1 /* $NetBSD: rf_paritymap.c,v 1.8 2011/04/27 07:55:15 mrg Exp $ */
2 
3 /*-
4  * Copyright (c) 2009 Jed Davis.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_paritymap.c,v 1.8 2011/04/27 07:55:15 mrg Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/callout.h>
34 #include <sys/kmem.h>
35 #include <sys/mutex.h>
36 #include <sys/rwlock.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 
40 #include <dev/raidframe/rf_paritymap.h>
41 #include <dev/raidframe/rf_stripelocks.h>
42 #include <dev/raidframe/rf_layout.h>
43 #include <dev/raidframe/rf_raid.h>
44 #include <dev/raidframe/rf_parityscan.h>
45 #include <dev/raidframe/rf_kintf.h>
46 
47 /* Important parameters: */
48 #define REGION_MINSIZE (25ULL << 20)
49 #define DFL_TICKMS      40000
50 #define DFL_COOLDOWN    8     /* 7-8 intervals of 40s = 5min +/- 20s */
51 
52 /* Internal-use flag bits. */
53 #define TICKING 1
54 #define TICKED 2
55 
56 /* Prototypes! */
57 static void rf_paritymap_write_locked(struct rf_paritymap *);
58 static void rf_paritymap_tick(void *);
59 static u_int rf_paritymap_nreg(RF_Raid_t *);
60 
61 /* Extract the current status of the parity map. */
62 void
rf_paritymap_status(struct rf_paritymap * pm,struct rf_pmstat * ps)63 rf_paritymap_status(struct rf_paritymap *pm, struct rf_pmstat *ps)
64 {
65 	memset(ps, 0, sizeof(*ps));
66 	if (pm == NULL)
67 		ps->enabled = 0;
68 	else {
69 		ps->enabled = 1;
70 		ps->region_size = pm->region_size;
71 		mutex_enter(&pm->lock);
72 		memcpy(&ps->params, &pm->params, sizeof(ps->params));
73 		memcpy(ps->dirty, pm->disk_now, sizeof(ps->dirty));
74 		memcpy(&ps->ctrs, &pm->ctrs, sizeof(ps->ctrs));
75 		mutex_exit(&pm->lock);
76 	}
77 }
78 
79 /*
80  * Test whether parity in a given sector is suspected of being inconsistent
81  * on disk (assuming that any pending I/O to it is allowed to complete).
82  * This may be of interest to future work on parity scrubbing.
83  */
84 int
rf_paritymap_test(struct rf_paritymap * pm,daddr_t sector)85 rf_paritymap_test(struct rf_paritymap *pm, daddr_t sector)
86 {
87 	unsigned region = sector / pm->region_size;
88 	int retval;
89 
90 	mutex_enter(&pm->lock);
91 	retval = isset(pm->disk_boot->bits, region) ? 1 : 0;
92 	mutex_exit(&pm->lock);
93 	return retval;
94 }
95 
96 /* To be called before a write to the RAID is submitted. */
97 void
rf_paritymap_begin(struct rf_paritymap * pm,daddr_t offset,daddr_t size)98 rf_paritymap_begin(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
99 {
100 	unsigned i, b, e;
101 
102 	b = offset / pm->region_size;
103 	e = (offset + size - 1) / pm->region_size;
104 
105 	for (i = b; i <= e; i++)
106 		rf_paritymap_begin_region(pm, i);
107 }
108 
109 /* To be called after a write to the RAID completes. */
110 void
rf_paritymap_end(struct rf_paritymap * pm,daddr_t offset,daddr_t size)111 rf_paritymap_end(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
112 {
113 	unsigned i, b, e;
114 
115 	b = offset / pm->region_size;
116 	e = (offset + size - 1) / pm->region_size;
117 
118 	for (i = b; i <= e; i++)
119 		rf_paritymap_end_region(pm, i);
120 }
121 
122 void
rf_paritymap_begin_region(struct rf_paritymap * pm,unsigned region)123 rf_paritymap_begin_region(struct rf_paritymap *pm, unsigned region)
124 {
125 	int needs_write;
126 
127 	KASSERT(region < RF_PARITYMAP_NREG);
128 	pm->ctrs.nwrite++;
129 
130 	/* If it was being kept warm, deal with that. */
131 	mutex_enter(&pm->lock);
132 	if (pm->current->state[region] < 0)
133 		pm->current->state[region] = 0;
134 
135 	/* This shouldn't happen unless RAIDOUTSTANDING is set too high. */
136 	KASSERT(pm->current->state[region] < 127);
137 	pm->current->state[region]++;
138 
139 	needs_write = isclr(pm->disk_now->bits, region);
140 
141 	if (needs_write) {
142 		KASSERT(pm->current->state[region] == 1);
143 		rf_paritymap_write_locked(pm);
144 	}
145 
146 	mutex_exit(&pm->lock);
147 }
148 
149 void
rf_paritymap_end_region(struct rf_paritymap * pm,unsigned region)150 rf_paritymap_end_region(struct rf_paritymap *pm, unsigned region)
151 {
152 	KASSERT(region < RF_PARITYMAP_NREG);
153 
154 	mutex_enter(&pm->lock);
155 	KASSERT(pm->current->state[region] > 0);
156 	--pm->current->state[region];
157 
158 	if (pm->current->state[region] <= 0) {
159 		pm->current->state[region] = -pm->params.cooldown;
160 		KASSERT(pm->current->state[region] <= 0);
161 		mutex_enter(&pm->lk_flags);
162 		if (!(pm->flags & TICKING)) {
163 			pm->flags |= TICKING;
164 			mutex_exit(&pm->lk_flags);
165 			callout_schedule(&pm->ticker,
166 			    mstohz(pm->params.tickms));
167 		} else
168 			mutex_exit(&pm->lk_flags);
169 	}
170 	mutex_exit(&pm->lock);
171 }
172 
173 /*
174  * Updates the parity map to account for any changes in current activity
175  * and/or an ongoing parity scan, then writes it to disk with appropriate
176  * synchronization.
177  */
178 void
rf_paritymap_write(struct rf_paritymap * pm)179 rf_paritymap_write(struct rf_paritymap *pm)
180 {
181 	mutex_enter(&pm->lock);
182 	rf_paritymap_write_locked(pm);
183 	mutex_exit(&pm->lock);
184 }
185 
186 /* As above, but to be used when pm->lock is already held. */
187 static void
rf_paritymap_write_locked(struct rf_paritymap * pm)188 rf_paritymap_write_locked(struct rf_paritymap *pm)
189 {
190 	char w, w0;
191 	int i, j, setting, clearing;
192 
193 	setting = clearing = 0;
194 	for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
195 		w0 = pm->disk_now->bits[i];
196 		w = pm->disk_boot->bits[i];
197 
198 		for (j = 0; j < NBBY; j++)
199 			if (pm->current->state[i * NBBY + j] != 0)
200 				w |= 1 << j;
201 
202 		if (w & ~w0)
203 			setting = 1;
204 		if (w0 & ~w)
205 			clearing = 1;
206 
207 		pm->disk_now->bits[i] = w;
208 	}
209 	pm->ctrs.ncachesync += setting + clearing;
210 	pm->ctrs.nclearing += clearing;
211 
212 	/*
213 	 * If bits are being set in the parity map, then a sync is
214 	 * required afterwards, so that the regions are marked dirty
215 	 * on disk before any writes to them take place.  If bits are
216 	 * being cleared, then a sync is required before the write, so
217 	 * that any writes to those regions are processed before the
218 	 * region is marked clean.  (Synchronization is somewhat
219 	 * overkill; a write ordering barrier would suffice, but we
220 	 * currently have no way to express that directly.)
221 	 */
222 	if (clearing)
223 		rf_sync_component_caches(pm->raid);
224 	rf_paritymap_kern_write(pm->raid, pm->disk_now);
225 	if (setting)
226 		rf_sync_component_caches(pm->raid);
227 }
228 
229 /* Mark all parity as being in need of rewrite. */
230 void
rf_paritymap_invalidate(struct rf_paritymap * pm)231 rf_paritymap_invalidate(struct rf_paritymap *pm)
232 {
233 	mutex_enter(&pm->lock);
234 	memset(pm->disk_boot, ~(unsigned char)0,
235 	    sizeof(struct rf_paritymap_ondisk));
236 	mutex_exit(&pm->lock);
237 }
238 
239 /* Mark all parity as being correct. */
240 void
rf_paritymap_forceclean(struct rf_paritymap * pm)241 rf_paritymap_forceclean(struct rf_paritymap *pm)
242 {
243 	mutex_enter(&pm->lock);
244 	memset(pm->disk_boot, (unsigned char)0,
245 	    sizeof(struct rf_paritymap_ondisk));
246 	mutex_exit(&pm->lock);
247 }
248 
249 /*
250  * The cooldown callout routine just defers its work to a thread; it can't do
251  * the parity map write itself as it would block, and although mutex-induced
252  * blocking is permitted it seems wise to avoid tying up the softint.
253  */
254 static void
rf_paritymap_tick(void * arg)255 rf_paritymap_tick(void *arg)
256 {
257 	struct rf_paritymap *pm = arg;
258 
259 	mutex_enter(&pm->lk_flags);
260 	pm->flags |= TICKED;
261 	mutex_exit(&pm->lk_flags);
262 
263 	rf_lock_mutex2(pm->raid->iodone_lock);
264 	rf_signal_cond2(pm->raid->iodone_cv); /* XXX */
265 	rf_unlock_mutex2(pm->raid->iodone_lock);
266 }
267 
268 /*
269  * This is where the parity cooling work (and rearming the callout if needed)
270  * is done; the raidio thread calls it when woken up, as by the above.
271  */
272 void
rf_paritymap_checkwork(struct rf_paritymap * pm)273 rf_paritymap_checkwork(struct rf_paritymap *pm)
274 {
275 	int i, zerop, progressp;
276 
277 	mutex_enter(&pm->lk_flags);
278 	if (pm->flags & TICKED) {
279 		zerop = progressp = 0;
280 
281 		pm->flags &= ~TICKED;
282 		mutex_exit(&pm->lk_flags);
283 
284 		mutex_enter(&pm->lock);
285 		for (i = 0; i < RF_PARITYMAP_NREG; i++) {
286 			if (pm->current->state[i] < 0) {
287 				progressp = 1;
288 				pm->current->state[i]++;
289 				if (pm->current->state[i] == 0)
290 					zerop = 1;
291 			}
292 		}
293 
294 		if (progressp)
295 			callout_schedule(&pm->ticker,
296 			    mstohz(pm->params.tickms));
297 		else {
298 			mutex_enter(&pm->lk_flags);
299 			pm->flags &= ~TICKING;
300 			mutex_exit(&pm->lk_flags);
301 		}
302 
303 		if (zerop)
304 			rf_paritymap_write_locked(pm);
305 		mutex_exit(&pm->lock);
306 	} else
307 		mutex_exit(&pm->lk_flags);
308 }
309 
310 /*
311  * Set parity map parameters; used both to alter parameters on the fly and to
312  * establish their initial values.  Note that setting a parameter to 0 means
313  * to leave the previous setting unchanged, and that if this is done for the
314  * initial setting of "regions", then a default value will be computed based
315  * on the RAID component size.
316  */
317 int
rf_paritymap_set_params(struct rf_paritymap * pm,const struct rf_pmparams * params,int todisk)318 rf_paritymap_set_params(struct rf_paritymap *pm,
319     const struct rf_pmparams *params, int todisk)
320 {
321 	int cooldown, tickms;
322 	u_int regions;
323 	RF_RowCol_t col;
324 	RF_ComponentLabel_t *clabel;
325 	RF_Raid_t *raidPtr;
326 
327 	cooldown = params->cooldown != 0
328 	    ? params->cooldown : pm->params.cooldown;
329 	tickms = params->tickms != 0
330 	    ? params->tickms : pm->params.tickms;
331 	regions = params->regions != 0
332 	    ? params->regions : pm->params.regions;
333 
334 	if (cooldown < 1 || cooldown > 128) {
335 		printf("raid%d: cooldown %d out of range\n", pm->raid->raidid,
336 		    cooldown);
337 		return (-1);
338 	}
339 	if (tickms < 10) {
340 		printf("raid%d: tick time %dms out of range\n",
341 		    pm->raid->raidid, tickms);
342 		return (-1);
343 	}
344 	if (regions == 0) {
345 		regions = rf_paritymap_nreg(pm->raid);
346 	} else if (regions > RF_PARITYMAP_NREG) {
347 		printf("raid%d: region count %u too large (more than %u)\n",
348 		    pm->raid->raidid, regions, RF_PARITYMAP_NREG);
349 		return (-1);
350 	}
351 
352 	/* XXX any currently warm parity will be used with the new tickms! */
353 	pm->params.cooldown = cooldown;
354 	pm->params.tickms = tickms;
355 	/* Apply the initial region count, but do not change it after that. */
356 	if (pm->params.regions == 0)
357 		pm->params.regions = regions;
358 
359 	/* So that the newly set parameters can be tested: */
360 	pm->ctrs.nwrite = pm->ctrs.ncachesync = pm->ctrs.nclearing = 0;
361 
362 	if (todisk) {
363 		raidPtr = pm->raid;
364 		for (col = 0; col < raidPtr->numCol; col++) {
365 			if (RF_DEAD_DISK(raidPtr->Disks[col].status))
366 				continue;
367 
368 			clabel = raidget_component_label(raidPtr, col);
369 			clabel->parity_map_ntick = cooldown;
370 			clabel->parity_map_tickms = tickms;
371 			clabel->parity_map_regions = regions;
372 
373 			/* Don't touch the disk if it's been spared */
374 			if (clabel->status == rf_ds_spared)
375 				continue;
376 
377 			raidflush_component_label(raidPtr, col);
378 		}
379 
380 		/* handle the spares too... */
381 		for (col = 0; col < raidPtr->numSpare; col++) {
382 			if (raidPtr->Disks[raidPtr->numCol+col].status == rf_ds_used_spare) {
383 				clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
384 				clabel->parity_map_ntick = cooldown;
385 				clabel->parity_map_tickms = tickms;
386 				clabel->parity_map_regions = regions;
387 				raidflush_component_label(raidPtr, raidPtr->numCol+col);
388 			}
389 		}
390 	}
391 	return 0;
392 }
393 
394 /*
395  * The number of regions may not be as many as can fit into the map, because
396  * when regions are too small, the overhead of setting parity map bits
397  * becomes significant in comparison to the actual I/O, while the
398  * corresponding gains in parity verification time become negligible.  Thus,
399  * a minimum region size (defined above) is imposed.
400  *
401  * Note that, if the number of regions is less than the maximum, then some of
402  * the regions will be "fictional", corresponding to no actual disk; some
403  * parts of the code may process them as normal, but they can not ever be
404  * written to.
405  */
406 static u_int
rf_paritymap_nreg(RF_Raid_t * raid)407 rf_paritymap_nreg(RF_Raid_t *raid)
408 {
409 	daddr_t bytes_per_disk, nreg;
410 
411 	bytes_per_disk = raid->sectorsPerDisk << raid->logBytesPerSector;
412 	nreg = bytes_per_disk / REGION_MINSIZE;
413 	if (nreg > RF_PARITYMAP_NREG)
414 		nreg = RF_PARITYMAP_NREG;
415 	if (nreg < 1)
416 		nreg = 1;
417 
418 	return (u_int)nreg;
419 }
420 
421 /*
422  * Initialize a parity map given specific parameters.  This neither reads nor
423  * writes the parity map config in the component labels; for that, see below.
424  */
425 int
rf_paritymap_init(struct rf_paritymap * pm,RF_Raid_t * raid,const struct rf_pmparams * params)426 rf_paritymap_init(struct rf_paritymap *pm, RF_Raid_t *raid,
427     const struct rf_pmparams *params)
428 {
429 	daddr_t rstripes;
430 	struct rf_pmparams safe;
431 
432 	pm->raid = raid;
433 	pm->params.regions = 0;
434 	if (0 != rf_paritymap_set_params(pm, params, 0)) {
435 		/*
436 		 * If the parameters are out-of-range, then bring the
437 		 * parity map up with something reasonable, so that
438 		 * the admin can at least go and fix it (or ignore it
439 		 * entirely).
440 		 */
441 		safe.cooldown = DFL_COOLDOWN;
442 		safe.tickms = DFL_TICKMS;
443 		safe.regions = 0;
444 
445 		if (0 != rf_paritymap_set_params(pm, &safe, 0))
446 			return (-1);
447 	}
448 
449 	rstripes = howmany(raid->Layout.numStripe, pm->params.regions);
450 	pm->region_size = rstripes * raid->Layout.dataSectorsPerStripe;
451 
452 	callout_init(&pm->ticker, CALLOUT_MPSAFE);
453 	callout_setfunc(&pm->ticker, rf_paritymap_tick, pm);
454 	pm->flags = 0;
455 
456 	pm->disk_boot = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
457 	    KM_SLEEP);
458 	pm->disk_now = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
459 	    KM_SLEEP);
460 	pm->current = kmem_zalloc(sizeof(struct rf_paritymap_current),
461 	    KM_SLEEP);
462 
463 	rf_paritymap_kern_read(pm->raid, pm->disk_boot);
464 	memcpy(pm->disk_now, pm->disk_boot, sizeof(*pm->disk_now));
465 
466 	mutex_init(&pm->lock, MUTEX_DEFAULT, IPL_NONE);
467 	mutex_init(&pm->lk_flags, MUTEX_DEFAULT, IPL_SOFTCLOCK);
468 
469 	return 0;
470 }
471 
472 /*
473  * Destroys a parity map; unless "force" is set, also cleans parity for any
474  * regions which were still in cooldown (but are not dirty on disk).
475  */
476 void
rf_paritymap_destroy(struct rf_paritymap * pm,int force)477 rf_paritymap_destroy(struct rf_paritymap *pm, int force)
478 {
479 	int i;
480 
481 	callout_halt(&pm->ticker, NULL); /* XXX stop? halt? */
482 	callout_destroy(&pm->ticker);
483 
484 	if (!force) {
485 		for (i = 0; i < RF_PARITYMAP_NREG; i++) {
486 			/* XXX check for > 0 ? */
487 			if (pm->current->state[i] < 0)
488 				pm->current->state[i] = 0;
489 		}
490 
491 		rf_paritymap_write_locked(pm);
492 	}
493 
494 	mutex_destroy(&pm->lock);
495 	mutex_destroy(&pm->lk_flags);
496 
497 	kmem_free(pm->disk_boot, sizeof(struct rf_paritymap_ondisk));
498 	kmem_free(pm->disk_now, sizeof(struct rf_paritymap_ondisk));
499 	kmem_free(pm->current, sizeof(struct rf_paritymap_current));
500 }
501 
502 /*
503  * Rewrite parity, taking parity map into account; this is the equivalent of
504  * the old rf_RewriteParity, and is likewise to be called from a suitable
505  * thread and shouldn't have multiple copies running in parallel and so on.
506  *
507  * Note that the fictional regions are "cleaned" in one shot, so that very
508  * small RAIDs (useful for testing) will not experience potentially severe
509  * regressions in rewrite time.
510  */
511 int
rf_paritymap_rewrite(struct rf_paritymap * pm)512 rf_paritymap_rewrite(struct rf_paritymap *pm)
513 {
514 	int i, ret_val = 0;
515 	daddr_t reg_b, reg_e;
516 
517 	/* Process only the actual regions. */
518 	for (i = 0; i < pm->params.regions; i++) {
519 		mutex_enter(&pm->lock);
520 		if (isset(pm->disk_boot->bits, i)) {
521 			mutex_exit(&pm->lock);
522 
523 			reg_b = i * pm->region_size;
524 			reg_e = reg_b + pm->region_size;
525 			if (reg_e > pm->raid->totalSectors)
526 				reg_e = pm->raid->totalSectors;
527 
528 			if (rf_RewriteParityRange(pm->raid, reg_b,
529 			    reg_e - reg_b)) {
530 				ret_val = 1;
531 				if (pm->raid->waitShutdown)
532 					return ret_val;
533 			} else {
534 				mutex_enter(&pm->lock);
535 				clrbit(pm->disk_boot->bits, i);
536 				rf_paritymap_write_locked(pm);
537 				mutex_exit(&pm->lock);
538 			}
539 		} else {
540 			mutex_exit(&pm->lock);
541 		}
542 	}
543 
544 	/* Now, clear the fictional regions, if any. */
545 	rf_paritymap_forceclean(pm);
546 	rf_paritymap_write(pm);
547 
548 	return ret_val;
549 }
550 
551 /*
552  * How to merge the on-disk parity maps when reading them in from the
553  * various components; returns whether they differ.  In the case that
554  * they do differ, sets *dst to the union of *dst and *src.
555  *
556  * In theory, it should be safe to take the intersection (or just pick
557  * a single component arbitrarily), but the paranoid approach costs
558  * little.
559  *
560  * Appropriate locking, if any, is the responsibility of the caller.
561  */
562 int
rf_paritymap_merge(struct rf_paritymap_ondisk * dst,struct rf_paritymap_ondisk * src)563 rf_paritymap_merge(struct rf_paritymap_ondisk *dst,
564     struct rf_paritymap_ondisk *src)
565 {
566 	int i, discrep = 0;
567 
568 	for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
569 		if (dst->bits[i] != src->bits[i])
570 			discrep = 1;
571 		dst->bits[i] |= src->bits[i];
572 	}
573 
574 	return discrep;
575 }
576 
577 /*
578  * Detach a parity map from its RAID.  This is not meant to be applied except
579  * when unconfiguring the RAID after all I/O has been resolved, as otherwise
580  * an out-of-date parity map could be treated as current.
581  */
582 void
rf_paritymap_detach(RF_Raid_t * raidPtr)583 rf_paritymap_detach(RF_Raid_t *raidPtr)
584 {
585 	if (raidPtr->parity_map == NULL)
586 		return;
587 
588 	rf_lock_mutex2(raidPtr->iodone_lock);
589 	struct rf_paritymap *pm = raidPtr->parity_map;
590 	raidPtr->parity_map = NULL;
591 	rf_unlock_mutex2(raidPtr->iodone_lock);
592 	/* XXXjld is that enough locking?  Or too much? */
593 	rf_paritymap_destroy(pm, 0);
594 	kmem_free(pm, sizeof(*pm));
595 }
596 
597 /*
598  * Is this RAID set ineligible for parity-map use due to not actually
599  * having any parity?  (If so, rf_paritymap_attach is a no-op, but
600  * rf_paritymap_{get,set}_disable will still pointlessly act on the
601  * component labels.)
602  */
603 int
rf_paritymap_ineligible(RF_Raid_t * raidPtr)604 rf_paritymap_ineligible(RF_Raid_t *raidPtr)
605 {
606 	return raidPtr->Layout.map->faultsTolerated == 0;
607 }
608 
609 /*
610  * Attach a parity map to a RAID set if appropriate.  Includes
611  * configure-time processing of parity-map fields of component label.
612  */
613 void
rf_paritymap_attach(RF_Raid_t * raidPtr,int force)614 rf_paritymap_attach(RF_Raid_t *raidPtr, int force)
615 {
616 	RF_RowCol_t col;
617 	int pm_use, pm_zap;
618 	int g_tickms, g_ntick, g_regions;
619 	int good;
620 	RF_ComponentLabel_t *clabel;
621 	u_int flags, regions;
622 	struct rf_pmparams params;
623 
624 	if (rf_paritymap_ineligible(raidPtr)) {
625 		/* There isn't any parity. */
626 		return;
627 	}
628 
629 	pm_use = 1;
630 	pm_zap = 0;
631 	g_tickms = DFL_TICKMS;
632 	g_ntick = DFL_COOLDOWN;
633 	g_regions = 0;
634 
635 	/*
636 	 * Collect opinions on the set config.  If this is the initial
637 	 * config (raidctl -C), treat all labels as invalid, since
638 	 * there may be random data present.
639 	 */
640 	if (!force) {
641 		for (col = 0; col < raidPtr->numCol; col++) {
642 			if (RF_DEAD_DISK(raidPtr->Disks[col].status))
643 				continue;
644 			clabel = raidget_component_label(raidPtr, col);
645 			flags = clabel->parity_map_flags;
646 			/* Check for use by non-parity-map kernel. */
647 			if (clabel->parity_map_modcount
648 			    != clabel->mod_counter) {
649 				flags &= ~RF_PMLABEL_WASUSED;
650 			}
651 
652 			if (flags & RF_PMLABEL_VALID) {
653 				g_tickms = clabel->parity_map_tickms;
654 				g_ntick = clabel->parity_map_ntick;
655 				regions = clabel->parity_map_regions;
656 				if (g_regions == 0)
657 					g_regions = regions;
658 				else if (g_regions != regions) {
659 					pm_zap = 1; /* important! */
660 				}
661 
662 				if (flags & RF_PMLABEL_DISABLE) {
663 					pm_use = 0;
664 				}
665 				if (!(flags & RF_PMLABEL_WASUSED)) {
666 					pm_zap = 1;
667 				}
668 			} else {
669 				pm_zap = 1;
670 			}
671 		}
672 	} else {
673 		pm_zap = 1;
674 	}
675 
676 	/* Finally, create and attach the parity map. */
677 	if (pm_use) {
678 		params.cooldown = g_ntick;
679 		params.tickms = g_tickms;
680 		params.regions = g_regions;
681 
682 		raidPtr->parity_map = kmem_alloc(sizeof(struct rf_paritymap),
683 		    KM_SLEEP);
684 		if (0 != rf_paritymap_init(raidPtr->parity_map, raidPtr,
685 			&params)) {
686 			/* It failed; do without. */
687 			kmem_free(raidPtr->parity_map,
688 			    sizeof(struct rf_paritymap));
689 			raidPtr->parity_map = NULL;
690 			return;
691 		}
692 
693 		if (g_regions == 0)
694 			/* Pick up the autoconfigured region count. */
695 			g_regions = raidPtr->parity_map->params.regions;
696 
697 		if (pm_zap) {
698 			good = raidPtr->parity_good && !force;
699 
700 			if (good)
701 				rf_paritymap_forceclean(raidPtr->parity_map);
702 			else
703 				rf_paritymap_invalidate(raidPtr->parity_map);
704 			/* This needs to be on disk before WASUSED is set. */
705 			rf_paritymap_write(raidPtr->parity_map);
706 		}
707 	}
708 
709 	/* Alter labels in-core to reflect the current view of things. */
710 	for (col = 0; col < raidPtr->numCol; col++) {
711 		if (RF_DEAD_DISK(raidPtr->Disks[col].status))
712 			continue;
713 		clabel = raidget_component_label(raidPtr, col);
714 
715 		if (pm_use)
716 			flags = RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
717 		else
718 			flags = RF_PMLABEL_VALID | RF_PMLABEL_DISABLE;
719 
720 		clabel->parity_map_flags = flags;
721 		clabel->parity_map_tickms = g_tickms;
722 		clabel->parity_map_ntick = g_ntick;
723 		clabel->parity_map_regions = g_regions;
724 		raidflush_component_label(raidPtr, col);
725 	}
726 	/* Note that we're just in 'attach' here, and there won't
727 	   be any spare disks at this point. */
728 }
729 
730 /*
731  * For initializing the parity-map fields of a component label, both on
732  * initial creation and on reconstruct/copyback/etc.  */
733 void
rf_paritymap_init_label(struct rf_paritymap * pm,RF_ComponentLabel_t * clabel)734 rf_paritymap_init_label(struct rf_paritymap *pm, RF_ComponentLabel_t *clabel)
735 {
736 	if (pm != NULL) {
737 		clabel->parity_map_flags =
738 		    RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
739 		clabel->parity_map_tickms = pm->params.tickms;
740 		clabel->parity_map_ntick = pm->params.cooldown;
741 		/*
742 		 * XXXjld: If the number of regions is changed on disk, and
743 		 * then a new component is labeled before the next configure,
744 		 * then it will get the old value and they will conflict on
745 		 * the next boot (and the default will be used instead).
746 		 */
747 		clabel->parity_map_regions = pm->params.regions;
748 	} else {
749 		/*
750 		 * XXXjld: if the map is disabled, and all the components are
751 		 * replaced without an intervening unconfigure/reconfigure,
752 		 * then it will become enabled on the next unconfig/reconfig.
753 		 */
754 	}
755 }
756 
757 
758 /* Will the parity map be disabled next time? */
759 int
rf_paritymap_get_disable(RF_Raid_t * raidPtr)760 rf_paritymap_get_disable(RF_Raid_t *raidPtr)
761 {
762 	RF_ComponentLabel_t *clabel;
763 	RF_RowCol_t col;
764 	int dis;
765 
766 	dis = 0;
767 	for (col = 0; col < raidPtr->numCol; col++) {
768 		if (RF_DEAD_DISK(raidPtr->Disks[col].status))
769 			continue;
770 		clabel = raidget_component_label(raidPtr, col);
771 		if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
772 			dis = 1;
773 	}
774         for (col = 0; col < raidPtr->numSpare; col++) {
775 		if (raidPtr->Disks[raidPtr->numCol+col].status != rf_ds_used_spare)
776                         continue;
777                 clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
778                 if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
779                         dis = 1;
780         }
781 
782 	return dis;
783 }
784 
785 /* Set whether the parity map will be disabled next time. */
786 void
rf_paritymap_set_disable(RF_Raid_t * raidPtr,int dis)787 rf_paritymap_set_disable(RF_Raid_t *raidPtr, int dis)
788 {
789 	RF_ComponentLabel_t *clabel;
790 	RF_RowCol_t col;
791 
792 	for (col = 0; col < raidPtr->numCol; col++) {
793 		if (RF_DEAD_DISK(raidPtr->Disks[col].status))
794 			continue;
795 		clabel = raidget_component_label(raidPtr, col);
796 		if (dis)
797 			clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
798 		else
799 			clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
800 		raidflush_component_label(raidPtr, col);
801 	}
802 
803 	/* update any used spares as well */
804 	for (col = 0; col < raidPtr->numSpare; col++) {
805 		if (raidPtr->Disks[raidPtr->numCol+col].status != rf_ds_used_spare)
806 			continue;
807 
808 		clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
809 		if (dis)
810 			clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
811 		else
812 			clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
813 		raidflush_component_label(raidPtr, raidPtr->numCol+col);
814 	}
815 }
816