1 /*
2  * Simple free lossless/lossy audio codec
3  * Copyright (c) 2004 Alex Beregszaszi
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 #include "avcodec.h"
22 #include "get_bits.h"
23 #include "golomb.h"
24 #include "internal.h"
25 #include "rangecoder.h"
26 
27 
28 /**
29  * @file
30  * Simple free lossless/lossy audio codec
31  * Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk)
32  * Written and designed by Alex Beregszaszi
33  *
34  * TODO:
35  *  - CABAC put/get_symbol
36  *  - independent quantizer for channels
37  *  - >2 channels support
38  *  - more decorrelation types
39  *  - more tap_quant tests
40  *  - selectable intlist writers/readers (bonk-style, golomb, cabac)
41  */
42 
43 #define MAX_CHANNELS 2
44 
45 #define MID_SIDE 0
46 #define LEFT_SIDE 1
47 #define RIGHT_SIDE 2
48 
49 typedef struct SonicContext {
50     int version;
51     int minor_version;
52     int lossless, decorrelation;
53 
54     int num_taps, downsampling;
55     double quantization;
56 
57     int channels, samplerate, block_align, frame_size;
58 
59     int *tap_quant;
60     int *int_samples;
61     int *coded_samples[MAX_CHANNELS];
62 
63     // for encoding
64     int *tail;
65     int tail_size;
66     int *window;
67     int window_size;
68 
69     // for decoding
70     int *predictor_k;
71     int *predictor_state[MAX_CHANNELS];
72 } SonicContext;
73 
74 #define LATTICE_SHIFT   10
75 #define SAMPLE_SHIFT    4
76 #define LATTICE_FACTOR  (1 << LATTICE_SHIFT)
77 #define SAMPLE_FACTOR   (1 << SAMPLE_SHIFT)
78 
79 #define BASE_QUANT      0.6
80 #define RATE_VARIATION  3.0
81 
shift(int a,int b)82 static inline int shift(int a,int b)
83 {
84     return (a+(1<<(b-1))) >> b;
85 }
86 
shift_down(int a,int b)87 static inline int shift_down(int a,int b)
88 {
89     return (a>>b)+(a<0);
90 }
91 
put_symbol(RangeCoder * c,uint8_t * state,int v,int is_signed,uint64_t rc_stat[256][2],uint64_t rc_stat2[32][2])92 static av_always_inline av_flatten void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
93     int i;
94 
95 #define put_rac(C,S,B) \
96 do{\
97     if(rc_stat){\
98         rc_stat[*(S)][B]++;\
99         rc_stat2[(S)-state][B]++;\
100     }\
101     put_rac(C,S,B);\
102 }while(0)
103 
104     if(v){
105         const int a= FFABS(v);
106         const int e= av_log2(a);
107         put_rac(c, state+0, 0);
108         if(e<=9){
109             for(i=0; i<e; i++){
110                 put_rac(c, state+1+i, 1);  //1..10
111             }
112             put_rac(c, state+1+i, 0);
113 
114             for(i=e-1; i>=0; i--){
115                 put_rac(c, state+22+i, (a>>i)&1); //22..31
116             }
117 
118             if(is_signed)
119                 put_rac(c, state+11 + e, v < 0); //11..21
120         }else{
121             for(i=0; i<e; i++){
122                 put_rac(c, state+1+FFMIN(i,9), 1);  //1..10
123             }
124             put_rac(c, state+1+9, 0);
125 
126             for(i=e-1; i>=0; i--){
127                 put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
128             }
129 
130             if(is_signed)
131                 put_rac(c, state+11 + 10, v < 0); //11..21
132         }
133     }else{
134         put_rac(c, state+0, 1);
135     }
136 #undef put_rac
137 }
138 
get_symbol(RangeCoder * c,uint8_t * state,int is_signed)139 static inline av_flatten int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
140     if(get_rac(c, state+0))
141         return 0;
142     else{
143         int i, e;
144         unsigned a;
145         e= 0;
146         while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
147             e++;
148             if (e > 31)
149                 return AVERROR_INVALIDDATA;
150         }
151 
152         a= 1;
153         for(i=e-1; i>=0; i--){
154             a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
155         }
156 
157         e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
158         return (a^e)-e;
159     }
160 }
161 
162 #if 1
intlist_write(RangeCoder * c,uint8_t * state,int * buf,int entries,int base_2_part)163 static inline int intlist_write(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part)
164 {
165     int i;
166 
167     for (i = 0; i < entries; i++)
168         put_symbol(c, state, buf[i], 1, NULL, NULL);
169 
170     return 1;
171 }
172 
intlist_read(RangeCoder * c,uint8_t * state,int * buf,int entries,int base_2_part)173 static inline int intlist_read(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part)
174 {
175     int i;
176 
177     for (i = 0; i < entries; i++)
178         buf[i] = get_symbol(c, state, 1);
179 
180     return 1;
181 }
182 #elif 1
intlist_write(PutBitContext * pb,int * buf,int entries,int base_2_part)183 static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
184 {
185     int i;
186 
187     for (i = 0; i < entries; i++)
188         set_se_golomb(pb, buf[i]);
189 
190     return 1;
191 }
192 
intlist_read(GetBitContext * gb,int * buf,int entries,int base_2_part)193 static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
194 {
195     int i;
196 
197     for (i = 0; i < entries; i++)
198         buf[i] = get_se_golomb(gb);
199 
200     return 1;
201 }
202 
203 #else
204 
205 #define ADAPT_LEVEL 8
206 
bits_to_store(uint64_t x)207 static int bits_to_store(uint64_t x)
208 {
209     int res = 0;
210 
211     while(x)
212     {
213         res++;
214         x >>= 1;
215     }
216     return res;
217 }
218 
write_uint_max(PutBitContext * pb,unsigned int value,unsigned int max)219 static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max)
220 {
221     int i, bits;
222 
223     if (!max)
224         return;
225 
226     bits = bits_to_store(max);
227 
228     for (i = 0; i < bits-1; i++)
229         put_bits(pb, 1, value & (1 << i));
230 
231     if ( (value | (1 << (bits-1))) <= max)
232         put_bits(pb, 1, value & (1 << (bits-1)));
233 }
234 
read_uint_max(GetBitContext * gb,int max)235 static unsigned int read_uint_max(GetBitContext *gb, int max)
236 {
237     int i, bits, value = 0;
238 
239     if (!max)
240         return 0;
241 
242     bits = bits_to_store(max);
243 
244     for (i = 0; i < bits-1; i++)
245         if (get_bits1(gb))
246             value += 1 << i;
247 
248     if ( (value | (1<<(bits-1))) <= max)
249         if (get_bits1(gb))
250             value += 1 << (bits-1);
251 
252     return value;
253 }
254 
intlist_write(PutBitContext * pb,int * buf,int entries,int base_2_part)255 static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
256 {
257     int i, j, x = 0, low_bits = 0, max = 0;
258     int step = 256, pos = 0, dominant = 0, any = 0;
259     int *copy, *bits;
260 
261     copy = av_calloc(entries, sizeof(*copy));
262     if (!copy)
263         return AVERROR(ENOMEM);
264 
265     if (base_2_part)
266     {
267         int energy = 0;
268 
269         for (i = 0; i < entries; i++)
270             energy += abs(buf[i]);
271 
272         low_bits = bits_to_store(energy / (entries * 2));
273         if (low_bits > 15)
274             low_bits = 15;
275 
276         put_bits(pb, 4, low_bits);
277     }
278 
279     for (i = 0; i < entries; i++)
280     {
281         put_bits(pb, low_bits, abs(buf[i]));
282         copy[i] = abs(buf[i]) >> low_bits;
283         if (copy[i] > max)
284             max = abs(copy[i]);
285     }
286 
287     bits = av_calloc(entries*max, sizeof(*bits));
288     if (!bits)
289     {
290         av_free(copy);
291         return AVERROR(ENOMEM);
292     }
293 
294     for (i = 0; i <= max; i++)
295     {
296         for (j = 0; j < entries; j++)
297             if (copy[j] >= i)
298                 bits[x++] = copy[j] > i;
299     }
300 
301     // store bitstream
302     while (pos < x)
303     {
304         int steplet = step >> 8;
305 
306         if (pos + steplet > x)
307             steplet = x - pos;
308 
309         for (i = 0; i < steplet; i++)
310             if (bits[i+pos] != dominant)
311                 any = 1;
312 
313         put_bits(pb, 1, any);
314 
315         if (!any)
316         {
317             pos += steplet;
318             step += step / ADAPT_LEVEL;
319         }
320         else
321         {
322             int interloper = 0;
323 
324             while (((pos + interloper) < x) && (bits[pos + interloper] == dominant))
325                 interloper++;
326 
327             // note change
328             write_uint_max(pb, interloper, (step >> 8) - 1);
329 
330             pos += interloper + 1;
331             step -= step / ADAPT_LEVEL;
332         }
333 
334         if (step < 256)
335         {
336             step = 65536 / step;
337             dominant = !dominant;
338         }
339     }
340 
341     // store signs
342     for (i = 0; i < entries; i++)
343         if (buf[i])
344             put_bits(pb, 1, buf[i] < 0);
345 
346     av_free(bits);
347     av_free(copy);
348 
349     return 0;
350 }
351 
intlist_read(GetBitContext * gb,int * buf,int entries,int base_2_part)352 static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
353 {
354     int i, low_bits = 0, x = 0;
355     int n_zeros = 0, step = 256, dominant = 0;
356     int pos = 0, level = 0;
357     int *bits = av_calloc(entries, sizeof(*bits));
358 
359     if (!bits)
360         return AVERROR(ENOMEM);
361 
362     if (base_2_part)
363     {
364         low_bits = get_bits(gb, 4);
365 
366         if (low_bits)
367             for (i = 0; i < entries; i++)
368                 buf[i] = get_bits(gb, low_bits);
369     }
370 
371 //    av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits);
372 
373     while (n_zeros < entries)
374     {
375         int steplet = step >> 8;
376 
377         if (!get_bits1(gb))
378         {
379             for (i = 0; i < steplet; i++)
380                 bits[x++] = dominant;
381 
382             if (!dominant)
383                 n_zeros += steplet;
384 
385             step += step / ADAPT_LEVEL;
386         }
387         else
388         {
389             int actual_run = read_uint_max(gb, steplet-1);
390 
391 //            av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run);
392 
393             for (i = 0; i < actual_run; i++)
394                 bits[x++] = dominant;
395 
396             bits[x++] = !dominant;
397 
398             if (!dominant)
399                 n_zeros += actual_run;
400             else
401                 n_zeros++;
402 
403             step -= step / ADAPT_LEVEL;
404         }
405 
406         if (step < 256)
407         {
408             step = 65536 / step;
409             dominant = !dominant;
410         }
411     }
412 
413     // reconstruct unsigned values
414     n_zeros = 0;
415     for (i = 0; n_zeros < entries; i++)
416     {
417         while(1)
418         {
419             if (pos >= entries)
420             {
421                 pos = 0;
422                 level += 1 << low_bits;
423             }
424 
425             if (buf[pos] >= level)
426                 break;
427 
428             pos++;
429         }
430 
431         if (bits[i])
432             buf[pos] += 1 << low_bits;
433         else
434             n_zeros++;
435 
436         pos++;
437     }
438     av_free(bits);
439 
440     // read signs
441     for (i = 0; i < entries; i++)
442         if (buf[i] && get_bits1(gb))
443             buf[i] = -buf[i];
444 
445 //    av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos);
446 
447     return 0;
448 }
449 #endif
450 
predictor_init_state(int * k,int * state,int order)451 static void predictor_init_state(int *k, int *state, int order)
452 {
453     int i;
454 
455     for (i = order-2; i >= 0; i--)
456     {
457         int j, p, x = state[i];
458 
459         for (j = 0, p = i+1; p < order; j++,p++)
460             {
461             int tmp = x + shift_down(k[j] * (unsigned)state[p], LATTICE_SHIFT);
462             state[p] += shift_down(k[j]* (unsigned)x, LATTICE_SHIFT);
463             x = tmp;
464         }
465     }
466 }
467 
predictor_calc_error(int * k,int * state,int order,int error)468 static int predictor_calc_error(int *k, int *state, int order, int error)
469 {
470     int i, x = error - shift_down(k[order-1] *  (unsigned)state[order-1], LATTICE_SHIFT);
471 
472 #if 1
473     int *k_ptr = &(k[order-2]),
474         *state_ptr = &(state[order-2]);
475     for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--)
476     {
477         int k_value = *k_ptr, state_value = *state_ptr;
478         x -= (unsigned)shift_down(k_value * (unsigned)state_value, LATTICE_SHIFT);
479         state_ptr[1] = state_value + shift_down(k_value * (unsigned)x, LATTICE_SHIFT);
480     }
481 #else
482     for (i = order-2; i >= 0; i--)
483     {
484         x -= (unsigned)shift_down(k[i] * state[i], LATTICE_SHIFT);
485         state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT);
486     }
487 #endif
488 
489     // don't drift too far, to avoid overflows
490     if (x >  (SAMPLE_FACTOR<<16)) x =  (SAMPLE_FACTOR<<16);
491     if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16);
492 
493     state[0] = x;
494 
495     return x;
496 }
497 
498 #if CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER
499 // Heavily modified Levinson-Durbin algorithm which
500 // copes better with quantization, and calculates the
501 // actual whitened result as it goes.
502 
modified_levinson_durbin(int * window,int window_entries,int * out,int out_entries,int channels,int * tap_quant)503 static void modified_levinson_durbin(int *window, int window_entries,
504         int *out, int out_entries, int channels, int *tap_quant)
505 {
506     int i;
507     int *state = window + window_entries;
508 
509     memcpy(state, window, window_entries * sizeof(*state));
510 
511     for (i = 0; i < out_entries; i++)
512     {
513         int step = (i+1)*channels, k, j;
514         double xx = 0.0, xy = 0.0;
515 #if 1
516         int *x_ptr = &(window[step]);
517         int *state_ptr = &(state[0]);
518         j = window_entries - step;
519         for (;j>0;j--,x_ptr++,state_ptr++)
520         {
521             double x_value = *x_ptr;
522             double state_value = *state_ptr;
523             xx += state_value*state_value;
524             xy += x_value*state_value;
525         }
526 #else
527         for (j = 0; j <= (window_entries - step); j++);
528         {
529             double stepval = window[step+j];
530             double stateval = window[j];
531 //            xx += (double)window[j]*(double)window[j];
532 //            xy += (double)window[step+j]*(double)window[j];
533             xx += stateval*stateval;
534             xy += stepval*stateval;
535         }
536 #endif
537         if (xx == 0.0)
538             k = 0;
539         else
540             k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5));
541 
542         if (k > (LATTICE_FACTOR/tap_quant[i]))
543             k = LATTICE_FACTOR/tap_quant[i];
544         if (-k > (LATTICE_FACTOR/tap_quant[i]))
545             k = -(LATTICE_FACTOR/tap_quant[i]);
546 
547         out[i] = k;
548         k *= tap_quant[i];
549 
550 #if 1
551         x_ptr = &(window[step]);
552         state_ptr = &(state[0]);
553         j = window_entries - step;
554         for (;j>0;j--,x_ptr++,state_ptr++)
555         {
556             int x_value = *x_ptr;
557             int state_value = *state_ptr;
558             *x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT);
559             *state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT);
560         }
561 #else
562         for (j=0; j <= (window_entries - step); j++)
563         {
564             int stepval = window[step+j];
565             int stateval=state[j];
566             window[step+j] += shift_down(k * stateval, LATTICE_SHIFT);
567             state[j] += shift_down(k * stepval, LATTICE_SHIFT);
568         }
569 #endif
570     }
571 }
572 
code_samplerate(int samplerate)573 static inline int code_samplerate(int samplerate)
574 {
575     switch (samplerate)
576     {
577         case 44100: return 0;
578         case 22050: return 1;
579         case 11025: return 2;
580         case 96000: return 3;
581         case 48000: return 4;
582         case 32000: return 5;
583         case 24000: return 6;
584         case 16000: return 7;
585         case 8000: return 8;
586     }
587     return AVERROR(EINVAL);
588 }
589 
sonic_encode_init(AVCodecContext * avctx)590 static av_cold int sonic_encode_init(AVCodecContext *avctx)
591 {
592     SonicContext *s = avctx->priv_data;
593     int *coded_samples;
594     PutBitContext pb;
595     int i;
596 
597     s->version = 2;
598 
599     if (avctx->channels > MAX_CHANNELS)
600     {
601         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
602         return AVERROR(EINVAL); /* only stereo or mono for now */
603     }
604 
605     if (avctx->channels == 2)
606         s->decorrelation = MID_SIDE;
607     else
608         s->decorrelation = 3;
609 
610     if (avctx->codec->id == AV_CODEC_ID_SONIC_LS)
611     {
612         s->lossless = 1;
613         s->num_taps = 32;
614         s->downsampling = 1;
615         s->quantization = 0.0;
616     }
617     else
618     {
619         s->num_taps = 128;
620         s->downsampling = 2;
621         s->quantization = 1.0;
622     }
623 
624     // max tap 2048
625     if (s->num_taps < 32 || s->num_taps > 1024 || s->num_taps % 32) {
626         av_log(avctx, AV_LOG_ERROR, "Invalid number of taps\n");
627         return AVERROR_INVALIDDATA;
628     }
629 
630     // generate taps
631     s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant));
632     if (!s->tap_quant)
633         return AVERROR(ENOMEM);
634 
635     for (i = 0; i < s->num_taps; i++)
636         s->tap_quant[i] = ff_sqrt(i+1);
637 
638     s->channels = avctx->channels;
639     s->samplerate = avctx->sample_rate;
640 
641     s->block_align = 2048LL*s->samplerate/(44100*s->downsampling);
642     s->frame_size = s->channels*s->block_align*s->downsampling;
643 
644     s->tail_size = s->num_taps*s->channels;
645     s->tail = av_calloc(s->tail_size, sizeof(*s->tail));
646     if (!s->tail)
647         return AVERROR(ENOMEM);
648 
649     s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k) );
650     if (!s->predictor_k)
651         return AVERROR(ENOMEM);
652 
653     coded_samples = av_calloc(s->block_align, s->channels * sizeof(**s->coded_samples));
654     if (!coded_samples)
655         return AVERROR(ENOMEM);
656     for (i = 0; i < s->channels; i++, coded_samples += s->block_align)
657         s->coded_samples[i] = coded_samples;
658 
659     s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples));
660 
661     s->window_size = ((2*s->tail_size)+s->frame_size);
662     s->window = av_calloc(s->window_size, 2 * sizeof(*s->window));
663     if (!s->window || !s->int_samples)
664         return AVERROR(ENOMEM);
665 
666     avctx->extradata = av_mallocz(16);
667     if (!avctx->extradata)
668         return AVERROR(ENOMEM);
669     init_put_bits(&pb, avctx->extradata, 16*8);
670 
671     put_bits(&pb, 2, s->version); // version
672     if (s->version >= 1)
673     {
674         if (s->version >= 2) {
675             put_bits(&pb, 8, s->version);
676             put_bits(&pb, 8, s->minor_version);
677         }
678         put_bits(&pb, 2, s->channels);
679         put_bits(&pb, 4, code_samplerate(s->samplerate));
680     }
681     put_bits(&pb, 1, s->lossless);
682     if (!s->lossless)
683         put_bits(&pb, 3, SAMPLE_SHIFT); // XXX FIXME: sample precision
684     put_bits(&pb, 2, s->decorrelation);
685     put_bits(&pb, 2, s->downsampling);
686     put_bits(&pb, 5, (s->num_taps >> 5)-1); // 32..1024
687     put_bits(&pb, 1, 0); // XXX FIXME: no custom tap quant table
688 
689     flush_put_bits(&pb);
690     avctx->extradata_size = put_bits_count(&pb)/8;
691 
692     av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
693         s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
694 
695     avctx->frame_size = s->block_align*s->downsampling;
696 
697     return 0;
698 }
699 
sonic_encode_close(AVCodecContext * avctx)700 static av_cold int sonic_encode_close(AVCodecContext *avctx)
701 {
702     SonicContext *s = avctx->priv_data;
703 
704     av_freep(&s->coded_samples[0]);
705     av_freep(&s->predictor_k);
706     av_freep(&s->tail);
707     av_freep(&s->tap_quant);
708     av_freep(&s->window);
709     av_freep(&s->int_samples);
710 
711     return 0;
712 }
713 
sonic_encode_frame(AVCodecContext * avctx,AVPacket * avpkt,const AVFrame * frame,int * got_packet_ptr)714 static int sonic_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
715                               const AVFrame *frame, int *got_packet_ptr)
716 {
717     SonicContext *s = avctx->priv_data;
718     RangeCoder c;
719     int i, j, ch, quant = 0, x = 0;
720     int ret;
721     const short *samples = (const int16_t*)frame->data[0];
722     uint8_t state[32];
723 
724     if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size * 5 + 1000, 0)) < 0)
725         return ret;
726 
727     ff_init_range_encoder(&c, avpkt->data, avpkt->size);
728     ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8);
729     memset(state, 128, sizeof(state));
730 
731     // short -> internal
732     for (i = 0; i < s->frame_size; i++)
733         s->int_samples[i] = samples[i];
734 
735     if (!s->lossless)
736         for (i = 0; i < s->frame_size; i++)
737             s->int_samples[i] = s->int_samples[i] << SAMPLE_SHIFT;
738 
739     switch(s->decorrelation)
740     {
741         case MID_SIDE:
742             for (i = 0; i < s->frame_size; i += s->channels)
743             {
744                 s->int_samples[i] += s->int_samples[i+1];
745                 s->int_samples[i+1] -= shift(s->int_samples[i], 1);
746             }
747             break;
748         case LEFT_SIDE:
749             for (i = 0; i < s->frame_size; i += s->channels)
750                 s->int_samples[i+1] -= s->int_samples[i];
751             break;
752         case RIGHT_SIDE:
753             for (i = 0; i < s->frame_size; i += s->channels)
754                 s->int_samples[i] -= s->int_samples[i+1];
755             break;
756     }
757 
758     memset(s->window, 0, s->window_size * sizeof(*s->window));
759 
760     for (i = 0; i < s->tail_size; i++)
761         s->window[x++] = s->tail[i];
762 
763     for (i = 0; i < s->frame_size; i++)
764         s->window[x++] = s->int_samples[i];
765 
766     for (i = 0; i < s->tail_size; i++)
767         s->window[x++] = 0;
768 
769     for (i = 0; i < s->tail_size; i++)
770         s->tail[i] = s->int_samples[s->frame_size - s->tail_size + i];
771 
772     // generate taps
773     modified_levinson_durbin(s->window, s->window_size,
774                 s->predictor_k, s->num_taps, s->channels, s->tap_quant);
775 
776     if ((ret = intlist_write(&c, state, s->predictor_k, s->num_taps, 0)) < 0)
777         return ret;
778 
779     for (ch = 0; ch < s->channels; ch++)
780     {
781         x = s->tail_size+ch;
782         for (i = 0; i < s->block_align; i++)
783         {
784             int sum = 0;
785             for (j = 0; j < s->downsampling; j++, x += s->channels)
786                 sum += s->window[x];
787             s->coded_samples[ch][i] = sum;
788         }
789     }
790 
791     // simple rate control code
792     if (!s->lossless)
793     {
794         double energy1 = 0.0, energy2 = 0.0;
795         for (ch = 0; ch < s->channels; ch++)
796         {
797             for (i = 0; i < s->block_align; i++)
798             {
799                 double sample = s->coded_samples[ch][i];
800                 energy2 += sample*sample;
801                 energy1 += fabs(sample);
802             }
803         }
804 
805         energy2 = sqrt(energy2/(s->channels*s->block_align));
806         energy1 = M_SQRT2*energy1/(s->channels*s->block_align);
807 
808         // increase bitrate when samples are like a gaussian distribution
809         // reduce bitrate when samples are like a two-tailed exponential distribution
810 
811         if (energy2 > energy1)
812             energy2 += (energy2-energy1)*RATE_VARIATION;
813 
814         quant = (int)(BASE_QUANT*s->quantization*energy2/SAMPLE_FACTOR);
815 //        av_log(avctx, AV_LOG_DEBUG, "quant: %d energy: %f / %f\n", quant, energy1, energy2);
816 
817         quant = av_clip(quant, 1, 65534);
818 
819         put_symbol(&c, state, quant, 0, NULL, NULL);
820 
821         quant *= SAMPLE_FACTOR;
822     }
823 
824     // write out coded samples
825     for (ch = 0; ch < s->channels; ch++)
826     {
827         if (!s->lossless)
828             for (i = 0; i < s->block_align; i++)
829                 s->coded_samples[ch][i] = ROUNDED_DIV(s->coded_samples[ch][i], quant);
830 
831         if ((ret = intlist_write(&c, state, s->coded_samples[ch], s->block_align, 1)) < 0)
832             return ret;
833     }
834 
835 //    av_log(avctx, AV_LOG_DEBUG, "used bytes: %d\n", (put_bits_count(&pb)+7)/8);
836 
837     avpkt->size = ff_rac_terminate(&c, 0);
838     *got_packet_ptr = 1;
839     return 0;
840 
841 }
842 #endif /* CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER */
843 
844 #if CONFIG_SONIC_DECODER
845 static const int samplerate_table[] =
846     { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 };
847 
sonic_decode_init(AVCodecContext * avctx)848 static av_cold int sonic_decode_init(AVCodecContext *avctx)
849 {
850     SonicContext *s = avctx->priv_data;
851     int *tmp;
852     GetBitContext gb;
853     int i;
854     int ret;
855 
856     s->channels = avctx->channels;
857     s->samplerate = avctx->sample_rate;
858 
859     if (!avctx->extradata)
860     {
861         av_log(avctx, AV_LOG_ERROR, "No mandatory headers present\n");
862         return AVERROR_INVALIDDATA;
863     }
864 
865     ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size);
866     if (ret < 0)
867         return ret;
868 
869     s->version = get_bits(&gb, 2);
870     if (s->version >= 2) {
871         s->version       = get_bits(&gb, 8);
872         s->minor_version = get_bits(&gb, 8);
873     }
874     if (s->version != 2)
875     {
876         av_log(avctx, AV_LOG_ERROR, "Unsupported Sonic version, please report\n");
877         return AVERROR_INVALIDDATA;
878     }
879 
880     if (s->version >= 1)
881     {
882         int sample_rate_index;
883         s->channels = get_bits(&gb, 2);
884         sample_rate_index = get_bits(&gb, 4);
885         if (sample_rate_index >= FF_ARRAY_ELEMS(samplerate_table)) {
886             av_log(avctx, AV_LOG_ERROR, "Invalid sample_rate_index %d\n", sample_rate_index);
887             return AVERROR_INVALIDDATA;
888         }
889         s->samplerate = samplerate_table[sample_rate_index];
890         av_log(avctx, AV_LOG_INFO, "Sonicv2 chans: %d samprate: %d\n",
891             s->channels, s->samplerate);
892     }
893 
894     if (s->channels > MAX_CHANNELS || s->channels < 1)
895     {
896         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
897         return AVERROR_INVALIDDATA;
898     }
899     avctx->channels = s->channels;
900 
901     s->lossless = get_bits1(&gb);
902     if (!s->lossless)
903         skip_bits(&gb, 3); // XXX FIXME
904     s->decorrelation = get_bits(&gb, 2);
905     if (s->decorrelation != 3 && s->channels != 2) {
906         av_log(avctx, AV_LOG_ERROR, "invalid decorrelation %d\n", s->decorrelation);
907         return AVERROR_INVALIDDATA;
908     }
909 
910     s->downsampling = get_bits(&gb, 2);
911     if (!s->downsampling) {
912         av_log(avctx, AV_LOG_ERROR, "invalid downsampling value\n");
913         return AVERROR_INVALIDDATA;
914     }
915 
916     s->num_taps = (get_bits(&gb, 5)+1)<<5;
917     if (get_bits1(&gb)) // XXX FIXME
918         av_log(avctx, AV_LOG_INFO, "Custom quant table\n");
919 
920     s->block_align = 2048LL*s->samplerate/(44100*s->downsampling);
921     s->frame_size = s->channels*s->block_align*s->downsampling;
922 //    avctx->frame_size = s->block_align;
923 
924     if (s->num_taps * s->channels > s->frame_size) {
925         av_log(avctx, AV_LOG_ERROR,
926                "number of taps times channels (%d * %d) larger than frame size %d\n",
927                s->num_taps, s->channels, s->frame_size);
928         return AVERROR_INVALIDDATA;
929     }
930 
931     av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
932         s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
933 
934     // generate taps
935     s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant));
936     if (!s->tap_quant)
937         return AVERROR(ENOMEM);
938 
939     for (i = 0; i < s->num_taps; i++)
940         s->tap_quant[i] = ff_sqrt(i+1);
941 
942     s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k));
943 
944     tmp = av_calloc(s->num_taps, s->channels * sizeof(**s->predictor_state));
945     if (!tmp)
946         return AVERROR(ENOMEM);
947     for (i = 0; i < s->channels; i++, tmp += s->num_taps)
948         s->predictor_state[i] = tmp;
949 
950     tmp = av_calloc(s->block_align, s->channels * sizeof(**s->coded_samples));
951     if (!tmp)
952         return AVERROR(ENOMEM);
953     for (i = 0; i < s->channels; i++, tmp += s->block_align)
954         s->coded_samples[i]   = tmp;
955 
956     s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples));
957     if (!s->int_samples)
958         return AVERROR(ENOMEM);
959 
960     avctx->sample_fmt = AV_SAMPLE_FMT_S16;
961     return 0;
962 }
963 
sonic_decode_close(AVCodecContext * avctx)964 static av_cold int sonic_decode_close(AVCodecContext *avctx)
965 {
966     SonicContext *s = avctx->priv_data;
967 
968     av_freep(&s->int_samples);
969     av_freep(&s->tap_quant);
970     av_freep(&s->predictor_k);
971     av_freep(&s->predictor_state[0]);
972     av_freep(&s->coded_samples[0]);
973 
974     return 0;
975 }
976 
sonic_decode_frame(AVCodecContext * avctx,void * data,int * got_frame_ptr,AVPacket * avpkt)977 static int sonic_decode_frame(AVCodecContext *avctx,
978                             void *data, int *got_frame_ptr,
979                             AVPacket *avpkt)
980 {
981     const uint8_t *buf = avpkt->data;
982     int buf_size = avpkt->size;
983     SonicContext *s = avctx->priv_data;
984     RangeCoder c;
985     uint8_t state[32];
986     int i, quant, ch, j, ret;
987     int16_t *samples;
988     AVFrame *frame = data;
989 
990     if (buf_size == 0) return 0;
991 
992     frame->nb_samples = s->frame_size / avctx->channels;
993     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
994         return ret;
995     samples = (int16_t *)frame->data[0];
996 
997 //    av_log(NULL, AV_LOG_INFO, "buf_size: %d\n", buf_size);
998 
999     memset(state, 128, sizeof(state));
1000     ff_init_range_decoder(&c, buf, buf_size);
1001     ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8);
1002 
1003     intlist_read(&c, state, s->predictor_k, s->num_taps, 0);
1004 
1005     // dequantize
1006     for (i = 0; i < s->num_taps; i++)
1007         s->predictor_k[i] *= s->tap_quant[i];
1008 
1009     if (s->lossless)
1010         quant = 1;
1011     else
1012         quant = get_symbol(&c, state, 0) * SAMPLE_FACTOR;
1013 
1014 //    av_log(NULL, AV_LOG_INFO, "quant: %d\n", quant);
1015 
1016     for (ch = 0; ch < s->channels; ch++)
1017     {
1018         int x = ch;
1019 
1020         if (c.overread > MAX_OVERREAD)
1021             return AVERROR_INVALIDDATA;
1022 
1023         predictor_init_state(s->predictor_k, s->predictor_state[ch], s->num_taps);
1024 
1025         intlist_read(&c, state, s->coded_samples[ch], s->block_align, 1);
1026 
1027         for (i = 0; i < s->block_align; i++)
1028         {
1029             for (j = 0; j < s->downsampling - 1; j++)
1030             {
1031                 s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, 0);
1032                 x += s->channels;
1033             }
1034 
1035             s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, s->coded_samples[ch][i] * (unsigned)quant);
1036             x += s->channels;
1037         }
1038 
1039         for (i = 0; i < s->num_taps; i++)
1040             s->predictor_state[ch][i] = s->int_samples[s->frame_size - s->channels + ch - i*s->channels];
1041     }
1042 
1043     switch(s->decorrelation)
1044     {
1045         case MID_SIDE:
1046             for (i = 0; i < s->frame_size; i += s->channels)
1047             {
1048                 s->int_samples[i+1] += shift(s->int_samples[i], 1);
1049                 s->int_samples[i] -= s->int_samples[i+1];
1050             }
1051             break;
1052         case LEFT_SIDE:
1053             for (i = 0; i < s->frame_size; i += s->channels)
1054                 s->int_samples[i+1] += s->int_samples[i];
1055             break;
1056         case RIGHT_SIDE:
1057             for (i = 0; i < s->frame_size; i += s->channels)
1058                 s->int_samples[i] += s->int_samples[i+1];
1059             break;
1060     }
1061 
1062     if (!s->lossless)
1063         for (i = 0; i < s->frame_size; i++)
1064             s->int_samples[i] = shift(s->int_samples[i], SAMPLE_SHIFT);
1065 
1066     // internal -> short
1067     for (i = 0; i < s->frame_size; i++)
1068         samples[i] = av_clip_int16(s->int_samples[i]);
1069 
1070     *got_frame_ptr = 1;
1071 
1072     return buf_size;
1073 }
1074 
1075 AVCodec ff_sonic_decoder = {
1076     .name           = "sonic",
1077     .long_name      = NULL_IF_CONFIG_SMALL("Sonic"),
1078     .type           = AVMEDIA_TYPE_AUDIO,
1079     .id             = AV_CODEC_ID_SONIC,
1080     .priv_data_size = sizeof(SonicContext),
1081     .init           = sonic_decode_init,
1082     .close          = sonic_decode_close,
1083     .decode         = sonic_decode_frame,
1084     .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_EXPERIMENTAL | AV_CODEC_CAP_CHANNEL_CONF,
1085     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
1086 };
1087 #endif /* CONFIG_SONIC_DECODER */
1088 
1089 #if CONFIG_SONIC_ENCODER
1090 AVCodec ff_sonic_encoder = {
1091     .name           = "sonic",
1092     .long_name      = NULL_IF_CONFIG_SMALL("Sonic"),
1093     .type           = AVMEDIA_TYPE_AUDIO,
1094     .id             = AV_CODEC_ID_SONIC,
1095     .priv_data_size = sizeof(SonicContext),
1096     .init           = sonic_encode_init,
1097     .encode2        = sonic_encode_frame,
1098     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE },
1099     .capabilities   = AV_CODEC_CAP_EXPERIMENTAL,
1100     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
1101     .close          = sonic_encode_close,
1102 };
1103 #endif
1104 
1105 #if CONFIG_SONIC_LS_ENCODER
1106 AVCodec ff_sonic_ls_encoder = {
1107     .name           = "sonicls",
1108     .long_name      = NULL_IF_CONFIG_SMALL("Sonic lossless"),
1109     .type           = AVMEDIA_TYPE_AUDIO,
1110     .id             = AV_CODEC_ID_SONIC_LS,
1111     .priv_data_size = sizeof(SonicContext),
1112     .init           = sonic_encode_init,
1113     .encode2        = sonic_encode_frame,
1114     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE },
1115     .capabilities   = AV_CODEC_CAP_EXPERIMENTAL,
1116     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
1117     .close          = sonic_encode_close,
1118 };
1119 #endif
1120