;
16174 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16175 
16176 		dtrace_xcall(desc.dtbd_cpu,
16177 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16178 
16179 		state->dts_errors += buf->dtb_xamot_errors;
16180 
16181 		/*
16182 		 * If the buffers did not actually switch, then the cross call
16183 		 * did not take place -- presumably because the given CPU is
16184 		 * not in the ready set.  If this is the case, we'll return
16185 		 * ENOENT.
16186 		 */
16187 		if (buf->dtb_tomax == cached) {
16188 			ASSERT(buf->dtb_xamot != cached);
16189 			mutex_exit(&dtrace_lock);
16190 			return (ENOENT);
16191 		}
16192 
16193 		ASSERT(cached == buf->dtb_xamot);
16194 
16195 		/*
16196 		 * We have our snapshot; now copy it out.
16197 		 */
16198 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16199 		    buf->dtb_xamot_offset) != 0) {
16200 			mutex_exit(&dtrace_lock);
16201 			return (EFAULT);
16202 		}
16203 
16204 		desc.dtbd_size = buf->dtb_xamot_offset;
16205 		desc.dtbd_drops = buf->dtb_xamot_drops;
16206 		desc.dtbd_errors = buf->dtb_xamot_errors;
16207 		desc.dtbd_oldest = 0;
16208 
16209 		mutex_exit(&dtrace_lock);
16210 
16211 		/*
16212 		 * Finally, copy out the buffer description.
16213 		 */
16214 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16215 			return (EFAULT);
16216 
16217 		return (0);
16218 	}
16219 
16220 	case DTRACEIOC_CONF: {
16221 		dtrace_conf_t conf;
16222 
16223 		bzero(&conf, sizeof (conf));
16224 		conf.dtc_difversion = DIF_VERSION;
16225 		conf.dtc_difintregs = DIF_DIR_NREGS;
16226 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16227 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16228 
16229 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16230 			return (EFAULT);
16231 
16232 		return (0);
16233 	}
16234 
16235 	case DTRACEIOC_STATUS: {
16236 		dtrace_status_t stat;
16237 		dtrace_dstate_t *dstate;
16238 		int i, j;
16239 		uint64_t nerrs;
16240 
16241 		/*
16242 		 * See the comment in dtrace_state_deadman() for the reason
16243 		 * for setting dts_laststatus to INT64_MAX before setting
16244 		 * it to the correct value.
16245 		 */
16246 		state->dts_laststatus = INT64_MAX;
16247 		dtrace_membar_producer();
16248 		state->dts_laststatus = dtrace_gethrtime();
16249 
16250 		bzero(&stat, sizeof (stat));
16251 
16252 		mutex_enter(&dtrace_lock);
16253 
16254 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16255 			mutex_exit(&dtrace_lock);
16256 			return (ENOENT);
16257 		}
16258 
16259 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16260 			stat.dtst_exiting = 1;
16261 
16262 		nerrs = state->dts_errors;
16263 		dstate = &state->dts_vstate.dtvs_dynvars;
16264 
16265 		for (i = 0; i < NCPU; i++) {
16266 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16267 
16268 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16269 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16270 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16271 
16272 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16273 				stat.dtst_filled++;
16274 
16275 			nerrs += state->dts_buffer[i].dtb_errors;
16276 
16277 			for (j = 0; j < state->dts_nspeculations; j++) {
16278 				dtrace_speculation_t *spec;
16279 				dtrace_buffer_t *buf;
16280 
16281 				spec = &state->dts_speculations[j];
16282 				buf = &spec->dtsp_buffer[i];
16283 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16284 			}
16285 		}
16286 
16287 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16288 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16289 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16290 		stat.dtst_dblerrors = state->dts_dblerrors;
16291 		stat.dtst_killed =
16292 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16293 		stat.dtst_errors = nerrs;
16294 
16295 		mutex_exit(&dtrace_lock);
16296 
16297 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16298 			return (EFAULT);
16299 
16300 		return (0);
16301 	}
16302 
16303 	case DTRACEIOC_FORMAT: {
16304 		dtrace_fmtdesc_t fmt;
16305 		char *str;
16306 		int len;
16307 
16308 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16309 			return (EFAULT);
16310 
16311 		mutex_enter(&dtrace_lock);
16312 
16313 		if (fmt.dtfd_format == 0 ||
16314 		    fmt.dtfd_format > state->dts_nformats) {
16315 			mutex_exit(&dtrace_lock);
16316 			return (EINVAL);
16317 		}
16318 
16319 		/*
16320 		 * Format strings are allocated contiguously and they are
16321 		 * never freed; if a format index is less than the number
16322 		 * of formats, we can assert that the format map is non-NULL
16323 		 * and that the format for the specified index is non-NULL.
16324 		 */
16325 		ASSERT(state->dts_formats != NULL);
16326 		str = state->dts_formats[fmt.dtfd_format - 1];
16327 		ASSERT(str != NULL);
16328 
16329 		len = strlen(str) + 1;
16330 
16331 		if (len > fmt.dtfd_length) {
16332 			fmt.dtfd_length = len;
16333 
16334 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16335 				mutex_exit(&dtrace_lock);
16336 				return (EINVAL);
16337 			}
16338 		} else {
16339 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16340 				mutex_exit(&dtrace_lock);
16341 				return (EINVAL);
16342 			}
16343 		}
16344 
16345 		mutex_exit(&dtrace_lock);
16346 		return (0);
16347 	}
16348 
16349 	default:
16350 		break;
16351 	}
16352 
16353 	return (ENOTTY);
16354 }
16355 
16356 /*ARGSUSED*/
16357 static int
16358 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16359 {
16360 	dtrace_state_t *state;
16361 
16362 	switch (cmd) {
16363 	case DDI_DETACH:
16364 		break;
16365 
16366 	case DDI_SUSPEND:
16367 		return (DDI_SUCCESS);
16368 
16369 	default:
16370 		return (DDI_FAILURE);
16371 	}
16372 
16373 	mutex_enter(&cpu_lock);
16374 	mutex_enter(&dtrace_provider_lock);
16375 	mutex_enter(&dtrace_lock);
16376 
16377 	ASSERT(dtrace_opens == 0);
16378 
16379 	if (dtrace_helpers > 0) {
16380 		mutex_exit(&dtrace_provider_lock);
16381 		mutex_exit(&dtrace_lock);
16382 		mutex_exit(&cpu_lock);
16383 		return (DDI_FAILURE);
16384 	}
16385 
16386 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16387 		mutex_exit(&dtrace_provider_lock);
16388 		mutex_exit(&dtrace_lock);
16389 		mutex_exit(&cpu_lock);
16390 		return (DDI_FAILURE);
16391 	}
16392 
16393 	dtrace_provider = NULL;
16394 
16395 	if ((state = dtrace_anon_grab()) != NULL) {
16396 		/*
16397 		 * If there were ECBs on this state, the provider should
16398 		 * have not been allowed to detach; assert that there is
16399 		 * none.
16400 		 */
16401 		ASSERT(state->dts_necbs == 0);
16402 		dtrace_state_destroy(state);
16403 
16404 		/*
16405 		 * If we're being detached with anonymous state, we need to
16406 		 * indicate to the kernel debugger that DTrace is now inactive.
16407 		 */
16408 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16409 	}
16410 
16411 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16412 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16413 	dtrace_cpu_init = NULL;
16414 	dtrace_helpers_cleanup = NULL;
16415 	dtrace_helpers_fork = NULL;
16416 	dtrace_cpustart_init = NULL;
16417 	dtrace_cpustart_fini = NULL;
16418 	dtrace_debugger_init = NULL;
16419 	dtrace_debugger_fini = NULL;
16420 	dtrace_modload = NULL;
16421 	dtrace_modunload = NULL;
16422 
16423 	mutex_exit(&cpu_lock);
16424 
16425 	if (dtrace_helptrace_enabled) {
16426 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16427 		dtrace_helptrace_buffer = NULL;
16428 	}
16429 
16430 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16431 	dtrace_probes = NULL;
16432 	dtrace_nprobes = 0;
16433 
16434 	dtrace_hash_destroy(dtrace_bymod);
16435 	dtrace_hash_destroy(dtrace_byfunc);
16436 	dtrace_hash_destroy(dtrace_byname);
16437 	dtrace_bymod = NULL;
16438 	dtrace_byfunc = NULL;
16439 	dtrace_byname = NULL;
16440 
16441 	kmem_cache_destroy(dtrace_state_cache);
16442 	vmem_destroy(dtrace_minor);
16443 	vmem_destroy(dtrace_arena);
16444 
16445 	if (dtrace_toxrange != NULL) {
16446 		kmem_free(dtrace_toxrange,
16447 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16448 		dtrace_toxrange = NULL;
16449 		dtrace_toxranges = 0;
16450 		dtrace_toxranges_max = 0;
16451 	}
16452 
16453 	ddi_remove_minor_node(dtrace_devi, NULL);
16454 	dtrace_devi = NULL;
16455 
16456 	ddi_soft_state_fini(&dtrace_softstate);
16457 
16458 	ASSERT(dtrace_vtime_references == 0);
16459 	ASSERT(dtrace_opens == 0);
16460 	ASSERT(dtrace_retained == NULL);
16461 
16462 	mutex_exit(&dtrace_lock);
16463 	mutex_exit(&dtrace_provider_lock);
16464 
16465 	/*
16466 	 * We don't destroy the task queue until after we have dropped our
16467 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16468 	 * attempting to do work after we have effectively detached but before
16469 	 * the task queue has been destroyed, all tasks dispatched via the
16470 	 * task queue must check that DTrace is still attached before
16471 	 * performing any operation.
16472 	 */
16473 	taskq_destroy(dtrace_taskq);
16474 	dtrace_taskq = NULL;
16475 
16476 	return (DDI_SUCCESS);
16477 }
16478 #endif
16479 
16480 #if defined(sun)
16481 /*ARGSUSED*/
16482 static int
16483 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16484 {
16485 	int error;
16486 
16487 	switch (infocmd) {
16488 	case DDI_INFO_DEVT2DEVINFO:
16489 		*result = (void *)dtrace_devi;
16490 		error = DDI_SUCCESS;
16491 		break;
16492 	case DDI_INFO_DEVT2INSTANCE:
16493 		*result = (void *)0;
16494 		error = DDI_SUCCESS;
16495 		break;
16496 	default:
16497 		error = DDI_FAILURE;
16498 	}
16499 	return (error);
16500 }
16501 #endif
16502 
16503 #if defined(sun)
16504 static struct cb_ops dtrace_cb_ops = {
16505 	dtrace_open,		/* open */
16506 	dtrace_close,		/* close */
16507 	nulldev,		/* strategy */
16508 	nulldev,		/* print */
16509 	nodev,			/* dump */
16510 	nodev,			/* read */
16511 	nodev,			/* write */
16512 	dtrace_ioctl,		/* ioctl */
16513 	nodev,			/* devmap */
16514 	nodev,			/* mmap */
16515 	nodev,			/* segmap */
16516 	nochpoll,		/* poll */
16517 	ddi_prop_op,		/* cb_prop_op */
16518 	0,			/* streamtab  */
16519 	D_NEW | D_MP		/* Driver compatibility flag */
16520 };
16521 
16522 static struct dev_ops dtrace_ops = {
16523 	DEVO_REV,		/* devo_rev */
16524 	0,			/* refcnt */
16525 	dtrace_info,		/* get_dev_info */
16526 	nulldev,		/* identify */
16527 	nulldev,		/* probe */
16528 	dtrace_attach,		/* attach */
16529 	dtrace_detach,		/* detach */
16530 	nodev,			/* reset */
16531 	&dtrace_cb_ops,		/* driver operations */
16532 	NULL,			/* bus operations */
16533 	nodev			/* dev power */
16534 };
16535 
16536 static struct modldrv modldrv = {
16537 	&mod_driverops,		/* module type (this is a pseudo driver) */
16538 	"Dynamic Tracing",	/* name of module */
16539 	&dtrace_ops,		/* driver ops */
16540 };
16541 
16542 static struct modlinkage modlinkage = {
16543 	MODREV_1,
16544 	(void *)&modldrv,
16545 	NULL
16546 };
16547 
16548 int
16549 _init(void)
16550 {
16551 	return (mod_install(&modlinkage));
16552 }
16553 
16554 int
16555 _info(struct modinfo *modinfop)
16556 {
16557 	return (mod_info(&modlinkage, modinfop));
16558 }
16559 
16560 int
16561 _fini(void)
16562 {
16563 	return (mod_remove(&modlinkage));
16564 }
16565 #else
16566 
16567 #if 0
16568 static d_ioctl_t	dtrace_ioctl;
16569 static void		dtrace_load(void *);
16570 static int		dtrace_unload(void);
16571 #if __FreeBSD_version < 800039
16572 static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16573 static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16574 static eventhandler_tag	eh_tag;			/* Event handler tag. */
16575 #else
16576 static struct cdev	*dtrace_dev;
16577 #endif
16578 
16579 void dtrace_invop_init(void);
16580 void dtrace_invop_uninit(void);
16581 
16582 static struct cdevsw dtrace_cdevsw = {
16583 	.d_version	= D_VERSION,
16584 	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16585 	.d_close	= dtrace_close,
16586 	.d_ioctl	= dtrace_ioctl,
16587 	.d_open		= dtrace_open,
16588 	.d_name		= "dtrace",
16589 };
16590 #endif
16591 void dtrace_invop_init(void);
16592 void dtrace_invop_uninit(void);
16593 
16594 static void		dtrace_load(void *);
16595 static int		dtrace_unload(void);
16596 
16597 #include <dtrace_anon.c>
16598 #include <dtrace_ioctl.c>
16599 #include <dtrace_load.c>
16600 #include <dtrace_modevent.c>
16601 #include <dtrace_sysctl.c>
16602 #include <dtrace_unload.c>
16603 #include <dtrace_vtime.c>
16604 #include <dtrace_hacks.c>
16605 #if defined(__i386__) || defined(__x86_64__) || defined(__arm__)
16606 #include <dtrace_isa.c>
16607 #endif
16608 
16609 MODULE(MODULE_CLASS_DRIVER, dtrace, "solaris");
16610 
16611 #if 0
16612 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16613 MODULE_VERSION(dtrace, 1);
16614 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16615 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16616 #endif
16617 #endif
16618 
16619 #if !defined(sun)
16620 #undef mutex_init
16621 
16622 struct dtrace_state_worker {
16623 	kmutex_t lock;
16624 	kcondvar_t cv;
16625 	void (*fn)(dtrace_state_t *);
16626 	dtrace_state_t *state;
16627 	int interval;
16628 	lwp_t *lwp;
16629 	bool exiting;
16630 };
16631 
16632 static void
16633 dtrace_state_worker_thread(void *vp)
16634 {
16635 	struct dtrace_state_worker *w = vp;
16636 
16637 	mutex_enter(&w->lock);
16638 	while (!w->exiting) {
16639 		int error;
16640 
16641 		error = cv_timedwait(&w->cv, &w->lock, w->interval);
16642 		if (error == EWOULDBLOCK) {
16643 			mutex_exit(&w->lock);
16644 			w->fn(w->state);
16645 			mutex_enter(&w->lock);
16646 		}
16647 	}
16648 	mutex_exit(&w->lock);
16649 	kthread_exit(0);
16650 }
16651 
16652 struct dtrace_state_worker *
16653 dtrace_state_worker_add(void (*fn)(dtrace_state_t *), dtrace_state_t *state,
16654     hrtime_t interval)
16655 {
16656 	struct dtrace_state_worker *w;
16657 	int error __diagused;
16658 
16659 	w = kmem_alloc(sizeof(*w), KM_SLEEP);
16660 	mutex_init(&w->lock, MUTEX_DEFAULT, IPL_NONE);
16661 	cv_init(&w->cv, "dtrace");
16662 	w->interval = ((uintmax_t)hz * interval) / NANOSEC,
16663 	w->fn = fn;
16664 	w->state = state;
16665 	w->exiting = false;
16666 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_MUSTJOIN, NULL,
16667 	    dtrace_state_worker_thread, w, &w->lwp, "dtrace-state-worker");
16668 	KASSERT(error == 0); /* XXX */
16669 	return w;
16670 }
16671 
16672 void
16673 dtrace_state_worker_remove(struct dtrace_state_worker *w)
16674 {
16675 	int error __diagused;
16676 
16677 	KASSERT(!w->exiting);
16678 	mutex_enter(&w->lock);
16679 	w->exiting = true;
16680 	cv_signal(&w->cv);
16681 	mutex_exit(&w->lock);
16682 	error = kthread_join(w->lwp);
16683 	KASSERT(error == 0);
16684 	cv_destroy(&w->cv);
16685 	mutex_destroy(&w->lock);
16686 	kmem_free(w, sizeof(*w));
16687 }
16688 #endif
16689