1 /*
2  * IMC compatible decoder
3  * Copyright (c) 2002-2004 Maxim Poliakovski
4  * Copyright (c) 2006 Benjamin Larsson
5  * Copyright (c) 2006 Konstantin Shishkov
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  *  @file
26  *  IMC - Intel Music Coder
27  *  A mdct based codec using a 256 points large transform
28  *  divided into 32 bands with some mix of scale factors.
29  *  Only mono is supported.
30  */
31 
32 
33 #include <math.h>
34 #include <stddef.h>
35 #include <stdio.h>
36 
37 #include "libavutil/channel_layout.h"
38 #include "libavutil/ffmath.h"
39 #include "libavutil/float_dsp.h"
40 #include "libavutil/internal.h"
41 #include "libavutil/mem_internal.h"
42 #include "libavutil/thread.h"
43 
44 #include "avcodec.h"
45 #include "bswapdsp.h"
46 #include "get_bits.h"
47 #include "fft.h"
48 #include "internal.h"
49 #include "sinewin.h"
50 
51 #include "imcdata.h"
52 
53 #define IMC_BLOCK_SIZE 64
54 #define IMC_FRAME_ID 0x21
55 #define BANDS 32
56 #define COEFFS 256
57 
58 typedef struct IMCChannel {
59     float old_floor[BANDS];
60     float flcoeffs1[BANDS];
61     float flcoeffs2[BANDS];
62     float flcoeffs3[BANDS];
63     float flcoeffs4[BANDS];
64     float flcoeffs5[BANDS];
65     float flcoeffs6[BANDS];
66     float CWdecoded[COEFFS];
67 
68     int bandWidthT[BANDS];     ///< codewords per band
69     int bitsBandT[BANDS];      ///< how many bits per codeword in band
70     int CWlengthT[COEFFS];     ///< how many bits in each codeword
71     int levlCoeffBuf[BANDS];
72     int bandFlagsBuf[BANDS];   ///< flags for each band
73     int sumLenArr[BANDS];      ///< bits for all coeffs in band
74     int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
75     int skipFlagBits[BANDS];   ///< bits used to code skip flags
76     int skipFlagCount[BANDS];  ///< skipped coefficients per band
77     int skipFlags[COEFFS];     ///< skip coefficient decoding or not
78     int codewords[COEFFS];     ///< raw codewords read from bitstream
79 
80     float last_fft_im[COEFFS];
81 
82     int decoder_reset;
83 } IMCChannel;
84 
85 typedef struct IMCContext {
86     IMCChannel chctx[2];
87 
88     /** MDCT tables */
89     //@{
90     float mdct_sine_window[COEFFS];
91     float post_cos[COEFFS];
92     float post_sin[COEFFS];
93     float pre_coef1[COEFFS];
94     float pre_coef2[COEFFS];
95     //@}
96 
97     float sqrt_tab[30];
98     GetBitContext gb;
99 
100     BswapDSPContext bdsp;
101     void (*butterflies_float)(float *av_restrict v1, float *av_restrict v2, int len);
102     FFTContext fft;
103     DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
104     float *out_samples;
105 
106     int coef0_pos;
107 
108     int8_t cyclTab[32], cyclTab2[32];
109     float  weights1[31], weights2[31];
110 
111     AVCodecContext *avctx;
112 } IMCContext;
113 
114 static VLC huffman_vlc[4][4];
115 
116 #define IMC_VLC_BITS 9
117 #define VLC_TABLES_SIZE 9512
118 
119 static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
120 
freq2bark(double freq)121 static inline double freq2bark(double freq)
122 {
123     return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
124 }
125 
iac_generate_tabs(IMCContext * q,int sampling_rate)126 static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
127 {
128     double freqmin[32], freqmid[32], freqmax[32];
129     double scale = sampling_rate / (256.0 * 2.0 * 2.0);
130     double nyquist_freq = sampling_rate * 0.5;
131     double freq, bark, prev_bark = 0, tf, tb;
132     int i, j;
133 
134     for (i = 0; i < 32; i++) {
135         freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
136         bark = freq2bark(freq);
137 
138         if (i > 0) {
139             tb = bark - prev_bark;
140             q->weights1[i - 1] = ff_exp10(-1.0 * tb);
141             q->weights2[i - 1] = ff_exp10(-2.7 * tb);
142         }
143         prev_bark = bark;
144 
145         freqmid[i] = freq;
146 
147         tf = freq;
148         while (tf < nyquist_freq) {
149             tf += 0.5;
150             tb =  freq2bark(tf);
151             if (tb > bark + 0.5)
152                 break;
153         }
154         freqmax[i] = tf;
155 
156         tf = freq;
157         while (tf > 0.0) {
158             tf -= 0.5;
159             tb =  freq2bark(tf);
160             if (tb <= bark - 0.5)
161                 break;
162         }
163         freqmin[i] = tf;
164     }
165 
166     for (i = 0; i < 32; i++) {
167         freq = freqmax[i];
168         for (j = 31; j > 0 && freq <= freqmid[j]; j--);
169         q->cyclTab[i] = j + 1;
170 
171         freq = freqmin[i];
172         for (j = 0; j < 32 && freq >= freqmid[j]; j++);
173         q->cyclTab2[i] = j - 1;
174     }
175 }
176 
imc_init_static(void)177 static av_cold void imc_init_static(void)
178 {
179     /* initialize the VLC tables */
180     for (int i = 0, offset = 0; i < 4 ; i++) {
181         for (int j = 0; j < 4; j++) {
182             huffman_vlc[i][j].table           = &vlc_tables[offset];
183             huffman_vlc[i][j].table_allocated = VLC_TABLES_SIZE - offset;
184             ff_init_vlc_from_lengths(&huffman_vlc[i][j], IMC_VLC_BITS, imc_huffman_sizes[i],
185                                      imc_huffman_lens[i][j], 1,
186                                      imc_huffman_syms[i][j], 1, 1,
187                                      0, INIT_VLC_STATIC_OVERLONG, NULL);
188             offset += huffman_vlc[i][j].table_size;
189         }
190     }
191 }
192 
imc_decode_init(AVCodecContext * avctx)193 static av_cold int imc_decode_init(AVCodecContext *avctx)
194 {
195     int i, j, ret;
196     IMCContext *q = avctx->priv_data;
197     static AVOnce init_static_once = AV_ONCE_INIT;
198     AVFloatDSPContext *fdsp;
199     double r1, r2;
200 
201     if (avctx->codec_id == AV_CODEC_ID_IAC && avctx->sample_rate > 96000) {
202         av_log(avctx, AV_LOG_ERROR,
203                "Strange sample rate of %i, file likely corrupt or "
204                "needing a new table derivation method.\n",
205                avctx->sample_rate);
206         return AVERROR_PATCHWELCOME;
207     }
208 
209     if (avctx->codec_id == AV_CODEC_ID_IMC)
210         avctx->channels = 1;
211 
212     if (avctx->channels > 2) {
213         avpriv_request_sample(avctx, "Number of channels > 2");
214         return AVERROR_PATCHWELCOME;
215     }
216 
217     for (j = 0; j < avctx->channels; j++) {
218         q->chctx[j].decoder_reset = 1;
219 
220         for (i = 0; i < BANDS; i++)
221             q->chctx[j].old_floor[i] = 1.0;
222 
223         for (i = 0; i < COEFFS / 2; i++)
224             q->chctx[j].last_fft_im[i] = 0;
225     }
226 
227     /* Build mdct window, a simple sine window normalized with sqrt(2) */
228     ff_sine_window_init(q->mdct_sine_window, COEFFS);
229     for (i = 0; i < COEFFS; i++)
230         q->mdct_sine_window[i] *= sqrt(2.0);
231     for (i = 0; i < COEFFS / 2; i++) {
232         q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
233         q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
234 
235         r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
236         r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
237 
238         if (i & 0x1) {
239             q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
240             q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
241         } else {
242             q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
243             q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
244         }
245     }
246 
247     /* Generate a square root table */
248 
249     for (i = 0; i < 30; i++)
250         q->sqrt_tab[i] = sqrt(i);
251 
252     if (avctx->codec_id == AV_CODEC_ID_IAC) {
253         iac_generate_tabs(q, avctx->sample_rate);
254     } else {
255         memcpy(q->cyclTab,  cyclTab,  sizeof(cyclTab));
256         memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
257         memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
258         memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
259     }
260 
261     fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
262     if (!fdsp)
263         return AVERROR(ENOMEM);
264     q->butterflies_float = fdsp->butterflies_float;
265     av_free(fdsp);
266     if ((ret = ff_fft_init(&q->fft, 7, 1))) {
267         av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
268         return ret;
269     }
270     ff_bswapdsp_init(&q->bdsp);
271 
272     avctx->sample_fmt     = AV_SAMPLE_FMT_FLTP;
273     avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
274                                                  : AV_CH_LAYOUT_STEREO;
275 
276     ff_thread_once(&init_static_once, imc_init_static);
277 
278     return 0;
279 }
280 
imc_calculate_coeffs(IMCContext * q,float * flcoeffs1,float * flcoeffs2,int * bandWidthT,float * flcoeffs3,float * flcoeffs5)281 static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
282                                  float *flcoeffs2, int *bandWidthT,
283                                  float *flcoeffs3, float *flcoeffs5)
284 {
285     float   workT1[BANDS];
286     float   workT2[BANDS];
287     float   workT3[BANDS];
288     float   snr_limit = 1.e-30;
289     float   accum = 0.0;
290     int i, cnt2;
291 
292     for (i = 0; i < BANDS; i++) {
293         flcoeffs5[i] = workT2[i] = 0.0;
294         if (bandWidthT[i]) {
295             workT1[i] = flcoeffs1[i] * flcoeffs1[i];
296             flcoeffs3[i] = 2.0 * flcoeffs2[i];
297         } else {
298             workT1[i]    = 0.0;
299             flcoeffs3[i] = -30000.0;
300         }
301         workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
302         if (workT3[i] <= snr_limit)
303             workT3[i] = 0.0;
304     }
305 
306     for (i = 0; i < BANDS; i++) {
307         for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
308             flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
309         workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
310     }
311 
312     for (i = 1; i < BANDS; i++) {
313         accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
314         flcoeffs5[i] += accum;
315     }
316 
317     for (i = 0; i < BANDS; i++)
318         workT2[i] = 0.0;
319 
320     for (i = 0; i < BANDS; i++) {
321         for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
322             flcoeffs5[cnt2] += workT3[i];
323         workT2[cnt2+1] += workT3[i];
324     }
325 
326     accum = 0.0;
327 
328     for (i = BANDS-2; i >= 0; i--) {
329         accum = (workT2[i+1] + accum) * q->weights2[i];
330         flcoeffs5[i] += accum;
331         // there is missing code here, but it seems to never be triggered
332     }
333 }
334 
335 
imc_read_level_coeffs(IMCContext * q,int stream_format_code,int * levlCoeffs)336 static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
337                                   int *levlCoeffs)
338 {
339     int i;
340     VLC *hufftab[4];
341     int start = 0;
342     const uint8_t *cb_sel;
343     int s;
344 
345     s = stream_format_code >> 1;
346     hufftab[0] = &huffman_vlc[s][0];
347     hufftab[1] = &huffman_vlc[s][1];
348     hufftab[2] = &huffman_vlc[s][2];
349     hufftab[3] = &huffman_vlc[s][3];
350     cb_sel = imc_cb_select[s];
351 
352     if (stream_format_code & 4)
353         start = 1;
354     if (start)
355         levlCoeffs[0] = get_bits(&q->gb, 7);
356     for (i = start; i < BANDS; i++) {
357         levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
358                                  IMC_VLC_BITS, 2);
359         if (levlCoeffs[i] == 17)
360             levlCoeffs[i] += get_bits(&q->gb, 4);
361     }
362 }
363 
imc_read_level_coeffs_raw(IMCContext * q,int stream_format_code,int * levlCoeffs)364 static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code,
365                                       int *levlCoeffs)
366 {
367     int i;
368 
369     q->coef0_pos  = get_bits(&q->gb, 5);
370     levlCoeffs[0] = get_bits(&q->gb, 7);
371     for (i = 1; i < BANDS; i++)
372         levlCoeffs[i] = get_bits(&q->gb, 4);
373 }
374 
imc_decode_level_coefficients(IMCContext * q,int * levlCoeffBuf,float * flcoeffs1,float * flcoeffs2)375 static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
376                                           float *flcoeffs1, float *flcoeffs2)
377 {
378     int i, level;
379     float tmp, tmp2;
380     // maybe some frequency division thingy
381 
382     flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
383     flcoeffs2[0] = log2f(flcoeffs1[0]);
384     tmp  = flcoeffs1[0];
385     tmp2 = flcoeffs2[0];
386 
387     for (i = 1; i < BANDS; i++) {
388         level = levlCoeffBuf[i];
389         if (level == 16) {
390             flcoeffs1[i] = 1.0;
391             flcoeffs2[i] = 0.0;
392         } else {
393             if (level < 17)
394                 level -= 7;
395             else if (level <= 24)
396                 level -= 32;
397             else
398                 level -= 16;
399 
400             tmp  *= imc_exp_tab[15 + level];
401             tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
402             flcoeffs1[i] = tmp;
403             flcoeffs2[i] = tmp2;
404         }
405     }
406 }
407 
408 
imc_decode_level_coefficients2(IMCContext * q,int * levlCoeffBuf,float * old_floor,float * flcoeffs1,float * flcoeffs2)409 static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
410                                            float *old_floor, float *flcoeffs1,
411                                            float *flcoeffs2)
412 {
413     int i;
414     /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
415      *       and flcoeffs2 old scale factors
416      *       might be incomplete due to a missing table that is in the binary code
417      */
418     for (i = 0; i < BANDS; i++) {
419         flcoeffs1[i] = 0;
420         if (levlCoeffBuf[i] < 16) {
421             flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
422             flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
423         } else {
424             flcoeffs1[i] = old_floor[i];
425         }
426     }
427 }
428 
imc_decode_level_coefficients_raw(IMCContext * q,int * levlCoeffBuf,float * flcoeffs1,float * flcoeffs2)429 static void imc_decode_level_coefficients_raw(IMCContext *q, int *levlCoeffBuf,
430                                               float *flcoeffs1, float *flcoeffs2)
431 {
432     int i, level, pos;
433     float tmp, tmp2;
434 
435     pos = q->coef0_pos;
436     flcoeffs1[pos] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
437     flcoeffs2[pos] = log2f(flcoeffs1[pos]);
438     tmp  = flcoeffs1[pos];
439     tmp2 = flcoeffs2[pos];
440 
441     levlCoeffBuf++;
442     for (i = 0; i < BANDS; i++) {
443         if (i == pos)
444             continue;
445         level = *levlCoeffBuf++;
446         flcoeffs1[i] = tmp  * powf(10.0, -level * 0.4375); //todo tab
447         flcoeffs2[i] = tmp2 - 1.4533435415 * level; // 1.4533435415 = log2(10) * 0.4375
448     }
449 }
450 
451 /**
452  * Perform bit allocation depending on bits available
453  */
bit_allocation(IMCContext * q,IMCChannel * chctx,int stream_format_code,int freebits,int flag)454 static int bit_allocation(IMCContext *q, IMCChannel *chctx,
455                           int stream_format_code, int freebits, int flag)
456 {
457     int i, j;
458     const float limit = -1.e20;
459     float highest = 0.0;
460     int indx;
461     int t1 = 0;
462     int t2 = 1;
463     float summa = 0.0;
464     int iacc = 0;
465     int summer = 0;
466     int rres, cwlen;
467     float lowest = 1.e10;
468     int low_indx = 0;
469     float workT[32];
470     int flg;
471     int found_indx = 0;
472 
473     for (i = 0; i < BANDS; i++)
474         highest = FFMAX(highest, chctx->flcoeffs1[i]);
475 
476     for (i = 0; i < BANDS - 1; i++) {
477         if (chctx->flcoeffs5[i] <= 0) {
478             av_log(q->avctx, AV_LOG_ERROR, "flcoeffs5 %f invalid\n", chctx->flcoeffs5[i]);
479             return AVERROR_INVALIDDATA;
480         }
481         chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
482     }
483     chctx->flcoeffs4[BANDS - 1] = limit;
484 
485     highest = highest * 0.25;
486 
487     for (i = 0; i < BANDS; i++) {
488         indx = -1;
489         if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
490             indx = 0;
491 
492         if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
493             indx = 1;
494 
495         if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
496             indx = 2;
497 
498         if (indx == -1)
499             return AVERROR_INVALIDDATA;
500 
501         chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
502     }
503 
504     if (stream_format_code & 0x2) {
505         chctx->flcoeffs4[0] = limit;
506         chctx->flcoeffs4[1] = limit;
507         chctx->flcoeffs4[2] = limit;
508         chctx->flcoeffs4[3] = limit;
509     }
510 
511     for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
512         iacc  += chctx->bandWidthT[i];
513         summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
514     }
515 
516     if (!iacc)
517         return AVERROR_INVALIDDATA;
518 
519     chctx->bandWidthT[BANDS - 1] = 0;
520     summa = (summa * 0.5 - freebits) / iacc;
521 
522 
523     for (i = 0; i < BANDS / 2; i++) {
524         rres = summer - freebits;
525         if ((rres >= -8) && (rres <= 8))
526             break;
527 
528         summer = 0;
529         iacc   = 0;
530 
531         for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
532             cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
533 
534             chctx->bitsBandT[j] = cwlen;
535             summer += chctx->bandWidthT[j] * cwlen;
536 
537             if (cwlen > 0)
538                 iacc += chctx->bandWidthT[j];
539         }
540 
541         flg = t2;
542         t2 = 1;
543         if (freebits < summer)
544             t2 = -1;
545         if (i == 0)
546             flg = t2;
547         if (flg != t2)
548             t1++;
549 
550         summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
551     }
552 
553     for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
554         for (j = band_tab[i]; j < band_tab[i + 1]; j++)
555             chctx->CWlengthT[j] = chctx->bitsBandT[i];
556     }
557 
558     if (freebits > summer) {
559         for (i = 0; i < BANDS; i++) {
560             workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
561                                               : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
562         }
563 
564         highest = 0.0;
565 
566         do {
567             if (highest <= -1.e20)
568                 break;
569 
570             found_indx = 0;
571             highest = -1.e20;
572 
573             for (i = 0; i < BANDS; i++) {
574                 if (workT[i] > highest) {
575                     highest = workT[i];
576                     found_indx = i;
577                 }
578             }
579 
580             if (highest > -1.e20) {
581                 workT[found_indx] -= 2.0;
582                 if (++chctx->bitsBandT[found_indx] == 6)
583                     workT[found_indx] = -1.e20;
584 
585                 for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
586                     chctx->CWlengthT[j]++;
587                     summer++;
588                 }
589             }
590         } while (freebits > summer);
591     }
592     if (freebits < summer) {
593         for (i = 0; i < BANDS; i++) {
594             workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
595                                        : 1.e20;
596         }
597         if (stream_format_code & 0x2) {
598             workT[0] = 1.e20;
599             workT[1] = 1.e20;
600             workT[2] = 1.e20;
601             workT[3] = 1.e20;
602         }
603         while (freebits < summer) {
604             lowest   = 1.e10;
605             low_indx = 0;
606             for (i = 0; i < BANDS; i++) {
607                 if (workT[i] < lowest) {
608                     lowest   = workT[i];
609                     low_indx = i;
610                 }
611             }
612             // if (lowest >= 1.e10)
613             //     break;
614             workT[low_indx] = lowest + 2.0;
615 
616             if (!--chctx->bitsBandT[low_indx])
617                 workT[low_indx] = 1.e20;
618 
619             for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
620                 if (chctx->CWlengthT[j] > 0) {
621                     chctx->CWlengthT[j]--;
622                     summer--;
623                 }
624             }
625         }
626     }
627     return 0;
628 }
629 
imc_get_skip_coeff(IMCContext * q,IMCChannel * chctx)630 static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
631 {
632     int i, j;
633 
634     memset(chctx->skipFlagBits,  0, sizeof(chctx->skipFlagBits));
635     memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
636     for (i = 0; i < BANDS; i++) {
637         if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
638             continue;
639 
640         if (!chctx->skipFlagRaw[i]) {
641             chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
642 
643             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
644                 chctx->skipFlags[j] = get_bits1(&q->gb);
645                 if (chctx->skipFlags[j])
646                     chctx->skipFlagCount[i]++;
647             }
648         } else {
649             for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
650                 if (!get_bits1(&q->gb)) { // 0
651                     chctx->skipFlagBits[i]++;
652                     chctx->skipFlags[j]      = 1;
653                     chctx->skipFlags[j + 1]  = 1;
654                     chctx->skipFlagCount[i] += 2;
655                 } else {
656                     if (get_bits1(&q->gb)) { // 11
657                         chctx->skipFlagBits[i] += 2;
658                         chctx->skipFlags[j]     = 0;
659                         chctx->skipFlags[j + 1] = 1;
660                         chctx->skipFlagCount[i]++;
661                     } else {
662                         chctx->skipFlagBits[i] += 3;
663                         chctx->skipFlags[j + 1] = 0;
664                         if (!get_bits1(&q->gb)) { // 100
665                             chctx->skipFlags[j] = 1;
666                             chctx->skipFlagCount[i]++;
667                         } else { // 101
668                             chctx->skipFlags[j] = 0;
669                         }
670                     }
671                 }
672             }
673 
674             if (j < band_tab[i + 1]) {
675                 chctx->skipFlagBits[i]++;
676                 if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
677                     chctx->skipFlagCount[i]++;
678             }
679         }
680     }
681 }
682 
683 /**
684  * Increase highest' band coefficient sizes as some bits won't be used
685  */
imc_adjust_bit_allocation(IMCContext * q,IMCChannel * chctx,int summer)686 static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
687                                       int summer)
688 {
689     float workT[32];
690     int corrected = 0;
691     int i, j;
692     float highest  = 0;
693     int found_indx = 0;
694 
695     for (i = 0; i < BANDS; i++) {
696         workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
697                                           : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
698     }
699 
700     while (corrected < summer) {
701         if (highest <= -1.e20)
702             break;
703 
704         highest = -1.e20;
705 
706         for (i = 0; i < BANDS; i++) {
707             if (workT[i] > highest) {
708                 highest = workT[i];
709                 found_indx = i;
710             }
711         }
712 
713         if (highest > -1.e20) {
714             workT[found_indx] -= 2.0;
715             if (++(chctx->bitsBandT[found_indx]) == 6)
716                 workT[found_indx] = -1.e20;
717 
718             for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
719                 if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
720                     chctx->CWlengthT[j]++;
721                     corrected++;
722                 }
723             }
724         }
725     }
726 }
727 
imc_imdct256(IMCContext * q,IMCChannel * chctx,int channels)728 static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
729 {
730     int i;
731     float re, im;
732     float *dst1 = q->out_samples;
733     float *dst2 = q->out_samples + (COEFFS - 1);
734 
735     /* prerotation */
736     for (i = 0; i < COEFFS / 2; i++) {
737         q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
738                             (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
739         q->samples[i].im =  (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
740                             (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
741     }
742 
743     /* FFT */
744     q->fft.fft_permute(&q->fft, q->samples);
745     q->fft.fft_calc(&q->fft, q->samples);
746 
747     /* postrotation, window and reorder */
748     for (i = 0; i < COEFFS / 2; i++) {
749         re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
750         im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
751         *dst1 =  (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
752                + (q->mdct_sine_window[i * 2] * re);
753         *dst2 =  (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
754                - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
755         dst1 += 2;
756         dst2 -= 2;
757         chctx->last_fft_im[i] = im;
758     }
759 }
760 
inverse_quant_coeff(IMCContext * q,IMCChannel * chctx,int stream_format_code)761 static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
762                                int stream_format_code)
763 {
764     int i, j;
765     int middle_value, cw_len, max_size;
766     const float *quantizer;
767 
768     for (i = 0; i < BANDS; i++) {
769         for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
770             chctx->CWdecoded[j] = 0;
771             cw_len = chctx->CWlengthT[j];
772 
773             if (cw_len <= 0 || chctx->skipFlags[j])
774                 continue;
775 
776             max_size     = 1 << cw_len;
777             middle_value = max_size >> 1;
778 
779             if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
780                 return AVERROR_INVALIDDATA;
781 
782             if (cw_len >= 4) {
783                 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
784                 if (chctx->codewords[j] >= middle_value)
785                     chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 8]                * chctx->flcoeffs6[i];
786                 else
787                     chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
788             }else{
789                 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
790                 if (chctx->codewords[j] >= middle_value)
791                     chctx->CWdecoded[j] =  quantizer[chctx->codewords[j] - 1]            * chctx->flcoeffs6[i];
792                 else
793                     chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
794             }
795         }
796     }
797     return 0;
798 }
799 
800 
imc_get_coeffs(AVCodecContext * avctx,IMCContext * q,IMCChannel * chctx)801 static void imc_get_coeffs(AVCodecContext *avctx,
802                            IMCContext *q, IMCChannel *chctx)
803 {
804     int i, j, cw_len, cw;
805 
806     for (i = 0; i < BANDS; i++) {
807         if (!chctx->sumLenArr[i])
808             continue;
809         if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
810             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
811                 cw_len = chctx->CWlengthT[j];
812                 cw = 0;
813 
814                 if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j])) {
815                     if (get_bits_count(&q->gb) + cw_len > 512) {
816                         av_log(avctx, AV_LOG_WARNING,
817                             "Potential problem on band %i, coefficient %i"
818                             ": cw_len=%i\n", i, j, cw_len);
819                     } else
820                         cw = get_bits(&q->gb, cw_len);
821                 }
822 
823                 chctx->codewords[j] = cw;
824             }
825         }
826     }
827 }
828 
imc_refine_bit_allocation(IMCContext * q,IMCChannel * chctx)829 static void imc_refine_bit_allocation(IMCContext *q, IMCChannel *chctx)
830 {
831     int i, j;
832     int bits, summer;
833 
834     for (i = 0; i < BANDS; i++) {
835         chctx->sumLenArr[i]   = 0;
836         chctx->skipFlagRaw[i] = 0;
837         for (j = band_tab[i]; j < band_tab[i + 1]; j++)
838             chctx->sumLenArr[i] += chctx->CWlengthT[j];
839         if (chctx->bandFlagsBuf[i])
840             if (((int)((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
841                 chctx->skipFlagRaw[i] = 1;
842     }
843 
844     imc_get_skip_coeff(q, chctx);
845 
846     for (i = 0; i < BANDS; i++) {
847         chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
848         /* band has flag set and at least one coded coefficient */
849         if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
850             chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
851                                    q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
852         }
853     }
854 
855     /* calculate bits left, bits needed and adjust bit allocation */
856     bits = summer = 0;
857 
858     for (i = 0; i < BANDS; i++) {
859         if (chctx->bandFlagsBuf[i]) {
860             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
861                 if (chctx->skipFlags[j]) {
862                     summer += chctx->CWlengthT[j];
863                     chctx->CWlengthT[j] = 0;
864                 }
865             }
866             bits   += chctx->skipFlagBits[i];
867             summer -= chctx->skipFlagBits[i];
868         }
869     }
870     imc_adjust_bit_allocation(q, chctx, summer);
871 }
872 
imc_decode_block(AVCodecContext * avctx,IMCContext * q,int ch)873 static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
874 {
875     int stream_format_code;
876     int imc_hdr, i, j, ret;
877     int flag;
878     int bits;
879     int counter, bitscount;
880     IMCChannel *chctx = q->chctx + ch;
881 
882 
883     /* Check the frame header */
884     imc_hdr = get_bits(&q->gb, 9);
885     if (imc_hdr & 0x18) {
886         av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
887         av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
888         return AVERROR_INVALIDDATA;
889     }
890     stream_format_code = get_bits(&q->gb, 3);
891 
892     if (stream_format_code & 0x04)
893         chctx->decoder_reset = 1;
894 
895     if (chctx->decoder_reset) {
896         for (i = 0; i < BANDS; i++)
897             chctx->old_floor[i] = 1.0;
898         for (i = 0; i < COEFFS; i++)
899             chctx->CWdecoded[i] = 0;
900         chctx->decoder_reset = 0;
901     }
902 
903     flag = get_bits1(&q->gb);
904     if (stream_format_code & 0x1)
905         imc_read_level_coeffs_raw(q, stream_format_code, chctx->levlCoeffBuf);
906     else
907         imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
908 
909     if (stream_format_code & 0x1)
910         imc_decode_level_coefficients_raw(q, chctx->levlCoeffBuf,
911                                           chctx->flcoeffs1, chctx->flcoeffs2);
912     else if (stream_format_code & 0x4)
913         imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
914                                       chctx->flcoeffs1, chctx->flcoeffs2);
915     else
916         imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
917                                        chctx->flcoeffs1, chctx->flcoeffs2);
918 
919     for(i=0; i<BANDS; i++) {
920         if(chctx->flcoeffs1[i] > INT_MAX) {
921             av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
922             return AVERROR_INVALIDDATA;
923         }
924     }
925 
926     memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
927 
928     counter = 0;
929     if (stream_format_code & 0x1) {
930         for (i = 0; i < BANDS; i++) {
931             chctx->bandWidthT[i]   = band_tab[i + 1] - band_tab[i];
932             chctx->bandFlagsBuf[i] = 0;
933             chctx->flcoeffs3[i]    = chctx->flcoeffs2[i] * 2;
934             chctx->flcoeffs5[i]    = 1.0;
935         }
936     } else {
937         for (i = 0; i < BANDS; i++) {
938             if (chctx->levlCoeffBuf[i] == 16) {
939                 chctx->bandWidthT[i] = 0;
940                 counter++;
941             } else
942                 chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
943         }
944 
945         memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
946         for (i = 0; i < BANDS - 1; i++)
947             if (chctx->bandWidthT[i])
948                 chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
949 
950         imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2,
951                              chctx->bandWidthT, chctx->flcoeffs3,
952                              chctx->flcoeffs5);
953     }
954 
955     bitscount = 0;
956     /* first 4 bands will be assigned 5 bits per coefficient */
957     if (stream_format_code & 0x2) {
958         bitscount += 15;
959 
960         chctx->bitsBandT[0] = 5;
961         chctx->CWlengthT[0] = 5;
962         chctx->CWlengthT[1] = 5;
963         chctx->CWlengthT[2] = 5;
964         for (i = 1; i < 4; i++) {
965             if (stream_format_code & 0x1)
966                 bits = 5;
967             else
968                 bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
969             chctx->bitsBandT[i] = bits;
970             for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
971                 chctx->CWlengthT[j] = bits;
972                 bitscount      += bits;
973             }
974         }
975     }
976     if (avctx->codec_id == AV_CODEC_ID_IAC) {
977         bitscount += !!chctx->bandWidthT[BANDS - 1];
978         if (!(stream_format_code & 0x2))
979             bitscount += 16;
980     }
981 
982     if ((ret = bit_allocation(q, chctx, stream_format_code,
983                               512 - bitscount - get_bits_count(&q->gb),
984                               flag)) < 0) {
985         av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
986         chctx->decoder_reset = 1;
987         return ret;
988     }
989 
990     if (stream_format_code & 0x1) {
991         for (i = 0; i < BANDS; i++)
992             chctx->skipFlags[i] = 0;
993     } else {
994         imc_refine_bit_allocation(q, chctx);
995     }
996 
997     for (i = 0; i < BANDS; i++) {
998         chctx->sumLenArr[i] = 0;
999 
1000         for (j = band_tab[i]; j < band_tab[i + 1]; j++)
1001             if (!chctx->skipFlags[j])
1002                 chctx->sumLenArr[i] += chctx->CWlengthT[j];
1003     }
1004 
1005     memset(chctx->codewords, 0, sizeof(chctx->codewords));
1006 
1007     imc_get_coeffs(avctx, q, chctx);
1008 
1009     if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
1010         av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
1011         chctx->decoder_reset = 1;
1012         return AVERROR_INVALIDDATA;
1013     }
1014 
1015     memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
1016 
1017     imc_imdct256(q, chctx, avctx->channels);
1018 
1019     return 0;
1020 }
1021 
imc_decode_frame(AVCodecContext * avctx,void * data,int * got_frame_ptr,AVPacket * avpkt)1022 static int imc_decode_frame(AVCodecContext *avctx, void *data,
1023                             int *got_frame_ptr, AVPacket *avpkt)
1024 {
1025     AVFrame *frame     = data;
1026     const uint8_t *buf = avpkt->data;
1027     int buf_size = avpkt->size;
1028     int ret, i;
1029 
1030     IMCContext *q = avctx->priv_data;
1031 
1032     LOCAL_ALIGNED_16(uint16_t, buf16, [(IMC_BLOCK_SIZE + AV_INPUT_BUFFER_PADDING_SIZE) / 2]);
1033 
1034     q->avctx = avctx;
1035 
1036     if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
1037         av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
1038         return AVERROR_INVALIDDATA;
1039     }
1040 
1041     /* get output buffer */
1042     frame->nb_samples = COEFFS;
1043     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1044         return ret;
1045 
1046     for (i = 0; i < avctx->channels; i++) {
1047         q->out_samples = (float *)frame->extended_data[i];
1048 
1049         q->bdsp.bswap16_buf(buf16, (const uint16_t *) buf, IMC_BLOCK_SIZE / 2);
1050 
1051         init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
1052 
1053         buf += IMC_BLOCK_SIZE;
1054 
1055         if ((ret = imc_decode_block(avctx, q, i)) < 0)
1056             return ret;
1057     }
1058 
1059     if (avctx->channels == 2) {
1060         q->butterflies_float((float *)frame->extended_data[0],
1061                              (float *)frame->extended_data[1], COEFFS);
1062     }
1063 
1064     *got_frame_ptr = 1;
1065 
1066     return IMC_BLOCK_SIZE * avctx->channels;
1067 }
1068 
imc_decode_close(AVCodecContext * avctx)1069 static av_cold int imc_decode_close(AVCodecContext * avctx)
1070 {
1071     IMCContext *q = avctx->priv_data;
1072 
1073     ff_fft_end(&q->fft);
1074 
1075     return 0;
1076 }
1077 
flush(AVCodecContext * avctx)1078 static av_cold void flush(AVCodecContext *avctx)
1079 {
1080     IMCContext *q = avctx->priv_data;
1081 
1082     q->chctx[0].decoder_reset =
1083     q->chctx[1].decoder_reset = 1;
1084 }
1085 
1086 #if CONFIG_IMC_DECODER
1087 AVCodec ff_imc_decoder = {
1088     .name           = "imc",
1089     .long_name      = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1090     .type           = AVMEDIA_TYPE_AUDIO,
1091     .id             = AV_CODEC_ID_IMC,
1092     .priv_data_size = sizeof(IMCContext),
1093     .init           = imc_decode_init,
1094     .close          = imc_decode_close,
1095     .decode         = imc_decode_frame,
1096     .flush          = flush,
1097     .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
1098     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1099                                                       AV_SAMPLE_FMT_NONE },
1100     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1101 };
1102 #endif
1103 #if CONFIG_IAC_DECODER
1104 AVCodec ff_iac_decoder = {
1105     .name           = "iac",
1106     .long_name      = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1107     .type           = AVMEDIA_TYPE_AUDIO,
1108     .id             = AV_CODEC_ID_IAC,
1109     .priv_data_size = sizeof(IMCContext),
1110     .init           = imc_decode_init,
1111     .close          = imc_decode_close,
1112     .decode         = imc_decode_frame,
1113     .flush          = flush,
1114     .capabilities   = AV_CODEC_CAP_DR1,
1115     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1116                                                       AV_SAMPLE_FMT_NONE },
1117     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1118 };
1119 #endif
1120