1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a visual servoing with display.
33  *
34  * Authors:
35  * Eric Marchand
36  * Fabien Spindler
37  *
38  *****************************************************************************/
39 
40 /*!
41   \file manServo4PointsDisplay.cpp
42   \brief Visual servoing experiment on 4 points with a display.
43 */
44 
45 /*!
46   \example manServo4PointsDisplay.cpp
47   Visual servoing experiment on 4 points with a display.
48 */
49 
50 #include <visp3/core/vpConfig.h>
51 #include <visp3/core/vpDebug.h>
52 
53 #if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)
54 
55 #include <visp3/core/vpCameraParameters.h>
56 #include <visp3/core/vpImage.h>
57 #include <visp3/core/vpImageConvert.h>
58 #include <visp3/core/vpTime.h>
59 #include <visp3/gui/vpDisplayGDI.h>
60 #include <visp3/gui/vpDisplayGTK.h>
61 #include <visp3/gui/vpDisplayOpenCV.h>
62 #include <visp3/gui/vpDisplayX.h>
63 
64 #include <visp3/core/vpHomogeneousMatrix.h>
65 #include <visp3/core/vpIoTools.h>
66 #include <visp3/core/vpMath.h>
67 #include <visp3/robot/vpSimulatorCamera.h>
68 #include <visp3/vision/vpPose.h>
69 #include <visp3/visual_features/vpFeatureBuilder.h>
70 #include <visp3/visual_features/vpFeaturePoint.h>
71 #include <visp3/vs/vpServo.h>
72 #include <visp3/vs/vpServoDisplay.h>
73 
main()74 int main()
75 {
76   try {
77     //////////////////////////////////////////
78     // sets the initial camera location
79     vpHomogeneousMatrix cMo(0.3, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(40));
80     vpHomogeneousMatrix wMo; // Set to identity
81     vpHomogeneousMatrix wMc; // Camera position in the world frame
82 
83     ///////////////////////////////////
84     // initialize the robot
85     vpSimulatorCamera robot;
86     robot.setSamplingTime(0.04); // 40ms
87     wMc = wMo * cMo.inverse();
88     robot.setPosition(wMc);
89 
90     // initialize the camera parameters
91     vpCameraParameters cam(800, 800, 240, 180);
92 
93     // Image definition
94     unsigned int height = 360;
95     unsigned int width = 480;
96     vpImage<unsigned char> I(height, width);
97 
98 // Display initialization
99 #if defined(VISP_HAVE_X11)
100     vpDisplayX disp;
101 #elif defined(VISP_HAVE_GTK)
102     vpDisplayGTK disp;
103 #elif defined(VISP_HAVE_GDI)
104     vpDisplayGDI disp;
105 #elif defined(VISP_HAVE_OPENCV)
106     vpDisplayOpenCV disp;
107 #endif
108 
109 #if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)
110     disp.init(I, 100, 100, "Simulation display");
111 #endif
112 
113     ////////////////////////////////////////
114     // Desired visual features initialization
115 
116     // sets the points coordinates in the object frame (in meter)
117     vpPoint point[4];
118     point[0].setWorldCoordinates(-0.1, -0.1, 0);
119     point[1].setWorldCoordinates(0.1, -0.1, 0);
120     point[2].setWorldCoordinates(0.1, 0.1, 0);
121     point[3].setWorldCoordinates(-0.1, 0.1, 0);
122 
123     // sets the desired camera location
124     vpHomogeneousMatrix cMo_d(0, 0, 1, 0, 0, 0);
125 
126     // computes the 3D point coordinates in the camera frame and its 2D
127     // coordinates
128     for (int i = 0; i < 4; i++)
129       point[i].project(cMo_d);
130 
131     // creates the associated features
132     vpFeaturePoint pd[4];
133     for (int i = 0; i < 4; i++)
134       vpFeatureBuilder::create(pd[i], point[i]);
135 
136     ///////////////////////////////////////
137     // Current visual features initialization
138 
139     // computes the 3D point coordinates in the camera frame and its 2D
140     // coordinates
141     for (int i = 0; i < 4; i++)
142       point[i].project(cMo);
143 
144     // creates the associated features
145     vpFeaturePoint p[4];
146     for (int i = 0; i < 4; i++)
147       vpFeatureBuilder::create(p[i], point[i]);
148 
149     /////////////////////////////////
150     // Task defintion
151     vpServo task;
152     // we want an eye-in-hand control law ;
153     task.setServo(vpServo::EYEINHAND_L_cVe_eJe);
154     task.setInteractionMatrixType(vpServo::DESIRED, vpServo::PSEUDO_INVERSE);
155 
156     // Set the position of the end-effector frame in the camera frame as identity
157     vpHomogeneousMatrix cMe;
158     vpVelocityTwistMatrix cVe(cMe);
159     task.set_cVe(cVe);
160     // Set the Jacobian (expressed in the end-effector frame)
161     vpMatrix eJe;
162     robot.get_eJe(eJe);
163     task.set_eJe(eJe);
164 
165     // we want to see a point on a point
166     for (int i = 0; i < 4; i++)
167       task.addFeature(p[i], pd[i]);
168     // Set the gain
169     task.setLambda(1.0);
170     // Print the current information about the task
171     task.print();
172 
173     ////////////////////////////////////////////////
174     // The control loop
175     int k = 0;
176     while (k++ < 200) {
177       double t = vpTime::measureTimeMs();
178 
179       // Display the image background
180       vpDisplay::display(I);
181 
182       // Update the current features
183       for (int i = 0; i < 4; i++) {
184         point[i].project(cMo);
185         vpFeatureBuilder::create(p[i], point[i]);
186       }
187 
188       // Display the task features (current and desired)
189       vpServoDisplay::display(task, cam, I);
190       vpDisplay::flush(I);
191 
192       // Update the robot Jacobian
193       robot.get_eJe(eJe);
194       task.set_eJe(eJe);
195 
196       // Compute the control law
197       vpColVector v = task.computeControlLaw();
198 
199       // Send the computed velocity to the robot and compute the new robot
200       // position
201       robot.setVelocity(vpRobot::ARTICULAR_FRAME, v);
202       wMc = robot.getPosition();
203       cMo = wMc.inverse() * wMo;
204 
205       // Print the current information about the task
206       task.print();
207 
208       // Wait 40 ms
209       vpTime::wait(t, 40);
210     }
211     return EXIT_SUCCESS;
212   } catch (const vpException &e) {
213     std::cout << "Catch an exception: " << e << std::endl;
214     return EXIT_FAILURE;
215   }
216 }
217 
218 #else
main()219 int main()
220 {
221   std::cout << "You do not have X11, GTK, or OpenCV, or GDI (Graphical Device Interface) functionalities to display images..." << std::endl;
222   std::cout << "Tip if you are on a unix-like system:" << std::endl;
223   std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
224   std::cout << "Tip if you are on a windows-like system:" << std::endl;
225   std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
226   return EXIT_SUCCESS;
227 }
228 #endif
229