1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a visual servoing using theta U visual features.
33  *   tests the control law
34  *   eye-in-hand control
35  *   velocity computed in the camera frame
36  *   using theta U visual feature
37  *
38  * Authors:
39  * Eric Marchand
40  * Fabien Spindler
41  *
42  *****************************************************************************/
43 
44 /*!
45   \example servoSimuThetaUCamVelocity.cpp
46   Simulation of a visual servoing using theta U visual features:
47   - eye-in-hand control law,
48   - velocity computed in the camera frame,
49   - no display.
50 */
51 
52 #include <stdio.h>
53 #include <stdlib.h>
54 
55 #include <visp3/core/vpHomogeneousMatrix.h>
56 #include <visp3/core/vpMath.h>
57 #include <visp3/io/vpParseArgv.h>
58 #include <visp3/robot/vpSimulatorCamera.h>
59 #include <visp3/visual_features/vpFeatureThetaU.h>
60 #include <visp3/visual_features/vpFeatureTranslation.h>
61 #include <visp3/vs/vpServo.h>
62 
63 // List of allowed command line options
64 #define GETOPTARGS "h"
65 void usage(const char *name, const char *badparam);
66 bool getOptions(int argc, const char **argv);
67 /*!
68 
69   Print the program options.
70 
71   \param name : Program name.
72   \param badparam : Bad parameter name.
73 
74 */
usage(const char * name,const char * badparam)75 void usage(const char *name, const char *badparam)
76 {
77   fprintf(stdout, "\n\
78 Simulation of avisual servoing using theta U visual feature:\n\
79 - eye-in-hand control law,\n\
80 - velocity computed in the camera frame,\n\
81 - without display.\n\
82           \n\
83 SYNOPSIS\n\
84   %s [-h]\n", name);
85 
86   fprintf(stdout, "\n\
87 OPTIONS:                                               Default\n\
88                   \n\
89   -h\n\
90      Print the help.\n");
91 
92   if (badparam)
93     fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
94 }
95 
96 /*!
97 
98   Set the program options.
99 
100   \param argc : Command line number of parameters.
101   \param argv : Array of command line parameters.
102 
103   \return false if the program has to be stopped, true otherwise.
104 
105 */
getOptions(int argc,const char ** argv)106 bool getOptions(int argc, const char **argv)
107 {
108   const char *optarg_;
109   int c;
110   while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
111 
112     switch (c) {
113     case 'h':
114       usage(argv[0], NULL);
115       return false;
116 
117     default:
118       usage(argv[0], optarg_);
119       return false;
120     }
121   }
122 
123   if ((c == 1) || (c == -1)) {
124     // standalone param or error
125     usage(argv[0], NULL);
126     std::cerr << "ERROR: " << std::endl;
127     std::cerr << "  Bad argument " << optarg_ << std::endl << std::endl;
128     return false;
129   }
130 
131   return true;
132 }
133 
main(int argc,const char ** argv)134 int main(int argc, const char **argv)
135 {
136 #if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
137   try {
138     // Read the command line options
139     if (getOptions(argc, argv) == false) {
140       exit(-1);
141     }
142 
143     vpServo task;
144     vpSimulatorCamera robot;
145 
146     std::cout << std::endl;
147     std::cout << "-------------------------------------------------------" << std::endl;
148     std::cout << " Test program for vpServo " << std::endl;
149     std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
150     std::cout << " Simulation " << std::endl;
151     std::cout << " task :  servo using theta U visual feature " << std::endl;
152     std::cout << "-------------------------------------------------------" << std::endl;
153     std::cout << std::endl;
154 
155     // sets the initial camera location
156     vpPoseVector c_r_o(0.1, 0.2, 2, vpMath::rad(20), vpMath::rad(10), vpMath::rad(50));
157 
158     vpHomogeneousMatrix cMo(c_r_o);
159     // Compute the position of the object in the world frame
160     vpHomogeneousMatrix wMc, wMo;
161     robot.getPosition(wMc);
162     wMo = wMc * cMo;
163 
164     // sets the desired camera location
165     vpPoseVector cd_r_o(0, 0, 1, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
166     vpHomogeneousMatrix cdMo(cd_r_o);
167 
168     // compute the rotation that the camera has to realize
169     vpHomogeneousMatrix cdMc;
170     cdMc = cdMo * cMo.inverse();
171     vpFeatureThetaU tu(vpFeatureThetaU::cdRc);
172     tu.buildFrom(cdMc);
173 
174     // define the task
175     // - we want an eye-in-hand control law
176     // - robot is controlled in the camera frame
177     task.setServo(vpServo::EYEINHAND_CAMERA);
178     task.setInteractionMatrixType(vpServo::DESIRED);
179 
180     task.addFeature(tu);
181 
182     // - set the gain
183     task.setLambda(1);
184 
185     // Display task information
186     task.print();
187 
188     unsigned int iter = 0;
189     // loop
190     while (iter++ < 200) {
191       std::cout << "---------------------------------------------" << iter << std::endl;
192       vpColVector v;
193 
194       // get the robot position
195       robot.getPosition(wMc);
196       // Compute the position of the object frame in the camera frame
197       cMo = wMc.inverse() * wMo;
198 
199       // new rotation to achieve
200       cdMc = cdMo * cMo.inverse();
201       tu.buildFrom(cdMc);
202 
203       // compute the control law
204       v = task.computeControlLaw();
205 
206       // send the camera velocity to the controller
207       robot.setVelocity(vpRobot::CAMERA_FRAME, v);
208 
209       std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
210     }
211 
212     // Display task information
213     task.print();
214     return EXIT_SUCCESS;
215   } catch (const vpException &e) {
216     std::cout << "Catch a ViSP exception: " << e << std::endl;
217     return EXIT_FAILURE;
218   }
219 #else
220   (void)argc;
221   (void)argv;
222   std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
223   return EXIT_SUCCESS;
224 #endif
225 }
226