1 /* $NetBSD: if_ti.c,v 1.99 2016/07/14 04:15:27 msaitoh Exp $ */
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *	FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
35  */
36 
37 /*
38  * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39  * Manuals, sample driver and firmware source kits are available
40  * from http://www.alteon.com/support/openkits.
41  *
42  * Written by Bill Paul <wpaul@ctr.columbia.edu>
43  * Electrical Engineering Department
44  * Columbia University, New York City
45  */
46 
47 /*
48  * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49  * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50  * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51  * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52  * filtering and jumbo (9014 byte) frames. The hardware is largely
53  * controlled by firmware, which must be loaded into the NIC during
54  * initialization.
55  *
56  * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57  * revision, which supports new features such as extended commands,
58  * extended jumbo receive ring desciptors and a mini receive ring.
59  *
60  * Alteon Networks is to be commended for releasing such a vast amount
61  * of development material for the Tigon NIC without requiring an NDA
62  * (although they really should have done it a long time ago). With
63  * any luck, the other vendors will finally wise up and follow Alteon's
64  * stellar example.
65  *
66  * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67  * this driver by #including it as a C header file. This bloats the
68  * driver somewhat, but it's the easiest method considering that the
69  * driver code and firmware code need to be kept in sync. The source
70  * for the firmware is not provided with the FreeBSD distribution since
71  * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72  *
73  * The following people deserve special thanks:
74  * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75  *   for testing
76  * - Raymond Lee of Netgear, for providing a pair of Netgear
77  *   GA620 Tigon 2 boards for testing
78  * - Ulf Zimmermann, for bringing the GA620 to my attention and
79  *   convincing me to write this driver.
80  * - Andrew Gallatin for providing FreeBSD/Alpha support.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.99 2016/07/14 04:15:27 msaitoh Exp $");
85 
86 #include "opt_inet.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/queue.h>
96 #include <sys/device.h>
97 #include <sys/reboot.h>
98 
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/if_ether.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 
105 #include <net/bpf.h>
106 
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/ip.h>
112 #endif
113 
114 
115 #include <sys/bus.h>
116 
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 #include <dev/pci/pcidevs.h>
120 
121 #include <dev/pci/if_tireg.h>
122 
123 #include <dev/microcode/tigon/ti_fw.h>
124 #include <dev/microcode/tigon/ti_fw2.h>
125 
126 /*
127  * Various supported device vendors/types and their names.
128  */
129 
130 static const struct ti_type ti_devs[] = {
131 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC,
132 		"Alteon AceNIC 1000BASE-SX Ethernet" },
133 	{ PCI_VENDOR_ALTEON,	PCI_PRODUCT_ALTEON_ACENIC_COPPER,
134 		"Alteon AceNIC 1000BASE-T Ethernet" },
135 	{ PCI_VENDOR_3COM,	PCI_PRODUCT_3COM_3C985,
136 		"3Com 3c985-SX Gigabit Ethernet" },
137 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
138 		"Netgear GA620 1000BASE-SX Ethernet" },
139 	{ PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
140 		"Netgear GA620 1000BASE-T Ethernet" },
141 	{ PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
142 		"Silicon Graphics Gigabit Ethernet" },
143 	{ 0, 0, NULL }
144 };
145 
146 static const struct ti_type *ti_type_match(struct pci_attach_args *);
147 static int ti_probe(device_t, cfdata_t, void *);
148 static void ti_attach(device_t, device_t, void *);
149 static bool ti_shutdown(device_t, int);
150 static void ti_txeof_tigon1(struct ti_softc *);
151 static void ti_txeof_tigon2(struct ti_softc *);
152 static void ti_rxeof(struct ti_softc *);
153 
154 static void ti_stats_update(struct ti_softc *);
155 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
156 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
157 
158 static int ti_intr(void *);
159 static void ti_start(struct ifnet *);
160 static int ti_ioctl(struct ifnet *, u_long, void *);
161 static void ti_init(void *);
162 static void ti_init2(struct ti_softc *);
163 static void ti_stop(struct ti_softc *);
164 static void ti_watchdog(struct ifnet *);
165 static int ti_ifmedia_upd(struct ifnet *);
166 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
167 
168 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
169 static u_int8_t	ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
170 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
171 
172 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
173 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
174 static void ti_setmulti(struct ti_softc *);
175 
176 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *);
177 static void ti_loadfw(struct ti_softc *);
178 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
179 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
180 static void ti_handle_events(struct ti_softc *);
181 static int ti_alloc_jumbo_mem(struct ti_softc *);
182 static void *ti_jalloc(struct ti_softc *);
183 static void ti_jfree(struct mbuf *, void *, size_t, void *);
184 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
185 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
186 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
187 static int ti_init_rx_ring_std(struct ti_softc *);
188 static void ti_free_rx_ring_std(struct ti_softc *);
189 static int ti_init_rx_ring_jumbo(struct ti_softc *);
190 static void ti_free_rx_ring_jumbo(struct ti_softc *);
191 static int ti_init_rx_ring_mini(struct ti_softc *);
192 static void ti_free_rx_ring_mini(struct ti_softc *);
193 static void ti_free_tx_ring(struct ti_softc *);
194 static int ti_init_tx_ring(struct ti_softc *);
195 
196 static int ti_64bitslot_war(struct ti_softc *);
197 static int ti_chipinit(struct ti_softc *);
198 static int ti_gibinit(struct ti_softc *);
199 
200 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
201 
202 CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc),
203     ti_probe, ti_attach, NULL, NULL);
204 
205 /*
206  * Send an instruction or address to the EEPROM, check for ACK.
207  */
208 static u_int32_t
ti_eeprom_putbyte(struct ti_softc * sc,int byte)209 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
210 {
211 	int i, ack = 0;
212 
213 	/*
214 	 * Make sure we're in TX mode.
215 	 */
216 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
217 
218 	/*
219 	 * Feed in each bit and stobe the clock.
220 	 */
221 	for (i = 0x80; i; i >>= 1) {
222 		if (byte & i) {
223 			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
224 		} else {
225 			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
226 		}
227 		DELAY(1);
228 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
229 		DELAY(1);
230 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
231 	}
232 
233 	/*
234 	 * Turn off TX mode.
235 	 */
236 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
237 
238 	/*
239 	 * Check for ack.
240 	 */
241 	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
242 	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
243 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
244 
245 	return (ack);
246 }
247 
248 /*
249  * Read a byte of data stored in the EEPROM at address 'addr.'
250  * We have to send two address bytes since the EEPROM can hold
251  * more than 256 bytes of data.
252  */
253 static u_int8_t
ti_eeprom_getbyte(struct ti_softc * sc,int addr,u_int8_t * dest)254 ti_eeprom_getbyte(struct ti_softc *sc, int addr, u_int8_t *dest)
255 {
256 	int		i;
257 	u_int8_t		byte = 0;
258 
259 	EEPROM_START();
260 
261 	/*
262 	 * Send write control code to EEPROM.
263 	 */
264 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
265 		printf("%s: failed to send write command, status: %x\n",
266 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
267 		return (1);
268 	}
269 
270 	/*
271 	 * Send first byte of address of byte we want to read.
272 	 */
273 	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
274 		printf("%s: failed to send address, status: %x\n",
275 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
276 		return (1);
277 	}
278 	/*
279 	 * Send second byte address of byte we want to read.
280 	 */
281 	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
282 		printf("%s: failed to send address, status: %x\n",
283 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
284 		return (1);
285 	}
286 
287 	EEPROM_STOP();
288 	EEPROM_START();
289 	/*
290 	 * Send read control code to EEPROM.
291 	 */
292 	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
293 		printf("%s: failed to send read command, status: %x\n",
294 		    device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
295 		return (1);
296 	}
297 
298 	/*
299 	 * Start reading bits from EEPROM.
300 	 */
301 	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
302 	for (i = 0x80; i; i >>= 1) {
303 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
304 		DELAY(1);
305 		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
306 			byte |= i;
307 		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
308 		DELAY(1);
309 	}
310 
311 	EEPROM_STOP();
312 
313 	/*
314 	 * No ACK generated for read, so just return byte.
315 	 */
316 
317 	*dest = byte;
318 
319 	return (0);
320 }
321 
322 /*
323  * Read a sequence of bytes from the EEPROM.
324  */
325 static int
ti_read_eeprom(struct ti_softc * sc,void * destv,int off,int cnt)326 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
327 {
328 	char *dest = destv;
329 	int err = 0, i;
330 	u_int8_t byte = 0;
331 
332 	for (i = 0; i < cnt; i++) {
333 		err = ti_eeprom_getbyte(sc, off + i, &byte);
334 		if (err)
335 			break;
336 		*(dest + i) = byte;
337 	}
338 
339 	return (err ? 1 : 0);
340 }
341 
342 /*
343  * NIC memory access function. Can be used to either clear a section
344  * of NIC local memory or (if tbuf is non-NULL) copy data into it.
345  */
346 static void
ti_mem(struct ti_softc * sc,u_int32_t addr,u_int32_t len,const void * xbuf)347 ti_mem(struct ti_softc *sc, u_int32_t addr, u_int32_t len, const void *xbuf)
348 {
349 	int			segptr, segsize, cnt;
350 	const void		*ptr;
351 
352 	segptr = addr;
353 	cnt = len;
354 	ptr = xbuf;
355 
356 	while (cnt) {
357 		if (cnt < TI_WINLEN)
358 			segsize = cnt;
359 		else
360 			segsize = TI_WINLEN - (segptr % TI_WINLEN);
361 		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
362 		if (xbuf == NULL) {
363 			bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
364 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
365 			    segsize / 4);
366 		} else {
367 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
368 			bus_space_write_region_stream_4(sc->ti_btag,
369 			    sc->ti_bhandle,
370 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
371 			    (const u_int32_t *)ptr, segsize / 4);
372 #else
373 			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
374 			    TI_WINDOW + (segptr & (TI_WINLEN - 1)),
375 			    (const u_int32_t *)ptr, segsize / 4);
376 #endif
377 			ptr = (const char *)ptr + segsize;
378 		}
379 		segptr += segsize;
380 		cnt -= segsize;
381 	}
382 
383 	return;
384 }
385 
386 /*
387  * Load firmware image into the NIC. Check that the firmware revision
388  * is acceptable and see if we want the firmware for the Tigon 1 or
389  * Tigon 2.
390  */
391 static void
ti_loadfw(struct ti_softc * sc)392 ti_loadfw(struct ti_softc *sc)
393 {
394 	switch (sc->ti_hwrev) {
395 	case TI_HWREV_TIGON:
396 		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
397 		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
398 		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
399 			printf("%s: firmware revision mismatch; want "
400 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
401 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
402 			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
403 			    tigonFwReleaseMinor, tigonFwReleaseFix);
404 			return;
405 		}
406 		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
407 		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
408 		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
409 		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
410 		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
411 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
412 		break;
413 	case TI_HWREV_TIGON_II:
414 		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
415 		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
416 		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
417 			printf("%s: firmware revision mismatch; want "
418 			    "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev),
419 			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
420 			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
421 			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
422 			return;
423 		}
424 		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
425 		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
426 		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
427 		    tigon2FwRodata);
428 		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
429 		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
430 		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
431 		break;
432 	default:
433 		printf("%s: can't load firmware: unknown hardware rev\n",
434 		    device_xname(sc->sc_dev));
435 		break;
436 	}
437 
438 	return;
439 }
440 
441 /*
442  * Send the NIC a command via the command ring.
443  */
444 static void
ti_cmd(struct ti_softc * sc,struct ti_cmd_desc * cmd)445 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
446 {
447 	u_int32_t		index;
448 
449 	index = sc->ti_cmd_saved_prodidx;
450 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
451 	TI_INC(index, TI_CMD_RING_CNT);
452 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
453 	sc->ti_cmd_saved_prodidx = index;
454 }
455 
456 /*
457  * Send the NIC an extended command. The 'len' parameter specifies the
458  * number of command slots to include after the initial command.
459  */
460 static void
ti_cmd_ext(struct ti_softc * sc,struct ti_cmd_desc * cmd,void * argv,int len)461 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
462 {
463 	char *arg = argv;
464 	u_int32_t		index;
465 	int		i;
466 
467 	index = sc->ti_cmd_saved_prodidx;
468 	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
469 	TI_INC(index, TI_CMD_RING_CNT);
470 	for (i = 0; i < len; i++) {
471 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
472 		    *(u_int32_t *)(&arg[i * 4]));
473 		TI_INC(index, TI_CMD_RING_CNT);
474 	}
475 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
476 	sc->ti_cmd_saved_prodidx = index;
477 }
478 
479 /*
480  * Handle events that have triggered interrupts.
481  */
482 static void
ti_handle_events(struct ti_softc * sc)483 ti_handle_events(struct ti_softc *sc)
484 {
485 	struct ti_event_desc	*e;
486 
487 	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
488 		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
489 		switch (TI_EVENT_EVENT(e)) {
490 		case TI_EV_LINKSTAT_CHANGED:
491 			sc->ti_linkstat = TI_EVENT_CODE(e);
492 			if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
493 				printf("%s: 10/100 link up\n",
494 				       device_xname(sc->sc_dev));
495 			else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
496 				printf("%s: gigabit link up\n",
497 				       device_xname(sc->sc_dev));
498 			else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
499 				printf("%s: link down\n",
500 				       device_xname(sc->sc_dev));
501 			break;
502 		case TI_EV_ERROR:
503 			if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
504 				printf("%s: invalid command\n",
505 				       device_xname(sc->sc_dev));
506 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
507 				printf("%s: unknown command\n",
508 				       device_xname(sc->sc_dev));
509 			else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
510 				printf("%s: bad config data\n",
511 				       device_xname(sc->sc_dev));
512 			break;
513 		case TI_EV_FIRMWARE_UP:
514 			ti_init2(sc);
515 			break;
516 		case TI_EV_STATS_UPDATED:
517 			ti_stats_update(sc);
518 			break;
519 		case TI_EV_RESET_JUMBO_RING:
520 		case TI_EV_MCAST_UPDATED:
521 			/* Who cares. */
522 			break;
523 		default:
524 			printf("%s: unknown event: %d\n",
525 			    device_xname(sc->sc_dev), TI_EVENT_EVENT(e));
526 			break;
527 		}
528 		/* Advance the consumer index. */
529 		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
530 		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
531 	}
532 
533 	return;
534 }
535 
536 /*
537  * Memory management for the jumbo receive ring is a pain in the
538  * butt. We need to allocate at least 9018 bytes of space per frame,
539  * _and_ it has to be contiguous (unless you use the extended
540  * jumbo descriptor format). Using malloc() all the time won't
541  * work: malloc() allocates memory in powers of two, which means we
542  * would end up wasting a considerable amount of space by allocating
543  * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
544  * to do our own memory management.
545  *
546  * The driver needs to allocate a contiguous chunk of memory at boot
547  * time. We then chop this up ourselves into 9K pieces and use them
548  * as external mbuf storage.
549  *
550  * One issue here is how much memory to allocate. The jumbo ring has
551  * 256 slots in it, but at 9K per slot than can consume over 2MB of
552  * RAM. This is a bit much, especially considering we also need
553  * RAM for the standard ring and mini ring (on the Tigon 2). To
554  * save space, we only actually allocate enough memory for 64 slots
555  * by default, which works out to between 500 and 600K. This can
556  * be tuned by changing a #define in if_tireg.h.
557  */
558 
559 static int
ti_alloc_jumbo_mem(struct ti_softc * sc)560 ti_alloc_jumbo_mem(struct ti_softc *sc)
561 {
562 	char *ptr;
563 	int i;
564 	struct ti_jpool_entry   *entry;
565 	bus_dma_segment_t dmaseg;
566 	int error, dmanseg;
567 
568 	/* Grab a big chunk o' storage. */
569 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
570 	    TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
571 	    BUS_DMA_NOWAIT)) != 0) {
572 		aprint_error_dev(sc->sc_dev,
573 		    "can't allocate jumbo buffer, error = %d\n", error);
574 		return (error);
575 	}
576 
577 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
578 	    TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
579 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
580 		aprint_error_dev(sc->sc_dev,
581 		    "can't map jumbo buffer, error = %d\n", error);
582 		return (error);
583 	}
584 
585 	if ((error = bus_dmamap_create(sc->sc_dmat,
586 	    TI_JMEM, 1,
587 	    TI_JMEM, 0, BUS_DMA_NOWAIT,
588 	    &sc->jumbo_dmamap)) != 0) {
589 		aprint_error_dev(sc->sc_dev,
590 		    "can't create jumbo buffer DMA map, error = %d\n", error);
591 		return (error);
592 	}
593 
594 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
595 	    sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
596 	    BUS_DMA_NOWAIT)) != 0) {
597 		aprint_error_dev(sc->sc_dev,
598 		    "can't load jumbo buffer DMA map, error = %d\n", error);
599 		return (error);
600 	}
601 	sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
602 
603 	SIMPLEQ_INIT(&sc->ti_jfree_listhead);
604 	SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
605 
606 	/*
607 	 * Now divide it up into 9K pieces and save the addresses
608 	 * in an array.
609 	 */
610 	ptr = sc->ti_cdata.ti_jumbo_buf;
611 	for (i = 0; i < TI_JSLOTS; i++) {
612 		sc->ti_cdata.ti_jslots[i] = ptr;
613 		ptr += TI_JLEN;
614 		entry = malloc(sizeof(struct ti_jpool_entry),
615 			       M_DEVBUF, M_NOWAIT);
616 		if (entry == NULL) {
617 			free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
618 			sc->ti_cdata.ti_jumbo_buf = NULL;
619 			printf("%s: no memory for jumbo "
620 			    "buffer queue!\n", device_xname(sc->sc_dev));
621 			return (ENOBUFS);
622 		}
623 		entry->slot = i;
624 		SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
625 				    jpool_entries);
626 	}
627 
628 	return (0);
629 }
630 
631 /*
632  * Allocate a jumbo buffer.
633  */
634 static void *
ti_jalloc(struct ti_softc * sc)635 ti_jalloc(struct ti_softc *sc)
636 {
637 	struct ti_jpool_entry   *entry;
638 
639 	entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
640 
641 	if (entry == NULL) {
642 		printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev));
643 		return (NULL);
644 	}
645 
646 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
647 	SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
648 
649 	return (sc->ti_cdata.ti_jslots[entry->slot]);
650 }
651 
652 /*
653  * Release a jumbo buffer.
654  */
655 static void
ti_jfree(struct mbuf * m,void * tbuf,size_t size,void * arg)656 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
657 {
658 	struct ti_softc		*sc;
659 	int		        i, s;
660 	struct ti_jpool_entry   *entry;
661 
662 	/* Extract the softc struct pointer. */
663 	sc = (struct ti_softc *)arg;
664 
665 	if (sc == NULL)
666 		panic("ti_jfree: didn't get softc pointer!");
667 
668 	/* calculate the slot this buffer belongs to */
669 
670 	i = ((char *)tbuf
671 	     - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
672 
673 	if ((i < 0) || (i >= TI_JSLOTS))
674 		panic("ti_jfree: asked to free buffer that we don't manage!");
675 
676 	s = splvm();
677 	entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
678 	if (entry == NULL)
679 		panic("ti_jfree: buffer not in use!");
680 	entry->slot = i;
681 	SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
682 	SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
683 
684 	if (__predict_true(m != NULL))
685 		pool_cache_put(mb_cache, m);
686 	splx(s);
687 }
688 
689 
690 /*
691  * Intialize a standard receive ring descriptor.
692  */
693 static int
ti_newbuf_std(struct ti_softc * sc,int i,struct mbuf * m,bus_dmamap_t dmamap)694 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
695 {
696 	struct mbuf		*m_new = NULL;
697 	struct ti_rx_desc	*r;
698 	int error;
699 
700 	if (dmamap == NULL) {
701 		/* if (m) panic() */
702 
703 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
704 					       MCLBYTES, 0, BUS_DMA_NOWAIT,
705 					       &dmamap)) != 0) {
706 			aprint_error_dev(sc->sc_dev,
707 			    "can't create recv map, error = %d\n", error);
708 			return (ENOMEM);
709 		}
710 	}
711 	sc->std_dmamap[i] = dmamap;
712 
713 	if (m == NULL) {
714 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
715 		if (m_new == NULL) {
716 			aprint_error_dev(sc->sc_dev,
717 			    "mbuf allocation failed -- packet dropped!\n");
718 			return (ENOBUFS);
719 		}
720 
721 		MCLGET(m_new, M_DONTWAIT);
722 		if (!(m_new->m_flags & M_EXT)) {
723 			aprint_error_dev(sc->sc_dev,
724 			    "cluster allocation failed -- packet dropped!\n");
725 			m_freem(m_new);
726 			return (ENOBUFS);
727 		}
728 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
729 		m_adj(m_new, ETHER_ALIGN);
730 
731 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
732 				mtod(m_new, void *), m_new->m_len, NULL,
733 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
734 			aprint_error_dev(sc->sc_dev,
735 			    "can't load recv map, error = %d\n", error);
736 			m_freem(m_new);
737 			return (ENOMEM);
738 		}
739 	} else {
740 		m_new = m;
741 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
742 		m_new->m_data = m_new->m_ext.ext_buf;
743 		m_adj(m_new, ETHER_ALIGN);
744 
745 		/* reuse the dmamap */
746 	}
747 
748 	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
749 	r = &sc->ti_rdata->ti_rx_std_ring[i];
750 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
751 	r->ti_type = TI_BDTYPE_RECV_BD;
752 	r->ti_flags = 0;
753 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
754 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
755 	if (sc->ethercom.ec_if.if_capenable &
756 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
757 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
758 	r->ti_len = m_new->m_len; /* == ds_len */
759 	r->ti_idx = i;
760 
761 	return (0);
762 }
763 
764 /*
765  * Intialize a mini receive ring descriptor. This only applies to
766  * the Tigon 2.
767  */
768 static int
ti_newbuf_mini(struct ti_softc * sc,int i,struct mbuf * m,bus_dmamap_t dmamap)769 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
770 {
771 	struct mbuf		*m_new = NULL;
772 	struct ti_rx_desc	*r;
773 	int error;
774 
775 	if (dmamap == NULL) {
776 		/* if (m) panic() */
777 
778 		if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
779 					       MHLEN, 0, BUS_DMA_NOWAIT,
780 					       &dmamap)) != 0) {
781 			aprint_error_dev(sc->sc_dev,
782 			    "can't create recv map, error = %d\n", error);
783 			return (ENOMEM);
784 		}
785 	}
786 	sc->mini_dmamap[i] = dmamap;
787 
788 	if (m == NULL) {
789 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
790 		if (m_new == NULL) {
791 			aprint_error_dev(sc->sc_dev,
792 			    "mbuf allocation failed -- packet dropped!\n");
793 			return (ENOBUFS);
794 		}
795 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
796 		m_adj(m_new, ETHER_ALIGN);
797 
798 		if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
799 				mtod(m_new, void *), m_new->m_len, NULL,
800 				BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
801 			aprint_error_dev(sc->sc_dev,
802 			    "can't load recv map, error = %d\n", error);
803 			m_freem(m_new);
804 			return (ENOMEM);
805 		}
806 	} else {
807 		m_new = m;
808 		m_new->m_data = m_new->m_pktdat;
809 		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
810 		m_adj(m_new, ETHER_ALIGN);
811 
812 		/* reuse the dmamap */
813 	}
814 
815 	r = &sc->ti_rdata->ti_rx_mini_ring[i];
816 	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
817 	TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
818 	r->ti_type = TI_BDTYPE_RECV_BD;
819 	r->ti_flags = TI_BDFLAG_MINI_RING;
820 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
821 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
822 	if (sc->ethercom.ec_if.if_capenable &
823 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
824 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
825 	r->ti_len = m_new->m_len; /* == ds_len */
826 	r->ti_idx = i;
827 
828 	return (0);
829 }
830 
831 /*
832  * Initialize a jumbo receive ring descriptor. This allocates
833  * a jumbo buffer from the pool managed internally by the driver.
834  */
835 static int
ti_newbuf_jumbo(struct ti_softc * sc,int i,struct mbuf * m)836 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
837 {
838 	struct mbuf		*m_new = NULL;
839 	struct ti_rx_desc	*r;
840 
841 	if (m == NULL) {
842 		void *			tbuf = NULL;
843 
844 		/* Allocate the mbuf. */
845 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
846 		if (m_new == NULL) {
847 			aprint_error_dev(sc->sc_dev,
848 			    "mbuf allocation failed -- packet dropped!\n");
849 			return (ENOBUFS);
850 		}
851 
852 		/* Allocate the jumbo buffer */
853 		tbuf = ti_jalloc(sc);
854 		if (tbuf == NULL) {
855 			m_freem(m_new);
856 			aprint_error_dev(sc->sc_dev,
857 			    "jumbo allocation failed -- packet dropped!\n");
858 			return (ENOBUFS);
859 		}
860 
861 		/* Attach the buffer to the mbuf. */
862 		MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
863 		    M_DEVBUF, ti_jfree, sc);
864 		m_new->m_flags |= M_EXT_RW;
865 		m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
866 	} else {
867 		m_new = m;
868 		m_new->m_data = m_new->m_ext.ext_buf;
869 		m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
870 	}
871 
872 	m_adj(m_new, ETHER_ALIGN);
873 	/* Set up the descriptor. */
874 	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
875 	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
876 	TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
877 		(mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
878 	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
879 	r->ti_flags = TI_BDFLAG_JUMBO_RING;
880 	if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
881 		r->ti_flags |= TI_BDFLAG_IP_CKSUM;
882 	if (sc->ethercom.ec_if.if_capenable &
883 	    (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
884 		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
885 	r->ti_len = m_new->m_len;
886 	r->ti_idx = i;
887 
888 	return (0);
889 }
890 
891 /*
892  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
893  * that's 1MB or memory, which is a lot. For now, we fill only the first
894  * 256 ring entries and hope that our CPU is fast enough to keep up with
895  * the NIC.
896  */
897 static int
ti_init_rx_ring_std(struct ti_softc * sc)898 ti_init_rx_ring_std(struct ti_softc *sc)
899 {
900 	int		i;
901 	struct ti_cmd_desc	cmd;
902 
903 	for (i = 0; i < TI_SSLOTS; i++) {
904 		if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
905 			return (ENOBUFS);
906 	};
907 
908 	TI_UPDATE_STDPROD(sc, i - 1);
909 	sc->ti_std = i - 1;
910 
911 	return (0);
912 }
913 
914 static void
ti_free_rx_ring_std(struct ti_softc * sc)915 ti_free_rx_ring_std(struct ti_softc *sc)
916 {
917 	int		i;
918 
919 	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
920 		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
921 			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
922 			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
923 
924 			/* if (sc->std_dmamap[i] == 0) panic() */
925 			bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
926 			sc->std_dmamap[i] = 0;
927 		}
928 		memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
929 		    sizeof(struct ti_rx_desc));
930 	}
931 
932 	return;
933 }
934 
935 static int
ti_init_rx_ring_jumbo(struct ti_softc * sc)936 ti_init_rx_ring_jumbo(struct ti_softc *sc)
937 {
938 	int		i;
939 	struct ti_cmd_desc	cmd;
940 
941 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
942 		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
943 			return (ENOBUFS);
944 	};
945 
946 	TI_UPDATE_JUMBOPROD(sc, i - 1);
947 	sc->ti_jumbo = i - 1;
948 
949 	return (0);
950 }
951 
952 static void
ti_free_rx_ring_jumbo(struct ti_softc * sc)953 ti_free_rx_ring_jumbo(struct ti_softc *sc)
954 {
955 	int		i;
956 
957 	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
958 		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
959 			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
960 			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
961 		}
962 		memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
963 		    sizeof(struct ti_rx_desc));
964 	}
965 
966 	return;
967 }
968 
969 static int
ti_init_rx_ring_mini(struct ti_softc * sc)970 ti_init_rx_ring_mini(struct ti_softc *sc)
971 {
972 	int		i;
973 
974 	for (i = 0; i < TI_MSLOTS; i++) {
975 		if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
976 			return (ENOBUFS);
977 	};
978 
979 	TI_UPDATE_MINIPROD(sc, i - 1);
980 	sc->ti_mini = i - 1;
981 
982 	return (0);
983 }
984 
985 static void
ti_free_rx_ring_mini(struct ti_softc * sc)986 ti_free_rx_ring_mini(struct ti_softc *sc)
987 {
988 	int		i;
989 
990 	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
991 		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
992 			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
993 			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
994 
995 			/* if (sc->mini_dmamap[i] == 0) panic() */
996 			bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
997 			sc->mini_dmamap[i] = 0;
998 		}
999 		memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1000 		    sizeof(struct ti_rx_desc));
1001 	}
1002 
1003 	return;
1004 }
1005 
1006 static void
ti_free_tx_ring(struct ti_softc * sc)1007 ti_free_tx_ring(struct ti_softc *sc)
1008 {
1009 	int		i;
1010 	struct txdmamap_pool_entry *dma;
1011 
1012 	for (i = 0; i < TI_TX_RING_CNT; i++) {
1013 		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1014 			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1015 			sc->ti_cdata.ti_tx_chain[i] = NULL;
1016 
1017 			/* if (sc->txdma[i] == 0) panic() */
1018 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1019 					    link);
1020 			sc->txdma[i] = 0;
1021 		}
1022 		memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1023 		    sizeof(struct ti_tx_desc));
1024 	}
1025 
1026 	while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1027 		SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1028 		bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1029 		free(dma, M_DEVBUF);
1030 	}
1031 
1032 	return;
1033 }
1034 
1035 static int
ti_init_tx_ring(struct ti_softc * sc)1036 ti_init_tx_ring(struct ti_softc *sc)
1037 {
1038 	int i, error;
1039 	bus_dmamap_t dmamap;
1040 	struct txdmamap_pool_entry *dma;
1041 
1042 	sc->ti_txcnt = 0;
1043 	sc->ti_tx_saved_considx = 0;
1044 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1045 
1046 	SIMPLEQ_INIT(&sc->txdma_list);
1047 	for (i = 0; i < TI_RSLOTS; i++) {
1048 		/* I've seen mbufs with 30 fragments. */
1049 		if ((error = bus_dmamap_create(sc->sc_dmat,
1050 			    ETHER_MAX_LEN_JUMBO, 40, ETHER_MAX_LEN_JUMBO, 0,
1051 			    BUS_DMA_NOWAIT, &dmamap)) != 0) {
1052 			aprint_error_dev(sc->sc_dev,
1053 			    "can't create tx map, error = %d\n", error);
1054 			return (ENOMEM);
1055 		}
1056 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1057 		if (!dma) {
1058 			aprint_error_dev(sc->sc_dev,
1059 			    "can't alloc txdmamap_pool_entry\n");
1060 			bus_dmamap_destroy(sc->sc_dmat, dmamap);
1061 			return (ENOMEM);
1062 		}
1063 		dma->dmamap = dmamap;
1064 		SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1065 	}
1066 
1067 	return (0);
1068 }
1069 
1070 /*
1071  * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1072  * but we have to support the old way too so that Tigon 1 cards will
1073  * work.
1074  */
1075 static void
ti_add_mcast(struct ti_softc * sc,struct ether_addr * addr)1076 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1077 {
1078 	struct ti_cmd_desc	cmd;
1079 	u_int16_t		*m;
1080 	u_int32_t		ext[2] = {0, 0};
1081 
1082 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1083 
1084 	switch (sc->ti_hwrev) {
1085 	case TI_HWREV_TIGON:
1086 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1087 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1088 		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1089 		break;
1090 	case TI_HWREV_TIGON_II:
1091 		ext[0] = htons(m[0]);
1092 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1093 		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
1094 		break;
1095 	default:
1096 		printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1097 		break;
1098 	}
1099 
1100 	return;
1101 }
1102 
1103 static void
ti_del_mcast(struct ti_softc * sc,struct ether_addr * addr)1104 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1105 {
1106 	struct ti_cmd_desc	cmd;
1107 	u_int16_t		*m;
1108 	u_int32_t		ext[2] = {0, 0};
1109 
1110 	m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1111 
1112 	switch (sc->ti_hwrev) {
1113 	case TI_HWREV_TIGON:
1114 		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1115 		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1116 		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1117 		break;
1118 	case TI_HWREV_TIGON_II:
1119 		ext[0] = htons(m[0]);
1120 		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1121 		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
1122 		break;
1123 	default:
1124 		printf("%s: unknown hwrev\n", device_xname(sc->sc_dev));
1125 		break;
1126 	}
1127 
1128 	return;
1129 }
1130 
1131 /*
1132  * Configure the Tigon's multicast address filter.
1133  *
1134  * The actual multicast table management is a bit of a pain, thanks to
1135  * slight brain damage on the part of both Alteon and us. With our
1136  * multicast code, we are only alerted when the multicast address table
1137  * changes and at that point we only have the current list of addresses:
1138  * we only know the current state, not the previous state, so we don't
1139  * actually know what addresses were removed or added. The firmware has
1140  * state, but we can't get our grubby mits on it, and there is no 'delete
1141  * all multicast addresses' command. Hence, we have to maintain our own
1142  * state so we know what addresses have been programmed into the NIC at
1143  * any given time.
1144  */
1145 static void
ti_setmulti(struct ti_softc * sc)1146 ti_setmulti(struct ti_softc *sc)
1147 {
1148 	struct ifnet		*ifp;
1149 	struct ti_cmd_desc	cmd;
1150 	struct ti_mc_entry	*mc;
1151 	u_int32_t		intrs;
1152 	struct ether_multi *enm;
1153 	struct ether_multistep step;
1154 
1155 	ifp = &sc->ethercom.ec_if;
1156 
1157 	/* Disable interrupts. */
1158 	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1159 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1160 
1161 	/* First, zot all the existing filters. */
1162 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1163 		ti_del_mcast(sc, &mc->mc_addr);
1164 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1165 		free(mc, M_DEVBUF);
1166 	}
1167 
1168 	/*
1169 	 * Remember all multicast addresses so that we can delete them
1170 	 * later.  Punt if there is a range of addresses or memory shortage.
1171 	 */
1172 	ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1173 	while (enm != NULL) {
1174 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1175 		    ETHER_ADDR_LEN) != 0)
1176 			goto allmulti;
1177 		if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1178 		    M_NOWAIT)) == NULL)
1179 			goto allmulti;
1180 		memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1181 		SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1182 		ETHER_NEXT_MULTI(step, enm);
1183 	}
1184 
1185 	/* Accept only programmed multicast addresses */
1186 	ifp->if_flags &= ~IFF_ALLMULTI;
1187 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1188 
1189 	/* Now program new ones. */
1190 	SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1191 		ti_add_mcast(sc, &mc->mc_addr);
1192 
1193 	/* Re-enable interrupts. */
1194 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1195 
1196 	return;
1197 
1198 allmulti:
1199 	/* No need to keep individual multicast addresses */
1200 	while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1201 		SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1202 		free(mc, M_DEVBUF);
1203 	}
1204 
1205 	/* Accept all multicast addresses */
1206 	ifp->if_flags |= IFF_ALLMULTI;
1207 	TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1208 
1209 	/* Re-enable interrupts. */
1210 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1211 }
1212 
1213 /*
1214  * Check to see if the BIOS has configured us for a 64 bit slot when
1215  * we aren't actually in one. If we detect this condition, we can work
1216  * around it on the Tigon 2 by setting a bit in the PCI state register,
1217  * but for the Tigon 1 we must give up and abort the interface attach.
1218  */
1219 static int
ti_64bitslot_war(struct ti_softc * sc)1220 ti_64bitslot_war(struct ti_softc *sc)
1221 {
1222 	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1223 		CSR_WRITE_4(sc, 0x600, 0);
1224 		CSR_WRITE_4(sc, 0x604, 0);
1225 		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1226 		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1227 			if (sc->ti_hwrev == TI_HWREV_TIGON)
1228 				return (EINVAL);
1229 			else {
1230 				TI_SETBIT(sc, TI_PCI_STATE,
1231 				    TI_PCISTATE_32BIT_BUS);
1232 				return (0);
1233 			}
1234 		}
1235 	}
1236 
1237 	return (0);
1238 }
1239 
1240 /*
1241  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1242  * self-test results.
1243  */
1244 static int
ti_chipinit(struct ti_softc * sc)1245 ti_chipinit(struct ti_softc *sc)
1246 {
1247 	u_int32_t		cacheline;
1248 	u_int32_t		pci_writemax = 0;
1249 	u_int32_t		rev;
1250 
1251 	/* Initialize link to down state. */
1252 	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1253 
1254 	/* Set endianness before we access any non-PCI registers. */
1255 #if BYTE_ORDER == BIG_ENDIAN
1256 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1257 	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1258 #else
1259 	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1260 	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1261 #endif
1262 
1263 	/* Check the ROM failed bit to see if self-tests passed. */
1264 	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1265 		printf("%s: board self-diagnostics failed!\n",
1266 		       device_xname(sc->sc_dev));
1267 		return (ENODEV);
1268 	}
1269 
1270 	/* Halt the CPU. */
1271 	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1272 
1273 	/* Figure out the hardware revision. */
1274 	rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1275 	switch (rev) {
1276 	case TI_REV_TIGON_I:
1277 		sc->ti_hwrev = TI_HWREV_TIGON;
1278 		break;
1279 	case TI_REV_TIGON_II:
1280 		sc->ti_hwrev = TI_HWREV_TIGON_II;
1281 		break;
1282 	default:
1283 		printf("%s: unsupported chip revision 0x%x\n",
1284 		    device_xname(sc->sc_dev), rev);
1285 		return (ENODEV);
1286 	}
1287 
1288 	/* Do special setup for Tigon 2. */
1289 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1290 		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1291 		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1292 		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1293 	}
1294 
1295 	/* Set up the PCI state register. */
1296 	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1297 	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1298 		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1299 	}
1300 
1301 	/* Clear the read/write max DMA parameters. */
1302 	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1303 	    TI_PCISTATE_READ_MAXDMA));
1304 
1305 	/* Get cache line size. */
1306 	cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1307 
1308 	/*
1309 	 * If the system has set enabled the PCI memory write
1310 	 * and invalidate command in the command register, set
1311 	 * the write max parameter accordingly. This is necessary
1312 	 * to use MWI with the Tigon 2.
1313 	 */
1314 	if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1315 	    & PCI_COMMAND_INVALIDATE_ENABLE) {
1316 		switch (cacheline) {
1317 		case 1:
1318 		case 4:
1319 		case 8:
1320 		case 16:
1321 		case 32:
1322 		case 64:
1323 			break;
1324 		default:
1325 		/* Disable PCI memory write and invalidate. */
1326 			if (bootverbose)
1327 				printf("%s: cache line size %d not "
1328 				    "supported; disabling PCI MWI\n",
1329 				    device_xname(sc->sc_dev), cacheline);
1330 			CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1331 				    CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1332 				    & ~PCI_COMMAND_INVALIDATE_ENABLE);
1333 			break;
1334 		}
1335 	}
1336 
1337 #ifdef __brokenalpha__
1338 	/*
1339 	 * From the Alteon sample driver:
1340 	 * Must insure that we do not cross an 8K (bytes) boundary
1341 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1342 	 * restriction on some ALPHA platforms with early revision
1343 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1344 	 */
1345 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1346 #else
1347 	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1348 #endif
1349 
1350 	/* This sets the min dma param all the way up (0xff). */
1351 	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1352 
1353 	/* Configure DMA variables. */
1354 #if BYTE_ORDER == BIG_ENDIAN
1355 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1356 	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1357 	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1358 	    TI_OPMODE_DONT_FRAG_JUMBO);
1359 #else
1360 	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1361 	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1362 	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1363 #endif
1364 
1365 	/*
1366 	 * Only allow 1 DMA channel to be active at a time.
1367 	 * I don't think this is a good idea, but without it
1368 	 * the firmware racks up lots of nicDmaReadRingFull
1369 	 * errors.
1370 	 * Incompatible with hardware assisted checksums.
1371 	 */
1372 	if ((sc->ethercom.ec_if.if_capenable &
1373 	    (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1374 	     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1375 	     IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1376 		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1377 
1378 	/* Recommended settings from Tigon manual. */
1379 	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1380 	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1381 
1382 	if (ti_64bitslot_war(sc)) {
1383 		printf("%s: bios thinks we're in a 64 bit slot, "
1384 		    "but we aren't", device_xname(sc->sc_dev));
1385 		return (EINVAL);
1386 	}
1387 
1388 	return (0);
1389 }
1390 
1391 /*
1392  * Initialize the general information block and firmware, and
1393  * start the CPU(s) running.
1394  */
1395 static int
ti_gibinit(struct ti_softc * sc)1396 ti_gibinit(struct ti_softc *sc)
1397 {
1398 	struct ti_rcb		*rcb;
1399 	int			i;
1400 	struct ifnet		*ifp;
1401 
1402 	ifp = &sc->ethercom.ec_if;
1403 
1404 	/* Disable interrupts for now. */
1405 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1406 
1407 	/* Tell the chip where to find the general information block. */
1408 	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1409 	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1410 
1411 	/* Load the firmware into SRAM. */
1412 	ti_loadfw(sc);
1413 
1414 	/* Set up the contents of the general info and ring control blocks. */
1415 
1416 	/* Set up the event ring and producer pointer. */
1417 	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1418 
1419 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1420 	rcb->ti_flags = 0;
1421 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1422 	    TI_CDEVPRODADDR(sc);
1423 
1424 	sc->ti_ev_prodidx.ti_idx = 0;
1425 	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1426 	sc->ti_ev_saved_considx = 0;
1427 
1428 	/* Set up the command ring and producer mailbox. */
1429 	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1430 
1431 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1432 	rcb->ti_flags = 0;
1433 	rcb->ti_max_len = 0;
1434 	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1435 		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1436 	}
1437 	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1438 	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1439 	sc->ti_cmd_saved_prodidx = 0;
1440 
1441 	/*
1442 	 * Assign the address of the stats refresh buffer.
1443 	 * We re-use the current stats buffer for this to
1444 	 * conserve memory.
1445 	 */
1446 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1447 	    TI_CDSTATSADDR(sc);
1448 
1449 	/* Set up the standard receive ring. */
1450 	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1451 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1452 	rcb->ti_max_len = ETHER_MAX_LEN;
1453 	rcb->ti_flags = 0;
1454 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1455 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1456 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1457 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1458 	if (VLAN_ATTACHED(&sc->ethercom))
1459 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1460 
1461 	/* Set up the jumbo receive ring. */
1462 	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1463 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1464 	rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1465 	rcb->ti_flags = 0;
1466 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1467 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1468 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1469 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1470 	if (VLAN_ATTACHED(&sc->ethercom))
1471 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1472 
1473 	/*
1474 	 * Set up the mini ring. Only activated on the
1475 	 * Tigon 2 but the slot in the config block is
1476 	 * still there on the Tigon 1.
1477 	 */
1478 	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1479 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1480 	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1481 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1482 		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1483 	else
1484 		rcb->ti_flags = 0;
1485 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1486 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1487 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1488 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1489 	if (VLAN_ATTACHED(&sc->ethercom))
1490 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1491 
1492 	/*
1493 	 * Set up the receive return ring.
1494 	 */
1495 	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1496 	TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1497 	rcb->ti_flags = 0;
1498 	rcb->ti_max_len = TI_RETURN_RING_CNT;
1499 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1500 	    TI_CDRTNPRODADDR(sc);
1501 
1502 	/*
1503 	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1504 	 * of putting the transmit ring in the host's address space and
1505 	 * letting the chip DMA it instead of leaving the ring in the NIC's
1506 	 * memory and accessing it through the shared memory region. We
1507 	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1508 	 * so we have to revert to the shared memory scheme if we detect
1509 	 * a Tigon 1 chip.
1510 	 */
1511 	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1512 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1513 		sc->ti_tx_ring_nic =
1514 		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1515 	}
1516 	memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1517 	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1518 	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1519 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1520 		rcb->ti_flags = 0;
1521 	else
1522 		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1523 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1524 		rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1525 	/*
1526 	 * When we get the packet, there is a pseudo-header seed already
1527 	 * in the th_sum or uh_sum field.  Make sure the firmware doesn't
1528 	 * compute the pseudo-header checksum again!
1529 	 */
1530 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
1531 		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1532 		    TI_RCB_FLAG_NO_PHDR_CKSUM;
1533 	if (VLAN_ATTACHED(&sc->ethercom))
1534 		rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1535 	rcb->ti_max_len = TI_TX_RING_CNT;
1536 	if (sc->ti_hwrev == TI_HWREV_TIGON)
1537 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1538 	else
1539 		TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1540 	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1541 	    TI_CDTXCONSADDR(sc);
1542 
1543 	/*
1544 	 * We're done frobbing the General Information Block.  Sync
1545 	 * it.  Note we take care of the first stats sync here, as
1546 	 * well.
1547 	 */
1548 	TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1549 
1550 	/* Set up tuneables */
1551 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1552 	    (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1553 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1554 		    (sc->ti_rx_coal_ticks / 10));
1555 	else
1556 		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1557 	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1558 	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1559 	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1560 	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1561 	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1562 
1563 	/* Turn interrupts on. */
1564 	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1565 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1566 
1567 	/* Start CPU. */
1568 	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1569 
1570 	return (0);
1571 }
1572 
1573 /*
1574  * look for id in the device list, returning the first match
1575  */
1576 static const struct ti_type *
ti_type_match(struct pci_attach_args * pa)1577 ti_type_match(struct pci_attach_args *pa)
1578 {
1579 	const struct ti_type          *t;
1580 
1581 	t = ti_devs;
1582 	while (t->ti_name != NULL) {
1583 		if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1584 		    (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1585 			return (t);
1586 		}
1587 		t++;
1588 	}
1589 
1590 	return (NULL);
1591 }
1592 
1593 /*
1594  * Probe for a Tigon chip. Check the PCI vendor and device IDs
1595  * against our list and return its name if we find a match.
1596  */
1597 static int
ti_probe(device_t parent,cfdata_t match,void * aux)1598 ti_probe(device_t parent, cfdata_t match, void *aux)
1599 {
1600 	struct pci_attach_args *pa = aux;
1601 	const struct ti_type		*t;
1602 
1603 	t = ti_type_match(pa);
1604 
1605 	return ((t == NULL) ? 0 : 1);
1606 }
1607 
1608 static void
ti_attach(device_t parent,device_t self,void * aux)1609 ti_attach(device_t parent, device_t self, void *aux)
1610 {
1611 	u_int32_t		command;
1612 	struct ifnet		*ifp;
1613 	struct ti_softc		*sc;
1614 	u_int8_t eaddr[ETHER_ADDR_LEN];
1615 	struct pci_attach_args *pa = aux;
1616 	pci_chipset_tag_t pc = pa->pa_pc;
1617 	pci_intr_handle_t ih;
1618 	const char *intrstr = NULL;
1619 	bus_dma_segment_t dmaseg;
1620 	int error, dmanseg, nolinear;
1621 	const struct ti_type		*t;
1622 	char intrbuf[PCI_INTRSTR_LEN];
1623 
1624 	t = ti_type_match(pa);
1625 	if (t == NULL) {
1626 		aprint_error("ti_attach: were did the card go ?\n");
1627 		return;
1628 	}
1629 
1630 	aprint_normal(": %s (rev. 0x%02x)\n", t->ti_name,
1631 	    PCI_REVISION(pa->pa_class));
1632 
1633 	sc = device_private(self);
1634 	sc->sc_dev = self;
1635 
1636 	/*
1637 	 * Map control/status registers.
1638 	 */
1639 	nolinear = 0;
1640 	if (pci_mapreg_map(pa, 0x10,
1641 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1642 	    BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1643 	    NULL, NULL)) {
1644 		nolinear = 1;
1645 		if (pci_mapreg_map(pa, 0x10,
1646 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1647 		    0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1648 			aprint_error_dev(self, "can't map memory space\n");
1649 			return;
1650 		}
1651 	}
1652 	if (nolinear == 0)
1653 		sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1654 	else
1655 		sc->ti_vhandle = NULL;
1656 
1657 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1658 	command |= PCI_COMMAND_MASTER_ENABLE;
1659 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1660 
1661 	/* Allocate interrupt */
1662 	if (pci_intr_map(pa, &ih)) {
1663 		aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
1664 		return;
1665 	}
1666 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1667 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1668 	if (sc->sc_ih == NULL) {
1669 		aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
1670 		if (intrstr != NULL)
1671 			aprint_error(" at %s", intrstr);
1672 		aprint_error("\n");
1673 		return;
1674 	}
1675 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1676 
1677 	if (ti_chipinit(sc)) {
1678 		aprint_error_dev(self, "chip initialization failed\n");
1679 		goto fail2;
1680 	}
1681 
1682 	/*
1683 	 * Deal with some chip diffrences.
1684 	 */
1685 	switch (sc->ti_hwrev) {
1686 	case TI_HWREV_TIGON:
1687 		sc->sc_tx_encap = ti_encap_tigon1;
1688 		sc->sc_tx_eof = ti_txeof_tigon1;
1689 		if (nolinear == 1)
1690 			aprint_error_dev(self,
1691 			    "memory space not mapped linear\n");
1692 		break;
1693 
1694 	case TI_HWREV_TIGON_II:
1695 		sc->sc_tx_encap = ti_encap_tigon2;
1696 		sc->sc_tx_eof = ti_txeof_tigon2;
1697 		break;
1698 
1699 	default:
1700 		aprint_error_dev(self, "Unknown chip version: %d\n",
1701 		    sc->ti_hwrev);
1702 		goto fail2;
1703 	}
1704 
1705 	/* Zero out the NIC's on-board SRAM. */
1706 	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
1707 
1708 	/* Init again -- zeroing memory may have clobbered some registers. */
1709 	if (ti_chipinit(sc)) {
1710 		aprint_error_dev(self, "chip initialization failed\n");
1711 		goto fail2;
1712 	}
1713 
1714 	/*
1715 	 * Get station address from the EEPROM. Note: the manual states
1716 	 * that the MAC address is at offset 0x8c, however the data is
1717 	 * stored as two longwords (since that's how it's loaded into
1718 	 * the NIC). This means the MAC address is actually preceded
1719 	 * by two zero bytes. We need to skip over those.
1720 	 */
1721 	if (ti_read_eeprom(sc, (void *)&eaddr,
1722 				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1723 		aprint_error_dev(self, "failed to read station address\n");
1724 		goto fail2;
1725 	}
1726 
1727 	/*
1728 	 * A Tigon chip was detected. Inform the world.
1729 	 */
1730 	aprint_normal_dev(self, "Ethernet address: %s\n",ether_sprintf(eaddr));
1731 
1732 	sc->sc_dmat = pa->pa_dmat;
1733 
1734 	/* Allocate the general information block and ring buffers. */
1735 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1736 	    sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1737 	    BUS_DMA_NOWAIT)) != 0) {
1738 		aprint_error_dev(self,
1739 		    "can't allocate ring buffer, error = %d\n", error);
1740 		goto fail2;
1741 	}
1742 
1743 	if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1744 	    sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
1745 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1746 		aprint_error_dev(self,
1747 		    "can't map ring buffer, error = %d\n", error);
1748 		goto fail2;
1749 	}
1750 
1751 	if ((error = bus_dmamap_create(sc->sc_dmat,
1752 	    sizeof(struct ti_ring_data), 1,
1753 	    sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1754 	    &sc->info_dmamap)) != 0) {
1755 		aprint_error_dev(self,
1756 		    "can't create ring buffer DMA map, error = %d\n", error);
1757 		goto fail2;
1758 	}
1759 
1760 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1761 	    sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1762 	    BUS_DMA_NOWAIT)) != 0) {
1763 		aprint_error_dev(self,
1764 		    "can't load ring buffer DMA map, error = %d\n", error);
1765 		goto fail2;
1766 	}
1767 
1768 	sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1769 
1770 	memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1771 
1772 	/* Try to allocate memory for jumbo buffers. */
1773 	if (ti_alloc_jumbo_mem(sc)) {
1774 		aprint_error_dev(self, "jumbo buffer allocation failed\n");
1775 		goto fail2;
1776 	}
1777 
1778 	SIMPLEQ_INIT(&sc->ti_mc_listhead);
1779 
1780 	/*
1781 	 * We really need a better way to tell a 1000baseT card
1782 	 * from a 1000baseSX one, since in theory there could be
1783 	 * OEMed 1000baseT cards from lame vendors who aren't
1784 	 * clever enough to change the PCI ID. For the moment
1785 	 * though, the AceNIC is the only copper card available.
1786 	 */
1787 	if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1788 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1789 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1790 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1791 		sc->ti_copper = 1;
1792 	else
1793 		sc->ti_copper = 0;
1794 
1795 	/* Set default tuneable values. */
1796 	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1797 	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1798 	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1799 	sc->ti_rx_max_coal_bds = 64;
1800 	sc->ti_tx_max_coal_bds = 128;
1801 	sc->ti_tx_buf_ratio = 21;
1802 
1803 	/* Set up ifnet structure */
1804 	ifp = &sc->ethercom.ec_if;
1805 	ifp->if_softc = sc;
1806 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1807 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1808 	ifp->if_ioctl = ti_ioctl;
1809 	ifp->if_start = ti_start;
1810 	ifp->if_watchdog = ti_watchdog;
1811 	IFQ_SET_READY(&ifp->if_snd);
1812 
1813 #if 0
1814 	/*
1815 	 * XXX This is not really correct -- we don't necessarily
1816 	 * XXX want to queue up as many as we can transmit at the
1817 	 * XXX upper layer like that.  Someone with a board should
1818 	 * XXX check to see how this affects performance.
1819 	 */
1820 	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1821 #endif
1822 
1823 	/*
1824 	 * We can support 802.1Q VLAN-sized frames.
1825 	 */
1826 	sc->ethercom.ec_capabilities |=
1827 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1828 
1829 	/*
1830 	 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1831 	 */
1832 	ifp->if_capabilities |=
1833 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1834 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1835 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1836 
1837 	/* Set up ifmedia support. */
1838 	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1839 	if (sc->ti_copper) {
1840                 /*
1841                  * Copper cards allow manual 10/100 mode selection,
1842                  * but not manual 1000baseT mode selection. Why?
1843                  * Because currently there's no way to specify the
1844                  * master/slave setting through the firmware interface,
1845                  * so Alteon decided to just bag it and handle it
1846                  * via autonegotiation.
1847                  */
1848                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1849                 ifmedia_add(&sc->ifmedia,
1850                     IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1851                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1852                 ifmedia_add(&sc->ifmedia,
1853                     IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1854                 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1855                 ifmedia_add(&sc->ifmedia,
1856                     IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1857 	} else {
1858 		/* Fiber cards don't support 10/100 modes. */
1859 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1860 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1861 	}
1862 	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1863 	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1864 
1865 	/*
1866 	 * Call MI attach routines.
1867 	 */
1868 	if_attach(ifp);
1869 	ether_ifattach(ifp, eaddr);
1870 
1871 	/*
1872 	 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1873 	 * doing do could allow DMA to corrupt kernel memory during the
1874 	 * reboot before the driver initializes.
1875 	 */
1876 	if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
1877 		pmf_class_network_register(self, ifp);
1878 	else
1879 		aprint_error_dev(self, "couldn't establish power handler\n");
1880 
1881 	return;
1882 fail2:
1883 	pci_intr_disestablish(pc, sc->sc_ih);
1884 	return;
1885 }
1886 
1887 /*
1888  * Frame reception handling. This is called if there's a frame
1889  * on the receive return list.
1890  *
1891  * Note: we have to be able to handle three possibilities here:
1892  * 1) the frame is from the mini receive ring (can only happen)
1893  *    on Tigon 2 boards)
1894  * 2) the frame is from the jumbo receive ring
1895  * 3) the frame is from the standard receive ring
1896  */
1897 
1898 static void
ti_rxeof(struct ti_softc * sc)1899 ti_rxeof(struct ti_softc *sc)
1900 {
1901 	struct ifnet		*ifp;
1902 	struct ti_cmd_desc	cmd;
1903 
1904 	ifp = &sc->ethercom.ec_if;
1905 
1906 	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1907 		struct ti_rx_desc	*cur_rx;
1908 		u_int32_t		rxidx;
1909 		struct mbuf		*m = NULL;
1910 		struct ether_header	*eh;
1911 		bus_dmamap_t dmamap;
1912 
1913 		cur_rx =
1914 		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1915 		rxidx = cur_rx->ti_idx;
1916 		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1917 
1918 		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1919 			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1920 			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1921 			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1922 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1923 				ifp->if_ierrors++;
1924 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1925 				continue;
1926 			}
1927 			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1928 			    == ENOBUFS) {
1929 				ifp->if_ierrors++;
1930 				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1931 				continue;
1932 			}
1933 		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1934 			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1935 			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1936 			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1937 			dmamap = sc->mini_dmamap[rxidx];
1938 			sc->mini_dmamap[rxidx] = 0;
1939 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1940 				ifp->if_ierrors++;
1941 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1942 				continue;
1943 			}
1944 			if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1945 			    == ENOBUFS) {
1946 				ifp->if_ierrors++;
1947 				ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1948 				continue;
1949 			}
1950 		} else {
1951 			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1952 			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1953 			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1954 			dmamap = sc->std_dmamap[rxidx];
1955 			sc->std_dmamap[rxidx] = 0;
1956 			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1957 				ifp->if_ierrors++;
1958 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1959 				continue;
1960 			}
1961 			if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1962 			    == ENOBUFS) {
1963 				ifp->if_ierrors++;
1964 				ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1965 				continue;
1966 			}
1967 		}
1968 
1969 		m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1970 		ifp->if_ipackets++;
1971 		m_set_rcvif(m, ifp);
1972 
1973 		/*
1974 	 	 * Handle BPF listeners. Let the BPF user see the packet, but
1975 	 	 * don't pass it up to the ether_input() layer unless it's
1976 	 	 * a broadcast packet, multicast packet, matches our ethernet
1977 	 	 * address or the interface is in promiscuous mode.
1978 	 	 */
1979 		bpf_mtap(ifp, m);
1980 
1981 		eh = mtod(m, struct ether_header *);
1982 		switch (ntohs(eh->ether_type)) {
1983 #ifdef INET
1984 		case ETHERTYPE_IP:
1985 		    {
1986 			struct ip *ip = (struct ip *) (eh + 1);
1987 
1988 			/*
1989 			 * Note the Tigon firmware does not invert
1990 			 * the checksum for us, hence the XOR.
1991 			 */
1992 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1993 			if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
1994 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1995 			/*
1996 			 * ntohs() the constant so the compiler can
1997 			 * optimize...
1998 			 *
1999 			 * XXX Figure out a sane way to deal with
2000 			 * fragmented packets.
2001 			 */
2002 			if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2003 				switch (ip->ip_p) {
2004 				case IPPROTO_TCP:
2005 					m->m_pkthdr.csum_data =
2006 					    cur_rx->ti_tcp_udp_cksum;
2007 					m->m_pkthdr.csum_flags |=
2008 					    M_CSUM_TCPv4|M_CSUM_DATA;
2009 					break;
2010 				case IPPROTO_UDP:
2011 					m->m_pkthdr.csum_data =
2012 					    cur_rx->ti_tcp_udp_cksum;
2013 					m->m_pkthdr.csum_flags |=
2014 					    M_CSUM_UDPv4|M_CSUM_DATA;
2015 					break;
2016 				default:
2017 					/* Nothing */;
2018 				}
2019 			}
2020 			break;
2021 		    }
2022 #endif
2023 		default:
2024 			/* Nothing. */
2025 			break;
2026 		}
2027 
2028 		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2029 			VLAN_INPUT_TAG(ifp, m,
2030 			    /* ti_vlan_tag also has the priority, trim it */
2031 			    cur_rx->ti_vlan_tag & 4095,
2032 			    continue);
2033 		}
2034 
2035 		if_percpuq_enqueue(ifp->if_percpuq, m);
2036 	}
2037 
2038 	/* Only necessary on the Tigon 1. */
2039 	if (sc->ti_hwrev == TI_HWREV_TIGON)
2040 		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2041 		    sc->ti_rx_saved_considx);
2042 
2043 	TI_UPDATE_STDPROD(sc, sc->ti_std);
2044 	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2045 	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2046 }
2047 
2048 static void
ti_txeof_tigon1(struct ti_softc * sc)2049 ti_txeof_tigon1(struct ti_softc *sc)
2050 {
2051 	struct ti_tx_desc	*cur_tx = NULL;
2052 	struct ifnet		*ifp;
2053 	struct txdmamap_pool_entry *dma;
2054 
2055 	ifp = &sc->ethercom.ec_if;
2056 
2057 	/*
2058 	 * Go through our tx ring and free mbufs for those
2059 	 * frames that have been sent.
2060 	 */
2061 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2062 		u_int32_t		idx = 0;
2063 
2064 		idx = sc->ti_tx_saved_considx;
2065 		if (idx > 383)
2066 			CSR_WRITE_4(sc, TI_WINBASE,
2067 			    TI_TX_RING_BASE + 6144);
2068 		else if (idx > 255)
2069 			CSR_WRITE_4(sc, TI_WINBASE,
2070 			    TI_TX_RING_BASE + 4096);
2071 		else if (idx > 127)
2072 			CSR_WRITE_4(sc, TI_WINBASE,
2073 			    TI_TX_RING_BASE + 2048);
2074 		else
2075 			CSR_WRITE_4(sc, TI_WINBASE,
2076 			    TI_TX_RING_BASE);
2077 		cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2078 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2079 			ifp->if_opackets++;
2080 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2081 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2082 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2083 
2084 			dma = sc->txdma[idx];
2085 			KDASSERT(dma != NULL);
2086 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2087 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2088 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2089 
2090 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2091 			sc->txdma[idx] = NULL;
2092 		}
2093 		sc->ti_txcnt--;
2094 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2095 		ifp->if_timer = 0;
2096 	}
2097 
2098 	if (cur_tx != NULL)
2099 		ifp->if_flags &= ~IFF_OACTIVE;
2100 }
2101 
2102 static void
ti_txeof_tigon2(struct ti_softc * sc)2103 ti_txeof_tigon2(struct ti_softc *sc)
2104 {
2105 	struct ti_tx_desc	*cur_tx = NULL;
2106 	struct ifnet		*ifp;
2107 	struct txdmamap_pool_entry *dma;
2108 	int firstidx, cnt;
2109 
2110 	ifp = &sc->ethercom.ec_if;
2111 
2112 	/*
2113 	 * Go through our tx ring and free mbufs for those
2114 	 * frames that have been sent.
2115 	 */
2116 	firstidx = sc->ti_tx_saved_considx;
2117 	cnt = 0;
2118 	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2119 		u_int32_t		idx = 0;
2120 
2121 		idx = sc->ti_tx_saved_considx;
2122 		cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2123 		if (cur_tx->ti_flags & TI_BDFLAG_END)
2124 			ifp->if_opackets++;
2125 		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2126 			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2127 			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2128 
2129 			dma = sc->txdma[idx];
2130 			KDASSERT(dma != NULL);
2131 			bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2132 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2133 			bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2134 
2135 			SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2136 			sc->txdma[idx] = NULL;
2137 		}
2138 		cnt++;
2139 		sc->ti_txcnt--;
2140 		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2141 		ifp->if_timer = 0;
2142 	}
2143 
2144 	if (cnt != 0)
2145 		TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2146 
2147 	if (cur_tx != NULL)
2148 		ifp->if_flags &= ~IFF_OACTIVE;
2149 }
2150 
2151 static int
ti_intr(void * xsc)2152 ti_intr(void *xsc)
2153 {
2154 	struct ti_softc		*sc;
2155 	struct ifnet		*ifp;
2156 
2157 	sc = xsc;
2158 	ifp = &sc->ethercom.ec_if;
2159 
2160 #ifdef notdef
2161 	/* Avoid this for now -- checking this register is expensive. */
2162 	/* Make sure this is really our interrupt. */
2163 	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2164 		return (0);
2165 #endif
2166 
2167 	/* Ack interrupt and stop others from occuring. */
2168 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2169 
2170 	if (ifp->if_flags & IFF_RUNNING) {
2171 		/* Check RX return ring producer/consumer */
2172 		ti_rxeof(sc);
2173 
2174 		/* Check TX ring producer/consumer */
2175 		(*sc->sc_tx_eof)(sc);
2176 	}
2177 
2178 	ti_handle_events(sc);
2179 
2180 	/* Re-enable interrupts. */
2181 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2182 
2183 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2184 	    IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2185 		ti_start(ifp);
2186 
2187 	return (1);
2188 }
2189 
2190 static void
ti_stats_update(struct ti_softc * sc)2191 ti_stats_update(struct ti_softc *sc)
2192 {
2193 	struct ifnet		*ifp;
2194 
2195 	ifp = &sc->ethercom.ec_if;
2196 
2197 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2198 
2199 	ifp->if_collisions +=
2200 	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2201 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2202 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2203 	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2204 	   ifp->if_collisions;
2205 
2206 	TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2207 }
2208 
2209 /*
2210  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2211  * pointers to descriptors.
2212  */
2213 static int
ti_encap_tigon1(struct ti_softc * sc,struct mbuf * m_head,u_int32_t * txidx)2214 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2215 {
2216 	struct ti_tx_desc	*f = NULL;
2217 	u_int32_t		frag, cur, cnt = 0;
2218 	struct txdmamap_pool_entry *dma;
2219 	bus_dmamap_t dmamap;
2220 	int error, i;
2221 	struct m_tag *mtag;
2222 	u_int16_t csum_flags = 0;
2223 
2224 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2225 	if (dma == NULL) {
2226 		return ENOMEM;
2227 	}
2228 	dmamap = dma->dmamap;
2229 
2230 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2231 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2232 	if (error) {
2233 		struct mbuf *m;
2234 		int j = 0;
2235 		for (m = m_head; m; m = m->m_next)
2236 			j++;
2237 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2238 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2239 		return (ENOMEM);
2240 	}
2241 
2242 	cur = frag = *txidx;
2243 
2244 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2245 		/* IP header checksum field must be 0! */
2246 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2247 	}
2248 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2249 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2250 
2251 	/* XXX fragmented packet checksum capability? */
2252 
2253 	/*
2254  	 * Start packing the mbufs in this chain into
2255 	 * the fragment pointers. Stop when we run out
2256  	 * of fragments or hit the end of the mbuf chain.
2257 	 */
2258 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2259 		if (frag > 383)
2260 			CSR_WRITE_4(sc, TI_WINBASE,
2261 			    TI_TX_RING_BASE + 6144);
2262 		else if (frag > 255)
2263 			CSR_WRITE_4(sc, TI_WINBASE,
2264 			    TI_TX_RING_BASE + 4096);
2265 		else if (frag > 127)
2266 			CSR_WRITE_4(sc, TI_WINBASE,
2267 			    TI_TX_RING_BASE + 2048);
2268 		else
2269 			CSR_WRITE_4(sc, TI_WINBASE,
2270 			    TI_TX_RING_BASE);
2271 		f = &sc->ti_tx_ring_nic[frag % 128];
2272 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2273 			break;
2274 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2275 		f->ti_len = dmamap->dm_segs[i].ds_len;
2276 		f->ti_flags = csum_flags;
2277 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2278 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2279 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2280 		} else {
2281 			f->ti_vlan_tag = 0;
2282 		}
2283 		/*
2284 		 * Sanity check: avoid coming within 16 descriptors
2285 		 * of the end of the ring.
2286 		 */
2287 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2288 			return (ENOBUFS);
2289 		cur = frag;
2290 		TI_INC(frag, TI_TX_RING_CNT);
2291 		cnt++;
2292 	}
2293 
2294 	if (i < dmamap->dm_nsegs)
2295 		return (ENOBUFS);
2296 
2297 	if (frag == sc->ti_tx_saved_considx)
2298 		return (ENOBUFS);
2299 
2300 	sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2301 	    TI_BDFLAG_END;
2302 
2303 	/* Sync the packet's DMA map. */
2304 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2305 	    BUS_DMASYNC_PREWRITE);
2306 
2307 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2308 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2309 	sc->txdma[cur] = dma;
2310 	sc->ti_txcnt += cnt;
2311 
2312 	*txidx = frag;
2313 
2314 	return (0);
2315 }
2316 
2317 static int
ti_encap_tigon2(struct ti_softc * sc,struct mbuf * m_head,u_int32_t * txidx)2318 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2319 {
2320 	struct ti_tx_desc	*f = NULL;
2321 	u_int32_t		frag, firstfrag, cur, cnt = 0;
2322 	struct txdmamap_pool_entry *dma;
2323 	bus_dmamap_t dmamap;
2324 	int error, i;
2325 	struct m_tag *mtag;
2326 	u_int16_t csum_flags = 0;
2327 
2328 	dma = SIMPLEQ_FIRST(&sc->txdma_list);
2329 	if (dma == NULL) {
2330 		return ENOMEM;
2331 	}
2332 	dmamap = dma->dmamap;
2333 
2334 	error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2335 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2336 	if (error) {
2337 		struct mbuf *m;
2338 		int j = 0;
2339 		for (m = m_head; m; m = m->m_next)
2340 			j++;
2341 		printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2342 		       "error %d\n", m_head->m_pkthdr.len, j, error);
2343 		return (ENOMEM);
2344 	}
2345 
2346 	cur = firstfrag = frag = *txidx;
2347 
2348 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2349 		/* IP header checksum field must be 0! */
2350 		csum_flags |= TI_BDFLAG_IP_CKSUM;
2351 	}
2352 	if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2353 		csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2354 
2355 	/* XXX fragmented packet checksum capability? */
2356 
2357 	/*
2358  	 * Start packing the mbufs in this chain into
2359 	 * the fragment pointers. Stop when we run out
2360  	 * of fragments or hit the end of the mbuf chain.
2361 	 */
2362 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2363 		f = &sc->ti_rdata->ti_tx_ring[frag];
2364 		if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2365 			break;
2366 		TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2367 		f->ti_len = dmamap->dm_segs[i].ds_len;
2368 		f->ti_flags = csum_flags;
2369 		if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2370 			f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2371 			f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2372 		} else {
2373 			f->ti_vlan_tag = 0;
2374 		}
2375 		/*
2376 		 * Sanity check: avoid coming within 16 descriptors
2377 		 * of the end of the ring.
2378 		 */
2379 		if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2380 			return (ENOBUFS);
2381 		cur = frag;
2382 		TI_INC(frag, TI_TX_RING_CNT);
2383 		cnt++;
2384 	}
2385 
2386 	if (i < dmamap->dm_nsegs)
2387 		return (ENOBUFS);
2388 
2389 	if (frag == sc->ti_tx_saved_considx)
2390 		return (ENOBUFS);
2391 
2392 	sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2393 
2394 	/* Sync the packet's DMA map. */
2395 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2396 	    BUS_DMASYNC_PREWRITE);
2397 
2398 	/* Sync the descriptors we are using. */
2399 	TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2400 
2401 	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2402 	SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2403 	sc->txdma[cur] = dma;
2404 	sc->ti_txcnt += cnt;
2405 
2406 	*txidx = frag;
2407 
2408 	return (0);
2409 }
2410 
2411 /*
2412  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2413  * to the mbuf data regions directly in the transmit descriptors.
2414  */
2415 static void
ti_start(struct ifnet * ifp)2416 ti_start(struct ifnet *ifp)
2417 {
2418 	struct ti_softc		*sc;
2419 	struct mbuf		*m_head = NULL;
2420 	u_int32_t		prodidx = 0;
2421 
2422 	sc = ifp->if_softc;
2423 
2424 	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2425 
2426 	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2427 		IFQ_POLL(&ifp->if_snd, m_head);
2428 		if (m_head == NULL)
2429 			break;
2430 
2431 		/*
2432 		 * Pack the data into the transmit ring. If we
2433 		 * don't have room, set the OACTIVE flag and wait
2434 		 * for the NIC to drain the ring.
2435 		 */
2436 		if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2437 			ifp->if_flags |= IFF_OACTIVE;
2438 			break;
2439 		}
2440 
2441 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2442 
2443 		/*
2444 		 * If there's a BPF listener, bounce a copy of this frame
2445 		 * to him.
2446 		 */
2447 		bpf_mtap(ifp, m_head);
2448 	}
2449 
2450 	/* Transmit */
2451 	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2452 
2453 	/*
2454 	 * Set a timeout in case the chip goes out to lunch.
2455 	 */
2456 	ifp->if_timer = 5;
2457 }
2458 
2459 static void
ti_init(void * xsc)2460 ti_init(void *xsc)
2461 {
2462 	struct ti_softc		*sc = xsc;
2463         int			s;
2464 
2465 	s = splnet();
2466 
2467 	/* Cancel pending I/O and flush buffers. */
2468 	ti_stop(sc);
2469 
2470 	/* Init the gen info block, ring control blocks and firmware. */
2471 	if (ti_gibinit(sc)) {
2472 		aprint_error_dev(sc->sc_dev, "initialization failure\n");
2473 		splx(s);
2474 		return;
2475 	}
2476 
2477 	splx(s);
2478 }
2479 
2480 static void
ti_init2(struct ti_softc * sc)2481 ti_init2(struct ti_softc *sc)
2482 {
2483 	struct ti_cmd_desc	cmd;
2484 	struct ifnet		*ifp;
2485 	const u_int8_t		*m;
2486 	struct ifmedia		*ifm;
2487 	int			tmp;
2488 
2489 	ifp = &sc->ethercom.ec_if;
2490 
2491 	/* Specify MTU and interface index. */
2492 	CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */
2493 
2494 	tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2495 	if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2496 		tmp += ETHER_VLAN_ENCAP_LEN;
2497 	CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2498 
2499 	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2500 
2501 	/* Load our MAC address. */
2502 	m = (const u_int8_t *)CLLADDR(ifp->if_sadl);
2503 	CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2504 	CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2505 		    | (m[4] << 8) | m[5]);
2506 	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2507 
2508 	/* Enable or disable promiscuous mode as needed. */
2509 	if (ifp->if_flags & IFF_PROMISC) {
2510 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2511 	} else {
2512 		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2513 	}
2514 
2515 	/* Program multicast filter. */
2516 	ti_setmulti(sc);
2517 
2518 	/*
2519 	 * If this is a Tigon 1, we should tell the
2520 	 * firmware to use software packet filtering.
2521 	 */
2522 	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2523 		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2524 	}
2525 
2526 	/* Init RX ring. */
2527 	ti_init_rx_ring_std(sc);
2528 
2529 	/* Init jumbo RX ring. */
2530 	if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2531 		ti_init_rx_ring_jumbo(sc);
2532 
2533 	/*
2534 	 * If this is a Tigon 2, we can also configure the
2535 	 * mini ring.
2536 	 */
2537 	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2538 		ti_init_rx_ring_mini(sc);
2539 
2540 	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2541 	sc->ti_rx_saved_considx = 0;
2542 
2543 	/* Init TX ring. */
2544 	ti_init_tx_ring(sc);
2545 
2546 	/* Tell firmware we're alive. */
2547 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2548 
2549 	/* Enable host interrupts. */
2550 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2551 
2552 	ifp->if_flags |= IFF_RUNNING;
2553 	ifp->if_flags &= ~IFF_OACTIVE;
2554 
2555 	/*
2556 	 * Make sure to set media properly. We have to do this
2557 	 * here since we have to issue commands in order to set
2558 	 * the link negotiation and we can't issue commands until
2559 	 * the firmware is running.
2560 	 */
2561 	ifm = &sc->ifmedia;
2562 	tmp = ifm->ifm_media;
2563 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2564 	ti_ifmedia_upd(ifp);
2565 	ifm->ifm_media = tmp;
2566 }
2567 
2568 /*
2569  * Set media options.
2570  */
2571 static int
ti_ifmedia_upd(struct ifnet * ifp)2572 ti_ifmedia_upd(struct ifnet *ifp)
2573 {
2574 	struct ti_softc		*sc;
2575 	struct ifmedia		*ifm;
2576 	struct ti_cmd_desc	cmd;
2577 
2578 	sc = ifp->if_softc;
2579 	ifm = &sc->ifmedia;
2580 
2581 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2582 		return (EINVAL);
2583 
2584 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2585 	case IFM_AUTO:
2586 		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2587 		    TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2588 		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2589 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2590 		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2591 		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2592 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2593 		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2594 		break;
2595 	case IFM_1000_SX:
2596 	case IFM_1000_T:
2597 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2598 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2599 			    TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2600 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2601 		} else {
2602 			CSR_WRITE_4(sc, TI_GCR_GLINK,
2603 			    TI_GLNK_PREF|TI_GLNK_1000MB|
2604 			    TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2605 		}
2606 		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2607 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2608 		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2609 		break;
2610 	case IFM_100_FX:
2611 	case IFM_10_FL:
2612 	case IFM_100_TX:
2613 	case IFM_10_T:
2614 		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2615 		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2616 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2617 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2618 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2619 		} else {
2620 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2621 		}
2622 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2623 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2624 		} else {
2625 			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2626 		}
2627 		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2628 		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2629 		break;
2630 	}
2631 
2632 	sc->ethercom.ec_if.if_baudrate =
2633 	    ifmedia_baudrate(ifm->ifm_media);
2634 
2635 	return (0);
2636 }
2637 
2638 /*
2639  * Report current media status.
2640  */
2641 static void
ti_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)2642 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2643 {
2644 	struct ti_softc		*sc;
2645 	u_int32_t               media = 0;
2646 
2647 	sc = ifp->if_softc;
2648 
2649 	ifmr->ifm_status = IFM_AVALID;
2650 	ifmr->ifm_active = IFM_ETHER;
2651 
2652 	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2653 		return;
2654 
2655 	ifmr->ifm_status |= IFM_ACTIVE;
2656 
2657 	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2658 		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2659 		if (sc->ti_copper)
2660 			ifmr->ifm_active |= IFM_1000_T;
2661 		else
2662 			ifmr->ifm_active |= IFM_1000_SX;
2663 		if (media & TI_GLNK_FULL_DUPLEX)
2664 			ifmr->ifm_active |= IFM_FDX;
2665 		else
2666 			ifmr->ifm_active |= IFM_HDX;
2667 	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2668 		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2669 		if (sc->ti_copper) {
2670 			if (media & TI_LNK_100MB)
2671 				ifmr->ifm_active |= IFM_100_TX;
2672 			if (media & TI_LNK_10MB)
2673 				ifmr->ifm_active |= IFM_10_T;
2674 		} else {
2675 			if (media & TI_LNK_100MB)
2676 				ifmr->ifm_active |= IFM_100_FX;
2677 			if (media & TI_LNK_10MB)
2678 				ifmr->ifm_active |= IFM_10_FL;
2679 		}
2680 		if (media & TI_LNK_FULL_DUPLEX)
2681 			ifmr->ifm_active |= IFM_FDX;
2682 		if (media & TI_LNK_HALF_DUPLEX)
2683 			ifmr->ifm_active |= IFM_HDX;
2684 	}
2685 
2686 	sc->ethercom.ec_if.if_baudrate =
2687 	    ifmedia_baudrate(sc->ifmedia.ifm_media);
2688 }
2689 
2690 static int
ti_ether_ioctl(struct ifnet * ifp,u_long cmd,void * data)2691 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2692 {
2693 	struct ifaddr *ifa = (struct ifaddr *) data;
2694 	struct ti_softc *sc = ifp->if_softc;
2695 
2696 	if ((ifp->if_flags & IFF_UP) == 0) {
2697 		ifp->if_flags |= IFF_UP;
2698 		ti_init(sc);
2699 	}
2700 
2701 	switch (cmd) {
2702 	case SIOCINITIFADDR:
2703 
2704 		switch (ifa->ifa_addr->sa_family) {
2705 #ifdef INET
2706 		case AF_INET:
2707 			arp_ifinit(ifp, ifa);
2708 			break;
2709 #endif
2710 		default:
2711 			break;
2712 		}
2713 		break;
2714 
2715 	default:
2716 		return (EINVAL);
2717 	}
2718 
2719 	return (0);
2720 }
2721 
2722 static int
ti_ioctl(struct ifnet * ifp,u_long command,void * data)2723 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
2724 {
2725 	struct ti_softc		*sc = ifp->if_softc;
2726 	struct ifreq		*ifr = (struct ifreq *) data;
2727 	int			s, error = 0;
2728 	struct ti_cmd_desc	cmd;
2729 
2730 	s = splnet();
2731 
2732 	switch (command) {
2733 	case SIOCINITIFADDR:
2734 		error = ti_ether_ioctl(ifp, command, data);
2735 		break;
2736 	case SIOCSIFMTU:
2737 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2738 			error = EINVAL;
2739 		else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET){
2740 			ti_init(sc);
2741 			error = 0;
2742 		}
2743 		break;
2744 	case SIOCSIFFLAGS:
2745 		if ((error = ifioctl_common(ifp, command, data)) != 0)
2746 			break;
2747 		if (ifp->if_flags & IFF_UP) {
2748 			/*
2749 			 * If only the state of the PROMISC flag changed,
2750 			 * then just use the 'set promisc mode' command
2751 			 * instead of reinitializing the entire NIC. Doing
2752 			 * a full re-init means reloading the firmware and
2753 			 * waiting for it to start up, which may take a
2754 			 * second or two.
2755 			 */
2756 			if (ifp->if_flags & IFF_RUNNING &&
2757 			    ifp->if_flags & IFF_PROMISC &&
2758 			    !(sc->ti_if_flags & IFF_PROMISC)) {
2759 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2760 				    TI_CMD_CODE_PROMISC_ENB, 0);
2761 			} else if (ifp->if_flags & IFF_RUNNING &&
2762 			    !(ifp->if_flags & IFF_PROMISC) &&
2763 			    sc->ti_if_flags & IFF_PROMISC) {
2764 				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2765 				    TI_CMD_CODE_PROMISC_DIS, 0);
2766 			} else
2767 				ti_init(sc);
2768 		} else {
2769 			if (ifp->if_flags & IFF_RUNNING) {
2770 				ti_stop(sc);
2771 			}
2772 		}
2773 		sc->ti_if_flags = ifp->if_flags;
2774 		error = 0;
2775 		break;
2776 	case SIOCSIFMEDIA:
2777 	case SIOCGIFMEDIA:
2778 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2779 		break;
2780 	default:
2781 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2782 			break;
2783 
2784 		error = 0;
2785 
2786 		if (command == SIOCSIFCAP)
2787 			ti_init(sc);
2788 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2789 			;
2790 		else if (ifp->if_flags & IFF_RUNNING)
2791 			ti_setmulti(sc);
2792 		break;
2793 	}
2794 
2795 	(void)splx(s);
2796 
2797 	return (error);
2798 }
2799 
2800 static void
ti_watchdog(struct ifnet * ifp)2801 ti_watchdog(struct ifnet *ifp)
2802 {
2803 	struct ti_softc		*sc;
2804 
2805 	sc = ifp->if_softc;
2806 
2807 	aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n");
2808 	ti_stop(sc);
2809 	ti_init(sc);
2810 
2811 	ifp->if_oerrors++;
2812 }
2813 
2814 /*
2815  * Stop the adapter and free any mbufs allocated to the
2816  * RX and TX lists.
2817  */
2818 static void
ti_stop(struct ti_softc * sc)2819 ti_stop(struct ti_softc *sc)
2820 {
2821 	struct ifnet		*ifp;
2822 	struct ti_cmd_desc	cmd;
2823 
2824 	ifp = &sc->ethercom.ec_if;
2825 
2826 	/* Disable host interrupts. */
2827 	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2828 	/*
2829 	 * Tell firmware we're shutting down.
2830 	 */
2831 	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2832 
2833 	/* Halt and reinitialize. */
2834 	ti_chipinit(sc);
2835 	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2836 	ti_chipinit(sc);
2837 
2838 	/* Free the RX lists. */
2839 	ti_free_rx_ring_std(sc);
2840 
2841 	/* Free jumbo RX list. */
2842 	ti_free_rx_ring_jumbo(sc);
2843 
2844 	/* Free mini RX list. */
2845 	ti_free_rx_ring_mini(sc);
2846 
2847 	/* Free TX buffers. */
2848 	ti_free_tx_ring(sc);
2849 
2850 	sc->ti_ev_prodidx.ti_idx = 0;
2851 	sc->ti_return_prodidx.ti_idx = 0;
2852 	sc->ti_tx_considx.ti_idx = 0;
2853 	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2854 
2855 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2856 }
2857 
2858 /*
2859  * Stop all chip I/O so that the kernel's probe routines don't
2860  * get confused by errant DMAs when rebooting.
2861  */
2862 static bool
ti_shutdown(device_t self,int howto)2863 ti_shutdown(device_t self, int howto)
2864 {
2865 	struct ti_softc *sc;
2866 
2867 	sc = device_private(self);
2868 	ti_chipinit(sc);
2869 
2870 	return true;
2871 }
2872