1 /*	$NetBSD: if_tap.c,v 1.84 2016/06/10 13:27:16 ozaki-r Exp $	*/
2 
3 /*
4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5  *  All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *  1. Redistributions of source code must retain the above copyright
11  *     notice, this list of conditions and the following disclaimer.
12  *  2. Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *
16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  *  POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
31  * device to the system, but can also be accessed by userland through a
32  * character device interface, which allows reading and injecting frames.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.84 2016/06/10 13:27:16 ozaki-r Exp $");
37 
38 #if defined(_KERNEL_OPT)
39 
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/conf.h>
49 #include <sys/cprng.h>
50 #include <sys/device.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/poll.h>
54 #include <sys/proc.h>
55 #include <sys/select.h>
56 #include <sys/sockio.h>
57 #if defined(COMPAT_40) || defined(MODULAR)
58 #include <sys/sysctl.h>
59 #endif
60 #include <sys/kauth.h>
61 #include <sys/mutex.h>
62 #include <sys/intr.h>
63 #include <sys/stat.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_ether.h>
68 #include <net/if_media.h>
69 #include <net/if_tap.h>
70 #include <net/bpf.h>
71 
72 #include <compat/sys/sockio.h>
73 
74 #include "ioconf.h"
75 
76 #if defined(COMPAT_40) || defined(MODULAR)
77 /*
78  * sysctl node management
79  *
80  * It's not really possible to use a SYSCTL_SETUP block with
81  * current module implementation, so it is easier to just define
82  * our own function.
83  *
84  * The handler function is a "helper" in Andrew Brown's sysctl
85  * framework terminology.  It is used as a gateway for sysctl
86  * requests over the nodes.
87  *
88  * tap_log allows the module to log creations of nodes and
89  * destroy them all at once using sysctl_teardown.
90  */
91 static int tap_node;
92 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
93 SYSCTL_SETUP_PROTO(sysctl_tap_setup);
94 #endif
95 
96 /*
97  * Since we're an Ethernet device, we need the 2 following
98  * components: a struct ethercom and a struct ifmedia
99  * since we don't attach a PHY to ourselves.
100  * We could emulate one, but there's no real point.
101  */
102 
103 struct tap_softc {
104 	device_t	sc_dev;
105 	struct ifmedia	sc_im;
106 	struct ethercom	sc_ec;
107 	int		sc_flags;
108 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
109 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
110 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
111 #define TAP_GOING	0x00000008	/* interface is being destroyed */
112 	struct selinfo	sc_rsel;
113 	pid_t		sc_pgid; /* For async. IO */
114 	kmutex_t	sc_rdlock;
115 	kmutex_t	sc_kqlock;
116 	void		*sc_sih;
117 	struct timespec sc_atime;
118 	struct timespec sc_mtime;
119 	struct timespec sc_btime;
120 };
121 
122 /* autoconf(9) glue */
123 
124 static int	tap_match(device_t, cfdata_t, void *);
125 static void	tap_attach(device_t, device_t, void *);
126 static int	tap_detach(device_t, int);
127 
128 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
129     tap_match, tap_attach, tap_detach, NULL);
130 extern struct cfdriver tap_cd;
131 
132 /* Real device access routines */
133 static int	tap_dev_close(struct tap_softc *);
134 static int	tap_dev_read(int, struct uio *, int);
135 static int	tap_dev_write(int, struct uio *, int);
136 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
137 static int	tap_dev_poll(int, int, struct lwp *);
138 static int	tap_dev_kqfilter(int, struct knote *);
139 
140 /* Fileops access routines */
141 static int	tap_fops_close(file_t *);
142 static int	tap_fops_read(file_t *, off_t *, struct uio *,
143     kauth_cred_t, int);
144 static int	tap_fops_write(file_t *, off_t *, struct uio *,
145     kauth_cred_t, int);
146 static int	tap_fops_ioctl(file_t *, u_long, void *);
147 static int	tap_fops_poll(file_t *, int);
148 static int	tap_fops_stat(file_t *, struct stat *);
149 static int	tap_fops_kqfilter(file_t *, struct knote *);
150 
151 static const struct fileops tap_fileops = {
152 	.fo_read = tap_fops_read,
153 	.fo_write = tap_fops_write,
154 	.fo_ioctl = tap_fops_ioctl,
155 	.fo_fcntl = fnullop_fcntl,
156 	.fo_poll = tap_fops_poll,
157 	.fo_stat = tap_fops_stat,
158 	.fo_close = tap_fops_close,
159 	.fo_kqfilter = tap_fops_kqfilter,
160 	.fo_restart = fnullop_restart,
161 };
162 
163 /* Helper for cloning open() */
164 static int	tap_dev_cloner(struct lwp *);
165 
166 /* Character device routines */
167 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
168 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
169 static int	tap_cdev_read(dev_t, struct uio *, int);
170 static int	tap_cdev_write(dev_t, struct uio *, int);
171 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
172 static int	tap_cdev_poll(dev_t, int, struct lwp *);
173 static int	tap_cdev_kqfilter(dev_t, struct knote *);
174 
175 const struct cdevsw tap_cdevsw = {
176 	.d_open = tap_cdev_open,
177 	.d_close = tap_cdev_close,
178 	.d_read = tap_cdev_read,
179 	.d_write = tap_cdev_write,
180 	.d_ioctl = tap_cdev_ioctl,
181 	.d_stop = nostop,
182 	.d_tty = notty,
183 	.d_poll = tap_cdev_poll,
184 	.d_mmap = nommap,
185 	.d_kqfilter = tap_cdev_kqfilter,
186 	.d_discard = nodiscard,
187 	.d_flag = D_OTHER
188 };
189 
190 #define TAP_CLONER	0xfffff		/* Maximal minor value */
191 
192 /* kqueue-related routines */
193 static void	tap_kqdetach(struct knote *);
194 static int	tap_kqread(struct knote *, long);
195 
196 /*
197  * Those are needed by the if_media interface.
198  */
199 
200 static int	tap_mediachange(struct ifnet *);
201 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
202 
203 /*
204  * Those are needed by the ifnet interface, and would typically be
205  * there for any network interface driver.
206  * Some other routines are optional: watchdog and drain.
207  */
208 
209 static void	tap_start(struct ifnet *);
210 static void	tap_stop(struct ifnet *, int);
211 static int	tap_init(struct ifnet *);
212 static int	tap_ioctl(struct ifnet *, u_long, void *);
213 
214 /* Internal functions */
215 #if defined(COMPAT_40) || defined(MODULAR)
216 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
217 #endif
218 static void	tap_softintr(void *);
219 
220 /*
221  * tap is a clonable interface, although it is highly unrealistic for
222  * an Ethernet device.
223  *
224  * Here are the bits needed for a clonable interface.
225  */
226 static int	tap_clone_create(struct if_clone *, int);
227 static int	tap_clone_destroy(struct ifnet *);
228 
229 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
230 					tap_clone_create,
231 					tap_clone_destroy);
232 
233 /* Helper functionis shared by the two cloning code paths */
234 static struct tap_softc *	tap_clone_creator(int);
235 int	tap_clone_destroyer(device_t);
236 
237 void
tapattach(int n)238 tapattach(int n)
239 {
240 	int error;
241 
242 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
243 	if (error) {
244 		aprint_error("%s: unable to register cfattach\n",
245 		    tap_cd.cd_name);
246 		(void)config_cfdriver_detach(&tap_cd);
247 		return;
248 	}
249 
250 	if_clone_attach(&tap_cloners);
251 }
252 
253 /* Pretty much useless for a pseudo-device */
254 static int
tap_match(device_t parent,cfdata_t cfdata,void * arg)255 tap_match(device_t parent, cfdata_t cfdata, void *arg)
256 {
257 
258 	return (1);
259 }
260 
261 void
tap_attach(device_t parent,device_t self,void * aux)262 tap_attach(device_t parent, device_t self, void *aux)
263 {
264 	struct tap_softc *sc = device_private(self);
265 	struct ifnet *ifp;
266 #if defined(COMPAT_40) || defined(MODULAR)
267 	const struct sysctlnode *node;
268 	int error;
269 #endif
270 	uint8_t enaddr[ETHER_ADDR_LEN] =
271 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
272 	char enaddrstr[3 * ETHER_ADDR_LEN];
273 
274 	sc->sc_dev = self;
275 	sc->sc_sih = NULL;
276 	getnanotime(&sc->sc_btime);
277 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
278 	sc->sc_flags = 0;
279 	selinit(&sc->sc_rsel);
280 
281 	/*
282 	 * Initialize the two locks for the device.
283 	 *
284 	 * We need a lock here because even though the tap device can be
285 	 * opened only once, the file descriptor might be passed to another
286 	 * process, say a fork(2)ed child.
287 	 *
288 	 * The Giant saves us from most of the hassle, but since the read
289 	 * operation can sleep, we don't want two processes to wake up at
290 	 * the same moment and both try and dequeue a single packet.
291 	 *
292 	 * The queue for event listeners (used by kqueue(9), see below) has
293 	 * to be protected too, so use a spin lock.
294 	 */
295 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
296 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
297 
298 	if (!pmf_device_register(self, NULL, NULL))
299 		aprint_error_dev(self, "couldn't establish power handler\n");
300 
301 	/*
302 	 * In order to obtain unique initial Ethernet address on a host,
303 	 * do some randomisation.  It's not meant for anything but avoiding
304 	 * hard-coding an address.
305 	 */
306 	cprng_fast(&enaddr[3], 3);
307 
308 	aprint_verbose_dev(self, "Ethernet address %s\n",
309 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
310 
311 	/*
312 	 * Why 1000baseT? Why not? You can add more.
313 	 *
314 	 * Note that there are 3 steps: init, one or several additions to
315 	 * list of supported media, and in the end, the selection of one
316 	 * of them.
317 	 */
318 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
319 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
320 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
321 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
322 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
323 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
324 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
325 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
326 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
327 
328 	/*
329 	 * One should note that an interface must do multicast in order
330 	 * to support IPv6.
331 	 */
332 	ifp = &sc->sc_ec.ec_if;
333 	strcpy(ifp->if_xname, device_xname(self));
334 	ifp->if_softc	= sc;
335 	int tmp = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
336 	ifp->if_flags	= tmp;
337 	ifp->if_ioctl	= tap_ioctl;
338 	ifp->if_start	= tap_start;
339 	ifp->if_stop	= tap_stop;
340 	ifp->if_init	= tap_init;
341 	IFQ_SET_READY(&ifp->if_snd);
342 
343 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
344 
345 	/* Those steps are mandatory for an Ethernet driver. */
346 	if_initialize(ifp);
347 	ether_ifattach(ifp, enaddr);
348 	if_register(ifp);
349 
350 #if defined(COMPAT_40) || defined(MODULAR)
351 	/*
352 	 * Add a sysctl node for that interface.
353 	 *
354 	 * The pointer transmitted is not a string, but instead a pointer to
355 	 * the softc structure, which we can use to build the string value on
356 	 * the fly in the helper function of the node.  See the comments for
357 	 * tap_sysctl_handler for details.
358 	 *
359 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
360 	 * component.  However, we can allocate a number ourselves, as we are
361 	 * the only consumer of the net.link.<iface> node.  In this case, the
362 	 * unit number is conveniently used to number the node.  CTL_CREATE
363 	 * would just work, too.
364 	 */
365 	if ((error = sysctl_createv(NULL, 0, NULL,
366 	    &node, CTLFLAG_READWRITE,
367 	    CTLTYPE_STRING, device_xname(self), NULL,
368 	    tap_sysctl_handler, 0, (void *)sc, 18,
369 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
370 	    CTL_EOL)) != 0)
371 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
372 		    error);
373 #endif
374 }
375 
376 /*
377  * When detaching, we do the inverse of what is done in the attach
378  * routine, in reversed order.
379  */
380 static int
tap_detach(device_t self,int flags)381 tap_detach(device_t self, int flags)
382 {
383 	struct tap_softc *sc = device_private(self);
384 	struct ifnet *ifp = &sc->sc_ec.ec_if;
385 #if defined(COMPAT_40) || defined(MODULAR)
386 	int error;
387 #endif
388 	int s;
389 
390 	sc->sc_flags |= TAP_GOING;
391 	s = splnet();
392 	tap_stop(ifp, 1);
393 	if_down(ifp);
394 	splx(s);
395 
396 	if (sc->sc_sih != NULL) {
397 		softint_disestablish(sc->sc_sih);
398 		sc->sc_sih = NULL;
399 	}
400 
401 #if defined(COMPAT_40) || defined(MODULAR)
402 	/*
403 	 * Destroying a single leaf is a very straightforward operation using
404 	 * sysctl_destroyv.  One should be sure to always end the path with
405 	 * CTL_EOL.
406 	 */
407 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
408 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
409 		aprint_error_dev(self,
410 		    "sysctl_destroyv returned %d, ignoring\n", error);
411 #endif
412 	ether_ifdetach(ifp);
413 	if_detach(ifp);
414 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
415 	seldestroy(&sc->sc_rsel);
416 	mutex_destroy(&sc->sc_rdlock);
417 	mutex_destroy(&sc->sc_kqlock);
418 
419 	pmf_device_deregister(self);
420 
421 	return (0);
422 }
423 
424 /*
425  * This function is called by the ifmedia layer to notify the driver
426  * that the user requested a media change.  A real driver would
427  * reconfigure the hardware.
428  */
429 static int
tap_mediachange(struct ifnet * ifp)430 tap_mediachange(struct ifnet *ifp)
431 {
432 	return (0);
433 }
434 
435 /*
436  * Here the user asks for the currently used media.
437  */
438 static void
tap_mediastatus(struct ifnet * ifp,struct ifmediareq * imr)439 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
440 {
441 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
442 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
443 }
444 
445 /*
446  * This is the function where we SEND packets.
447  *
448  * There is no 'receive' equivalent.  A typical driver will get
449  * interrupts from the hardware, and from there will inject new packets
450  * into the network stack.
451  *
452  * Once handled, a packet must be freed.  A real driver might not be able
453  * to fit all the pending packets into the hardware, and is allowed to
454  * return before having sent all the packets.  It should then use the
455  * if_flags flag IFF_OACTIVE to notify the upper layer.
456  *
457  * There are also other flags one should check, such as IFF_PAUSE.
458  *
459  * It is our duty to make packets available to BPF listeners.
460  *
461  * You should be aware that this function is called by the Ethernet layer
462  * at splnet().
463  *
464  * When the device is opened, we have to pass the packet(s) to the
465  * userland.  For that we stay in OACTIVE mode while the userland gets
466  * the packets, and we send a signal to the processes waiting to read.
467  *
468  * wakeup(sc) is the counterpart to the tsleep call in
469  * tap_dev_read, while selnotify() is used for kevent(2) and
470  * poll(2) (which includes select(2)) listeners.
471  */
472 static void
tap_start(struct ifnet * ifp)473 tap_start(struct ifnet *ifp)
474 {
475 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
476 	struct mbuf *m0;
477 
478 	if ((sc->sc_flags & TAP_INUSE) == 0) {
479 		/* Simply drop packets */
480 		for(;;) {
481 			IFQ_DEQUEUE(&ifp->if_snd, m0);
482 			if (m0 == NULL)
483 				return;
484 
485 			ifp->if_opackets++;
486 			bpf_mtap(ifp, m0);
487 
488 			m_freem(m0);
489 		}
490 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
491 		ifp->if_flags |= IFF_OACTIVE;
492 		wakeup(sc);
493 		selnotify(&sc->sc_rsel, 0, 1);
494 		if (sc->sc_flags & TAP_ASYNCIO)
495 			softint_schedule(sc->sc_sih);
496 	}
497 }
498 
499 static void
tap_softintr(void * cookie)500 tap_softintr(void *cookie)
501 {
502 	struct tap_softc *sc;
503 	struct ifnet *ifp;
504 	int a, b;
505 
506 	sc = cookie;
507 
508 	if (sc->sc_flags & TAP_ASYNCIO) {
509 		ifp = &sc->sc_ec.ec_if;
510 		if (ifp->if_flags & IFF_RUNNING) {
511 			a = POLL_IN;
512 			b = POLLIN|POLLRDNORM;
513 		} else {
514 			a = POLL_HUP;
515 			b = 0;
516 		}
517 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
518 	}
519 }
520 
521 /*
522  * A typical driver will only contain the following handlers for
523  * ioctl calls, except SIOCSIFPHYADDR.
524  * The latter is a hack I used to set the Ethernet address of the
525  * faked device.
526  *
527  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
528  * called under splnet().
529  */
530 static int
tap_ioctl(struct ifnet * ifp,u_long cmd,void * data)531 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
532 {
533 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
534 	struct ifreq *ifr = (struct ifreq *)data;
535 	int s, error;
536 
537 	s = splnet();
538 
539 	switch (cmd) {
540 #ifdef OSIOCSIFMEDIA
541 	case OSIOCSIFMEDIA:
542 #endif
543 	case SIOCSIFMEDIA:
544 	case SIOCGIFMEDIA:
545 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
546 		break;
547 #if defined(COMPAT_40) || defined(MODULAR)
548 	case SIOCSIFPHYADDR:
549 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
550 		break;
551 #endif
552 	default:
553 		error = ether_ioctl(ifp, cmd, data);
554 		if (error == ENETRESET)
555 			error = 0;
556 		break;
557 	}
558 
559 	splx(s);
560 
561 	return (error);
562 }
563 
564 #if defined(COMPAT_40) || defined(MODULAR)
565 /*
566  * Helper function to set Ethernet address.  This has been replaced by
567  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
568  */
569 static int
tap_lifaddr(struct ifnet * ifp,u_long cmd,struct ifaliasreq * ifra)570 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
571 {
572 	const struct sockaddr *sa = &ifra->ifra_addr;
573 
574 	if (sa->sa_family != AF_LINK)
575 		return (EINVAL);
576 
577 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
578 
579 	return (0);
580 }
581 #endif
582 
583 /*
584  * _init() would typically be called when an interface goes up,
585  * meaning it should configure itself into the state in which it
586  * can send packets.
587  */
588 static int
tap_init(struct ifnet * ifp)589 tap_init(struct ifnet *ifp)
590 {
591 	ifp->if_flags |= IFF_RUNNING;
592 
593 	tap_start(ifp);
594 
595 	return (0);
596 }
597 
598 /*
599  * _stop() is called when an interface goes down.  It is our
600  * responsability to validate that state by clearing the
601  * IFF_RUNNING flag.
602  *
603  * We have to wake up all the sleeping processes to have the pending
604  * read requests cancelled.
605  */
606 static void
tap_stop(struct ifnet * ifp,int disable)607 tap_stop(struct ifnet *ifp, int disable)
608 {
609 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
610 
611 	ifp->if_flags &= ~IFF_RUNNING;
612 	wakeup(sc);
613 	selnotify(&sc->sc_rsel, 0, 1);
614 	if (sc->sc_flags & TAP_ASYNCIO)
615 		softint_schedule(sc->sc_sih);
616 }
617 
618 /*
619  * The 'create' command of ifconfig can be used to create
620  * any numbered instance of a given device.  Thus we have to
621  * make sure we have enough room in cd_devs to create the
622  * user-specified instance.  config_attach_pseudo will do this
623  * for us.
624  */
625 static int
tap_clone_create(struct if_clone * ifc,int unit)626 tap_clone_create(struct if_clone *ifc, int unit)
627 {
628 	if (tap_clone_creator(unit) == NULL) {
629 		aprint_error("%s%d: unable to attach an instance\n",
630                     tap_cd.cd_name, unit);
631 		return (ENXIO);
632 	}
633 
634 	return (0);
635 }
636 
637 /*
638  * tap(4) can be cloned by two ways:
639  *   using 'ifconfig tap0 create', which will use the network
640  *     interface cloning API, and call tap_clone_create above.
641  *   opening the cloning device node, whose minor number is TAP_CLONER.
642  *     See below for an explanation on how this part work.
643  */
644 static struct tap_softc *
tap_clone_creator(int unit)645 tap_clone_creator(int unit)
646 {
647 	struct cfdata *cf;
648 
649 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
650 	cf->cf_name = tap_cd.cd_name;
651 	cf->cf_atname = tap_ca.ca_name;
652 	if (unit == -1) {
653 		/* let autoconf find the first free one */
654 		cf->cf_unit = 0;
655 		cf->cf_fstate = FSTATE_STAR;
656 	} else {
657 		cf->cf_unit = unit;
658 		cf->cf_fstate = FSTATE_NOTFOUND;
659 	}
660 
661 	return device_private(config_attach_pseudo(cf));
662 }
663 
664 /*
665  * The clean design of if_clone and autoconf(9) makes that part
666  * really straightforward.  The second argument of config_detach
667  * means neither QUIET nor FORCED.
668  */
669 static int
tap_clone_destroy(struct ifnet * ifp)670 tap_clone_destroy(struct ifnet *ifp)
671 {
672 	struct tap_softc *sc = ifp->if_softc;
673 
674 	return tap_clone_destroyer(sc->sc_dev);
675 }
676 
677 int
tap_clone_destroyer(device_t dev)678 tap_clone_destroyer(device_t dev)
679 {
680 	cfdata_t cf = device_cfdata(dev);
681 	int error;
682 
683 	if ((error = config_detach(dev, 0)) != 0)
684 		aprint_error_dev(dev, "unable to detach instance\n");
685 	free(cf, M_DEVBUF);
686 
687 	return (error);
688 }
689 
690 /*
691  * tap(4) is a bit of an hybrid device.  It can be used in two different
692  * ways:
693  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
694  *  2. open /dev/tap, get a new interface created and read/write off it.
695  *     That interface is destroyed when the process that had it created exits.
696  *
697  * The first way is managed by the cdevsw structure, and you access interfaces
698  * through a (major, minor) mapping:  tap4 is obtained by the minor number
699  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
700  *
701  * The second way is the so-called "cloning" device.  It's a special minor
702  * number (chosen as the maximal number, to allow as much tap devices as
703  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
704  * call ends in tap_cdev_open.  The actual place where it is handled is
705  * tap_dev_cloner.
706  *
707  * An tap device cannot be opened more than once at a time, so the cdevsw
708  * part of open() does nothing but noting that the interface is being used and
709  * hence ready to actually handle packets.
710  */
711 
712 static int
tap_cdev_open(dev_t dev,int flags,int fmt,struct lwp * l)713 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
714 {
715 	struct tap_softc *sc;
716 
717 	if (minor(dev) == TAP_CLONER)
718 		return tap_dev_cloner(l);
719 
720 	sc = device_lookup_private(&tap_cd, minor(dev));
721 	if (sc == NULL)
722 		return (ENXIO);
723 
724 	/* The device can only be opened once */
725 	if (sc->sc_flags & TAP_INUSE)
726 		return (EBUSY);
727 	sc->sc_flags |= TAP_INUSE;
728 	return (0);
729 }
730 
731 /*
732  * There are several kinds of cloning devices, and the most simple is the one
733  * tap(4) uses.  What it does is change the file descriptor with a new one,
734  * with its own fileops structure (which maps to the various read, write,
735  * ioctl functions).  It starts allocating a new file descriptor with falloc,
736  * then actually creates the new tap devices.
737  *
738  * Once those two steps are successful, we can re-wire the existing file
739  * descriptor to its new self.  This is done with fdclone():  it fills the fp
740  * structure as needed (notably f_devunit gets filled with the fifth parameter
741  * passed, the unit of the tap device which will allows us identifying the
742  * device later), and returns EMOVEFD.
743  *
744  * That magic value is interpreted by sys_open() which then replaces the
745  * current file descriptor by the new one (through a magic member of struct
746  * lwp, l_dupfd).
747  *
748  * The tap device is flagged as being busy since it otherwise could be
749  * externally accessed through the corresponding device node with the cdevsw
750  * interface.
751  */
752 
753 static int
tap_dev_cloner(struct lwp * l)754 tap_dev_cloner(struct lwp *l)
755 {
756 	struct tap_softc *sc;
757 	file_t *fp;
758 	int error, fd;
759 
760 	if ((error = fd_allocfile(&fp, &fd)) != 0)
761 		return (error);
762 
763 	if ((sc = tap_clone_creator(-1)) == NULL) {
764 		fd_abort(curproc, fp, fd);
765 		return (ENXIO);
766 	}
767 
768 	sc->sc_flags |= TAP_INUSE;
769 
770 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
771 	    (void *)(intptr_t)device_unit(sc->sc_dev));
772 }
773 
774 /*
775  * While all other operations (read, write, ioctl, poll and kqfilter) are
776  * really the same whether we are in cdevsw or fileops mode, the close()
777  * function is slightly different in the two cases.
778  *
779  * As for the other, the core of it is shared in tap_dev_close.  What
780  * it does is sufficient for the cdevsw interface, but the cloning interface
781  * needs another thing:  the interface is destroyed when the processes that
782  * created it closes it.
783  */
784 static int
tap_cdev_close(dev_t dev,int flags,int fmt,struct lwp * l)785 tap_cdev_close(dev_t dev, int flags, int fmt,
786     struct lwp *l)
787 {
788 	struct tap_softc *sc =
789 	    device_lookup_private(&tap_cd, minor(dev));
790 
791 	if (sc == NULL)
792 		return (ENXIO);
793 
794 	return tap_dev_close(sc);
795 }
796 
797 /*
798  * It might happen that the administrator used ifconfig to externally destroy
799  * the interface.  In that case, tap_fops_close will be called while
800  * tap_detach is already happening.  If we called it again from here, we
801  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
802  */
803 static int
tap_fops_close(file_t * fp)804 tap_fops_close(file_t *fp)
805 {
806 	int unit = fp->f_devunit;
807 	struct tap_softc *sc;
808 	int error;
809 
810 	sc = device_lookup_private(&tap_cd, unit);
811 	if (sc == NULL)
812 		return (ENXIO);
813 
814 	/* tap_dev_close currently always succeeds, but it might not
815 	 * always be the case. */
816 	KERNEL_LOCK(1, NULL);
817 	if ((error = tap_dev_close(sc)) != 0) {
818 		KERNEL_UNLOCK_ONE(NULL);
819 		return (error);
820 	}
821 
822 	/* Destroy the device now that it is no longer useful,
823 	 * unless it's already being destroyed. */
824 	if ((sc->sc_flags & TAP_GOING) != 0) {
825 		KERNEL_UNLOCK_ONE(NULL);
826 		return (0);
827 	}
828 
829 	error = tap_clone_destroyer(sc->sc_dev);
830 	KERNEL_UNLOCK_ONE(NULL);
831 	return error;
832 }
833 
834 static int
tap_dev_close(struct tap_softc * sc)835 tap_dev_close(struct tap_softc *sc)
836 {
837 	struct ifnet *ifp;
838 	int s;
839 
840 	s = splnet();
841 	/* Let tap_start handle packets again */
842 	ifp = &sc->sc_ec.ec_if;
843 	ifp->if_flags &= ~IFF_OACTIVE;
844 
845 	/* Purge output queue */
846 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
847 		struct mbuf *m;
848 
849 		for (;;) {
850 			IFQ_DEQUEUE(&ifp->if_snd, m);
851 			if (m == NULL)
852 				break;
853 
854 			ifp->if_opackets++;
855 			bpf_mtap(ifp, m);
856 			m_freem(m);
857 		}
858 	}
859 	splx(s);
860 
861 	if (sc->sc_sih != NULL) {
862 		softint_disestablish(sc->sc_sih);
863 		sc->sc_sih = NULL;
864 	}
865 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
866 
867 	return (0);
868 }
869 
870 static int
tap_cdev_read(dev_t dev,struct uio * uio,int flags)871 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
872 {
873 	return tap_dev_read(minor(dev), uio, flags);
874 }
875 
876 static int
tap_fops_read(file_t * fp,off_t * offp,struct uio * uio,kauth_cred_t cred,int flags)877 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
878     kauth_cred_t cred, int flags)
879 {
880 	int error;
881 
882 	KERNEL_LOCK(1, NULL);
883 	error = tap_dev_read(fp->f_devunit, uio, flags);
884 	KERNEL_UNLOCK_ONE(NULL);
885 	return error;
886 }
887 
888 static int
tap_dev_read(int unit,struct uio * uio,int flags)889 tap_dev_read(int unit, struct uio *uio, int flags)
890 {
891 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
892 	struct ifnet *ifp;
893 	struct mbuf *m, *n;
894 	int error = 0, s;
895 
896 	if (sc == NULL)
897 		return (ENXIO);
898 
899 	getnanotime(&sc->sc_atime);
900 
901 	ifp = &sc->sc_ec.ec_if;
902 	if ((ifp->if_flags & IFF_UP) == 0)
903 		return (EHOSTDOWN);
904 
905 	/*
906 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
907 	 */
908 	if ((sc->sc_flags & TAP_NBIO) != 0) {
909 		if (!mutex_tryenter(&sc->sc_rdlock))
910 			return (EWOULDBLOCK);
911 	} else {
912 		mutex_enter(&sc->sc_rdlock);
913 	}
914 
915 	s = splnet();
916 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
917 		ifp->if_flags &= ~IFF_OACTIVE;
918 		/*
919 		 * We must release the lock before sleeping, and re-acquire it
920 		 * after.
921 		 */
922 		mutex_exit(&sc->sc_rdlock);
923 		if (sc->sc_flags & TAP_NBIO)
924 			error = EWOULDBLOCK;
925 		else
926 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
927 		splx(s);
928 
929 		if (error != 0)
930 			return (error);
931 		/* The device might have been downed */
932 		if ((ifp->if_flags & IFF_UP) == 0)
933 			return (EHOSTDOWN);
934 		if ((sc->sc_flags & TAP_NBIO)) {
935 			if (!mutex_tryenter(&sc->sc_rdlock))
936 				return (EWOULDBLOCK);
937 		} else {
938 			mutex_enter(&sc->sc_rdlock);
939 		}
940 		s = splnet();
941 	}
942 
943 	IFQ_DEQUEUE(&ifp->if_snd, m);
944 	ifp->if_flags &= ~IFF_OACTIVE;
945 	splx(s);
946 	if (m == NULL) {
947 		error = 0;
948 		goto out;
949 	}
950 
951 	ifp->if_opackets++;
952 	bpf_mtap(ifp, m);
953 
954 	/*
955 	 * One read is one packet.
956 	 */
957 	do {
958 		error = uiomove(mtod(m, void *),
959 		    min(m->m_len, uio->uio_resid), uio);
960 		MFREE(m, n);
961 		m = n;
962 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
963 
964 	if (m != NULL)
965 		m_freem(m);
966 
967 out:
968 	mutex_exit(&sc->sc_rdlock);
969 	return (error);
970 }
971 
972 static int
tap_fops_stat(file_t * fp,struct stat * st)973 tap_fops_stat(file_t *fp, struct stat *st)
974 {
975 	int error = 0;
976 	struct tap_softc *sc;
977 	int unit = fp->f_devunit;
978 
979 	(void)memset(st, 0, sizeof(*st));
980 
981 	KERNEL_LOCK(1, NULL);
982 	sc = device_lookup_private(&tap_cd, unit);
983 	if (sc == NULL) {
984 		error = ENXIO;
985 		goto out;
986 	}
987 
988 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
989 	st->st_atimespec = sc->sc_atime;
990 	st->st_mtimespec = sc->sc_mtime;
991 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
992 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
993 	st->st_gid = kauth_cred_getegid(fp->f_cred);
994 out:
995 	KERNEL_UNLOCK_ONE(NULL);
996 	return error;
997 }
998 
999 static int
tap_cdev_write(dev_t dev,struct uio * uio,int flags)1000 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1001 {
1002 	return tap_dev_write(minor(dev), uio, flags);
1003 }
1004 
1005 static int
tap_fops_write(file_t * fp,off_t * offp,struct uio * uio,kauth_cred_t cred,int flags)1006 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1007     kauth_cred_t cred, int flags)
1008 {
1009 	int error;
1010 
1011 	KERNEL_LOCK(1, NULL);
1012 	error = tap_dev_write(fp->f_devunit, uio, flags);
1013 	KERNEL_UNLOCK_ONE(NULL);
1014 	return error;
1015 }
1016 
1017 static int
tap_dev_write(int unit,struct uio * uio,int flags)1018 tap_dev_write(int unit, struct uio *uio, int flags)
1019 {
1020 	struct tap_softc *sc =
1021 	    device_lookup_private(&tap_cd, unit);
1022 	struct ifnet *ifp;
1023 	struct mbuf *m, **mp;
1024 	int error = 0;
1025 	int s;
1026 
1027 	if (sc == NULL)
1028 		return (ENXIO);
1029 
1030 	getnanotime(&sc->sc_mtime);
1031 	ifp = &sc->sc_ec.ec_if;
1032 
1033 	/* One write, one packet, that's the rule */
1034 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1035 	if (m == NULL) {
1036 		ifp->if_ierrors++;
1037 		return (ENOBUFS);
1038 	}
1039 	m->m_pkthdr.len = uio->uio_resid;
1040 
1041 	mp = &m;
1042 	while (error == 0 && uio->uio_resid > 0) {
1043 		if (*mp != m) {
1044 			MGET(*mp, M_DONTWAIT, MT_DATA);
1045 			if (*mp == NULL) {
1046 				error = ENOBUFS;
1047 				break;
1048 			}
1049 		}
1050 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
1051 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1052 		mp = &(*mp)->m_next;
1053 	}
1054 	if (error) {
1055 		ifp->if_ierrors++;
1056 		m_freem(m);
1057 		return (error);
1058 	}
1059 
1060 	ifp->if_ipackets++;
1061 	m_set_rcvif(m, ifp);
1062 
1063 	bpf_mtap(ifp, m);
1064 	s = splnet();
1065 	if_input(ifp, m);
1066 	splx(s);
1067 
1068 	return (0);
1069 }
1070 
1071 static int
tap_cdev_ioctl(dev_t dev,u_long cmd,void * data,int flags,struct lwp * l)1072 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1073     struct lwp *l)
1074 {
1075 	return tap_dev_ioctl(minor(dev), cmd, data, l);
1076 }
1077 
1078 static int
tap_fops_ioctl(file_t * fp,u_long cmd,void * data)1079 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1080 {
1081 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1082 }
1083 
1084 static int
tap_dev_ioctl(int unit,u_long cmd,void * data,struct lwp * l)1085 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1086 {
1087 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1088 
1089 	if (sc == NULL)
1090 		return ENXIO;
1091 
1092 	switch (cmd) {
1093 	case FIONREAD:
1094 		{
1095 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1096 			struct mbuf *m;
1097 			int s;
1098 
1099 			s = splnet();
1100 			IFQ_POLL(&ifp->if_snd, m);
1101 
1102 			if (m == NULL)
1103 				*(int *)data = 0;
1104 			else
1105 				*(int *)data = m->m_pkthdr.len;
1106 			splx(s);
1107 			return 0;
1108 		}
1109 	case TIOCSPGRP:
1110 	case FIOSETOWN:
1111 		return fsetown(&sc->sc_pgid, cmd, data);
1112 	case TIOCGPGRP:
1113 	case FIOGETOWN:
1114 		return fgetown(sc->sc_pgid, cmd, data);
1115 	case FIOASYNC:
1116 		if (*(int *)data) {
1117 			if (sc->sc_sih == NULL) {
1118 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1119 				    tap_softintr, sc);
1120 				if (sc->sc_sih == NULL)
1121 					return EBUSY; /* XXX */
1122 			}
1123 			sc->sc_flags |= TAP_ASYNCIO;
1124 		} else {
1125 			sc->sc_flags &= ~TAP_ASYNCIO;
1126 			if (sc->sc_sih != NULL) {
1127 				softint_disestablish(sc->sc_sih);
1128 				sc->sc_sih = NULL;
1129 			}
1130 		}
1131 		return 0;
1132 	case FIONBIO:
1133 		if (*(int *)data)
1134 			sc->sc_flags |= TAP_NBIO;
1135 		else
1136 			sc->sc_flags &= ~TAP_NBIO;
1137 		return 0;
1138 #ifdef OTAPGIFNAME
1139 	case OTAPGIFNAME:
1140 #endif
1141 	case TAPGIFNAME:
1142 		{
1143 			struct ifreq *ifr = (struct ifreq *)data;
1144 			struct ifnet *ifp = &sc->sc_ec.ec_if;
1145 
1146 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1147 			return 0;
1148 		}
1149 	default:
1150 		return ENOTTY;
1151 	}
1152 }
1153 
1154 static int
tap_cdev_poll(dev_t dev,int events,struct lwp * l)1155 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1156 {
1157 	return tap_dev_poll(minor(dev), events, l);
1158 }
1159 
1160 static int
tap_fops_poll(file_t * fp,int events)1161 tap_fops_poll(file_t *fp, int events)
1162 {
1163 	return tap_dev_poll(fp->f_devunit, events, curlwp);
1164 }
1165 
1166 static int
tap_dev_poll(int unit,int events,struct lwp * l)1167 tap_dev_poll(int unit, int events, struct lwp *l)
1168 {
1169 	struct tap_softc *sc =
1170 	    device_lookup_private(&tap_cd, unit);
1171 	int revents = 0;
1172 
1173 	if (sc == NULL)
1174 		return POLLERR;
1175 
1176 	if (events & (POLLIN|POLLRDNORM)) {
1177 		struct ifnet *ifp = &sc->sc_ec.ec_if;
1178 		struct mbuf *m;
1179 		int s;
1180 
1181 		s = splnet();
1182 		IFQ_POLL(&ifp->if_snd, m);
1183 
1184 		if (m != NULL)
1185 			revents |= events & (POLLIN|POLLRDNORM);
1186 		else {
1187 			mutex_spin_enter(&sc->sc_kqlock);
1188 			selrecord(l, &sc->sc_rsel);
1189 			mutex_spin_exit(&sc->sc_kqlock);
1190 		}
1191 		splx(s);
1192 	}
1193 	revents |= events & (POLLOUT|POLLWRNORM);
1194 
1195 	return (revents);
1196 }
1197 
1198 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1199 	tap_kqread };
1200 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1201 	filt_seltrue };
1202 
1203 static int
tap_cdev_kqfilter(dev_t dev,struct knote * kn)1204 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1205 {
1206 	return tap_dev_kqfilter(minor(dev), kn);
1207 }
1208 
1209 static int
tap_fops_kqfilter(file_t * fp,struct knote * kn)1210 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1211 {
1212 	return tap_dev_kqfilter(fp->f_devunit, kn);
1213 }
1214 
1215 static int
tap_dev_kqfilter(int unit,struct knote * kn)1216 tap_dev_kqfilter(int unit, struct knote *kn)
1217 {
1218 	struct tap_softc *sc =
1219 	    device_lookup_private(&tap_cd, unit);
1220 
1221 	if (sc == NULL)
1222 		return (ENXIO);
1223 
1224 	KERNEL_LOCK(1, NULL);
1225 	switch(kn->kn_filter) {
1226 	case EVFILT_READ:
1227 		kn->kn_fop = &tap_read_filterops;
1228 		break;
1229 	case EVFILT_WRITE:
1230 		kn->kn_fop = &tap_seltrue_filterops;
1231 		break;
1232 	default:
1233 		KERNEL_UNLOCK_ONE(NULL);
1234 		return (EINVAL);
1235 	}
1236 
1237 	kn->kn_hook = sc;
1238 	mutex_spin_enter(&sc->sc_kqlock);
1239 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1240 	mutex_spin_exit(&sc->sc_kqlock);
1241 	KERNEL_UNLOCK_ONE(NULL);
1242 	return (0);
1243 }
1244 
1245 static void
tap_kqdetach(struct knote * kn)1246 tap_kqdetach(struct knote *kn)
1247 {
1248 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1249 
1250 	KERNEL_LOCK(1, NULL);
1251 	mutex_spin_enter(&sc->sc_kqlock);
1252 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1253 	mutex_spin_exit(&sc->sc_kqlock);
1254 	KERNEL_UNLOCK_ONE(NULL);
1255 }
1256 
1257 static int
tap_kqread(struct knote * kn,long hint)1258 tap_kqread(struct knote *kn, long hint)
1259 {
1260 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1261 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1262 	struct mbuf *m;
1263 	int s, rv;
1264 
1265 	KERNEL_LOCK(1, NULL);
1266 	s = splnet();
1267 	IFQ_POLL(&ifp->if_snd, m);
1268 
1269 	if (m == NULL)
1270 		kn->kn_data = 0;
1271 	else
1272 		kn->kn_data = m->m_pkthdr.len;
1273 	splx(s);
1274 	rv = (kn->kn_data != 0 ? 1 : 0);
1275 	KERNEL_UNLOCK_ONE(NULL);
1276 	return rv;
1277 }
1278 
1279 #if defined(COMPAT_40) || defined(MODULAR)
1280 /*
1281  * sysctl management routines
1282  * You can set the address of an interface through:
1283  * net.link.tap.tap<number>
1284  *
1285  * Note the consistent use of tap_log in order to use
1286  * sysctl_teardown at unload time.
1287  *
1288  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
1289  * blocks register a function in a special section of the kernel
1290  * (called a link set) which is used at init_sysctl() time to cycle
1291  * through all those functions to create the kernel's sysctl tree.
1292  *
1293  * It is not possible to use link sets in a module, so the
1294  * easiest is to simply call our own setup routine at load time.
1295  *
1296  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1297  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
1298  * whole kernel sysctl tree is built, it is not possible to add any
1299  * permanent node.
1300  *
1301  * It should be noted that we're not saving the sysctlnode pointer
1302  * we are returned when creating the "tap" node.  That structure
1303  * cannot be trusted once out of the calling function, as it might
1304  * get reused.  So we just save the MIB number, and always give the
1305  * full path starting from the root for later calls to sysctl_createv
1306  * and sysctl_destroyv.
1307  */
1308 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1309 {
1310 	const struct sysctlnode *node;
1311 	int error = 0;
1312 
1313 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
1314 	    CTLFLAG_PERMANENT,
1315 	    CTLTYPE_NODE, "link", NULL,
1316 	    NULL, 0, NULL, 0,
1317 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
1318 		return;
1319 
1320 	/*
1321 	 * The first four parameters of sysctl_createv are for management.
1322 	 *
1323 	 * The four that follows, here starting with a '0' for the flags,
1324 	 * describe the node.
1325 	 *
1326 	 * The next series of four set its value, through various possible
1327 	 * means.
1328 	 *
1329 	 * Last but not least, the path to the node is described.  That path
1330 	 * is relative to the given root (third argument).  Here we're
1331 	 * starting from the root.
1332 	 */
1333 	if ((error = sysctl_createv(clog, 0, NULL, &node,
1334 	    CTLFLAG_PERMANENT,
1335 	    CTLTYPE_NODE, "tap", NULL,
1336 	    NULL, 0, NULL, 0,
1337 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1338 		return;
1339 	tap_node = node->sysctl_num;
1340 }
1341 
1342 /*
1343  * The helper functions make Andrew Brown's interface really
1344  * shine.  It makes possible to create value on the fly whether
1345  * the sysctl value is read or written.
1346  *
1347  * As shown as an example in the man page, the first step is to
1348  * create a copy of the node to have sysctl_lookup work on it.
1349  *
1350  * Here, we have more work to do than just a copy, since we have
1351  * to create the string.  The first step is to collect the actual
1352  * value of the node, which is a convenient pointer to the softc
1353  * of the interface.  From there we create the string and use it
1354  * as the value, but only for the *copy* of the node.
1355  *
1356  * Then we let sysctl_lookup do the magic, which consists in
1357  * setting oldp and newp as required by the operation.  When the
1358  * value is read, that means that the string will be copied to
1359  * the user, and when it is written, the new value will be copied
1360  * over in the addr array.
1361  *
1362  * If newp is NULL, the user was reading the value, so we don't
1363  * have anything else to do.  If a new value was written, we
1364  * have to check it.
1365  *
1366  * If it is incorrect, we can return an error and leave 'node' as
1367  * it is:  since it is a copy of the actual node, the change will
1368  * be forgotten.
1369  *
1370  * Upon a correct input, we commit the change to the ifnet
1371  * structure of our interface.
1372  */
1373 static int
tap_sysctl_handler(SYSCTLFN_ARGS)1374 tap_sysctl_handler(SYSCTLFN_ARGS)
1375 {
1376 	struct sysctlnode node;
1377 	struct tap_softc *sc;
1378 	struct ifnet *ifp;
1379 	int error;
1380 	size_t len;
1381 	char addr[3 * ETHER_ADDR_LEN];
1382 	uint8_t enaddr[ETHER_ADDR_LEN];
1383 
1384 	node = *rnode;
1385 	sc = node.sysctl_data;
1386 	ifp = &sc->sc_ec.ec_if;
1387 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1388 	node.sysctl_data = addr;
1389 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1390 	if (error || newp == NULL)
1391 		return (error);
1392 
1393 	len = strlen(addr);
1394 	if (len < 11 || len > 17)
1395 		return (EINVAL);
1396 
1397 	/* Commit change */
1398 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1399 		return (EINVAL);
1400 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1401 	return (error);
1402 }
1403 #endif
1404