1 /*
2  * AAC encoder psychoacoustic model
3  * Copyright (C) 2008 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * AAC encoder psychoacoustic model
25  */
26 
27 #include "libavutil/attributes.h"
28 #include "libavutil/ffmath.h"
29 
30 #include "avcodec.h"
31 #include "aactab.h"
32 #include "psymodel.h"
33 
34 /***********************************
35  *              TODOs:
36  * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
37  * control quality for quality-based output
38  **********************************/
39 
40 /**
41  * constants for 3GPP AAC psychoacoustic model
42  * @{
43  */
44 #define PSY_3GPP_THR_SPREAD_HI   1.5f // spreading factor for low-to-hi threshold spreading  (15 dB/Bark)
45 #define PSY_3GPP_THR_SPREAD_LOW  3.0f // spreading factor for hi-to-low threshold spreading  (30 dB/Bark)
46 /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
47 #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
48 /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
49 #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
50 /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
51 #define PSY_3GPP_EN_SPREAD_HI_S  1.5f
52 /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
53 #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
54 /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
55 #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
56 
57 #define PSY_3GPP_RPEMIN      0.01f
58 #define PSY_3GPP_RPELEV      2.0f
59 
60 #define PSY_3GPP_C1          3.0f           /* log2(8) */
61 #define PSY_3GPP_C2          1.3219281f     /* log2(2.5) */
62 #define PSY_3GPP_C3          0.55935729f    /* 1 - C2 / C1 */
63 
64 #define PSY_SNR_1DB          7.9432821e-1f  /* -1dB */
65 #define PSY_SNR_25DB         3.1622776e-3f  /* -25dB */
66 
67 #define PSY_3GPP_SAVE_SLOPE_L  -0.46666667f
68 #define PSY_3GPP_SAVE_SLOPE_S  -0.36363637f
69 #define PSY_3GPP_SAVE_ADD_L    -0.84285712f
70 #define PSY_3GPP_SAVE_ADD_S    -0.75f
71 #define PSY_3GPP_SPEND_SLOPE_L  0.66666669f
72 #define PSY_3GPP_SPEND_SLOPE_S  0.81818181f
73 #define PSY_3GPP_SPEND_ADD_L   -0.35f
74 #define PSY_3GPP_SPEND_ADD_S   -0.26111111f
75 #define PSY_3GPP_CLIP_LO_L      0.2f
76 #define PSY_3GPP_CLIP_LO_S      0.2f
77 #define PSY_3GPP_CLIP_HI_L      0.95f
78 #define PSY_3GPP_CLIP_HI_S      0.75f
79 
80 #define PSY_3GPP_AH_THR_LONG    0.5f
81 #define PSY_3GPP_AH_THR_SHORT   0.63f
82 
83 #define PSY_PE_FORGET_SLOPE  511
84 
85 enum {
86     PSY_3GPP_AH_NONE,
87     PSY_3GPP_AH_INACTIVE,
88     PSY_3GPP_AH_ACTIVE
89 };
90 
91 #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
92 #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f)
93 
94 /* LAME psy model constants */
95 #define PSY_LAME_FIR_LEN 21         ///< LAME psy model FIR order
96 #define AAC_BLOCK_SIZE_LONG 1024    ///< long block size
97 #define AAC_BLOCK_SIZE_SHORT 128    ///< short block size
98 #define AAC_NUM_BLOCKS_SHORT 8      ///< number of blocks in a short sequence
99 #define PSY_LAME_NUM_SUBBLOCKS 3    ///< Number of sub-blocks in each short block
100 
101 /**
102  * @}
103  */
104 
105 /**
106  * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
107  */
108 typedef struct AacPsyBand{
109     float energy;       ///< band energy
110     float thr;          ///< energy threshold
111     float thr_quiet;    ///< threshold in quiet
112     float nz_lines;     ///< number of non-zero spectral lines
113     float active_lines; ///< number of active spectral lines
114     float pe;           ///< perceptual entropy
115     float pe_const;     ///< constant part of the PE calculation
116     float norm_fac;     ///< normalization factor for linearization
117     int   avoid_holes;  ///< hole avoidance flag
118 }AacPsyBand;
119 
120 /**
121  * single/pair channel context for psychoacoustic model
122  */
123 typedef struct AacPsyChannel{
124     AacPsyBand band[128];               ///< bands information
125     AacPsyBand prev_band[128];          ///< bands information from the previous frame
126 
127     float       win_energy;              ///< sliding average of channel energy
128     float       iir_state[2];            ///< hi-pass IIR filter state
129     uint8_t     next_grouping;           ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
130     enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
131     /* LAME psy model specific members */
132     float attack_threshold;              ///< attack threshold for this channel
133     float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
134     int   prev_attack;                   ///< attack value for the last short block in the previous sequence
135 }AacPsyChannel;
136 
137 /**
138  * psychoacoustic model frame type-dependent coefficients
139  */
140 typedef struct AacPsyCoeffs{
141     float ath;           ///< absolute threshold of hearing per bands
142     float barks;         ///< Bark value for each spectral band in long frame
143     float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame
144     float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame
145     float min_snr;       ///< minimal SNR
146 }AacPsyCoeffs;
147 
148 /**
149  * 3GPP TS26.403-inspired psychoacoustic model specific data
150  */
151 typedef struct AacPsyContext{
152     int chan_bitrate;     ///< bitrate per channel
153     int frame_bits;       ///< average bits per frame
154     int fill_level;       ///< bit reservoir fill level
155     struct {
156         float min;        ///< minimum allowed PE for bit factor calculation
157         float max;        ///< maximum allowed PE for bit factor calculation
158         float previous;   ///< allowed PE of the previous frame
159         float correction; ///< PE correction factor
160     } pe;
161     AacPsyCoeffs psy_coef[2][64];
162     AacPsyChannel *ch;
163     float global_quality; ///< normalized global quality taken from avctx
164 }AacPsyContext;
165 
166 /**
167  * LAME psy model preset struct
168  */
169 typedef struct PsyLamePreset {
170     int   quality;  ///< Quality to map the rest of the vaules to.
171      /* This is overloaded to be both kbps per channel in ABR mode, and
172       * requested quality in constant quality mode.
173       */
174     float st_lrm;   ///< short threshold for L, R, and M channels
175 } PsyLamePreset;
176 
177 /**
178  * LAME psy model preset table for ABR
179  */
180 static const PsyLamePreset psy_abr_map[] = {
181 /* TODO: Tuning. These were taken from LAME. */
182 /* kbps/ch st_lrm   */
183     {  8,  6.60},
184     { 16,  6.60},
185     { 24,  6.60},
186     { 32,  6.60},
187     { 40,  6.60},
188     { 48,  6.60},
189     { 56,  6.60},
190     { 64,  6.40},
191     { 80,  6.00},
192     { 96,  5.60},
193     {112,  5.20},
194     {128,  5.20},
195     {160,  5.20}
196 };
197 
198 /**
199 * LAME psy model preset table for constant quality
200 */
201 static const PsyLamePreset psy_vbr_map[] = {
202 /* vbr_q  st_lrm    */
203     { 0,  4.20},
204     { 1,  4.20},
205     { 2,  4.20},
206     { 3,  4.20},
207     { 4,  4.20},
208     { 5,  4.20},
209     { 6,  4.20},
210     { 7,  4.20},
211     { 8,  4.20},
212     { 9,  4.20},
213     {10,  4.20}
214 };
215 
216 /**
217  * LAME psy model FIR coefficient table
218  */
219 static const float psy_fir_coeffs[] = {
220     -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
221     -3.36639e-17 * 2, -0.0438162 * 2,  -1.54175e-17 * 2, 0.0931738 * 2,
222     -5.52212e-17 * 2, -0.313819 * 2
223 };
224 
225 #if ARCH_MIPS
226 #   include "mips/aacpsy_mips.h"
227 #endif /* ARCH_MIPS */
228 
229 /**
230  * Calculate the ABR attack threshold from the above LAME psymodel table.
231  */
lame_calc_attack_threshold(int bitrate)232 static float lame_calc_attack_threshold(int bitrate)
233 {
234     /* Assume max bitrate to start with */
235     int lower_range = 12, upper_range = 12;
236     int lower_range_kbps = psy_abr_map[12].quality;
237     int upper_range_kbps = psy_abr_map[12].quality;
238     int i;
239 
240     /* Determine which bitrates the value specified falls between.
241      * If the loop ends without breaking our above assumption of 320kbps was correct.
242      */
243     for (i = 1; i < 13; i++) {
244         if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
245             upper_range = i;
246             upper_range_kbps = psy_abr_map[i    ].quality;
247             lower_range = i - 1;
248             lower_range_kbps = psy_abr_map[i - 1].quality;
249             break; /* Upper range found */
250         }
251     }
252 
253     /* Determine which range the value specified is closer to */
254     if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
255         return psy_abr_map[lower_range].st_lrm;
256     return psy_abr_map[upper_range].st_lrm;
257 }
258 
259 /**
260  * LAME psy model specific initialization
261  */
lame_window_init(AacPsyContext * ctx,AVCodecContext * avctx)262 static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx)
263 {
264     int i, j;
265 
266     for (i = 0; i < avctx->channels; i++) {
267         AacPsyChannel *pch = &ctx->ch[i];
268 
269         if (avctx->flags & AV_CODEC_FLAG_QSCALE)
270             pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm;
271         else
272             pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000);
273 
274         for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
275             pch->prev_energy_subshort[j] = 10.0f;
276     }
277 }
278 
279 /**
280  * Calculate Bark value for given line.
281  */
calc_bark(float f)282 static av_cold float calc_bark(float f)
283 {
284     return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
285 }
286 
287 #define ATH_ADD 4
288 /**
289  * Calculate ATH value for given frequency.
290  * Borrowed from Lame.
291  */
ath(float f,float add)292 static av_cold float ath(float f, float add)
293 {
294     f /= 1000.0f;
295     return    3.64 * pow(f, -0.8)
296             - 6.8  * exp(-0.6  * (f - 3.4) * (f - 3.4))
297             + 6.0  * exp(-0.15 * (f - 8.7) * (f - 8.7))
298             + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
299 }
300 
psy_3gpp_init(FFPsyContext * ctx)301 static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
302     AacPsyContext *pctx;
303     float bark;
304     int i, j, g, start;
305     float prev, minscale, minath, minsnr, pe_min;
306     int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->channels);
307 
308     const int bandwidth    = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
309     const float num_bark   = calc_bark((float)bandwidth);
310 
311     if (bandwidth <= 0)
312         return AVERROR(EINVAL);
313 
314     ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
315     if (!ctx->model_priv_data)
316         return AVERROR(ENOMEM);
317     pctx = ctx->model_priv_data;
318     pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f;
319 
320     if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
321         /* Use the target average bitrate to compute spread parameters */
322         chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120));
323     }
324 
325     pctx->chan_bitrate = chan_bitrate;
326     pctx->frame_bits   = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate);
327     pctx->pe.min       =  8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
328     pctx->pe.max       = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
329     ctx->bitres.size   = 6144 - pctx->frame_bits;
330     ctx->bitres.size  -= ctx->bitres.size % 8;
331     pctx->fill_level   = ctx->bitres.size;
332     minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD);
333     for (j = 0; j < 2; j++) {
334         AacPsyCoeffs *coeffs = pctx->psy_coef[j];
335         const uint8_t *band_sizes = ctx->bands[j];
336         float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
337         float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate;
338         /* reference encoder uses 2.4% here instead of 60% like the spec says */
339         float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
340         float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
341         /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
342         float en_spread_hi  = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
343 
344         i = 0;
345         prev = 0.0;
346         for (g = 0; g < ctx->num_bands[j]; g++) {
347             i += band_sizes[g];
348             bark = calc_bark((i-1) * line_to_frequency);
349             coeffs[g].barks = (bark + prev) / 2.0;
350             prev = bark;
351         }
352         for (g = 0; g < ctx->num_bands[j] - 1; g++) {
353             AacPsyCoeffs *coeff = &coeffs[g];
354             float bark_width = coeffs[g+1].barks - coeffs->barks;
355             coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW);
356             coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI);
357             coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low);
358             coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi);
359             pe_min = bark_pe * bark_width;
360             minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
361             coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
362         }
363         start = 0;
364         for (g = 0; g < ctx->num_bands[j]; g++) {
365             minscale = ath(start * line_to_frequency, ATH_ADD);
366             for (i = 1; i < band_sizes[g]; i++)
367                 minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
368             coeffs[g].ath = minscale - minath;
369             start += band_sizes[g];
370         }
371     }
372 
373     pctx->ch = av_mallocz_array(ctx->avctx->channels, sizeof(AacPsyChannel));
374     if (!pctx->ch) {
375         av_freep(&ctx->model_priv_data);
376         return AVERROR(ENOMEM);
377     }
378 
379     lame_window_init(pctx, ctx->avctx);
380 
381     return 0;
382 }
383 
384 /**
385  * IIR filter used in block switching decision
386  */
iir_filter(int in,float state[2])387 static float iir_filter(int in, float state[2])
388 {
389     float ret;
390 
391     ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
392     state[0] = in;
393     state[1] = ret;
394     return ret;
395 }
396 
397 /**
398  * window grouping information stored as bits (0 - new group, 1 - group continues)
399  */
400 static const uint8_t window_grouping[9] = {
401     0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
402 };
403 
404 /**
405  * Tell encoder which window types to use.
406  * @see 3GPP TS26.403 5.4.1 "Blockswitching"
407  */
psy_3gpp_window(FFPsyContext * ctx,const int16_t * audio,const int16_t * la,int channel,int prev_type)408 static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
409                                                  const int16_t *audio,
410                                                  const int16_t *la,
411                                                  int channel, int prev_type)
412 {
413     int i, j;
414     int br               = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate;
415     int attack_ratio     = br <= 16000 ? 18 : 10;
416     AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
417     AacPsyChannel *pch  = &pctx->ch[channel];
418     uint8_t grouping     = 0;
419     int next_type        = pch->next_window_seq;
420     FFPsyWindowInfo wi  = { { 0 } };
421 
422     if (la) {
423         float s[8], v;
424         int switch_to_eight = 0;
425         float sum = 0.0, sum2 = 0.0;
426         int attack_n = 0;
427         int stay_short = 0;
428         for (i = 0; i < 8; i++) {
429             for (j = 0; j < 128; j++) {
430                 v = iir_filter(la[i*128+j], pch->iir_state);
431                 sum += v*v;
432             }
433             s[i]  = sum;
434             sum2 += sum;
435         }
436         for (i = 0; i < 8; i++) {
437             if (s[i] > pch->win_energy * attack_ratio) {
438                 attack_n        = i + 1;
439                 switch_to_eight = 1;
440                 break;
441             }
442         }
443         pch->win_energy = pch->win_energy*7/8 + sum2/64;
444 
445         wi.window_type[1] = prev_type;
446         switch (prev_type) {
447         case ONLY_LONG_SEQUENCE:
448             wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
449             next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
450             break;
451         case LONG_START_SEQUENCE:
452             wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
453             grouping = pch->next_grouping;
454             next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
455             break;
456         case LONG_STOP_SEQUENCE:
457             wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
458             next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
459             break;
460         case EIGHT_SHORT_SEQUENCE:
461             stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
462             wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
463             grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
464             next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
465             break;
466         }
467 
468         pch->next_grouping = window_grouping[attack_n];
469         pch->next_window_seq = next_type;
470     } else {
471         for (i = 0; i < 3; i++)
472             wi.window_type[i] = prev_type;
473         grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
474     }
475 
476     wi.window_shape   = 1;
477     if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
478         wi.num_windows = 1;
479         wi.grouping[0] = 1;
480     } else {
481         int lastgrp = 0;
482         wi.num_windows = 8;
483         for (i = 0; i < 8; i++) {
484             if (!((grouping >> i) & 1))
485                 lastgrp = i;
486             wi.grouping[lastgrp]++;
487         }
488     }
489 
490     return wi;
491 }
492 
493 /* 5.6.1.2 "Calculation of Bit Demand" */
calc_bit_demand(AacPsyContext * ctx,float pe,int bits,int size,int short_window)494 static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
495                            int short_window)
496 {
497     const float bitsave_slope  = short_window ? PSY_3GPP_SAVE_SLOPE_S  : PSY_3GPP_SAVE_SLOPE_L;
498     const float bitsave_add    = short_window ? PSY_3GPP_SAVE_ADD_S    : PSY_3GPP_SAVE_ADD_L;
499     const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
500     const float bitspend_add   = short_window ? PSY_3GPP_SPEND_ADD_S   : PSY_3GPP_SPEND_ADD_L;
501     const float clip_low       = short_window ? PSY_3GPP_CLIP_LO_S     : PSY_3GPP_CLIP_LO_L;
502     const float clip_high      = short_window ? PSY_3GPP_CLIP_HI_S     : PSY_3GPP_CLIP_HI_L;
503     float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe;
504 
505     ctx->fill_level += ctx->frame_bits - bits;
506     ctx->fill_level  = av_clip(ctx->fill_level, 0, size);
507     fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
508     clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
509     bit_save   = (fill_level + bitsave_add) * bitsave_slope;
510     assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
511     bit_spend  = (fill_level + bitspend_add) * bitspend_slope;
512     assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
513     /* The bit factor graph in the spec is obviously incorrect.
514      *      bit_spend + ((bit_spend - bit_spend))...
515      * The reference encoder subtracts everything from 1, but also seems incorrect.
516      *      1 - bit_save + ((bit_spend + bit_save))...
517      * Hopefully below is correct.
518      */
519     bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
520     /* NOTE: The reference encoder attempts to center pe max/min around the current pe.
521      * Here we do that by slowly forgetting pe.min when pe stays in a range that makes
522      * it unlikely (ie: above the mean)
523      */
524     ctx->pe.max = FFMAX(pe, ctx->pe.max);
525     forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE)
526         + FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1);
527     ctx->pe.min = FFMIN(pe, forgetful_min_pe);
528 
529     /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid
530      *   reservoir starvation from producing zero-bit frames
531      */
532     return FFMIN(
533         ctx->frame_bits * bit_factor,
534         FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8));
535 }
536 
calc_pe_3gpp(AacPsyBand * band)537 static float calc_pe_3gpp(AacPsyBand *band)
538 {
539     float pe, a;
540 
541     band->pe           = 0.0f;
542     band->pe_const     = 0.0f;
543     band->active_lines = 0.0f;
544     if (band->energy > band->thr) {
545         a  = log2f(band->energy);
546         pe = a - log2f(band->thr);
547         band->active_lines = band->nz_lines;
548         if (pe < PSY_3GPP_C1) {
549             pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
550             a  = a  * PSY_3GPP_C3 + PSY_3GPP_C2;
551             band->active_lines *= PSY_3GPP_C3;
552         }
553         band->pe       = pe * band->nz_lines;
554         band->pe_const = a  * band->nz_lines;
555     }
556 
557     return band->pe;
558 }
559 
calc_reduction_3gpp(float a,float desired_pe,float pe,float active_lines)560 static float calc_reduction_3gpp(float a, float desired_pe, float pe,
561                                  float active_lines)
562 {
563     float thr_avg, reduction;
564 
565     if(active_lines == 0.0)
566         return 0;
567 
568     thr_avg   = exp2f((a - pe) / (4.0f * active_lines));
569     reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
570 
571     return FFMAX(reduction, 0.0f);
572 }
573 
calc_reduced_thr_3gpp(AacPsyBand * band,float min_snr,float reduction)574 static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
575                                    float reduction)
576 {
577     float thr = band->thr;
578 
579     if (band->energy > thr) {
580         thr = sqrtf(thr);
581         thr = sqrtf(thr) + reduction;
582         thr *= thr;
583         thr *= thr;
584 
585         /* This deviates from the 3GPP spec to match the reference encoder.
586          * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
587          * that have hole avoidance on (active or inactive). It always reduces the
588          * threshold of bands with hole avoidance off.
589          */
590         if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
591             thr = FFMAX(band->thr, band->energy * min_snr);
592             band->avoid_holes = PSY_3GPP_AH_ACTIVE;
593         }
594     }
595 
596     return thr;
597 }
598 
599 #ifndef calc_thr_3gpp
calc_thr_3gpp(const FFPsyWindowInfo * wi,const int num_bands,AacPsyChannel * pch,const uint8_t * band_sizes,const float * coefs,const int cutoff)600 static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
601                           const uint8_t *band_sizes, const float *coefs, const int cutoff)
602 {
603     int i, w, g;
604     int start = 0, wstart = 0;
605     for (w = 0; w < wi->num_windows*16; w += 16) {
606         wstart = 0;
607         for (g = 0; g < num_bands; g++) {
608             AacPsyBand *band = &pch->band[w+g];
609 
610             float form_factor = 0.0f;
611             float Temp;
612             band->energy = 0.0f;
613             if (wstart < cutoff) {
614                 for (i = 0; i < band_sizes[g]; i++) {
615                     band->energy += coefs[start+i] * coefs[start+i];
616                     form_factor  += sqrtf(fabs(coefs[start+i]));
617                 }
618             }
619             Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
620             band->thr      = band->energy * 0.001258925f;
621             band->nz_lines = form_factor * sqrtf(Temp);
622 
623             start += band_sizes[g];
624             wstart += band_sizes[g];
625         }
626     }
627 }
628 #endif /* calc_thr_3gpp */
629 
630 #ifndef psy_hp_filter
psy_hp_filter(const float * firbuf,float * hpfsmpl,const float * psy_fir_coeffs)631 static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
632 {
633     int i, j;
634     for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
635         float sum1, sum2;
636         sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2];
637         sum2 = 0.0;
638         for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
639             sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]);
640             sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]);
641         }
642         /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768.
643          *       Tuning this for normalized floats would be difficult. */
644         hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
645     }
646 }
647 #endif /* psy_hp_filter */
648 
649 /**
650  * Calculate band thresholds as suggested in 3GPP TS26.403
651  */
psy_3gpp_analyze_channel(FFPsyContext * ctx,int channel,const float * coefs,const FFPsyWindowInfo * wi)652 static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
653                                      const float *coefs, const FFPsyWindowInfo *wi)
654 {
655     AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
656     AacPsyChannel *pch  = &pctx->ch[channel];
657     int i, w, g;
658     float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0};
659     float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
660     float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
661     const int      num_bands   = ctx->num_bands[wi->num_windows == 8];
662     const uint8_t *band_sizes  = ctx->bands[wi->num_windows == 8];
663     AacPsyCoeffs  *coeffs      = pctx->psy_coef[wi->num_windows == 8];
664     const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
665     const int bandwidth        = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
666     const int cutoff           = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate;
667 
668     //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
669     calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff);
670 
671     //modify thresholds and energies - spread, threshold in quiet, pre-echo control
672     for (w = 0; w < wi->num_windows*16; w += 16) {
673         AacPsyBand *bands = &pch->band[w];
674 
675         /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
676         spread_en[0] = bands[0].energy;
677         for (g = 1; g < num_bands; g++) {
678             bands[g].thr   = FFMAX(bands[g].thr,    bands[g-1].thr * coeffs[g].spread_hi[0]);
679             spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
680         }
681         for (g = num_bands - 2; g >= 0; g--) {
682             bands[g].thr   = FFMAX(bands[g].thr,   bands[g+1].thr * coeffs[g].spread_low[0]);
683             spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
684         }
685         //5.4.2.4 "Threshold in quiet"
686         for (g = 0; g < num_bands; g++) {
687             AacPsyBand *band = &bands[g];
688 
689             band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath);
690             //5.4.2.5 "Pre-echo control"
691             if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (!w && wi->window_type[1] == LONG_START_SEQUENCE)))
692                 band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
693                                   PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
694 
695             /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
696             pe += calc_pe_3gpp(band);
697             a  += band->pe_const;
698             active_lines += band->active_lines;
699 
700             /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
701             if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
702                 band->avoid_holes = PSY_3GPP_AH_NONE;
703             else
704                 band->avoid_holes = PSY_3GPP_AH_INACTIVE;
705         }
706     }
707 
708     /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
709     ctx->ch[channel].entropy = pe;
710     if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
711         /* (2.5 * 120) achieves almost transparent rate, and we want to give
712          * ample room downwards, so we make that equivalent to QSCALE=2.4
713          */
714         desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f);
715         desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
716         desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
717 
718         /* PE slope smoothing */
719         if (ctx->bitres.bits > 0) {
720             desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
721             desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
722         }
723 
724         pctx->pe.max = FFMAX(pe, pctx->pe.max);
725         pctx->pe.min = FFMIN(pe, pctx->pe.min);
726     } else {
727         desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
728         desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
729 
730         /* NOTE: PE correction is kept simple. During initial testing it had very
731          *       little effect on the final bitrate. Probably a good idea to come
732          *       back and do more testing later.
733          */
734         if (ctx->bitres.bits > 0)
735             desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
736                                    0.85f, 1.15f);
737     }
738     pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
739     ctx->bitres.alloc = desired_bits;
740 
741     if (desired_pe < pe) {
742         /* 5.6.1.3.4 "First Estimation of the reduction value" */
743         for (w = 0; w < wi->num_windows*16; w += 16) {
744             reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
745             pe = 0.0f;
746             a  = 0.0f;
747             active_lines = 0.0f;
748             for (g = 0; g < num_bands; g++) {
749                 AacPsyBand *band = &pch->band[w+g];
750 
751                 band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
752                 /* recalculate PE */
753                 pe += calc_pe_3gpp(band);
754                 a  += band->pe_const;
755                 active_lines += band->active_lines;
756             }
757         }
758 
759         /* 5.6.1.3.5 "Second Estimation of the reduction value" */
760         for (i = 0; i < 2; i++) {
761             float pe_no_ah = 0.0f, desired_pe_no_ah;
762             active_lines = a = 0.0f;
763             for (w = 0; w < wi->num_windows*16; w += 16) {
764                 for (g = 0; g < num_bands; g++) {
765                     AacPsyBand *band = &pch->band[w+g];
766 
767                     if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
768                         pe_no_ah += band->pe;
769                         a        += band->pe_const;
770                         active_lines += band->active_lines;
771                     }
772                 }
773             }
774             desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
775             if (active_lines > 0.0f)
776                 reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
777 
778             pe = 0.0f;
779             for (w = 0; w < wi->num_windows*16; w += 16) {
780                 for (g = 0; g < num_bands; g++) {
781                     AacPsyBand *band = &pch->band[w+g];
782 
783                     if (active_lines > 0.0f)
784                         band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
785                     pe += calc_pe_3gpp(band);
786                     if (band->thr > 0.0f)
787                         band->norm_fac = band->active_lines / band->thr;
788                     else
789                         band->norm_fac = 0.0f;
790                     norm_fac += band->norm_fac;
791                 }
792             }
793             delta_pe = desired_pe - pe;
794             if (fabs(delta_pe) > 0.05f * desired_pe)
795                 break;
796         }
797 
798         if (pe < 1.15f * desired_pe) {
799             /* 6.6.1.3.6 "Final threshold modification by linearization" */
800             norm_fac = norm_fac ? 1.0f / norm_fac : 0;
801             for (w = 0; w < wi->num_windows*16; w += 16) {
802                 for (g = 0; g < num_bands; g++) {
803                     AacPsyBand *band = &pch->band[w+g];
804 
805                     if (band->active_lines > 0.5f) {
806                         float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
807                         float thr = band->thr;
808 
809                         thr *= exp2f(delta_sfb_pe / band->active_lines);
810                         if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
811                             thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
812                         band->thr = thr;
813                     }
814                 }
815             }
816         } else {
817             /* 5.6.1.3.7 "Further perceptual entropy reduction" */
818             g = num_bands;
819             while (pe > desired_pe && g--) {
820                 for (w = 0; w < wi->num_windows*16; w+= 16) {
821                     AacPsyBand *band = &pch->band[w+g];
822                     if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
823                         coeffs[g].min_snr = PSY_SNR_1DB;
824                         band->thr = band->energy * PSY_SNR_1DB;
825                         pe += band->active_lines * 1.5f - band->pe;
826                     }
827                 }
828             }
829             /* TODO: allow more holes (unused without mid/side) */
830         }
831     }
832 
833     for (w = 0; w < wi->num_windows*16; w += 16) {
834         for (g = 0; g < num_bands; g++) {
835             AacPsyBand *band     = &pch->band[w+g];
836             FFPsyBand  *psy_band = &ctx->ch[channel].psy_bands[w+g];
837 
838             psy_band->threshold = band->thr;
839             psy_band->energy    = band->energy;
840             psy_band->spread    = band->active_lines * 2.0f / band_sizes[g];
841             psy_band->bits      = PSY_3GPP_PE_TO_BITS(band->pe);
842         }
843     }
844 
845     memcpy(pch->prev_band, pch->band, sizeof(pch->band));
846 }
847 
psy_3gpp_analyze(FFPsyContext * ctx,int channel,const float ** coeffs,const FFPsyWindowInfo * wi)848 static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
849                                    const float **coeffs, const FFPsyWindowInfo *wi)
850 {
851     int ch;
852     FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel);
853 
854     for (ch = 0; ch < group->num_ch; ch++)
855         psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]);
856 }
857 
psy_3gpp_end(FFPsyContext * apc)858 static av_cold void psy_3gpp_end(FFPsyContext *apc)
859 {
860     AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
861     av_freep(&pctx->ch);
862     av_freep(&apc->model_priv_data);
863 }
864 
lame_apply_block_type(AacPsyChannel * ctx,FFPsyWindowInfo * wi,int uselongblock)865 static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
866 {
867     int blocktype = ONLY_LONG_SEQUENCE;
868     if (uselongblock) {
869         if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
870             blocktype = LONG_STOP_SEQUENCE;
871     } else {
872         blocktype = EIGHT_SHORT_SEQUENCE;
873         if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
874             ctx->next_window_seq = LONG_START_SEQUENCE;
875         if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
876             ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
877     }
878 
879     wi->window_type[0] = ctx->next_window_seq;
880     ctx->next_window_seq = blocktype;
881 }
882 
psy_lame_window(FFPsyContext * ctx,const float * audio,const float * la,int channel,int prev_type)883 static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio,
884                                        const float *la, int channel, int prev_type)
885 {
886     AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
887     AacPsyChannel *pch  = &pctx->ch[channel];
888     int grouping     = 0;
889     int uselongblock = 1;
890     int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
891     int i;
892     FFPsyWindowInfo wi = { { 0 } };
893 
894     if (la) {
895         float hpfsmpl[AAC_BLOCK_SIZE_LONG];
896         const float *pf = hpfsmpl;
897         float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
898         float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
899         float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
900         const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN);
901         int att_sum = 0;
902 
903         /* LAME comment: apply high pass filter of fs/4 */
904         psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs);
905 
906         /* Calculate the energies of each sub-shortblock */
907         for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
908             energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
909             assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
910             attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
911             energy_short[0] += energy_subshort[i];
912         }
913 
914         for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
915             const float *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
916             float p = 1.0f;
917             for (; pf < pfe; pf++)
918                 p = FFMAX(p, fabsf(*pf));
919             pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
920             energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
921             /* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
922              *       Obviously the 3 and 2 have some significance, or this would be just [i + 1]
923              *       (which is what we use here). What the 3 stands for is ambiguous, as it is both
924              *       number of short blocks, and the number of sub-short blocks.
925              *       It seems that LAME is comparing each sub-block to sub-block + 1 in the
926              *       previous block.
927              */
928             if (p > energy_subshort[i + 1])
929                 p = p / energy_subshort[i + 1];
930             else if (energy_subshort[i + 1] > p * 10.0f)
931                 p = energy_subshort[i + 1] / (p * 10.0f);
932             else
933                 p = 0.0;
934             attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
935         }
936 
937         /* compare energy between sub-short blocks */
938         for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
939             if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
940                 if (attack_intensity[i] > pch->attack_threshold)
941                     attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
942 
943         /* should have energy change between short blocks, in order to avoid periodic signals */
944         /* Good samples to show the effect are Trumpet test songs */
945         /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
946         /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
947         for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
948             const float u = energy_short[i - 1];
949             const float v = energy_short[i];
950             const float m = FFMAX(u, v);
951             if (m < 40000) {                          /* (2) */
952                 if (u < 1.7f * v && v < 1.7f * u) {   /* (1) */
953                     if (i == 1 && attacks[0] < attacks[i])
954                         attacks[0] = 0;
955                     attacks[i] = 0;
956                 }
957             }
958             att_sum += attacks[i];
959         }
960 
961         if (attacks[0] <= pch->prev_attack)
962             attacks[0] = 0;
963 
964         att_sum += attacks[0];
965         /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
966         if (pch->prev_attack == 3 || att_sum) {
967             uselongblock = 0;
968 
969             for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
970                 if (attacks[i] && attacks[i-1])
971                     attacks[i] = 0;
972         }
973     } else {
974         /* We have no lookahead info, so just use same type as the previous sequence. */
975         uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
976     }
977 
978     lame_apply_block_type(pch, &wi, uselongblock);
979 
980     wi.window_type[1] = prev_type;
981     if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
982 
983         wi.num_windows  = 1;
984         wi.grouping[0]  = 1;
985         if (wi.window_type[0] == LONG_START_SEQUENCE)
986             wi.window_shape = 0;
987         else
988             wi.window_shape = 1;
989 
990     } else {
991         int lastgrp = 0;
992 
993         wi.num_windows = 8;
994         wi.window_shape = 0;
995         for (i = 0; i < 8; i++) {
996             if (!((pch->next_grouping >> i) & 1))
997                 lastgrp = i;
998             wi.grouping[lastgrp]++;
999         }
1000     }
1001 
1002     /* Determine grouping, based on the location of the first attack, and save for
1003      * the next frame.
1004      * FIXME: Move this to analysis.
1005      * TODO: Tune groupings depending on attack location
1006      * TODO: Handle more than one attack in a group
1007      */
1008     for (i = 0; i < 9; i++) {
1009         if (attacks[i]) {
1010             grouping = i;
1011             break;
1012         }
1013     }
1014     pch->next_grouping = window_grouping[grouping];
1015 
1016     pch->prev_attack = attacks[8];
1017 
1018     return wi;
1019 }
1020 
1021 const FFPsyModel ff_aac_psy_model =
1022 {
1023     .name    = "3GPP TS 26.403-inspired model",
1024     .init    = psy_3gpp_init,
1025     .window  = psy_lame_window,
1026     .analyze = psy_3gpp_analyze,
1027     .end     = psy_3gpp_end,
1028 };
1029