1 /*	$NetBSD: ip6_output.c,v 1.171 2016/06/27 18:35:54 christos Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.171 2016/06/27 18:35:54 christos Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_inet.h"
69 #include "opt_inet6.h"
70 #include "opt_ipsec.h"
71 #endif
72 
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/kauth.h>
83 
84 #include <net/if.h>
85 #include <net/route.h>
86 #include <net/pfil.h>
87 
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet/portalgo.h>
95 #include <netinet6/in6_offload.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/ip6_private.h>
98 #include <netinet6/in6_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 #include <netinet6/scope6_var.h>
102 
103 #ifdef IPSEC
104 #include <netipsec/ipsec.h>
105 #include <netipsec/ipsec6.h>
106 #include <netipsec/key.h>
107 #include <netipsec/xform.h>
108 #endif
109 
110 
111 #include <net/net_osdep.h>
112 
113 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
114 
115 struct ip6_exthdrs {
116 	struct mbuf *ip6e_ip6;
117 	struct mbuf *ip6e_hbh;
118 	struct mbuf *ip6e_dest1;
119 	struct mbuf *ip6e_rthdr;
120 	struct mbuf *ip6e_dest2;
121 };
122 
123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
124 	kauth_cred_t, int);
125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
127 	int, int, int);
128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *);
129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *);
130 static int ip6_copyexthdr(struct mbuf **, void *, int);
131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
132 	struct ip6_frag **);
133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
135 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
136     const struct in6_addr *, u_long *, int *);
137 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
138 
139 #ifdef RFC2292
140 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
141 #endif
142 
143 /*
144  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
145  * header (with pri, len, nxt, hlim, src, dst).
146  * This function may modify ver and hlim only.
147  * The mbuf chain containing the packet will be freed.
148  * The mbuf opt, if present, will not be freed.
149  *
150  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
151  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
152  * which is rt_rmx.rmx_mtu.
153  */
154 int
ip6_output(struct mbuf * m0,struct ip6_pktopts * opt,struct route * ro,int flags,struct ip6_moptions * im6o,struct socket * so,struct ifnet ** ifpp)155 ip6_output(
156     struct mbuf *m0,
157     struct ip6_pktopts *opt,
158     struct route *ro,
159     int flags,
160     struct ip6_moptions *im6o,
161     struct socket *so,
162     struct ifnet **ifpp		/* XXX: just for statistics */
163 )
164 {
165 	struct ip6_hdr *ip6, *mhip6;
166 	struct ifnet *ifp = NULL, *origifp = NULL;
167 	struct mbuf *m = m0;
168 	int hlen, tlen, len, off;
169 	bool tso;
170 	struct route ip6route;
171 	struct rtentry *rt = NULL;
172 	const struct sockaddr_in6 *dst;
173 	struct sockaddr_in6 src_sa, dst_sa;
174 	int error = 0;
175 	struct in6_ifaddr *ia = NULL;
176 	u_long mtu;
177 	int alwaysfrag, dontfrag;
178 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
179 	struct ip6_exthdrs exthdrs;
180 	struct in6_addr finaldst, src0, dst0;
181 	u_int32_t zone;
182 	struct route *ro_pmtu = NULL;
183 	int hdrsplit = 0;
184 	int needipsec = 0;
185 #ifdef IPSEC
186 	struct secpolicy *sp = NULL;
187 #endif
188 	struct psref psref, psref_ia;
189 	int bound = curlwp_bind();
190 	bool release_psref_ia = false;
191 
192 	memset(&ip6route, 0, sizeof(ip6route));
193 
194 #ifdef  DIAGNOSTIC
195 	if ((m->m_flags & M_PKTHDR) == 0)
196 		panic("ip6_output: no HDR");
197 
198 	if ((m->m_pkthdr.csum_flags &
199 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
200 		panic("ip6_output: IPv4 checksum offload flags: %d",
201 		    m->m_pkthdr.csum_flags);
202 	}
203 
204 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
205 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
206 		panic("ip6_output: conflicting checksum offload flags: %d",
207 		    m->m_pkthdr.csum_flags);
208 	}
209 #endif
210 
211 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
212 
213 #define MAKE_EXTHDR(hp, mp)						\
214     do {								\
215 	if (hp) {							\
216 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
217 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
218 		    ((eh)->ip6e_len + 1) << 3);				\
219 		if (error)						\
220 			goto freehdrs;					\
221 	}								\
222     } while (/*CONSTCOND*/ 0)
223 
224 	memset(&exthdrs, 0, sizeof(exthdrs));
225 	if (opt) {
226 		/* Hop-by-Hop options header */
227 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
228 		/* Destination options header(1st part) */
229 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
230 		/* Routing header */
231 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
232 		/* Destination options header(2nd part) */
233 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
234 	}
235 
236 	/*
237 	 * Calculate the total length of the extension header chain.
238 	 * Keep the length of the unfragmentable part for fragmentation.
239 	 */
240 	optlen = 0;
241 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
242 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
243 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
244 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
245 	/* NOTE: we don't add AH/ESP length here. do that later. */
246 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
247 
248 #ifdef IPSEC
249 	if (ipsec_used) {
250 		/* Check the security policy (SP) for the packet */
251 
252 		sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
253 		if (error != 0) {
254 			/*
255 			 * Hack: -EINVAL is used to signal that a packet
256 			 * should be silently discarded.  This is typically
257 			 * because we asked key management for an SA and
258 			 * it was delayed (e.g. kicked up to IKE).
259 			 */
260 			if (error == -EINVAL)
261 				error = 0;
262 			goto freehdrs;
263 		}
264 	}
265 #endif /* IPSEC */
266 
267 
268 	if (needipsec &&
269 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
270 		in6_delayed_cksum(m);
271 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
272 	}
273 
274 
275 	/*
276 	 * If we need IPsec, or there is at least one extension header,
277 	 * separate IP6 header from the payload.
278 	 */
279 	if ((needipsec || optlen) && !hdrsplit) {
280 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
281 			m = NULL;
282 			goto freehdrs;
283 		}
284 		m = exthdrs.ip6e_ip6;
285 		hdrsplit++;
286 	}
287 
288 	/* adjust pointer */
289 	ip6 = mtod(m, struct ip6_hdr *);
290 
291 	/* adjust mbuf packet header length */
292 	m->m_pkthdr.len += optlen;
293 	plen = m->m_pkthdr.len - sizeof(*ip6);
294 
295 	/* If this is a jumbo payload, insert a jumbo payload option. */
296 	if (plen > IPV6_MAXPACKET) {
297 		if (!hdrsplit) {
298 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
299 				m = NULL;
300 				goto freehdrs;
301 			}
302 			m = exthdrs.ip6e_ip6;
303 			hdrsplit++;
304 		}
305 		/* adjust pointer */
306 		ip6 = mtod(m, struct ip6_hdr *);
307 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
308 			goto freehdrs;
309 		optlen += 8; /* XXX JUMBOOPTLEN */
310 		ip6->ip6_plen = 0;
311 	} else
312 		ip6->ip6_plen = htons(plen);
313 
314 	/*
315 	 * Concatenate headers and fill in next header fields.
316 	 * Here we have, on "m"
317 	 *	IPv6 payload
318 	 * and we insert headers accordingly.  Finally, we should be getting:
319 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
320 	 *
321 	 * during the header composing process, "m" points to IPv6 header.
322 	 * "mprev" points to an extension header prior to esp.
323 	 */
324 	{
325 		u_char *nexthdrp = &ip6->ip6_nxt;
326 		struct mbuf *mprev = m;
327 
328 		/*
329 		 * we treat dest2 specially.  this makes IPsec processing
330 		 * much easier.  the goal here is to make mprev point the
331 		 * mbuf prior to dest2.
332 		 *
333 		 * result: IPv6 dest2 payload
334 		 * m and mprev will point to IPv6 header.
335 		 */
336 		if (exthdrs.ip6e_dest2) {
337 			if (!hdrsplit)
338 				panic("assumption failed: hdr not split");
339 			exthdrs.ip6e_dest2->m_next = m->m_next;
340 			m->m_next = exthdrs.ip6e_dest2;
341 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
342 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
343 		}
344 
345 #define MAKE_CHAIN(m, mp, p, i)\
346     do {\
347 	if (m) {\
348 		if (!hdrsplit) \
349 			panic("assumption failed: hdr not split"); \
350 		*mtod((m), u_char *) = *(p);\
351 		*(p) = (i);\
352 		p = mtod((m), u_char *);\
353 		(m)->m_next = (mp)->m_next;\
354 		(mp)->m_next = (m);\
355 		(mp) = (m);\
356 	}\
357     } while (/*CONSTCOND*/ 0)
358 		/*
359 		 * result: IPv6 hbh dest1 rthdr dest2 payload
360 		 * m will point to IPv6 header.  mprev will point to the
361 		 * extension header prior to dest2 (rthdr in the above case).
362 		 */
363 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
364 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
365 		    IPPROTO_DSTOPTS);
366 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
367 		    IPPROTO_ROUTING);
368 
369 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
370 		    sizeof(struct ip6_hdr) + optlen);
371 	}
372 
373 	/*
374 	 * If there is a routing header, replace destination address field
375 	 * with the first hop of the routing header.
376 	 */
377 	if (exthdrs.ip6e_rthdr) {
378 		struct ip6_rthdr *rh;
379 		struct ip6_rthdr0 *rh0;
380 		struct in6_addr *addr;
381 		struct sockaddr_in6 sa;
382 
383 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
384 		    struct ip6_rthdr *));
385 		finaldst = ip6->ip6_dst;
386 		switch (rh->ip6r_type) {
387 		case IPV6_RTHDR_TYPE_0:
388 			 rh0 = (struct ip6_rthdr0 *)rh;
389 			 addr = (struct in6_addr *)(rh0 + 1);
390 
391 			 /*
392 			  * construct a sockaddr_in6 form of
393 			  * the first hop.
394 			  *
395 			  * XXX: we may not have enough
396 			  * information about its scope zone;
397 			  * there is no standard API to pass
398 			  * the information from the
399 			  * application.
400 			  */
401 			 sockaddr_in6_init(&sa, addr, 0, 0, 0);
402 			 if ((error = sa6_embedscope(&sa,
403 			     ip6_use_defzone)) != 0) {
404 				 goto bad;
405 			 }
406 			 ip6->ip6_dst = sa.sin6_addr;
407 			 (void)memmove(&addr[0], &addr[1],
408 			     sizeof(struct in6_addr) *
409 			     (rh0->ip6r0_segleft - 1));
410 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
411 			 /* XXX */
412 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
413 			 break;
414 		default:	/* is it possible? */
415 			 error = EINVAL;
416 			 goto bad;
417 		}
418 	}
419 
420 	/* Source address validation */
421 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
422 	    (flags & IPV6_UNSPECSRC) == 0) {
423 		error = EOPNOTSUPP;
424 		IP6_STATINC(IP6_STAT_BADSCOPE);
425 		goto bad;
426 	}
427 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
428 		error = EOPNOTSUPP;
429 		IP6_STATINC(IP6_STAT_BADSCOPE);
430 		goto bad;
431 	}
432 
433 	IP6_STATINC(IP6_STAT_LOCALOUT);
434 
435 	/*
436 	 * Route packet.
437 	 */
438 	/* initialize cached route */
439 	if (ro == NULL) {
440 		ro = &ip6route;
441 	}
442 	ro_pmtu = ro;
443 	if (opt && opt->ip6po_rthdr)
444 		ro = &opt->ip6po_route;
445 
446  	/*
447 	 * if specified, try to fill in the traffic class field.
448 	 * do not override if a non-zero value is already set.
449 	 * we check the diffserv field and the ecn field separately.
450 	 */
451 	if (opt && opt->ip6po_tclass >= 0) {
452 		int mask = 0;
453 
454 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
455 			mask |= 0xfc;
456 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
457 			mask |= 0x03;
458 		if (mask != 0)
459 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
460 	}
461 
462 	/* fill in or override the hop limit field, if necessary. */
463 	if (opt && opt->ip6po_hlim != -1)
464 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
465 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
466 		if (im6o != NULL)
467 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
468 		else
469 			ip6->ip6_hlim = ip6_defmcasthlim;
470 	}
471 
472 #ifdef IPSEC
473 	if (needipsec) {
474 		int s = splsoftnet();
475 		error = ipsec6_process_packet(m, sp->req);
476 
477 		/*
478 		 * Preserve KAME behaviour: ENOENT can be returned
479 		 * when an SA acquire is in progress.  Don't propagate
480 		 * this to user-level; it confuses applications.
481 		 * XXX this will go away when the SADB is redone.
482 		 */
483 		if (error == ENOENT)
484 			error = 0;
485 		splx(s);
486 		goto done;
487 	}
488 #endif /* IPSEC */
489 
490 	/* adjust pointer */
491 	ip6 = mtod(m, struct ip6_hdr *);
492 
493 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
494 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
495 	    &ifp, &psref, &rt, 0)) != 0) {
496 		if (ifp != NULL)
497 			in6_ifstat_inc(ifp, ifs6_out_discard);
498 		goto bad;
499 	}
500 	if (rt == NULL) {
501 		/*
502 		 * If in6_selectroute() does not return a route entry,
503 		 * dst may not have been updated.
504 		 */
505 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
506 		if (error) {
507 			goto bad;
508 		}
509 	}
510 
511 	/*
512 	 * then rt (for unicast) and ifp must be non-NULL valid values.
513 	 */
514 	if ((flags & IPV6_FORWARDING) == 0) {
515 		/* XXX: the FORWARDING flag can be set for mrouting. */
516 		in6_ifstat_inc(ifp, ifs6_out_request);
517 	}
518 	if (rt != NULL) {
519 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
520 		rt->rt_use++;
521 	}
522 
523 	/*
524 	 * The outgoing interface must be in the zone of source and
525 	 * destination addresses.  We should use ia_ifp to support the
526 	 * case of sending packets to an address of our own.
527 	 */
528 	if (ia != NULL && ia->ia_ifp) {
529 		origifp = ia->ia_ifp;
530 		if_acquire_NOMPSAFE(origifp, &psref_ia);
531 		release_psref_ia = true;
532 	} else
533 		origifp = ifp;
534 
535 	src0 = ip6->ip6_src;
536 	if (in6_setscope(&src0, origifp, &zone))
537 		goto badscope;
538 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
539 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
540 		goto badscope;
541 
542 	dst0 = ip6->ip6_dst;
543 	if (in6_setscope(&dst0, origifp, &zone))
544 		goto badscope;
545 	/* re-initialize to be sure */
546 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
547 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
548 		goto badscope;
549 
550 	/* scope check is done. */
551 
552 	if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
553 		dst = satocsin6(rtcache_getdst(ro));
554 		KASSERT(dst != NULL);
555 	} else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
556 		/*
557 		 * The nexthop is explicitly specified by the
558 		 * application.  We assume the next hop is an IPv6
559 		 * address.
560 		 */
561 		dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
562 	} else if ((rt->rt_flags & RTF_GATEWAY))
563 		dst = (struct sockaddr_in6 *)rt->rt_gateway;
564 	else
565 		dst = satocsin6(rtcache_getdst(ro));
566 
567 	/*
568 	 * XXXXXX: original code follows:
569 	 */
570 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
571 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
572 	else {
573 		struct	in6_multi *in6m;
574 
575 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
576 
577 		in6_ifstat_inc(ifp, ifs6_out_mcast);
578 
579 		/*
580 		 * Confirm that the outgoing interface supports multicast.
581 		 */
582 		if (!(ifp->if_flags & IFF_MULTICAST)) {
583 			IP6_STATINC(IP6_STAT_NOROUTE);
584 			in6_ifstat_inc(ifp, ifs6_out_discard);
585 			error = ENETUNREACH;
586 			goto bad;
587 		}
588 
589 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
590 		if (in6m != NULL &&
591 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
592 			/*
593 			 * If we belong to the destination multicast group
594 			 * on the outgoing interface, and the caller did not
595 			 * forbid loopback, loop back a copy.
596 			 */
597 			KASSERT(dst != NULL);
598 			ip6_mloopback(ifp, m, dst);
599 		} else {
600 			/*
601 			 * If we are acting as a multicast router, perform
602 			 * multicast forwarding as if the packet had just
603 			 * arrived on the interface to which we are about
604 			 * to send.  The multicast forwarding function
605 			 * recursively calls this function, using the
606 			 * IPV6_FORWARDING flag to prevent infinite recursion.
607 			 *
608 			 * Multicasts that are looped back by ip6_mloopback(),
609 			 * above, will be forwarded by the ip6_input() routine,
610 			 * if necessary.
611 			 */
612 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
613 				if (ip6_mforward(ip6, ifp, m) != 0) {
614 					m_freem(m);
615 					goto done;
616 				}
617 			}
618 		}
619 		/*
620 		 * Multicasts with a hoplimit of zero may be looped back,
621 		 * above, but must not be transmitted on a network.
622 		 * Also, multicasts addressed to the loopback interface
623 		 * are not sent -- the above call to ip6_mloopback() will
624 		 * loop back a copy if this host actually belongs to the
625 		 * destination group on the loopback interface.
626 		 */
627 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
628 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
629 			m_freem(m);
630 			goto done;
631 		}
632 	}
633 
634 	/*
635 	 * Fill the outgoing inteface to tell the upper layer
636 	 * to increment per-interface statistics.
637 	 */
638 	if (ifpp)
639 		*ifpp = ifp;
640 
641 	/* Determine path MTU. */
642 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
643 	    &alwaysfrag)) != 0)
644 		goto bad;
645 
646 	/*
647 	 * The caller of this function may specify to use the minimum MTU
648 	 * in some cases.
649 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
650 	 * setting.  The logic is a bit complicated; by default, unicast
651 	 * packets will follow path MTU while multicast packets will be sent at
652 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
653 	 * including unicast ones will be sent at the minimum MTU.  Multicast
654 	 * packets will always be sent at the minimum MTU unless
655 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
656 	 * See RFC 3542 for more details.
657 	 */
658 	if (mtu > IPV6_MMTU) {
659 		if ((flags & IPV6_MINMTU))
660 			mtu = IPV6_MMTU;
661 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
662 			mtu = IPV6_MMTU;
663 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
664 			 (opt == NULL ||
665 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
666 			mtu = IPV6_MMTU;
667 		}
668 	}
669 
670 	/*
671 	 * clear embedded scope identifiers if necessary.
672 	 * in6_clearscope will touch the addresses only when necessary.
673 	 */
674 	in6_clearscope(&ip6->ip6_src);
675 	in6_clearscope(&ip6->ip6_dst);
676 
677 	/*
678 	 * If the outgoing packet contains a hop-by-hop options header,
679 	 * it must be examined and processed even by the source node.
680 	 * (RFC 2460, section 4.)
681 	 */
682 	if (ip6->ip6_nxt == IPV6_HOPOPTS) {
683 		u_int32_t dummy1; /* XXX unused */
684 		u_int32_t dummy2; /* XXX unused */
685 		int hoff = sizeof(struct ip6_hdr);
686 
687 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
688 			/* m was already freed at this point */
689 			error = EINVAL;/* better error? */
690 			goto done;
691 		}
692 
693 		ip6 = mtod(m, struct ip6_hdr *);
694 	}
695 
696 	/*
697 	 * Run through list of hooks for output packets.
698 	 */
699 	if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
700 		goto done;
701 	if (m == NULL)
702 		goto done;
703 	ip6 = mtod(m, struct ip6_hdr *);
704 
705 	/*
706 	 * Send the packet to the outgoing interface.
707 	 * If necessary, do IPv6 fragmentation before sending.
708 	 *
709 	 * the logic here is rather complex:
710 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
711 	 * 1-a:	send as is if tlen <= path mtu
712 	 * 1-b:	fragment if tlen > path mtu
713 	 *
714 	 * 2: if user asks us not to fragment (dontfrag == 1)
715 	 * 2-a:	send as is if tlen <= interface mtu
716 	 * 2-b:	error if tlen > interface mtu
717 	 *
718 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
719 	 *	always fragment
720 	 *
721 	 * 4: if dontfrag == 1 && alwaysfrag == 1
722 	 *	error, as we cannot handle this conflicting request
723 	 */
724 	tlen = m->m_pkthdr.len;
725 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
726 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
727 		dontfrag = 1;
728 	else
729 		dontfrag = 0;
730 
731 	if (dontfrag && alwaysfrag) {	/* case 4 */
732 		/* conflicting request - can't transmit */
733 		error = EMSGSIZE;
734 		goto bad;
735 	}
736 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
737 		/*
738 		 * Even if the DONTFRAG option is specified, we cannot send the
739 		 * packet when the data length is larger than the MTU of the
740 		 * outgoing interface.
741 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
742 		 * well as returning an error code (the latter is not described
743 		 * in the API spec.)
744 		 */
745 		u_int32_t mtu32;
746 		struct ip6ctlparam ip6cp;
747 
748 		mtu32 = (u_int32_t)mtu;
749 		memset(&ip6cp, 0, sizeof(ip6cp));
750 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
751 		pfctlinput2(PRC_MSGSIZE,
752 		    rtcache_getdst(ro_pmtu), &ip6cp);
753 
754 		error = EMSGSIZE;
755 		goto bad;
756 	}
757 
758 	/*
759 	 * transmit packet without fragmentation
760 	 */
761 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
762 		/* case 1-a and 2-a */
763 		struct in6_ifaddr *ia6;
764 		int sw_csum;
765 
766 		ip6 = mtod(m, struct ip6_hdr *);
767 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
768 		if (ia6) {
769 			/* Record statistics for this interface address. */
770 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
771 		}
772 
773 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
774 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
775 			if (IN6_NEED_CHECKSUM(ifp,
776 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
777 				in6_delayed_cksum(m);
778 			}
779 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
780 		}
781 
782 		KASSERT(dst != NULL);
783 		if (__predict_true(!tso ||
784 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
785 			error = nd6_output(ifp, origifp, m, dst, rt);
786 		} else {
787 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
788 		}
789 		goto done;
790 	}
791 
792 	if (tso) {
793 		error = EINVAL; /* XXX */
794 		goto bad;
795 	}
796 
797 	/*
798 	 * try to fragment the packet.  case 1-b and 3
799 	 */
800 	if (mtu < IPV6_MMTU) {
801 		/* path MTU cannot be less than IPV6_MMTU */
802 		error = EMSGSIZE;
803 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
804 		goto bad;
805 	} else if (ip6->ip6_plen == 0) {
806 		/* jumbo payload cannot be fragmented */
807 		error = EMSGSIZE;
808 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
809 		goto bad;
810 	} else {
811 		struct mbuf **mnext, *m_frgpart;
812 		struct ip6_frag *ip6f;
813 		u_int32_t id = htonl(ip6_randomid());
814 		u_char nextproto;
815 #if 0				/* see below */
816 		struct ip6ctlparam ip6cp;
817 		u_int32_t mtu32;
818 #endif
819 
820 		/*
821 		 * Too large for the destination or interface;
822 		 * fragment if possible.
823 		 * Must be able to put at least 8 bytes per fragment.
824 		 */
825 		hlen = unfragpartlen;
826 		if (mtu > IPV6_MAXPACKET)
827 			mtu = IPV6_MAXPACKET;
828 
829 #if 0
830 		/*
831 		 * It is believed this code is a leftover from the
832 		 * development of the IPV6_RECVPATHMTU sockopt and
833 		 * associated work to implement RFC3542.
834 		 * It's not entirely clear what the intent of the API
835 		 * is at this point, so disable this code for now.
836 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
837 		 * will send notifications if the application requests.
838 		 */
839 
840 		/* Notify a proper path MTU to applications. */
841 		mtu32 = (u_int32_t)mtu;
842 		memset(&ip6cp, 0, sizeof(ip6cp));
843 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
844 		pfctlinput2(PRC_MSGSIZE,
845 		    rtcache_getdst(ro_pmtu), &ip6cp);
846 #endif
847 
848 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
849 		if (len < 8) {
850 			error = EMSGSIZE;
851 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
852 			goto bad;
853 		}
854 
855 		mnext = &m->m_nextpkt;
856 
857 		/*
858 		 * Change the next header field of the last header in the
859 		 * unfragmentable part.
860 		 */
861 		if (exthdrs.ip6e_rthdr) {
862 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
863 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
864 		} else if (exthdrs.ip6e_dest1) {
865 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
866 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
867 		} else if (exthdrs.ip6e_hbh) {
868 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
869 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
870 		} else {
871 			nextproto = ip6->ip6_nxt;
872 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
873 		}
874 
875 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
876 		    != 0) {
877 			if (IN6_NEED_CHECKSUM(ifp,
878 			    m->m_pkthdr.csum_flags &
879 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
880 				in6_delayed_cksum(m);
881 			}
882 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
883 		}
884 
885 		/*
886 		 * Loop through length of segment after first fragment,
887 		 * make new header and copy data of each part and link onto
888 		 * chain.
889 		 */
890 		m0 = m;
891 		for (off = hlen; off < tlen; off += len) {
892 			struct mbuf *mlast;
893 
894 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
895 			if (!m) {
896 				error = ENOBUFS;
897 				IP6_STATINC(IP6_STAT_ODROPPED);
898 				goto sendorfree;
899 			}
900 			m_reset_rcvif(m);
901 			m->m_flags = m0->m_flags & M_COPYFLAGS;
902 			*mnext = m;
903 			mnext = &m->m_nextpkt;
904 			m->m_data += max_linkhdr;
905 			mhip6 = mtod(m, struct ip6_hdr *);
906 			*mhip6 = *ip6;
907 			m->m_len = sizeof(*mhip6);
908 			/*
909 			 * ip6f must be valid if error is 0.  But how
910 			 * can a compiler be expected to infer this?
911 			 */
912 			ip6f = NULL;
913 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
914 			if (error) {
915 				IP6_STATINC(IP6_STAT_ODROPPED);
916 				goto sendorfree;
917 			}
918 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
919 			if (off + len >= tlen)
920 				len = tlen - off;
921 			else
922 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
923 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
924 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
925 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
926 				error = ENOBUFS;
927 				IP6_STATINC(IP6_STAT_ODROPPED);
928 				goto sendorfree;
929 			}
930 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
931 				;
932 			mlast->m_next = m_frgpart;
933 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
934 			m_reset_rcvif(m);
935 			ip6f->ip6f_reserved = 0;
936 			ip6f->ip6f_ident = id;
937 			ip6f->ip6f_nxt = nextproto;
938 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
939 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
940 		}
941 
942 		in6_ifstat_inc(ifp, ifs6_out_fragok);
943 	}
944 
945 	/*
946 	 * Remove leading garbages.
947 	 */
948 sendorfree:
949 	m = m0->m_nextpkt;
950 	m0->m_nextpkt = 0;
951 	m_freem(m0);
952 	for (m0 = m; m; m = m0) {
953 		m0 = m->m_nextpkt;
954 		m->m_nextpkt = 0;
955 		if (error == 0) {
956 			struct in6_ifaddr *ia6;
957 			ip6 = mtod(m, struct ip6_hdr *);
958 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
959 			if (ia6) {
960 				/*
961 				 * Record statistics for this interface
962 				 * address.
963 				 */
964 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
965 				    m->m_pkthdr.len;
966 			}
967 			KASSERT(dst != NULL);
968 			error = nd6_output(ifp, origifp, m, dst, rt);
969 		} else
970 			m_freem(m);
971 	}
972 
973 	if (error == 0)
974 		IP6_STATINC(IP6_STAT_FRAGMENTED);
975 
976 done:
977 	rtcache_free(&ip6route);
978 
979 #ifdef IPSEC
980 	if (sp != NULL)
981 		KEY_FREESP(&sp);
982 #endif /* IPSEC */
983 
984 	if_put(ifp, &psref);
985 	if (release_psref_ia)
986 		if_put(origifp, &psref_ia);
987 	curlwp_bindx(bound);
988 
989 	return (error);
990 
991 freehdrs:
992 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
993 	m_freem(exthdrs.ip6e_dest1);
994 	m_freem(exthdrs.ip6e_rthdr);
995 	m_freem(exthdrs.ip6e_dest2);
996 	/* FALLTHROUGH */
997 bad:
998 	m_freem(m);
999 	goto done;
1000 badscope:
1001 	IP6_STATINC(IP6_STAT_BADSCOPE);
1002 	in6_ifstat_inc(origifp, ifs6_out_discard);
1003 	if (error == 0)
1004 		error = EHOSTUNREACH; /* XXX */
1005 	goto bad;
1006 }
1007 
1008 static int
ip6_copyexthdr(struct mbuf ** mp,void * hdr,int hlen)1009 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
1010 {
1011 	struct mbuf *m;
1012 
1013 	if (hlen > MCLBYTES)
1014 		return (ENOBUFS); /* XXX */
1015 
1016 	MGET(m, M_DONTWAIT, MT_DATA);
1017 	if (!m)
1018 		return (ENOBUFS);
1019 
1020 	if (hlen > MLEN) {
1021 		MCLGET(m, M_DONTWAIT);
1022 		if ((m->m_flags & M_EXT) == 0) {
1023 			m_free(m);
1024 			return (ENOBUFS);
1025 		}
1026 	}
1027 	m->m_len = hlen;
1028 	if (hdr)
1029 		bcopy(hdr, mtod(m, void *), hlen);
1030 
1031 	*mp = m;
1032 	return (0);
1033 }
1034 
1035 /*
1036  * Process a delayed payload checksum calculation.
1037  */
1038 void
in6_delayed_cksum(struct mbuf * m)1039 in6_delayed_cksum(struct mbuf *m)
1040 {
1041 	uint16_t csum, offset;
1042 
1043 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1044 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1045 	KASSERT((m->m_pkthdr.csum_flags
1046 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1047 
1048 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1049 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1050 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1051 		csum = 0xffff;
1052 	}
1053 
1054 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1055 	if ((offset + sizeof(csum)) > m->m_len) {
1056 		m_copyback(m, offset, sizeof(csum), &csum);
1057 	} else {
1058 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
1059 	}
1060 }
1061 
1062 /*
1063  * Insert jumbo payload option.
1064  */
1065 static int
ip6_insert_jumboopt(struct ip6_exthdrs * exthdrs,u_int32_t plen)1066 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1067 {
1068 	struct mbuf *mopt;
1069 	u_int8_t *optbuf;
1070 	u_int32_t v;
1071 
1072 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1073 
1074 	/*
1075 	 * If there is no hop-by-hop options header, allocate new one.
1076 	 * If there is one but it doesn't have enough space to store the
1077 	 * jumbo payload option, allocate a cluster to store the whole options.
1078 	 * Otherwise, use it to store the options.
1079 	 */
1080 	if (exthdrs->ip6e_hbh == 0) {
1081 		MGET(mopt, M_DONTWAIT, MT_DATA);
1082 		if (mopt == 0)
1083 			return (ENOBUFS);
1084 		mopt->m_len = JUMBOOPTLEN;
1085 		optbuf = mtod(mopt, u_int8_t *);
1086 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1087 		exthdrs->ip6e_hbh = mopt;
1088 	} else {
1089 		struct ip6_hbh *hbh;
1090 
1091 		mopt = exthdrs->ip6e_hbh;
1092 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1093 			/*
1094 			 * XXX assumption:
1095 			 * - exthdrs->ip6e_hbh is not referenced from places
1096 			 *   other than exthdrs.
1097 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1098 			 */
1099 			int oldoptlen = mopt->m_len;
1100 			struct mbuf *n;
1101 
1102 			/*
1103 			 * XXX: give up if the whole (new) hbh header does
1104 			 * not fit even in an mbuf cluster.
1105 			 */
1106 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1107 				return (ENOBUFS);
1108 
1109 			/*
1110 			 * As a consequence, we must always prepare a cluster
1111 			 * at this point.
1112 			 */
1113 			MGET(n, M_DONTWAIT, MT_DATA);
1114 			if (n) {
1115 				MCLGET(n, M_DONTWAIT);
1116 				if ((n->m_flags & M_EXT) == 0) {
1117 					m_freem(n);
1118 					n = NULL;
1119 				}
1120 			}
1121 			if (!n)
1122 				return (ENOBUFS);
1123 			n->m_len = oldoptlen + JUMBOOPTLEN;
1124 			bcopy(mtod(mopt, void *), mtod(n, void *),
1125 			    oldoptlen);
1126 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
1127 			m_freem(mopt);
1128 			mopt = exthdrs->ip6e_hbh = n;
1129 		} else {
1130 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1131 			mopt->m_len += JUMBOOPTLEN;
1132 		}
1133 		optbuf[0] = IP6OPT_PADN;
1134 		optbuf[1] = 0;
1135 
1136 		/*
1137 		 * Adjust the header length according to the pad and
1138 		 * the jumbo payload option.
1139 		 */
1140 		hbh = mtod(mopt, struct ip6_hbh *);
1141 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1142 	}
1143 
1144 	/* fill in the option. */
1145 	optbuf[2] = IP6OPT_JUMBO;
1146 	optbuf[3] = 4;
1147 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1148 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1149 
1150 	/* finally, adjust the packet header length */
1151 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1152 
1153 	return (0);
1154 #undef JUMBOOPTLEN
1155 }
1156 
1157 /*
1158  * Insert fragment header and copy unfragmentable header portions.
1159  *
1160  * *frghdrp will not be read, and it is guaranteed that either an
1161  * error is returned or that *frghdrp will point to space allocated
1162  * for the fragment header.
1163  */
1164 static int
ip6_insertfraghdr(struct mbuf * m0,struct mbuf * m,int hlen,struct ip6_frag ** frghdrp)1165 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1166 	struct ip6_frag **frghdrp)
1167 {
1168 	struct mbuf *n, *mlast;
1169 
1170 	if (hlen > sizeof(struct ip6_hdr)) {
1171 		n = m_copym(m0, sizeof(struct ip6_hdr),
1172 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1173 		if (n == 0)
1174 			return (ENOBUFS);
1175 		m->m_next = n;
1176 	} else
1177 		n = m;
1178 
1179 	/* Search for the last mbuf of unfragmentable part. */
1180 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1181 		;
1182 
1183 	if ((mlast->m_flags & M_EXT) == 0 &&
1184 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1185 		/* use the trailing space of the last mbuf for the fragment hdr */
1186 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1187 		    mlast->m_len);
1188 		mlast->m_len += sizeof(struct ip6_frag);
1189 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1190 	} else {
1191 		/* allocate a new mbuf for the fragment header */
1192 		struct mbuf *mfrg;
1193 
1194 		MGET(mfrg, M_DONTWAIT, MT_DATA);
1195 		if (mfrg == 0)
1196 			return (ENOBUFS);
1197 		mfrg->m_len = sizeof(struct ip6_frag);
1198 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1199 		mlast->m_next = mfrg;
1200 	}
1201 
1202 	return (0);
1203 }
1204 
1205 static int
ip6_getpmtu(struct route * ro_pmtu,struct route * ro,struct ifnet * ifp,const struct in6_addr * dst,u_long * mtup,int * alwaysfragp)1206 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
1207     const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
1208 {
1209 	struct rtentry *rt;
1210 	u_int32_t mtu = 0;
1211 	int alwaysfrag = 0;
1212 	int error = 0;
1213 
1214 	if (ro_pmtu != ro) {
1215 		union {
1216 			struct sockaddr		dst;
1217 			struct sockaddr_in6	dst6;
1218 		} u;
1219 
1220 		/* The first hop and the final destination may differ. */
1221 		sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
1222 		rt = rtcache_lookup(ro_pmtu, &u.dst);
1223 	} else
1224 		rt = rtcache_validate(ro_pmtu);
1225 	if (rt != NULL) {
1226 		u_int32_t ifmtu;
1227 
1228 		if (ifp == NULL)
1229 			ifp = rt->rt_ifp;
1230 		ifmtu = IN6_LINKMTU(ifp);
1231 		mtu = rt->rt_rmx.rmx_mtu;
1232 		if (mtu == 0)
1233 			mtu = ifmtu;
1234 		else if (mtu < IPV6_MMTU) {
1235 			/*
1236 			 * RFC2460 section 5, last paragraph:
1237 			 * if we record ICMPv6 too big message with
1238 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1239 			 * or smaller, with fragment header attached.
1240 			 * (fragment header is needed regardless from the
1241 			 * packet size, for translators to identify packets)
1242 			 */
1243 			alwaysfrag = 1;
1244 			mtu = IPV6_MMTU;
1245 		} else if (mtu > ifmtu) {
1246 			/*
1247 			 * The MTU on the route is larger than the MTU on
1248 			 * the interface!  This shouldn't happen, unless the
1249 			 * MTU of the interface has been changed after the
1250 			 * interface was brought up.  Change the MTU in the
1251 			 * route to match the interface MTU (as long as the
1252 			 * field isn't locked).
1253 			 */
1254 			mtu = ifmtu;
1255 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1256 				rt->rt_rmx.rmx_mtu = mtu;
1257 		}
1258 	} else if (ifp) {
1259 		mtu = IN6_LINKMTU(ifp);
1260 	} else
1261 		error = EHOSTUNREACH; /* XXX */
1262 
1263 	*mtup = mtu;
1264 	if (alwaysfragp)
1265 		*alwaysfragp = alwaysfrag;
1266 	return (error);
1267 }
1268 
1269 /*
1270  * IP6 socket option processing.
1271  */
1272 int
ip6_ctloutput(int op,struct socket * so,struct sockopt * sopt)1273 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1274 {
1275 	int optdatalen, uproto;
1276 	void *optdata;
1277 	struct in6pcb *in6p = sotoin6pcb(so);
1278 	struct ip_moptions **mopts;
1279 	int error, optval;
1280 	int level, optname;
1281 
1282 	KASSERT(sopt != NULL);
1283 
1284 	level = sopt->sopt_level;
1285 	optname = sopt->sopt_name;
1286 
1287 	error = optval = 0;
1288 	uproto = (int)so->so_proto->pr_protocol;
1289 
1290 	switch (level) {
1291 	case IPPROTO_IP:
1292 		switch (optname) {
1293 		case IP_ADD_MEMBERSHIP:
1294 		case IP_DROP_MEMBERSHIP:
1295 		case IP_MULTICAST_IF:
1296 		case IP_MULTICAST_LOOP:
1297 		case IP_MULTICAST_TTL:
1298 			mopts = &in6p->in6p_v4moptions;
1299 			switch (op) {
1300 			case PRCO_GETOPT:
1301 				return ip_getmoptions(*mopts, sopt);
1302 			case PRCO_SETOPT:
1303 				return ip_setmoptions(mopts, sopt);
1304 			default:
1305 				return EINVAL;
1306 			}
1307 		default:
1308 			return ENOPROTOOPT;
1309 		}
1310 	case IPPROTO_IPV6:
1311 		break;
1312 	default:
1313 		return ENOPROTOOPT;
1314 	}
1315 	switch (op) {
1316 	case PRCO_SETOPT:
1317 		switch (optname) {
1318 #ifdef RFC2292
1319 		case IPV6_2292PKTOPTIONS:
1320 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1321 			break;
1322 #endif
1323 
1324 		/*
1325 		 * Use of some Hop-by-Hop options or some
1326 		 * Destination options, might require special
1327 		 * privilege.  That is, normal applications
1328 		 * (without special privilege) might be forbidden
1329 		 * from setting certain options in outgoing packets,
1330 		 * and might never see certain options in received
1331 		 * packets. [RFC 2292 Section 6]
1332 		 * KAME specific note:
1333 		 *  KAME prevents non-privileged users from sending or
1334 		 *  receiving ANY hbh/dst options in order to avoid
1335 		 *  overhead of parsing options in the kernel.
1336 		 */
1337 		case IPV6_RECVHOPOPTS:
1338 		case IPV6_RECVDSTOPTS:
1339 		case IPV6_RECVRTHDRDSTOPTS:
1340 			error = kauth_authorize_network(kauth_cred_get(),
1341 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1342 			    NULL, NULL, NULL);
1343 			if (error)
1344 				break;
1345 			/* FALLTHROUGH */
1346 		case IPV6_UNICAST_HOPS:
1347 		case IPV6_HOPLIMIT:
1348 		case IPV6_FAITH:
1349 
1350 		case IPV6_RECVPKTINFO:
1351 		case IPV6_RECVHOPLIMIT:
1352 		case IPV6_RECVRTHDR:
1353 		case IPV6_RECVPATHMTU:
1354 		case IPV6_RECVTCLASS:
1355 		case IPV6_V6ONLY:
1356 			error = sockopt_getint(sopt, &optval);
1357 			if (error)
1358 				break;
1359 			switch (optname) {
1360 			case IPV6_UNICAST_HOPS:
1361 				if (optval < -1 || optval >= 256)
1362 					error = EINVAL;
1363 				else {
1364 					/* -1 = kernel default */
1365 					in6p->in6p_hops = optval;
1366 				}
1367 				break;
1368 #define OPTSET(bit) \
1369 do { \
1370 if (optval) \
1371 	in6p->in6p_flags |= (bit); \
1372 else \
1373 	in6p->in6p_flags &= ~(bit); \
1374 } while (/*CONSTCOND*/ 0)
1375 
1376 #ifdef RFC2292
1377 #define OPTSET2292(bit) 			\
1378 do { 						\
1379 in6p->in6p_flags |= IN6P_RFC2292; 	\
1380 if (optval) 				\
1381 	in6p->in6p_flags |= (bit); 	\
1382 else 					\
1383 	in6p->in6p_flags &= ~(bit); 	\
1384 } while (/*CONSTCOND*/ 0)
1385 #endif
1386 
1387 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1388 
1389 			case IPV6_RECVPKTINFO:
1390 #ifdef RFC2292
1391 				/* cannot mix with RFC2292 */
1392 				if (OPTBIT(IN6P_RFC2292)) {
1393 					error = EINVAL;
1394 					break;
1395 				}
1396 #endif
1397 				OPTSET(IN6P_PKTINFO);
1398 				break;
1399 
1400 			case IPV6_HOPLIMIT:
1401 			{
1402 				struct ip6_pktopts **optp;
1403 
1404 #ifdef RFC2292
1405 				/* cannot mix with RFC2292 */
1406 				if (OPTBIT(IN6P_RFC2292)) {
1407 					error = EINVAL;
1408 					break;
1409 				}
1410 #endif
1411 				optp = &in6p->in6p_outputopts;
1412 				error = ip6_pcbopt(IPV6_HOPLIMIT,
1413 						   (u_char *)&optval,
1414 						   sizeof(optval),
1415 						   optp,
1416 						   kauth_cred_get(), uproto);
1417 				break;
1418 			}
1419 
1420 			case IPV6_RECVHOPLIMIT:
1421 #ifdef RFC2292
1422 				/* cannot mix with RFC2292 */
1423 				if (OPTBIT(IN6P_RFC2292)) {
1424 					error = EINVAL;
1425 					break;
1426 				}
1427 #endif
1428 				OPTSET(IN6P_HOPLIMIT);
1429 				break;
1430 
1431 			case IPV6_RECVHOPOPTS:
1432 #ifdef RFC2292
1433 				/* cannot mix with RFC2292 */
1434 				if (OPTBIT(IN6P_RFC2292)) {
1435 					error = EINVAL;
1436 					break;
1437 				}
1438 #endif
1439 				OPTSET(IN6P_HOPOPTS);
1440 				break;
1441 
1442 			case IPV6_RECVDSTOPTS:
1443 #ifdef RFC2292
1444 				/* cannot mix with RFC2292 */
1445 				if (OPTBIT(IN6P_RFC2292)) {
1446 					error = EINVAL;
1447 					break;
1448 				}
1449 #endif
1450 				OPTSET(IN6P_DSTOPTS);
1451 				break;
1452 
1453 			case IPV6_RECVRTHDRDSTOPTS:
1454 #ifdef RFC2292
1455 				/* cannot mix with RFC2292 */
1456 				if (OPTBIT(IN6P_RFC2292)) {
1457 					error = EINVAL;
1458 					break;
1459 				}
1460 #endif
1461 				OPTSET(IN6P_RTHDRDSTOPTS);
1462 				break;
1463 
1464 			case IPV6_RECVRTHDR:
1465 #ifdef RFC2292
1466 				/* cannot mix with RFC2292 */
1467 				if (OPTBIT(IN6P_RFC2292)) {
1468 					error = EINVAL;
1469 					break;
1470 				}
1471 #endif
1472 				OPTSET(IN6P_RTHDR);
1473 				break;
1474 
1475 			case IPV6_FAITH:
1476 				OPTSET(IN6P_FAITH);
1477 				break;
1478 
1479 			case IPV6_RECVPATHMTU:
1480 				/*
1481 				 * We ignore this option for TCP
1482 				 * sockets.
1483 				 * (RFC3542 leaves this case
1484 				 * unspecified.)
1485 				 */
1486 				if (uproto != IPPROTO_TCP)
1487 					OPTSET(IN6P_MTU);
1488 				break;
1489 
1490 			case IPV6_V6ONLY:
1491 				/*
1492 				 * make setsockopt(IPV6_V6ONLY)
1493 				 * available only prior to bind(2).
1494 				 * see ipng mailing list, Jun 22 2001.
1495 				 */
1496 				if (in6p->in6p_lport ||
1497 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1498 					error = EINVAL;
1499 					break;
1500 				}
1501 #ifdef INET6_BINDV6ONLY
1502 				if (!optval)
1503 					error = EINVAL;
1504 #else
1505 				OPTSET(IN6P_IPV6_V6ONLY);
1506 #endif
1507 				break;
1508 			case IPV6_RECVTCLASS:
1509 #ifdef RFC2292
1510 				/* cannot mix with RFC2292 XXX */
1511 				if (OPTBIT(IN6P_RFC2292)) {
1512 					error = EINVAL;
1513 					break;
1514 				}
1515 #endif
1516 				OPTSET(IN6P_TCLASS);
1517 				break;
1518 
1519 			}
1520 			break;
1521 
1522 		case IPV6_OTCLASS:
1523 		{
1524 			struct ip6_pktopts **optp;
1525 			u_int8_t tclass;
1526 
1527 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
1528 			if (error)
1529 				break;
1530 			optp = &in6p->in6p_outputopts;
1531 			error = ip6_pcbopt(optname,
1532 					   (u_char *)&tclass,
1533 					   sizeof(tclass),
1534 					   optp,
1535 					   kauth_cred_get(), uproto);
1536 			break;
1537 		}
1538 
1539 		case IPV6_TCLASS:
1540 		case IPV6_DONTFRAG:
1541 		case IPV6_USE_MIN_MTU:
1542 		case IPV6_PREFER_TEMPADDR:
1543 			error = sockopt_getint(sopt, &optval);
1544 			if (error)
1545 				break;
1546 			{
1547 				struct ip6_pktopts **optp;
1548 				optp = &in6p->in6p_outputopts;
1549 				error = ip6_pcbopt(optname,
1550 						   (u_char *)&optval,
1551 						   sizeof(optval),
1552 						   optp,
1553 						   kauth_cred_get(), uproto);
1554 				break;
1555 			}
1556 
1557 #ifdef RFC2292
1558 		case IPV6_2292PKTINFO:
1559 		case IPV6_2292HOPLIMIT:
1560 		case IPV6_2292HOPOPTS:
1561 		case IPV6_2292DSTOPTS:
1562 		case IPV6_2292RTHDR:
1563 			/* RFC 2292 */
1564 			error = sockopt_getint(sopt, &optval);
1565 			if (error)
1566 				break;
1567 
1568 			switch (optname) {
1569 			case IPV6_2292PKTINFO:
1570 				OPTSET2292(IN6P_PKTINFO);
1571 				break;
1572 			case IPV6_2292HOPLIMIT:
1573 				OPTSET2292(IN6P_HOPLIMIT);
1574 				break;
1575 			case IPV6_2292HOPOPTS:
1576 				/*
1577 				 * Check super-user privilege.
1578 				 * See comments for IPV6_RECVHOPOPTS.
1579 				 */
1580 				error =
1581 				    kauth_authorize_network(kauth_cred_get(),
1582 				    KAUTH_NETWORK_IPV6,
1583 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1584 				    NULL, NULL);
1585 				if (error)
1586 					return (error);
1587 				OPTSET2292(IN6P_HOPOPTS);
1588 				break;
1589 			case IPV6_2292DSTOPTS:
1590 				error =
1591 				    kauth_authorize_network(kauth_cred_get(),
1592 				    KAUTH_NETWORK_IPV6,
1593 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1594 				    NULL, NULL);
1595 				if (error)
1596 					return (error);
1597 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1598 				break;
1599 			case IPV6_2292RTHDR:
1600 				OPTSET2292(IN6P_RTHDR);
1601 				break;
1602 			}
1603 			break;
1604 #endif
1605 		case IPV6_PKTINFO:
1606 		case IPV6_HOPOPTS:
1607 		case IPV6_RTHDR:
1608 		case IPV6_DSTOPTS:
1609 		case IPV6_RTHDRDSTOPTS:
1610 		case IPV6_NEXTHOP: {
1611 			/* new advanced API (RFC3542) */
1612 			void *optbuf;
1613 			int optbuflen;
1614 			struct ip6_pktopts **optp;
1615 
1616 #ifdef RFC2292
1617 			/* cannot mix with RFC2292 */
1618 			if (OPTBIT(IN6P_RFC2292)) {
1619 				error = EINVAL;
1620 				break;
1621 			}
1622 #endif
1623 
1624 			optbuflen = sopt->sopt_size;
1625 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1626 			if (optbuf == NULL) {
1627 				error = ENOBUFS;
1628 				break;
1629 			}
1630 
1631 			error = sockopt_get(sopt, optbuf, optbuflen);
1632 			if (error) {
1633 				free(optbuf, M_IP6OPT);
1634 				break;
1635 			}
1636 			optp = &in6p->in6p_outputopts;
1637 			error = ip6_pcbopt(optname, optbuf, optbuflen,
1638 			    optp, kauth_cred_get(), uproto);
1639 
1640 			free(optbuf, M_IP6OPT);
1641 			break;
1642 			}
1643 #undef OPTSET
1644 
1645 		case IPV6_MULTICAST_IF:
1646 		case IPV6_MULTICAST_HOPS:
1647 		case IPV6_MULTICAST_LOOP:
1648 		case IPV6_JOIN_GROUP:
1649 		case IPV6_LEAVE_GROUP:
1650 			error = ip6_setmoptions(sopt, in6p);
1651 			break;
1652 
1653 		case IPV6_PORTRANGE:
1654 			error = sockopt_getint(sopt, &optval);
1655 			if (error)
1656 				break;
1657 
1658 			switch (optval) {
1659 			case IPV6_PORTRANGE_DEFAULT:
1660 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
1661 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1662 				break;
1663 
1664 			case IPV6_PORTRANGE_HIGH:
1665 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
1666 				in6p->in6p_flags |= IN6P_HIGHPORT;
1667 				break;
1668 
1669 			case IPV6_PORTRANGE_LOW:
1670 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1671 				in6p->in6p_flags |= IN6P_LOWPORT;
1672 				break;
1673 
1674 			default:
1675 				error = EINVAL;
1676 				break;
1677 			}
1678 			break;
1679 
1680 		case IPV6_PORTALGO:
1681 			error = sockopt_getint(sopt, &optval);
1682 			if (error)
1683 				break;
1684 
1685 			error = portalgo_algo_index_select(
1686 			    (struct inpcb_hdr *)in6p, optval);
1687 			break;
1688 
1689 #if defined(IPSEC)
1690 		case IPV6_IPSEC_POLICY:
1691 			if (ipsec_enabled) {
1692 				error = ipsec6_set_policy(in6p, optname,
1693 				    sopt->sopt_data, sopt->sopt_size,
1694 				    kauth_cred_get());
1695 				break;
1696 			}
1697 			/*FALLTHROUGH*/
1698 #endif /* IPSEC */
1699 
1700 		default:
1701 			error = ENOPROTOOPT;
1702 			break;
1703 		}
1704 		break;
1705 
1706 	case PRCO_GETOPT:
1707 		switch (optname) {
1708 #ifdef RFC2292
1709 		case IPV6_2292PKTOPTIONS:
1710 			/*
1711 			 * RFC3542 (effectively) deprecated the
1712 			 * semantics of the 2292-style pktoptions.
1713 			 * Since it was not reliable in nature (i.e.,
1714 			 * applications had to expect the lack of some
1715 			 * information after all), it would make sense
1716 			 * to simplify this part by always returning
1717 			 * empty data.
1718 			 */
1719 			break;
1720 #endif
1721 
1722 		case IPV6_RECVHOPOPTS:
1723 		case IPV6_RECVDSTOPTS:
1724 		case IPV6_RECVRTHDRDSTOPTS:
1725 		case IPV6_UNICAST_HOPS:
1726 		case IPV6_RECVPKTINFO:
1727 		case IPV6_RECVHOPLIMIT:
1728 		case IPV6_RECVRTHDR:
1729 		case IPV6_RECVPATHMTU:
1730 
1731 		case IPV6_FAITH:
1732 		case IPV6_V6ONLY:
1733 		case IPV6_PORTRANGE:
1734 		case IPV6_RECVTCLASS:
1735 			switch (optname) {
1736 
1737 			case IPV6_RECVHOPOPTS:
1738 				optval = OPTBIT(IN6P_HOPOPTS);
1739 				break;
1740 
1741 			case IPV6_RECVDSTOPTS:
1742 				optval = OPTBIT(IN6P_DSTOPTS);
1743 				break;
1744 
1745 			case IPV6_RECVRTHDRDSTOPTS:
1746 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1747 				break;
1748 
1749 			case IPV6_UNICAST_HOPS:
1750 				optval = in6p->in6p_hops;
1751 				break;
1752 
1753 			case IPV6_RECVPKTINFO:
1754 				optval = OPTBIT(IN6P_PKTINFO);
1755 				break;
1756 
1757 			case IPV6_RECVHOPLIMIT:
1758 				optval = OPTBIT(IN6P_HOPLIMIT);
1759 				break;
1760 
1761 			case IPV6_RECVRTHDR:
1762 				optval = OPTBIT(IN6P_RTHDR);
1763 				break;
1764 
1765 			case IPV6_RECVPATHMTU:
1766 				optval = OPTBIT(IN6P_MTU);
1767 				break;
1768 
1769 			case IPV6_FAITH:
1770 				optval = OPTBIT(IN6P_FAITH);
1771 				break;
1772 
1773 			case IPV6_V6ONLY:
1774 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
1775 				break;
1776 
1777 			case IPV6_PORTRANGE:
1778 			    {
1779 				int flags;
1780 				flags = in6p->in6p_flags;
1781 				if (flags & IN6P_HIGHPORT)
1782 					optval = IPV6_PORTRANGE_HIGH;
1783 				else if (flags & IN6P_LOWPORT)
1784 					optval = IPV6_PORTRANGE_LOW;
1785 				else
1786 					optval = 0;
1787 				break;
1788 			    }
1789 			case IPV6_RECVTCLASS:
1790 				optval = OPTBIT(IN6P_TCLASS);
1791 				break;
1792 
1793 			}
1794 			if (error)
1795 				break;
1796 			error = sockopt_setint(sopt, optval);
1797 			break;
1798 
1799 		case IPV6_PATHMTU:
1800 		    {
1801 			u_long pmtu = 0;
1802 			struct ip6_mtuinfo mtuinfo;
1803 			struct route *ro = &in6p->in6p_route;
1804 
1805 			if (!(so->so_state & SS_ISCONNECTED))
1806 				return (ENOTCONN);
1807 			/*
1808 			 * XXX: we dot not consider the case of source
1809 			 * routing, or optional information to specify
1810 			 * the outgoing interface.
1811 			 */
1812 			error = ip6_getpmtu(ro, NULL, NULL,
1813 			    &in6p->in6p_faddr, &pmtu, NULL);
1814 			if (error)
1815 				break;
1816 			if (pmtu > IPV6_MAXPACKET)
1817 				pmtu = IPV6_MAXPACKET;
1818 
1819 			memset(&mtuinfo, 0, sizeof(mtuinfo));
1820 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1821 			optdata = (void *)&mtuinfo;
1822 			optdatalen = sizeof(mtuinfo);
1823 			if (optdatalen > MCLBYTES)
1824 				return (EMSGSIZE); /* XXX */
1825 			error = sockopt_set(sopt, optdata, optdatalen);
1826 			break;
1827 		    }
1828 
1829 #ifdef RFC2292
1830 		case IPV6_2292PKTINFO:
1831 		case IPV6_2292HOPLIMIT:
1832 		case IPV6_2292HOPOPTS:
1833 		case IPV6_2292RTHDR:
1834 		case IPV6_2292DSTOPTS:
1835 			switch (optname) {
1836 			case IPV6_2292PKTINFO:
1837 				optval = OPTBIT(IN6P_PKTINFO);
1838 				break;
1839 			case IPV6_2292HOPLIMIT:
1840 				optval = OPTBIT(IN6P_HOPLIMIT);
1841 				break;
1842 			case IPV6_2292HOPOPTS:
1843 				optval = OPTBIT(IN6P_HOPOPTS);
1844 				break;
1845 			case IPV6_2292RTHDR:
1846 				optval = OPTBIT(IN6P_RTHDR);
1847 				break;
1848 			case IPV6_2292DSTOPTS:
1849 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1850 				break;
1851 			}
1852 			error = sockopt_setint(sopt, optval);
1853 			break;
1854 #endif
1855 		case IPV6_PKTINFO:
1856 		case IPV6_HOPOPTS:
1857 		case IPV6_RTHDR:
1858 		case IPV6_DSTOPTS:
1859 		case IPV6_RTHDRDSTOPTS:
1860 		case IPV6_NEXTHOP:
1861 		case IPV6_OTCLASS:
1862 		case IPV6_TCLASS:
1863 		case IPV6_DONTFRAG:
1864 		case IPV6_USE_MIN_MTU:
1865 		case IPV6_PREFER_TEMPADDR:
1866 			error = ip6_getpcbopt(in6p->in6p_outputopts,
1867 			    optname, sopt);
1868 			break;
1869 
1870 		case IPV6_MULTICAST_IF:
1871 		case IPV6_MULTICAST_HOPS:
1872 		case IPV6_MULTICAST_LOOP:
1873 		case IPV6_JOIN_GROUP:
1874 		case IPV6_LEAVE_GROUP:
1875 			error = ip6_getmoptions(sopt, in6p);
1876 			break;
1877 
1878 		case IPV6_PORTALGO:
1879 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1880 			error = sockopt_setint(sopt, optval);
1881 			break;
1882 
1883 #if defined(IPSEC)
1884 		case IPV6_IPSEC_POLICY:
1885 			if (ipsec_used) {
1886 				struct mbuf *m = NULL;
1887 
1888 				/*
1889 				 * XXX: this will return EINVAL as sopt is
1890 				 * empty
1891 				 */
1892 				error = ipsec6_get_policy(in6p, sopt->sopt_data,
1893 				    sopt->sopt_size, &m);
1894 				if (!error)
1895 					error = sockopt_setmbuf(sopt, m);
1896 				break;
1897 			}
1898 			/*FALLTHROUGH*/
1899 #endif /* IPSEC */
1900 
1901 		default:
1902 			error = ENOPROTOOPT;
1903 			break;
1904 		}
1905 		break;
1906 	}
1907 	return (error);
1908 }
1909 
1910 int
ip6_raw_ctloutput(int op,struct socket * so,struct sockopt * sopt)1911 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1912 {
1913 	int error = 0, optval;
1914 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1915 	struct in6pcb *in6p = sotoin6pcb(so);
1916 	int level, optname;
1917 
1918 	KASSERT(sopt != NULL);
1919 
1920 	level = sopt->sopt_level;
1921 	optname = sopt->sopt_name;
1922 
1923 	if (level != IPPROTO_IPV6) {
1924 		return ENOPROTOOPT;
1925 	}
1926 
1927 	switch (optname) {
1928 	case IPV6_CHECKSUM:
1929 		/*
1930 		 * For ICMPv6 sockets, no modification allowed for checksum
1931 		 * offset, permit "no change" values to help existing apps.
1932 		 *
1933 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1934 		 * for an ICMPv6 socket will fail."  The current
1935 		 * behavior does not meet RFC3542.
1936 		 */
1937 		switch (op) {
1938 		case PRCO_SETOPT:
1939 			error = sockopt_getint(sopt, &optval);
1940 			if (error)
1941 				break;
1942 			if ((optval % 2) != 0) {
1943 				/* the API assumes even offset values */
1944 				error = EINVAL;
1945 			} else if (so->so_proto->pr_protocol ==
1946 			    IPPROTO_ICMPV6) {
1947 				if (optval != icmp6off)
1948 					error = EINVAL;
1949 			} else
1950 				in6p->in6p_cksum = optval;
1951 			break;
1952 
1953 		case PRCO_GETOPT:
1954 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1955 				optval = icmp6off;
1956 			else
1957 				optval = in6p->in6p_cksum;
1958 
1959 			error = sockopt_setint(sopt, optval);
1960 			break;
1961 
1962 		default:
1963 			error = EINVAL;
1964 			break;
1965 		}
1966 		break;
1967 
1968 	default:
1969 		error = ENOPROTOOPT;
1970 		break;
1971 	}
1972 
1973 	return (error);
1974 }
1975 
1976 #ifdef RFC2292
1977 /*
1978  * Set up IP6 options in pcb for insertion in output packets or
1979  * specifying behavior of outgoing packets.
1980  */
1981 static int
ip6_pcbopts(struct ip6_pktopts ** pktopt,struct socket * so,struct sockopt * sopt)1982 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
1983     struct sockopt *sopt)
1984 {
1985 	struct ip6_pktopts *opt = *pktopt;
1986 	struct mbuf *m;
1987 	int error = 0;
1988 
1989 	/* turn off any old options. */
1990 	if (opt) {
1991 #ifdef DIAGNOSTIC
1992 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
1993 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
1994 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
1995 		    printf("ip6_pcbopts: all specified options are cleared.\n");
1996 #endif
1997 		ip6_clearpktopts(opt, -1);
1998 	} else {
1999 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
2000 		if (opt == NULL)
2001 			return (ENOBUFS);
2002 	}
2003 	*pktopt = NULL;
2004 
2005 	if (sopt == NULL || sopt->sopt_size == 0) {
2006 		/*
2007 		 * Only turning off any previous options, regardless of
2008 		 * whether the opt is just created or given.
2009 		 */
2010 		free(opt, M_IP6OPT);
2011 		return (0);
2012 	}
2013 
2014 	/*  set options specified by user. */
2015 	m = sockopt_getmbuf(sopt);
2016 	if (m == NULL) {
2017 		free(opt, M_IP6OPT);
2018 		return (ENOBUFS);
2019 	}
2020 
2021 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
2022 	    so->so_proto->pr_protocol);
2023 	m_freem(m);
2024 	if (error != 0) {
2025 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2026 		free(opt, M_IP6OPT);
2027 		return (error);
2028 	}
2029 	*pktopt = opt;
2030 	return (0);
2031 }
2032 #endif
2033 
2034 /*
2035  * initialize ip6_pktopts.  beware that there are non-zero default values in
2036  * the struct.
2037  */
2038 void
ip6_initpktopts(struct ip6_pktopts * opt)2039 ip6_initpktopts(struct ip6_pktopts *opt)
2040 {
2041 
2042 	memset(opt, 0, sizeof(*opt));
2043 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2044 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2045 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2046 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2047 }
2048 
2049 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
2050 static int
ip6_pcbopt(int optname,u_char * buf,int len,struct ip6_pktopts ** pktopt,kauth_cred_t cred,int uproto)2051 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2052     kauth_cred_t cred, int uproto)
2053 {
2054 	struct ip6_pktopts *opt;
2055 
2056 	if (*pktopt == NULL) {
2057 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2058 		    M_NOWAIT);
2059 		if (*pktopt == NULL)
2060 			return (ENOBUFS);
2061 
2062 		ip6_initpktopts(*pktopt);
2063 	}
2064 	opt = *pktopt;
2065 
2066 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2067 }
2068 
2069 static int
ip6_getpcbopt(struct ip6_pktopts * pktopt,int optname,struct sockopt * sopt)2070 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2071 {
2072 	void *optdata = NULL;
2073 	int optdatalen = 0;
2074 	struct ip6_ext *ip6e;
2075 	int error = 0;
2076 	struct in6_pktinfo null_pktinfo;
2077 	int deftclass = 0, on;
2078 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2079 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2080 
2081 	switch (optname) {
2082 	case IPV6_PKTINFO:
2083 		if (pktopt && pktopt->ip6po_pktinfo)
2084 			optdata = (void *)pktopt->ip6po_pktinfo;
2085 		else {
2086 			/* XXX: we don't have to do this every time... */
2087 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2088 			optdata = (void *)&null_pktinfo;
2089 		}
2090 		optdatalen = sizeof(struct in6_pktinfo);
2091 		break;
2092 	case IPV6_OTCLASS:
2093 		/* XXX */
2094 		return (EINVAL);
2095 	case IPV6_TCLASS:
2096 		if (pktopt && pktopt->ip6po_tclass >= 0)
2097 			optdata = (void *)&pktopt->ip6po_tclass;
2098 		else
2099 			optdata = (void *)&deftclass;
2100 		optdatalen = sizeof(int);
2101 		break;
2102 	case IPV6_HOPOPTS:
2103 		if (pktopt && pktopt->ip6po_hbh) {
2104 			optdata = (void *)pktopt->ip6po_hbh;
2105 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2106 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2107 		}
2108 		break;
2109 	case IPV6_RTHDR:
2110 		if (pktopt && pktopt->ip6po_rthdr) {
2111 			optdata = (void *)pktopt->ip6po_rthdr;
2112 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2113 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2114 		}
2115 		break;
2116 	case IPV6_RTHDRDSTOPTS:
2117 		if (pktopt && pktopt->ip6po_dest1) {
2118 			optdata = (void *)pktopt->ip6po_dest1;
2119 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2120 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2121 		}
2122 		break;
2123 	case IPV6_DSTOPTS:
2124 		if (pktopt && pktopt->ip6po_dest2) {
2125 			optdata = (void *)pktopt->ip6po_dest2;
2126 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2127 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2128 		}
2129 		break;
2130 	case IPV6_NEXTHOP:
2131 		if (pktopt && pktopt->ip6po_nexthop) {
2132 			optdata = (void *)pktopt->ip6po_nexthop;
2133 			optdatalen = pktopt->ip6po_nexthop->sa_len;
2134 		}
2135 		break;
2136 	case IPV6_USE_MIN_MTU:
2137 		if (pktopt)
2138 			optdata = (void *)&pktopt->ip6po_minmtu;
2139 		else
2140 			optdata = (void *)&defminmtu;
2141 		optdatalen = sizeof(int);
2142 		break;
2143 	case IPV6_DONTFRAG:
2144 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2145 			on = 1;
2146 		else
2147 			on = 0;
2148 		optdata = (void *)&on;
2149 		optdatalen = sizeof(on);
2150 		break;
2151 	case IPV6_PREFER_TEMPADDR:
2152 		if (pktopt)
2153 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2154 		else
2155 			optdata = (void *)&defpreftemp;
2156 		optdatalen = sizeof(int);
2157 		break;
2158 	default:		/* should not happen */
2159 #ifdef DIAGNOSTIC
2160 		panic("ip6_getpcbopt: unexpected option\n");
2161 #endif
2162 		return (ENOPROTOOPT);
2163 	}
2164 
2165 	error = sockopt_set(sopt, optdata, optdatalen);
2166 
2167 	return (error);
2168 }
2169 
2170 void
ip6_clearpktopts(struct ip6_pktopts * pktopt,int optname)2171 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2172 {
2173 	if (optname == -1 || optname == IPV6_PKTINFO) {
2174 		if (pktopt->ip6po_pktinfo)
2175 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2176 		pktopt->ip6po_pktinfo = NULL;
2177 	}
2178 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2179 		pktopt->ip6po_hlim = -1;
2180 	if (optname == -1 || optname == IPV6_TCLASS)
2181 		pktopt->ip6po_tclass = -1;
2182 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2183 		rtcache_free(&pktopt->ip6po_nextroute);
2184 		if (pktopt->ip6po_nexthop)
2185 			free(pktopt->ip6po_nexthop, M_IP6OPT);
2186 		pktopt->ip6po_nexthop = NULL;
2187 	}
2188 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2189 		if (pktopt->ip6po_hbh)
2190 			free(pktopt->ip6po_hbh, M_IP6OPT);
2191 		pktopt->ip6po_hbh = NULL;
2192 	}
2193 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2194 		if (pktopt->ip6po_dest1)
2195 			free(pktopt->ip6po_dest1, M_IP6OPT);
2196 		pktopt->ip6po_dest1 = NULL;
2197 	}
2198 	if (optname == -1 || optname == IPV6_RTHDR) {
2199 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2200 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2201 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2202 		rtcache_free(&pktopt->ip6po_route);
2203 	}
2204 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2205 		if (pktopt->ip6po_dest2)
2206 			free(pktopt->ip6po_dest2, M_IP6OPT);
2207 		pktopt->ip6po_dest2 = NULL;
2208 	}
2209 }
2210 
2211 #define PKTOPT_EXTHDRCPY(type) 					\
2212 do {								\
2213 	if (src->type) {					\
2214 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2215 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
2216 		if (dst->type == NULL)				\
2217 			goto bad;				\
2218 		memcpy(dst->type, src->type, hlen);		\
2219 	}							\
2220 } while (/*CONSTCOND*/ 0)
2221 
2222 static int
copypktopts(struct ip6_pktopts * dst,struct ip6_pktopts * src,int canwait)2223 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2224 {
2225 	dst->ip6po_hlim = src->ip6po_hlim;
2226 	dst->ip6po_tclass = src->ip6po_tclass;
2227 	dst->ip6po_flags = src->ip6po_flags;
2228 	dst->ip6po_minmtu = src->ip6po_minmtu;
2229 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2230 	if (src->ip6po_pktinfo) {
2231 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2232 		    M_IP6OPT, canwait);
2233 		if (dst->ip6po_pktinfo == NULL)
2234 			goto bad;
2235 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2236 	}
2237 	if (src->ip6po_nexthop) {
2238 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2239 		    M_IP6OPT, canwait);
2240 		if (dst->ip6po_nexthop == NULL)
2241 			goto bad;
2242 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2243 		    src->ip6po_nexthop->sa_len);
2244 	}
2245 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2246 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2247 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2248 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2249 	return (0);
2250 
2251   bad:
2252 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2253 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2254 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2255 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2256 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2257 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2258 
2259 	return (ENOBUFS);
2260 }
2261 #undef PKTOPT_EXTHDRCPY
2262 
2263 struct ip6_pktopts *
ip6_copypktopts(struct ip6_pktopts * src,int canwait)2264 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2265 {
2266 	int error;
2267 	struct ip6_pktopts *dst;
2268 
2269 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2270 	if (dst == NULL)
2271 		return (NULL);
2272 	ip6_initpktopts(dst);
2273 
2274 	if ((error = copypktopts(dst, src, canwait)) != 0) {
2275 		free(dst, M_IP6OPT);
2276 		return (NULL);
2277 	}
2278 
2279 	return (dst);
2280 }
2281 
2282 void
ip6_freepcbopts(struct ip6_pktopts * pktopt)2283 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2284 {
2285 	if (pktopt == NULL)
2286 		return;
2287 
2288 	ip6_clearpktopts(pktopt, -1);
2289 
2290 	free(pktopt, M_IP6OPT);
2291 }
2292 
2293 int
ip6_get_membership(const struct sockopt * sopt,struct ifnet ** ifp,void * v,size_t l)2294 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v,
2295     size_t l)
2296 {
2297 	struct ipv6_mreq mreq;
2298 	int error;
2299 	struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
2300 	struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
2301 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
2302 	if (error != 0)
2303 		return error;
2304 
2305 	if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
2306 		/*
2307 		 * We use the unspecified address to specify to accept
2308 		 * all multicast addresses. Only super user is allowed
2309 		 * to do this.
2310 		 */
2311 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6,
2312 		    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2313 			return EACCES;
2314 	} else if (IN6_IS_ADDR_V4MAPPED(ia)) {
2315 		// Don't bother if we are not going to use ifp.
2316 		if (l == sizeof(*ia)) {
2317 			memcpy(v, ia, l);
2318 			return 0;
2319 		}
2320 	} else if (!IN6_IS_ADDR_MULTICAST(ia)) {
2321 		return EINVAL;
2322 	}
2323 
2324 	/*
2325 	 * If no interface was explicitly specified, choose an
2326 	 * appropriate one according to the given multicast address.
2327 	 */
2328 	if (mreq.ipv6mr_interface == 0) {
2329 		struct rtentry *rt;
2330 		union {
2331 			struct sockaddr		dst;
2332 			struct sockaddr_in	dst4;
2333 			struct sockaddr_in6	dst6;
2334 		} u;
2335 		struct route ro;
2336 
2337 		/*
2338 		 * Look up the routing table for the
2339 		 * address, and choose the outgoing interface.
2340 		 *   XXX: is it a good approach?
2341 		 */
2342 		memset(&ro, 0, sizeof(ro));
2343 		if (IN6_IS_ADDR_V4MAPPED(ia))
2344 			sockaddr_in_init(&u.dst4, ia4, 0);
2345 		else
2346 			sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
2347 		error = rtcache_setdst(&ro, &u.dst);
2348 		if (error != 0)
2349 			return error;
2350 		*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
2351 		rtcache_free(&ro);
2352 	} else {
2353 		/*
2354 		 * If the interface is specified, validate it.
2355 		 */
2356 		if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL)
2357 			return ENXIO;	/* XXX EINVAL? */
2358 	}
2359 	if (sizeof(*ia) == l)
2360 		memcpy(v, ia, l);
2361 	else
2362 		memcpy(v, ia4, l);
2363 	return 0;
2364 }
2365 
2366 /*
2367  * Set the IP6 multicast options in response to user setsockopt().
2368  */
2369 static int
ip6_setmoptions(const struct sockopt * sopt,struct in6pcb * in6p)2370 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p)
2371 {
2372 	int error = 0;
2373 	u_int loop, ifindex;
2374 	struct ipv6_mreq mreq;
2375 	struct in6_addr ia;
2376 	struct ifnet *ifp;
2377 	struct ip6_moptions *im6o = in6p->in6p_moptions;
2378 	struct in6_multi_mship *imm;
2379 
2380 	if (im6o == NULL) {
2381 		/*
2382 		 * No multicast option buffer attached to the pcb;
2383 		 * allocate one and initialize to default values.
2384 		 */
2385 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2386 		if (im6o == NULL)
2387 			return (ENOBUFS);
2388 		in6p->in6p_moptions = im6o;
2389 		im6o->im6o_multicast_if_index = 0;
2390 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2391 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2392 		LIST_INIT(&im6o->im6o_memberships);
2393 	}
2394 
2395 	switch (sopt->sopt_name) {
2396 
2397 	case IPV6_MULTICAST_IF:
2398 		/*
2399 		 * Select the interface for outgoing multicast packets.
2400 		 */
2401 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2402 		if (error != 0)
2403 			break;
2404 
2405 		if (ifindex != 0) {
2406 			if ((ifp = if_byindex(ifindex)) == NULL) {
2407 				error = ENXIO;	/* XXX EINVAL? */
2408 				break;
2409 			}
2410 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2411 				error = EADDRNOTAVAIL;
2412 				break;
2413 			}
2414 		} else
2415 			ifp = NULL;
2416 		im6o->im6o_multicast_if_index = if_get_index(ifp);
2417 		break;
2418 
2419 	case IPV6_MULTICAST_HOPS:
2420 	    {
2421 		/*
2422 		 * Set the IP6 hoplimit for outgoing multicast packets.
2423 		 */
2424 		int optval;
2425 
2426 		error = sockopt_getint(sopt, &optval);
2427 		if (error != 0)
2428 			break;
2429 
2430 		if (optval < -1 || optval >= 256)
2431 			error = EINVAL;
2432 		else if (optval == -1)
2433 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2434 		else
2435 			im6o->im6o_multicast_hlim = optval;
2436 		break;
2437 	    }
2438 
2439 	case IPV6_MULTICAST_LOOP:
2440 		/*
2441 		 * Set the loopback flag for outgoing multicast packets.
2442 		 * Must be zero or one.
2443 		 */
2444 		error = sockopt_get(sopt, &loop, sizeof(loop));
2445 		if (error != 0)
2446 			break;
2447 		if (loop > 1) {
2448 			error = EINVAL;
2449 			break;
2450 		}
2451 		im6o->im6o_multicast_loop = loop;
2452 		break;
2453 
2454 	case IPV6_JOIN_GROUP:
2455 		/*
2456 		 * Add a multicast group membership.
2457 		 * Group must be a valid IP6 multicast address.
2458 		 */
2459 		if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia))))
2460 			return error;
2461 
2462 		if (IN6_IS_ADDR_V4MAPPED(&ia)) {
2463 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2464 			break;
2465 		}
2466 		/*
2467 		 * See if we found an interface, and confirm that it
2468 		 * supports multicast
2469 		 */
2470 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2471 			error = EADDRNOTAVAIL;
2472 			break;
2473 		}
2474 
2475 		if (in6_setscope(&ia, ifp, NULL)) {
2476 			error = EADDRNOTAVAIL; /* XXX: should not happen */
2477 			break;
2478 		}
2479 
2480 		/*
2481 		 * See if the membership already exists.
2482 		 */
2483 		for (imm = im6o->im6o_memberships.lh_first;
2484 		     imm != NULL; imm = imm->i6mm_chain.le_next)
2485 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2486 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2487 			    &ia))
2488 				break;
2489 		if (imm != NULL) {
2490 			error = EADDRINUSE;
2491 			break;
2492 		}
2493 		/*
2494 		 * Everything looks good; add a new record to the multicast
2495 		 * address list for the given interface.
2496 		 */
2497 		imm = in6_joingroup(ifp, &ia, &error, 0);
2498 		if (imm == NULL)
2499 			break;
2500 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2501 		break;
2502 
2503 	case IPV6_LEAVE_GROUP:
2504 		/*
2505 		 * Drop a multicast group membership.
2506 		 * Group must be a valid IP6 multicast address.
2507 		 */
2508 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
2509 		if (error != 0)
2510 			break;
2511 
2512 		if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
2513 			error = ip_setmoptions(&in6p->in6p_v4moptions, sopt);
2514 			break;
2515 		}
2516 		/*
2517 		 * If an interface address was specified, get a pointer
2518 		 * to its ifnet structure.
2519 		 */
2520 		if (mreq.ipv6mr_interface != 0) {
2521 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2522 				error = ENXIO;	/* XXX EINVAL? */
2523 				break;
2524 			}
2525 		} else
2526 			ifp = NULL;
2527 
2528 		/* Fill in the scope zone ID */
2529 		if (ifp) {
2530 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2531 				/* XXX: should not happen */
2532 				error = EADDRNOTAVAIL;
2533 				break;
2534 			}
2535 		} else if (mreq.ipv6mr_interface != 0) {
2536 			/*
2537 			 * XXX: This case would happens when the (positive)
2538 			 * index is in the valid range, but the corresponding
2539 			 * interface has been detached dynamically.  The above
2540 			 * check probably avoids such case to happen here, but
2541 			 * we check it explicitly for safety.
2542 			 */
2543 			error = EADDRNOTAVAIL;
2544 			break;
2545 		} else {	/* ipv6mr_interface == 0 */
2546 			struct sockaddr_in6 sa6_mc;
2547 
2548 			/*
2549 			 * The API spec says as follows:
2550 			 *  If the interface index is specified as 0, the
2551 			 *  system may choose a multicast group membership to
2552 			 *  drop by matching the multicast address only.
2553 			 * On the other hand, we cannot disambiguate the scope
2554 			 * zone unless an interface is provided.  Thus, we
2555 			 * check if there's ambiguity with the default scope
2556 			 * zone as the last resort.
2557 			 */
2558 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2559 			    0, 0, 0);
2560 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2561 			if (error != 0)
2562 				break;
2563 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2564 		}
2565 
2566 		/*
2567 		 * Find the membership in the membership list.
2568 		 */
2569 		for (imm = im6o->im6o_memberships.lh_first;
2570 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2571 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2572 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2573 			    &mreq.ipv6mr_multiaddr))
2574 				break;
2575 		}
2576 		if (imm == NULL) {
2577 			/* Unable to resolve interface */
2578 			error = EADDRNOTAVAIL;
2579 			break;
2580 		}
2581 		/*
2582 		 * Give up the multicast address record to which the
2583 		 * membership points.
2584 		 */
2585 		LIST_REMOVE(imm, i6mm_chain);
2586 		in6_leavegroup(imm);
2587 		break;
2588 
2589 	default:
2590 		error = EOPNOTSUPP;
2591 		break;
2592 	}
2593 
2594 	/*
2595 	 * If all options have default values, no need to keep the mbuf.
2596 	 */
2597 	if (im6o->im6o_multicast_if_index == 0 &&
2598 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2599 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2600 	    im6o->im6o_memberships.lh_first == NULL) {
2601 		free(in6p->in6p_moptions, M_IPMOPTS);
2602 		in6p->in6p_moptions = NULL;
2603 	}
2604 
2605 	return (error);
2606 }
2607 
2608 /*
2609  * Return the IP6 multicast options in response to user getsockopt().
2610  */
2611 static int
ip6_getmoptions(struct sockopt * sopt,struct in6pcb * in6p)2612 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p)
2613 {
2614 	u_int optval;
2615 	int error;
2616 	struct ip6_moptions *im6o = in6p->in6p_moptions;
2617 
2618 	switch (sopt->sopt_name) {
2619 	case IPV6_MULTICAST_IF:
2620 		if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
2621 			optval = 0;
2622 		else
2623 			optval = im6o->im6o_multicast_if_index;
2624 
2625 		error = sockopt_set(sopt, &optval, sizeof(optval));
2626 		break;
2627 
2628 	case IPV6_MULTICAST_HOPS:
2629 		if (im6o == NULL)
2630 			optval = ip6_defmcasthlim;
2631 		else
2632 			optval = im6o->im6o_multicast_hlim;
2633 
2634 		error = sockopt_set(sopt, &optval, sizeof(optval));
2635 		break;
2636 
2637 	case IPV6_MULTICAST_LOOP:
2638 		if (im6o == NULL)
2639 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
2640 		else
2641 			optval = im6o->im6o_multicast_loop;
2642 
2643 		error = sockopt_set(sopt, &optval, sizeof(optval));
2644 		break;
2645 
2646 	default:
2647 		error = EOPNOTSUPP;
2648 	}
2649 
2650 	return (error);
2651 }
2652 
2653 /*
2654  * Discard the IP6 multicast options.
2655  */
2656 void
ip6_freemoptions(struct ip6_moptions * im6o)2657 ip6_freemoptions(struct ip6_moptions *im6o)
2658 {
2659 	struct in6_multi_mship *imm;
2660 
2661 	if (im6o == NULL)
2662 		return;
2663 
2664 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2665 		LIST_REMOVE(imm, i6mm_chain);
2666 		in6_leavegroup(imm);
2667 	}
2668 	free(im6o, M_IPMOPTS);
2669 }
2670 
2671 /*
2672  * Set IPv6 outgoing packet options based on advanced API.
2673  */
2674 int
ip6_setpktopts(struct mbuf * control,struct ip6_pktopts * opt,struct ip6_pktopts * stickyopt,kauth_cred_t cred,int uproto)2675 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2676 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2677 {
2678 	struct cmsghdr *cm = 0;
2679 
2680 	if (control == NULL || opt == NULL)
2681 		return (EINVAL);
2682 
2683 	ip6_initpktopts(opt);
2684 	if (stickyopt) {
2685 		int error;
2686 
2687 		/*
2688 		 * If stickyopt is provided, make a local copy of the options
2689 		 * for this particular packet, then override them by ancillary
2690 		 * objects.
2691 		 * XXX: copypktopts() does not copy the cached route to a next
2692 		 * hop (if any).  This is not very good in terms of efficiency,
2693 		 * but we can allow this since this option should be rarely
2694 		 * used.
2695 		 */
2696 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2697 			return (error);
2698 	}
2699 
2700 	/*
2701 	 * XXX: Currently, we assume all the optional information is stored
2702 	 * in a single mbuf.
2703 	 */
2704 	if (control->m_next)
2705 		return (EINVAL);
2706 
2707 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2708 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2709 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2710 		int error;
2711 
2712 		if (control->m_len < CMSG_LEN(0))
2713 			return (EINVAL);
2714 
2715 		cm = mtod(control, struct cmsghdr *);
2716 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2717 			return (EINVAL);
2718 		if (cm->cmsg_level != IPPROTO_IPV6)
2719 			continue;
2720 
2721 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2722 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2723 		if (error)
2724 			return (error);
2725 	}
2726 
2727 	return (0);
2728 }
2729 
2730 /*
2731  * Set a particular packet option, as a sticky option or an ancillary data
2732  * item.  "len" can be 0 only when it's a sticky option.
2733  * We have 4 cases of combination of "sticky" and "cmsg":
2734  * "sticky=0, cmsg=0": impossible
2735  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2736  * "sticky=1, cmsg=0": RFC3542 socket option
2737  * "sticky=1, cmsg=1": RFC2292 socket option
2738  */
2739 static int
ip6_setpktopt(int optname,u_char * buf,int len,struct ip6_pktopts * opt,kauth_cred_t cred,int sticky,int cmsg,int uproto)2740 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2741     kauth_cred_t cred, int sticky, int cmsg, int uproto)
2742 {
2743 	int minmtupolicy;
2744 	int error;
2745 
2746 	if (!sticky && !cmsg) {
2747 #ifdef DIAGNOSTIC
2748 		printf("ip6_setpktopt: impossible case\n");
2749 #endif
2750 		return (EINVAL);
2751 	}
2752 
2753 	/*
2754 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2755 	 * not be specified in the context of RFC3542.  Conversely,
2756 	 * RFC3542 types should not be specified in the context of RFC2292.
2757 	 */
2758 	if (!cmsg) {
2759 		switch (optname) {
2760 		case IPV6_2292PKTINFO:
2761 		case IPV6_2292HOPLIMIT:
2762 		case IPV6_2292NEXTHOP:
2763 		case IPV6_2292HOPOPTS:
2764 		case IPV6_2292DSTOPTS:
2765 		case IPV6_2292RTHDR:
2766 		case IPV6_2292PKTOPTIONS:
2767 			return (ENOPROTOOPT);
2768 		}
2769 	}
2770 	if (sticky && cmsg) {
2771 		switch (optname) {
2772 		case IPV6_PKTINFO:
2773 		case IPV6_HOPLIMIT:
2774 		case IPV6_NEXTHOP:
2775 		case IPV6_HOPOPTS:
2776 		case IPV6_DSTOPTS:
2777 		case IPV6_RTHDRDSTOPTS:
2778 		case IPV6_RTHDR:
2779 		case IPV6_USE_MIN_MTU:
2780 		case IPV6_DONTFRAG:
2781 		case IPV6_OTCLASS:
2782 		case IPV6_TCLASS:
2783 		case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
2784 			return (ENOPROTOOPT);
2785 		}
2786 	}
2787 
2788 	switch (optname) {
2789 #ifdef RFC2292
2790 	case IPV6_2292PKTINFO:
2791 #endif
2792 	case IPV6_PKTINFO:
2793 	{
2794 		struct in6_pktinfo *pktinfo;
2795 
2796 		if (len != sizeof(struct in6_pktinfo))
2797 			return (EINVAL);
2798 
2799 		pktinfo = (struct in6_pktinfo *)buf;
2800 
2801 		/*
2802 		 * An application can clear any sticky IPV6_PKTINFO option by
2803 		 * doing a "regular" setsockopt with ipi6_addr being
2804 		 * in6addr_any and ipi6_ifindex being zero.
2805 		 * [RFC 3542, Section 6]
2806 		 */
2807 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2808 		    pktinfo->ipi6_ifindex == 0 &&
2809 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2810 			ip6_clearpktopts(opt, optname);
2811 			break;
2812 		}
2813 
2814 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2815 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2816 			return (EINVAL);
2817 		}
2818 
2819 		/* Validate the interface index if specified. */
2820 		if (pktinfo->ipi6_ifindex) {
2821 			struct ifnet *ifp;
2822 			int s = pserialize_read_enter();
2823 			ifp = if_byindex(pktinfo->ipi6_ifindex);
2824 			if (ifp == NULL) {
2825 				pserialize_read_exit(s);
2826 				return ENXIO;
2827 			}
2828 			pserialize_read_exit(s);
2829 		}
2830 
2831 		/*
2832 		 * We store the address anyway, and let in6_selectsrc()
2833 		 * validate the specified address.  This is because ipi6_addr
2834 		 * may not have enough information about its scope zone, and
2835 		 * we may need additional information (such as outgoing
2836 		 * interface or the scope zone of a destination address) to
2837 		 * disambiguate the scope.
2838 		 * XXX: the delay of the validation may confuse the
2839 		 * application when it is used as a sticky option.
2840 		 */
2841 		if (opt->ip6po_pktinfo == NULL) {
2842 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2843 			    M_IP6OPT, M_NOWAIT);
2844 			if (opt->ip6po_pktinfo == NULL)
2845 				return (ENOBUFS);
2846 		}
2847 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2848 		break;
2849 	}
2850 
2851 #ifdef RFC2292
2852 	case IPV6_2292HOPLIMIT:
2853 #endif
2854 	case IPV6_HOPLIMIT:
2855 	{
2856 		int *hlimp;
2857 
2858 		/*
2859 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2860 		 * to simplify the ordering among hoplimit options.
2861 		 */
2862 		if (optname == IPV6_HOPLIMIT && sticky)
2863 			return (ENOPROTOOPT);
2864 
2865 		if (len != sizeof(int))
2866 			return (EINVAL);
2867 		hlimp = (int *)buf;
2868 		if (*hlimp < -1 || *hlimp > 255)
2869 			return (EINVAL);
2870 
2871 		opt->ip6po_hlim = *hlimp;
2872 		break;
2873 	}
2874 
2875 	case IPV6_OTCLASS:
2876 		if (len != sizeof(u_int8_t))
2877 			return (EINVAL);
2878 
2879 		opt->ip6po_tclass = *(u_int8_t *)buf;
2880 		break;
2881 
2882 	case IPV6_TCLASS:
2883 	{
2884 		int tclass;
2885 
2886 		if (len != sizeof(int))
2887 			return (EINVAL);
2888 		tclass = *(int *)buf;
2889 		if (tclass < -1 || tclass > 255)
2890 			return (EINVAL);
2891 
2892 		opt->ip6po_tclass = tclass;
2893 		break;
2894 	}
2895 
2896 #ifdef RFC2292
2897 	case IPV6_2292NEXTHOP:
2898 #endif
2899 	case IPV6_NEXTHOP:
2900 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2901 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2902 		if (error)
2903 			return (error);
2904 
2905 		if (len == 0) {	/* just remove the option */
2906 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2907 			break;
2908 		}
2909 
2910 		/* check if cmsg_len is large enough for sa_len */
2911 		if (len < sizeof(struct sockaddr) || len < *buf)
2912 			return (EINVAL);
2913 
2914 		switch (((struct sockaddr *)buf)->sa_family) {
2915 		case AF_INET6:
2916 		{
2917 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2918 
2919 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2920 				return (EINVAL);
2921 
2922 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2923 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2924 				return (EINVAL);
2925 			}
2926 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
2927 			    != 0) {
2928 				return (error);
2929 			}
2930 			break;
2931 		}
2932 		case AF_LINK:	/* eventually be supported? */
2933 		default:
2934 			return (EAFNOSUPPORT);
2935 		}
2936 
2937 		/* turn off the previous option, then set the new option. */
2938 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2939 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2940 		if (opt->ip6po_nexthop == NULL)
2941 			return (ENOBUFS);
2942 		memcpy(opt->ip6po_nexthop, buf, *buf);
2943 		break;
2944 
2945 #ifdef RFC2292
2946 	case IPV6_2292HOPOPTS:
2947 #endif
2948 	case IPV6_HOPOPTS:
2949 	{
2950 		struct ip6_hbh *hbh;
2951 		int hbhlen;
2952 
2953 		/*
2954 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2955 		 * options, since per-option restriction has too much
2956 		 * overhead.
2957 		 */
2958 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2959 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2960 		if (error)
2961 			return (error);
2962 
2963 		if (len == 0) {
2964 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2965 			break;	/* just remove the option */
2966 		}
2967 
2968 		/* message length validation */
2969 		if (len < sizeof(struct ip6_hbh))
2970 			return (EINVAL);
2971 		hbh = (struct ip6_hbh *)buf;
2972 		hbhlen = (hbh->ip6h_len + 1) << 3;
2973 		if (len != hbhlen)
2974 			return (EINVAL);
2975 
2976 		/* turn off the previous option, then set the new option. */
2977 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2978 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2979 		if (opt->ip6po_hbh == NULL)
2980 			return (ENOBUFS);
2981 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
2982 
2983 		break;
2984 	}
2985 
2986 #ifdef RFC2292
2987 	case IPV6_2292DSTOPTS:
2988 #endif
2989 	case IPV6_DSTOPTS:
2990 	case IPV6_RTHDRDSTOPTS:
2991 	{
2992 		struct ip6_dest *dest, **newdest = NULL;
2993 		int destlen;
2994 
2995 		/* XXX: see the comment for IPV6_HOPOPTS */
2996 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2997 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2998 		if (error)
2999 			return (error);
3000 
3001 		if (len == 0) {
3002 			ip6_clearpktopts(opt, optname);
3003 			break;	/* just remove the option */
3004 		}
3005 
3006 		/* message length validation */
3007 		if (len < sizeof(struct ip6_dest))
3008 			return (EINVAL);
3009 		dest = (struct ip6_dest *)buf;
3010 		destlen = (dest->ip6d_len + 1) << 3;
3011 		if (len != destlen)
3012 			return (EINVAL);
3013 		/*
3014 		 * Determine the position that the destination options header
3015 		 * should be inserted; before or after the routing header.
3016 		 */
3017 		switch (optname) {
3018 		case IPV6_2292DSTOPTS:
3019 			/*
3020 			 * The old advanced API is ambiguous on this point.
3021 			 * Our approach is to determine the position based
3022 			 * according to the existence of a routing header.
3023 			 * Note, however, that this depends on the order of the
3024 			 * extension headers in the ancillary data; the 1st
3025 			 * part of the destination options header must appear
3026 			 * before the routing header in the ancillary data,
3027 			 * too.
3028 			 * RFC3542 solved the ambiguity by introducing
3029 			 * separate ancillary data or option types.
3030 			 */
3031 			if (opt->ip6po_rthdr == NULL)
3032 				newdest = &opt->ip6po_dest1;
3033 			else
3034 				newdest = &opt->ip6po_dest2;
3035 			break;
3036 		case IPV6_RTHDRDSTOPTS:
3037 			newdest = &opt->ip6po_dest1;
3038 			break;
3039 		case IPV6_DSTOPTS:
3040 			newdest = &opt->ip6po_dest2;
3041 			break;
3042 		}
3043 
3044 		/* turn off the previous option, then set the new option. */
3045 		ip6_clearpktopts(opt, optname);
3046 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3047 		if (*newdest == NULL)
3048 			return (ENOBUFS);
3049 		memcpy(*newdest, dest, destlen);
3050 
3051 		break;
3052 	}
3053 
3054 #ifdef RFC2292
3055 	case IPV6_2292RTHDR:
3056 #endif
3057 	case IPV6_RTHDR:
3058 	{
3059 		struct ip6_rthdr *rth;
3060 		int rthlen;
3061 
3062 		if (len == 0) {
3063 			ip6_clearpktopts(opt, IPV6_RTHDR);
3064 			break;	/* just remove the option */
3065 		}
3066 
3067 		/* message length validation */
3068 		if (len < sizeof(struct ip6_rthdr))
3069 			return (EINVAL);
3070 		rth = (struct ip6_rthdr *)buf;
3071 		rthlen = (rth->ip6r_len + 1) << 3;
3072 		if (len != rthlen)
3073 			return (EINVAL);
3074 		switch (rth->ip6r_type) {
3075 		case IPV6_RTHDR_TYPE_0:
3076 			if (rth->ip6r_len == 0)	/* must contain one addr */
3077 				return (EINVAL);
3078 			if (rth->ip6r_len % 2) /* length must be even */
3079 				return (EINVAL);
3080 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3081 				return (EINVAL);
3082 			break;
3083 		default:
3084 			return (EINVAL);	/* not supported */
3085 		}
3086 		/* turn off the previous option */
3087 		ip6_clearpktopts(opt, IPV6_RTHDR);
3088 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3089 		if (opt->ip6po_rthdr == NULL)
3090 			return (ENOBUFS);
3091 		memcpy(opt->ip6po_rthdr, rth, rthlen);
3092 		break;
3093 	}
3094 
3095 	case IPV6_USE_MIN_MTU:
3096 		if (len != sizeof(int))
3097 			return (EINVAL);
3098 		minmtupolicy = *(int *)buf;
3099 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3100 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
3101 		    minmtupolicy != IP6PO_MINMTU_ALL) {
3102 			return (EINVAL);
3103 		}
3104 		opt->ip6po_minmtu = minmtupolicy;
3105 		break;
3106 
3107 	case IPV6_DONTFRAG:
3108 		if (len != sizeof(int))
3109 			return (EINVAL);
3110 
3111 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3112 			/*
3113 			 * we ignore this option for TCP sockets.
3114 			 * (RFC3542 leaves this case unspecified.)
3115 			 */
3116 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3117 		} else
3118 			opt->ip6po_flags |= IP6PO_DONTFRAG;
3119 		break;
3120 
3121 	case IPV6_PREFER_TEMPADDR:
3122 	{
3123 		int preftemp;
3124 
3125 		if (len != sizeof(int))
3126 			return (EINVAL);
3127 		preftemp = *(int *)buf;
3128 		switch (preftemp) {
3129 		case IP6PO_TEMPADDR_SYSTEM:
3130 		case IP6PO_TEMPADDR_NOTPREFER:
3131 		case IP6PO_TEMPADDR_PREFER:
3132 			break;
3133 		default:
3134 			return (EINVAL);
3135 		}
3136 		opt->ip6po_prefer_tempaddr = preftemp;
3137 		break;
3138 	}
3139 
3140 	default:
3141 		return (ENOPROTOOPT);
3142 	} /* end of switch */
3143 
3144 	return (0);
3145 }
3146 
3147 /*
3148  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3149  * packet to the input queue of a specified interface.  Note that this
3150  * calls the output routine of the loopback "driver", but with an interface
3151  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3152  */
3153 void
ip6_mloopback(struct ifnet * ifp,struct mbuf * m,const struct sockaddr_in6 * dst)3154 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3155 	const struct sockaddr_in6 *dst)
3156 {
3157 	struct mbuf *copym;
3158 	struct ip6_hdr *ip6;
3159 
3160 	copym = m_copy(m, 0, M_COPYALL);
3161 	if (copym == NULL)
3162 		return;
3163 
3164 	/*
3165 	 * Make sure to deep-copy IPv6 header portion in case the data
3166 	 * is in an mbuf cluster, so that we can safely override the IPv6
3167 	 * header portion later.
3168 	 */
3169 	if ((copym->m_flags & M_EXT) != 0 ||
3170 	    copym->m_len < sizeof(struct ip6_hdr)) {
3171 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3172 		if (copym == NULL)
3173 			return;
3174 	}
3175 
3176 #ifdef DIAGNOSTIC
3177 	if (copym->m_len < sizeof(*ip6)) {
3178 		m_freem(copym);
3179 		return;
3180 	}
3181 #endif
3182 
3183 	ip6 = mtod(copym, struct ip6_hdr *);
3184 	/*
3185 	 * clear embedded scope identifiers if necessary.
3186 	 * in6_clearscope will touch the addresses only when necessary.
3187 	 */
3188 	in6_clearscope(&ip6->ip6_src);
3189 	in6_clearscope(&ip6->ip6_dst);
3190 
3191 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3192 }
3193 
3194 /*
3195  * Chop IPv6 header off from the payload.
3196  */
3197 static int
ip6_splithdr(struct mbuf * m,struct ip6_exthdrs * exthdrs)3198 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
3199 {
3200 	struct mbuf *mh;
3201 	struct ip6_hdr *ip6;
3202 
3203 	ip6 = mtod(m, struct ip6_hdr *);
3204 	if (m->m_len > sizeof(*ip6)) {
3205 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3206 		if (mh == 0) {
3207 			m_freem(m);
3208 			return ENOBUFS;
3209 		}
3210 		M_MOVE_PKTHDR(mh, m);
3211 		MH_ALIGN(mh, sizeof(*ip6));
3212 		m->m_len -= sizeof(*ip6);
3213 		m->m_data += sizeof(*ip6);
3214 		mh->m_next = m;
3215 		m = mh;
3216 		m->m_len = sizeof(*ip6);
3217 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3218 	}
3219 	exthdrs->ip6e_ip6 = m;
3220 	return 0;
3221 }
3222 
3223 /*
3224  * Compute IPv6 extension header length.
3225  */
3226 int
ip6_optlen(struct in6pcb * in6p)3227 ip6_optlen(struct in6pcb *in6p)
3228 {
3229 	int len;
3230 
3231 	if (!in6p->in6p_outputopts)
3232 		return 0;
3233 
3234 	len = 0;
3235 #define elen(x) \
3236     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3237 
3238 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3239 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
3240 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3241 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3242 	return len;
3243 #undef elen
3244 }
3245