1 /*	$NetBSD: if_ie_vme.c,v 1.31 2014/08/18 04:26:38 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Charles D. Cranor
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * Converted to SUN ie driver by Charles D. Cranor,
30  *		October 1994, January 1995.
31  */
32 
33 /*
34  * The i82586 is a very painful chip, found in sun3's, sun-4/100's
35  * sun-4/200's, and VME based suns.  The byte order is all wrong for a
36  * SUN, making life difficult.  Programming this chip is mostly the same,
37  * but certain details differ from system to system.  This driver is
38  * written so that different "ie" interfaces can be controled by the same
39  * driver.
40  */
41 
42 /*
43  * programming notes:
44  *
45  * the ie chip operates in a 24 bit address space.
46  *
47  * most ie interfaces appear to be divided into two parts:
48  *	 - generic 586 stuff
49  *	 - board specific
50  *
51  * generic:
52  *	the generic stuff of the ie chip is all done with data structures
53  * 	that live in the chip's memory address space.   the chip expects
54  * 	its main data structure (the sys conf ptr -- SCP) to be at a fixed
55  * 	address in its 24 bit space: 0xfffff4
56  *
57  *      the SCP points to another structure called the ISCP.
58  *      the ISCP points to another structure called the SCB.
59  * 	the SCB has a status field, a linked list of "commands", and
60  * 	a linked list of "receive buffers".   these are data structures that
61  * 	live in memory, not registers.
62  *
63  * board:
64  * 	to get the chip to do anything, you first put a command in the
65  * 	command data structure list.   then you have to signal "attention"
66  * 	to the chip to get it to look at the command.   how you
67  * 	signal attention depends on what board you have... on PC's
68  * 	there is an i/o port number to do this, on sun's there is a
69  * 	register bit you toggle.
70  *
71  * 	to get data from the chip you program it to interrupt...
72  *
73  *
74  * sun issues:
75  *
76  *      there are 3 kinds of sun "ie" interfaces:
77  *        1 - a VME/multibus card
78  *        2 - an on-board interface (sun3's, sun-4/100's, and sun-4/200's)
79  *        3 - another VME board called the 3E
80  *
81  * 	the VME boards lives in vme16 space.   only 16 and 8 bit accesses
82  * 	are allowed, so functions that copy data must be aware of this.
83  *
84  * 	the chip is an intel chip.  this means that the byte order
85  * 	on all the "short"s in the chip's data structures is wrong.
86  * 	so, constants described in the intel docs are swapped for the sun.
87  * 	that means that any buffer pointers you give the chip must be
88  * 	swapped to intel format.   yuck.
89  *
90  *   VME/multibus interface:
91  * 	for the multibus interface the board ignores the top 4 bits
92  * 	of the chip address.   the multibus interface has its own
93  * 	MMU like page map (without protections or valid bits, etc).
94  * 	there are 256 pages of physical memory on the board (each page
95  * 	is 1024 bytes).   There are 1024 slots in the page map.  so,
96  * 	a 1024 byte page takes up 10 bits of address for the offset,
97  * 	and if there are 1024 slots in the page that is another 10 bits
98  * 	of the address.   That makes a 20 bit address, and as stated
99  * 	earlier the board ignores the top 4 bits, so that accounts
100  * 	for all 24 bits of address.
101  *
102  * 	Note that the last entry of the page map maps the top of the
103  * 	24 bit address space and that the SCP is supposed to be at
104  * 	0xfffff4 (taking into account allignment).   so,
105  *	for multibus, that entry in the page map has to be used for the SCP.
106  *
107  * 	The page map effects BOTH how the ie chip sees the
108  * 	memory, and how the host sees it.
109  *
110  * 	The page map is part of the "register" area of the board
111  *
112  *	The page map to control where ram appears in the address space.
113  *	We choose to have RAM start at 0 in the 24 bit address space.
114  *
115  *	to get the phyiscal address of the board's RAM you must take the
116  *	top 12 bits of the physical address of the register address and
117  *	or in the 4 bits from the status word as bits 17-20 (remember that
118  *	the board ignores the chip's top 4 address lines). For example:
119  *	if the register is @ 0xffe88000, then the top 12 bits are 0xffe00000.
120  *	to get the 4 bits from the status word just do status & IEVME_HADDR.
121  *	suppose the value is "4".   Then just shift it left 16 bits to get
122  *	it into bits 17-20 (e.g. 0x40000).    Then or it to get the
123  *	address of RAM (in our example: 0xffe40000).   see the attach routine!
124  *
125  *
126  *   on-board interface:
127  *
128  *	on the onboard ie interface the 24 bit address space is hardwired
129  *	to be 0xff000000 -> 0xffffffff of KVA.   this means that sc_iobase
130  *	will be 0xff000000.   sc_maddr will be where ever we allocate RAM
131  *	in KVA.    note that since the SCP is at a fixed address it means
132  *	that we have to allocate a fixed KVA for the SCP.
133  *	<fill in useful info later>
134  *
135  *
136  *   VME3E interface:
137  *
138  *	<fill in useful info later>
139  *
140  */
141 
142 #include <sys/cdefs.h>
143 __KERNEL_RCSID(0, "$NetBSD: if_ie_vme.c,v 1.31 2014/08/18 04:26:38 riastradh Exp $");
144 
145 #include <sys/param.h>
146 #include <sys/systm.h>
147 #include <sys/errno.h>
148 #include <sys/device.h>
149 #include <sys/protosw.h>
150 #include <sys/socket.h>
151 
152 #include <net/if.h>
153 #include <net/if_types.h>
154 #include <net/if_dl.h>
155 #include <net/if_media.h>
156 #include <net/if_ether.h>
157 
158 #include <sys/bus.h>
159 #include <sys/intr.h>
160 #include <dev/vme/vmevar.h>
161 
162 #include <dev/ic/i82586reg.h>
163 #include <dev/ic/i82586var.h>
164 
165 #include "locators.h"
166 
167 /*
168  * VME/multibus definitions
169  */
170 #define IEVME_PAGESIZE 1024	/* bytes */
171 #define IEVME_PAGSHIFT 10	/* bits */
172 #define IEVME_NPAGES   256	/* number of pages on chip */
173 #define IEVME_MAPSZ    1024	/* number of entries in the map */
174 
175 /*
176  * PTE for the page map
177  */
178 #define IEVME_SBORDR 0x8000	/* sun byte order */
179 #define IEVME_IBORDR 0x0000	/* intel byte ordr */
180 
181 #define IEVME_P2MEM  0x2000	/* memory is on P2 */
182 #define IEVME_OBMEM  0x0000	/* memory is on board */
183 
184 #define IEVME_PGMASK 0x0fff	/* gives the physical page frame number */
185 
186 struct ievme {
187 	u_int16_t	pgmap[IEVME_MAPSZ];
188 	u_int16_t	xxx[32];	/* prom */
189 	u_int16_t	status;		/* see below for bits */
190 	u_int16_t	xxx2;		/* filler */
191 	u_int16_t	pectrl;		/* parity control (see below) */
192 	u_int16_t	peaddr;		/* low 16 bits of address */
193 };
194 
195 /*
196  * status bits
197  */
198 #define IEVME_RESET 0x8000	/* reset board */
199 #define IEVME_ONAIR 0x4000	/* go out of loopback 'on-air' */
200 #define IEVME_ATTEN 0x2000	/* attention */
201 #define IEVME_IENAB 0x1000	/* interrupt enable */
202 #define IEVME_PEINT 0x0800	/* parity error interrupt enable */
203 #define IEVME_PERR  0x0200	/* parity error flag */
204 #define IEVME_INT   0x0100	/* interrupt flag */
205 #define IEVME_P2EN  0x0020	/* enable p2 bus */
206 #define IEVME_256K  0x0010	/* 256kb rams */
207 #define IEVME_HADDR 0x000f	/* mask for bits 17-20 of address */
208 
209 /*
210  * parity control
211  */
212 #define IEVME_PARACK 0x0100	/* parity error ack */
213 #define IEVME_PARSRC 0x0080	/* parity error source */
214 #define IEVME_PAREND 0x0040	/* which end of the data got the error */
215 #define IEVME_PARADR 0x000f	/* mask to get bits 17-20 of parity address */
216 
217 /* Supported media */
218 static int media[] = {
219 	IFM_ETHER | IFM_10_2,
220 };
221 #define NMEDIA	(sizeof(media) / sizeof(media[0]))
222 
223 /*
224  * the 3E board not supported (yet?)
225  */
226 
227 
228 static void ie_vmereset(struct ie_softc *, int);
229 static void ie_vmeattend(struct ie_softc *, int);
230 static void ie_vmerun(struct ie_softc *);
231 static int  ie_vmeintr(struct ie_softc *, int);
232 
233 int ie_vme_match(device_t, cfdata_t, void *);
234 void ie_vme_attach(device_t, device_t, void *);
235 
236 struct ie_vme_softc {
237 	struct ie_softc ie;
238 	bus_space_tag_t ievt;
239 	bus_space_handle_t ievh;
240 };
241 
242 CFATTACH_DECL_NEW(ie_vme, sizeof(struct ie_vme_softc),
243     ie_vme_match, ie_vme_attach, NULL, NULL);
244 
245 #define read_iev(sc, reg) \
246   bus_space_read_2(sc->ievt, sc->ievh, offsetof(struct ievme, reg))
247 #define write_iev(sc, reg, val) \
248   bus_space_write_2(sc->ievt, sc->ievh, offsetof(struct ievme, reg), val)
249 
250 /*
251  * MULTIBUS/VME support routines
252  */
253 void
ie_vmereset(struct ie_softc * sc,int what)254 ie_vmereset(struct ie_softc *sc, int what)
255 {
256 	struct ie_vme_softc *vsc = (struct ie_vme_softc *)sc;
257 	write_iev(vsc, status, IEVME_RESET);
258 	delay(100);		/* XXX could be shorter? */
259 	write_iev(vsc, status, 0);
260 }
261 
262 void
ie_vmeattend(struct ie_softc * sc,int why)263 ie_vmeattend(struct ie_softc *sc, int why)
264 {
265 	struct ie_vme_softc *vsc = (struct ie_vme_softc *)sc;
266 
267 	/* flag! */
268 	write_iev(vsc, status, read_iev(vsc, status) | IEVME_ATTEN);
269 	/* down. */
270 	write_iev(vsc, status, read_iev(vsc, status) & ~IEVME_ATTEN);
271 }
272 
273 void
ie_vmerun(struct ie_softc * sc)274 ie_vmerun(struct ie_softc *sc)
275 {
276 	struct ie_vme_softc *vsc = (struct ie_vme_softc *)sc;
277 
278 	write_iev(vsc, status, read_iev(vsc, status)
279 		  | IEVME_ONAIR | IEVME_IENAB | IEVME_PEINT);
280 }
281 
282 int
ie_vmeintr(struct ie_softc * sc,int where)283 ie_vmeintr(struct ie_softc *sc, int where)
284 {
285 	struct ie_vme_softc *vsc = (struct ie_vme_softc *)sc;
286 
287 	if (where != INTR_ENTER)
288 		return (0);
289 
290         /*
291          * check for parity error
292          */
293 	if (read_iev(vsc, status) & IEVME_PERR) {
294 		aprint_error_dev(sc->sc_dev, "parity error (ctrl 0x%x @ 0x%02x%04x)\n",
295 		       read_iev(vsc, pectrl),
296 		       read_iev(vsc, pectrl) & IEVME_HADDR,
297 		       read_iev(vsc, peaddr));
298 		write_iev(vsc, pectrl, read_iev(vsc, pectrl) | IEVME_PARACK);
299 	}
300 	return (0);
301 }
302 
303 void ie_memcopyin(struct ie_softc *, void *, int, size_t);
304 void ie_memcopyout(struct ie_softc *, const void *, int, size_t);
305 
306 /*
307  * Copy board memory to kernel.
308  */
309 void
ie_memcopyin(struct ie_softc * sc,void * p,int offset,size_t size)310 ie_memcopyin(struct ie_softc *sc, void *p, int offset, size_t size)
311 {
312 	size_t help;
313 
314 	if ((offset & 1) && ((u_long)p & 1) && size > 0) {
315 		*(u_int8_t *)p = bus_space_read_1(sc->bt, sc->bh, offset);
316 		offset++;
317 		p = (u_int8_t *)p + 1;
318 		size--;
319 	}
320 
321 	if ((offset & 1) || ((u_long)p & 1)) {
322 		bus_space_read_region_1(sc->bt, sc->bh, offset, p, size);
323 		return;
324 	}
325 
326 	help = size / 2;
327 	bus_space_read_region_2(sc->bt, sc->bh, offset, p, help);
328 	if (2 * help == size)
329 		return;
330 
331 	offset += 2 * help;
332 	p = (u_int16_t *)p + help;
333 	*(u_int8_t *)p = bus_space_read_1(sc->bt, sc->bh, offset);
334 }
335 
336 /*
337  * Copy from kernel space to board memory.
338  */
339 void
ie_memcopyout(struct ie_softc * sc,const void * p,int offset,size_t size)340 ie_memcopyout(struct ie_softc *sc, const void *p, int offset, size_t size)
341 {
342 	size_t help;
343 
344 	if ((offset & 1) && ((u_long)p & 1) && size > 0) {
345 		bus_space_write_1(sc->bt, sc->bh, offset, *(const u_int8_t *)p);
346 		offset++;
347 		p = (const u_int8_t *)p + 1;
348 		size--;
349 	}
350 
351 	if ((offset & 1) || ((u_long)p & 1)) {
352 		bus_space_write_region_1(sc->bt, sc->bh, offset, p, size);
353 		return;
354 	}
355 
356 	help = size / 2;
357 	bus_space_write_region_2(sc->bt, sc->bh, offset, p, help);
358 	if (2 * help == size)
359 		return;
360 
361 	offset += 2 * help;
362 	p = (const u_int16_t *)p + help;
363 	bus_space_write_1(sc->bt, sc->bh, offset, *(const u_int8_t *)p);
364 }
365 
366 /* read a 16-bit value at BH offset */
367 u_int16_t ie_vme_read16(struct ie_softc *, int offset);
368 /* write a 16-bit value at BH offset */
369 void ie_vme_write16(struct ie_softc *, int offset, u_int16_t value);
370 void ie_vme_write24(struct ie_softc *, int offset, int addr);
371 
372 u_int16_t
ie_vme_read16(struct ie_softc * sc,int offset)373 ie_vme_read16(struct ie_softc *sc, int offset)
374 {
375 	u_int16_t v;
376 
377 	bus_space_barrier(sc->bt, sc->bh, offset, 2, BUS_SPACE_BARRIER_READ);
378 	v = bus_space_read_2(sc->bt, sc->bh, offset);
379 	return (((v&0xff)<<8) | ((v>>8)&0xff));
380 }
381 
382 void
ie_vme_write16(struct ie_softc * sc,int offset,u_int16_t v)383 ie_vme_write16(struct ie_softc *sc, int offset, u_int16_t v)
384 {
385 	int v0 = ((((v)&0xff)<<8) | (((v)>>8)&0xff));
386 	bus_space_write_2(sc->bt, sc->bh, offset, v0);
387 	bus_space_barrier(sc->bt, sc->bh, offset, 2, BUS_SPACE_BARRIER_WRITE);
388 }
389 
390 void
ie_vme_write24(struct ie_softc * sc,int offset,int addr)391 ie_vme_write24(struct ie_softc *sc, int offset, int addr)
392 {
393 	u_char *f = (u_char *)&addr;
394 	u_int16_t v0, v1;
395 	u_char *t;
396 
397 	t = (u_char *)&v0;
398 	t[0] = f[3]; t[1] = f[2];
399 	bus_space_write_2(sc->bt, sc->bh, offset, v0);
400 
401 	t = (u_char *)&v1;
402 	t[0] = f[1]; t[1] = 0;
403 	bus_space_write_2(sc->bt, sc->bh, offset+2, v1);
404 
405 	bus_space_barrier(sc->bt, sc->bh, offset, 4, BUS_SPACE_BARRIER_WRITE);
406 }
407 
408 int
ie_vme_match(device_t parent,cfdata_t cf,void * aux)409 ie_vme_match(device_t parent, cfdata_t cf, void *aux)
410 {
411 	struct vme_attach_args *va = aux;
412 	vme_chipset_tag_t ct = va->va_vct;
413 	vme_am_t mod;
414 	int error;
415 
416 	if (va->numcfranges < 2) {
417 		printf("ie_vme_match: need 2 ranges\n");
418 		return (0);
419 	}
420 	if ((va->r[1].offset & 0xff0fffff) ||
421 	    ((va->r[0].offset & 0xfff00000)
422 	     != (va->r[1].offset & 0xfff00000))) {
423 		printf("ie_vme_match: base address mismatch\n");
424 		return (0);
425 	}
426 	if (va->r[0].size != VMECF_LEN_DEFAULT &&
427 	    va->r[0].size != sizeof(struct ievme)) {
428 		printf("ie_vme_match: bad csr size\n");
429 		return (0);
430 	}
431 	if (va->r[1].size == VMECF_LEN_DEFAULT) {
432 		printf("ie_vme_match: must specify memory size\n");
433 		return (0);
434 	}
435 
436 	mod = 0x3d; /* VME_AM_A24|VME_AM_MBO|VME_AM_SUPER|VME_AM_DATA */
437 
438 	if (va->r[0].am != VMECF_AM_DEFAULT &&
439 	    va->r[0].am != mod)
440 		return (0);
441 
442 	if (vme_space_alloc(va->va_vct, va->r[0].offset,
443 			    sizeof(struct ievme), mod))
444 		return (0);
445 	if (vme_space_alloc(va->va_vct, va->r[1].offset,
446 			    va->r[1].size, mod)) {
447 		vme_space_free(va->va_vct, va->r[0].offset,
448 			       sizeof(struct ievme), mod);
449 		return (0);
450 	}
451 	error = vme_probe(ct, va->r[0].offset, 2, mod, VME_D16, 0, 0);
452 	vme_space_free(va->va_vct, va->r[0].offset, sizeof(struct ievme), mod);
453 	vme_space_free(va->va_vct, va->r[1].offset, va->r[1].size, mod);
454 
455 	return (error == 0);
456 }
457 
458 void
ie_vme_attach(device_t parent,device_t self,void * aux)459 ie_vme_attach(device_t parent, device_t self, void *aux)
460 {
461 	u_int8_t myaddr[ETHER_ADDR_LEN];
462 	struct ie_vme_softc *vsc = device_private(self);
463 	struct vme_attach_args *va = aux;
464 	vme_chipset_tag_t ct = va->va_vct;
465 	struct ie_softc *sc;
466 	vme_intr_handle_t ih;
467 	vme_addr_t rampaddr;
468 	vme_size_t memsize;
469 	vme_mapresc_t resc;
470 	int lcv;
471 	prop_data_t eaddrprop;
472 	vme_am_t mod;
473 
474 	/*
475 	 * *note*: we don't detect the difference between a VME3E and
476 	 * a multibus/vme card.   if you want to use a 3E you'll have
477 	 * to fix this.
478 	 */
479 	mod = 0x3d; /* VME_AM_A24|VME_AM_MBO|VME_AM_SUPER|VME_AM_DATA */
480 	if (vme_space_alloc(va->va_vct, va->r[0].offset,
481 			    sizeof(struct ievme), mod) ||
482 	    vme_space_alloc(va->va_vct, va->r[1].offset,
483 			    va->r[1].size, mod))
484 		panic("if_ie: vme alloc");
485 
486 	sc = &vsc->ie;
487 	sc->sc_dev = self;
488 
489 	sc->hwreset = ie_vmereset;
490 	sc->hwinit = ie_vmerun;
491 	sc->chan_attn = ie_vmeattend;
492 	sc->intrhook = ie_vmeintr;
493 	sc->memcopyout = ie_memcopyout;
494 	sc->memcopyin = ie_memcopyin;
495 
496 	sc->ie_bus_barrier = NULL;
497 	sc->ie_bus_read16 = ie_vme_read16;
498 	sc->ie_bus_write16 = ie_vme_write16;
499 	sc->ie_bus_write24 = ie_vme_write24;
500 
501 	memsize = va->r[1].size;
502 
503 	if (vme_space_map(ct, va->r[0].offset, sizeof(struct ievme), mod,
504 			  VME_D16 | VME_D8, 0,
505 			  &vsc->ievt, &vsc->ievh, &resc) != 0)
506 		panic("if_ie: vme map csr");
507 
508 	rampaddr = va->r[1].offset;
509 
510 	/* 4 more */
511 	rampaddr = rampaddr | ((read_iev(vsc, status) & IEVME_HADDR) << 16);
512 	if (vme_space_map(ct, rampaddr, memsize, mod, VME_D16 | VME_D8, 0,
513 			  &sc->bt, &sc->bh, &resc) != 0)
514 		panic("if_ie: vme map mem");
515 
516 	write_iev(vsc, pectrl, read_iev(vsc, pectrl) | IEVME_PARACK);
517 
518 	/*
519 	 * Set up mappings, direct map except for last page
520 	 * which is mapped at zero and at high address (for scp)
521 	 */
522 	for (lcv = 0; lcv < IEVME_MAPSZ - 1; lcv++)
523 		write_iev(vsc, pgmap[lcv], IEVME_SBORDR | IEVME_OBMEM | lcv);
524 	write_iev(vsc, pgmap[IEVME_MAPSZ - 1], IEVME_SBORDR | IEVME_OBMEM | 0);
525 
526 	/* Clear all ram */
527 	bus_space_set_region_2(sc->bt, sc->bh, 0, 0, memsize/2);
528 
529 	/*
530 	 * We use the first page to set up SCP, ICSP and SCB data
531 	 * structures. The remaining pages become the buffer area
532 	 * (managed in i82586.c).
533 	 * SCP is in double-mapped page, so the 586 can see it at
534 	 * the mandatory magic address (IE_SCP_ADDR).
535 	 */
536 	sc->scp = (IE_SCP_ADDR & (IEVME_PAGESIZE - 1));
537 
538 	/* iscp at location zero */
539 	sc->iscp = 0;
540 
541 	/* scb follows iscp */
542 	sc->scb = IE_ISCP_SZ;
543 
544 	ie_vme_write16(sc, IE_ISCP_SCB((long)sc->iscp), sc->scb);
545 	ie_vme_write16(sc, IE_ISCP_BASE((u_long)sc->iscp), 0);
546 	ie_vme_write24(sc, IE_SCP_ISCP((u_long)sc->scp), 0);
547 
548 	if (i82586_proberam(sc) == 0) {
549 		printf(": memory probe failed\n");
550 		return;
551 	}
552 
553 	/*
554 	 * Rest of first page is unused; rest of ram for buffers.
555 	 */
556 	sc->buf_area = IEVME_PAGESIZE;
557 	sc->buf_area_sz = memsize - IEVME_PAGESIZE;
558 
559 	sc->do_xmitnopchain = 0;
560 
561 	printf("\n%s:", device_xname(self));
562 
563 	eaddrprop = prop_dictionary_get(device_properties(self), "mac-address");
564 	if (eaddrprop != NULL && prop_data_size(eaddrprop) == ETHER_ADDR_LEN)
565 		memcpy(myaddr, prop_data_data_nocopy(eaddrprop),
566 			ETHER_ADDR_LEN);
567 
568 	i82586_attach(sc, "multibus/vme", myaddr, media, NMEDIA, media[0]);
569 
570 	vme_intr_map(ct, va->ilevel, va->ivector, &ih);
571 	vme_intr_establish(ct, ih, IPL_NET, i82586_intr, sc);
572 }
573