1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/cpumask.h>
8 #include <linux/export.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/qcom_scm.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/clk.h>
17 #include <linux/reset-controller.h>
18 #include <linux/arm-smccc.h>
19 
20 #include "qcom_scm.h"
21 
22 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
23 module_param(download_mode, bool, 0);
24 
25 #define SCM_HAS_CORE_CLK	BIT(0)
26 #define SCM_HAS_IFACE_CLK	BIT(1)
27 #define SCM_HAS_BUS_CLK		BIT(2)
28 
29 struct qcom_scm {
30 	struct device *dev;
31 	struct clk *core_clk;
32 	struct clk *iface_clk;
33 	struct clk *bus_clk;
34 	struct reset_controller_dev reset;
35 
36 	u64 dload_mode_addr;
37 };
38 
39 struct qcom_scm_current_perm_info {
40 	__le32 vmid;
41 	__le32 perm;
42 	__le64 ctx;
43 	__le32 ctx_size;
44 	__le32 unused;
45 };
46 
47 struct qcom_scm_mem_map_info {
48 	__le64 mem_addr;
49 	__le64 mem_size;
50 };
51 
52 #define QCOM_SCM_FLAG_COLDBOOT_CPU0	0x00
53 #define QCOM_SCM_FLAG_COLDBOOT_CPU1	0x01
54 #define QCOM_SCM_FLAG_COLDBOOT_CPU2	0x08
55 #define QCOM_SCM_FLAG_COLDBOOT_CPU3	0x20
56 
57 #define QCOM_SCM_FLAG_WARMBOOT_CPU0	0x04
58 #define QCOM_SCM_FLAG_WARMBOOT_CPU1	0x02
59 #define QCOM_SCM_FLAG_WARMBOOT_CPU2	0x10
60 #define QCOM_SCM_FLAG_WARMBOOT_CPU3	0x40
61 
62 struct qcom_scm_wb_entry {
63 	int flag;
64 	void *entry;
65 };
66 
67 static struct qcom_scm_wb_entry qcom_scm_wb[] = {
68 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
69 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
70 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
71 	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
72 };
73 
74 static const char *qcom_scm_convention_names[] = {
75 	[SMC_CONVENTION_UNKNOWN] = "unknown",
76 	[SMC_CONVENTION_ARM_32] = "smc arm 32",
77 	[SMC_CONVENTION_ARM_64] = "smc arm 64",
78 	[SMC_CONVENTION_LEGACY] = "smc legacy",
79 };
80 
81 static struct qcom_scm *__scm;
82 
qcom_scm_clk_enable(void)83 static int qcom_scm_clk_enable(void)
84 {
85 	int ret;
86 
87 	ret = clk_prepare_enable(__scm->core_clk);
88 	if (ret)
89 		goto bail;
90 
91 	ret = clk_prepare_enable(__scm->iface_clk);
92 	if (ret)
93 		goto disable_core;
94 
95 	ret = clk_prepare_enable(__scm->bus_clk);
96 	if (ret)
97 		goto disable_iface;
98 
99 	return 0;
100 
101 disable_iface:
102 	clk_disable_unprepare(__scm->iface_clk);
103 disable_core:
104 	clk_disable_unprepare(__scm->core_clk);
105 bail:
106 	return ret;
107 }
108 
qcom_scm_clk_disable(void)109 static void qcom_scm_clk_disable(void)
110 {
111 	clk_disable_unprepare(__scm->core_clk);
112 	clk_disable_unprepare(__scm->iface_clk);
113 	clk_disable_unprepare(__scm->bus_clk);
114 }
115 
116 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
117 static DEFINE_SPINLOCK(scm_query_lock);
118 
__get_convention(void)119 static enum qcom_scm_convention __get_convention(void)
120 {
121 	unsigned long flags;
122 	struct qcom_scm_desc desc = {
123 		.svc = QCOM_SCM_SVC_INFO,
124 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
125 		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
126 					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
127 			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
128 		.arginfo = QCOM_SCM_ARGS(1),
129 		.owner = ARM_SMCCC_OWNER_SIP,
130 	};
131 	struct qcom_scm_res res;
132 	enum qcom_scm_convention probed_convention;
133 	int ret;
134 	bool forced = false;
135 
136 	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
137 		return qcom_scm_convention;
138 
139 	/*
140 	 * Device isn't required as there is only one argument - no device
141 	 * needed to dma_map_single to secure world
142 	 */
143 	probed_convention = SMC_CONVENTION_ARM_64;
144 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
145 	if (!ret && res.result[0] == 1)
146 		goto found;
147 
148 	/*
149 	 * Some SC7180 firmwares didn't implement the
150 	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
151 	 * calling conventions on these firmwares. Luckily we don't make any
152 	 * early calls into the firmware on these SoCs so the device pointer
153 	 * will be valid here to check if the compatible matches.
154 	 */
155 	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
156 		forced = true;
157 		goto found;
158 	}
159 
160 	probed_convention = SMC_CONVENTION_ARM_32;
161 	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
162 	if (!ret && res.result[0] == 1)
163 		goto found;
164 
165 	probed_convention = SMC_CONVENTION_LEGACY;
166 found:
167 	spin_lock_irqsave(&scm_query_lock, flags);
168 	if (probed_convention != qcom_scm_convention) {
169 		qcom_scm_convention = probed_convention;
170 		pr_info("qcom_scm: convention: %s%s\n",
171 			qcom_scm_convention_names[qcom_scm_convention],
172 			forced ? " (forced)" : "");
173 	}
174 	spin_unlock_irqrestore(&scm_query_lock, flags);
175 
176 	return qcom_scm_convention;
177 }
178 
179 /**
180  * qcom_scm_call() - Invoke a syscall in the secure world
181  * @dev:	device
182  * @svc_id:	service identifier
183  * @cmd_id:	command identifier
184  * @desc:	Descriptor structure containing arguments and return values
185  *
186  * Sends a command to the SCM and waits for the command to finish processing.
187  * This should *only* be called in pre-emptible context.
188  */
qcom_scm_call(struct device * dev,const struct qcom_scm_desc * desc,struct qcom_scm_res * res)189 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
190 			 struct qcom_scm_res *res)
191 {
192 	might_sleep();
193 	switch (__get_convention()) {
194 	case SMC_CONVENTION_ARM_32:
195 	case SMC_CONVENTION_ARM_64:
196 		return scm_smc_call(dev, desc, res, false);
197 	case SMC_CONVENTION_LEGACY:
198 		return scm_legacy_call(dev, desc, res);
199 	default:
200 		pr_err("Unknown current SCM calling convention.\n");
201 		return -EINVAL;
202 	}
203 }
204 
205 /**
206  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
207  * @dev:	device
208  * @svc_id:	service identifier
209  * @cmd_id:	command identifier
210  * @desc:	Descriptor structure containing arguments and return values
211  * @res:	Structure containing results from SMC/HVC call
212  *
213  * Sends a command to the SCM and waits for the command to finish processing.
214  * This can be called in atomic context.
215  */
qcom_scm_call_atomic(struct device * dev,const struct qcom_scm_desc * desc,struct qcom_scm_res * res)216 static int qcom_scm_call_atomic(struct device *dev,
217 				const struct qcom_scm_desc *desc,
218 				struct qcom_scm_res *res)
219 {
220 	switch (__get_convention()) {
221 	case SMC_CONVENTION_ARM_32:
222 	case SMC_CONVENTION_ARM_64:
223 		return scm_smc_call(dev, desc, res, true);
224 	case SMC_CONVENTION_LEGACY:
225 		return scm_legacy_call_atomic(dev, desc, res);
226 	default:
227 		pr_err("Unknown current SCM calling convention.\n");
228 		return -EINVAL;
229 	}
230 }
231 
__qcom_scm_is_call_available(struct device * dev,u32 svc_id,u32 cmd_id)232 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
233 					 u32 cmd_id)
234 {
235 	int ret;
236 	struct qcom_scm_desc desc = {
237 		.svc = QCOM_SCM_SVC_INFO,
238 		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
239 		.owner = ARM_SMCCC_OWNER_SIP,
240 	};
241 	struct qcom_scm_res res;
242 
243 	desc.arginfo = QCOM_SCM_ARGS(1);
244 	switch (__get_convention()) {
245 	case SMC_CONVENTION_ARM_32:
246 	case SMC_CONVENTION_ARM_64:
247 		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
248 				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
249 		break;
250 	case SMC_CONVENTION_LEGACY:
251 		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
252 		break;
253 	default:
254 		pr_err("Unknown SMC convention being used\n");
255 		return -EINVAL;
256 	}
257 
258 	ret = qcom_scm_call(dev, &desc, &res);
259 
260 	return ret ? false : !!res.result[0];
261 }
262 
263 /**
264  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
265  * @entry: Entry point function for the cpus
266  * @cpus: The cpumask of cpus that will use the entry point
267  *
268  * Set the Linux entry point for the SCM to transfer control to when coming
269  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
270  */
qcom_scm_set_warm_boot_addr(void * entry,const cpumask_t * cpus)271 int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
272 {
273 	int ret;
274 	int flags = 0;
275 	int cpu;
276 	struct qcom_scm_desc desc = {
277 		.svc = QCOM_SCM_SVC_BOOT,
278 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
279 		.arginfo = QCOM_SCM_ARGS(2),
280 	};
281 
282 	/*
283 	 * Reassign only if we are switching from hotplug entry point
284 	 * to cpuidle entry point or vice versa.
285 	 */
286 	for_each_cpu(cpu, cpus) {
287 		if (entry == qcom_scm_wb[cpu].entry)
288 			continue;
289 		flags |= qcom_scm_wb[cpu].flag;
290 	}
291 
292 	/* No change in entry function */
293 	if (!flags)
294 		return 0;
295 
296 	desc.args[0] = flags;
297 	desc.args[1] = virt_to_phys(entry);
298 
299 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
300 	if (!ret) {
301 		for_each_cpu(cpu, cpus)
302 			qcom_scm_wb[cpu].entry = entry;
303 	}
304 
305 	return ret;
306 }
307 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
308 
309 /**
310  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
311  * @entry: Entry point function for the cpus
312  * @cpus: The cpumask of cpus that will use the entry point
313  *
314  * Set the cold boot address of the cpus. Any cpu outside the supported
315  * range would be removed from the cpu present mask.
316  */
qcom_scm_set_cold_boot_addr(void * entry,const cpumask_t * cpus)317 int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
318 {
319 	int flags = 0;
320 	int cpu;
321 	int scm_cb_flags[] = {
322 		QCOM_SCM_FLAG_COLDBOOT_CPU0,
323 		QCOM_SCM_FLAG_COLDBOOT_CPU1,
324 		QCOM_SCM_FLAG_COLDBOOT_CPU2,
325 		QCOM_SCM_FLAG_COLDBOOT_CPU3,
326 	};
327 	struct qcom_scm_desc desc = {
328 		.svc = QCOM_SCM_SVC_BOOT,
329 		.cmd = QCOM_SCM_BOOT_SET_ADDR,
330 		.arginfo = QCOM_SCM_ARGS(2),
331 		.owner = ARM_SMCCC_OWNER_SIP,
332 	};
333 
334 	if (!cpus || (cpus && cpumask_empty(cpus)))
335 		return -EINVAL;
336 
337 	for_each_cpu(cpu, cpus) {
338 		if (cpu < ARRAY_SIZE(scm_cb_flags))
339 			flags |= scm_cb_flags[cpu];
340 		else
341 			set_cpu_present(cpu, false);
342 	}
343 
344 	desc.args[0] = flags;
345 	desc.args[1] = virt_to_phys(entry);
346 
347 	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
348 }
349 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
350 
351 /**
352  * qcom_scm_cpu_power_down() - Power down the cpu
353  * @flags - Flags to flush cache
354  *
355  * This is an end point to power down cpu. If there was a pending interrupt,
356  * the control would return from this function, otherwise, the cpu jumps to the
357  * warm boot entry point set for this cpu upon reset.
358  */
qcom_scm_cpu_power_down(u32 flags)359 void qcom_scm_cpu_power_down(u32 flags)
360 {
361 	struct qcom_scm_desc desc = {
362 		.svc = QCOM_SCM_SVC_BOOT,
363 		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
364 		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
365 		.arginfo = QCOM_SCM_ARGS(1),
366 		.owner = ARM_SMCCC_OWNER_SIP,
367 	};
368 
369 	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
370 }
371 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
372 
qcom_scm_set_remote_state(u32 state,u32 id)373 int qcom_scm_set_remote_state(u32 state, u32 id)
374 {
375 	struct qcom_scm_desc desc = {
376 		.svc = QCOM_SCM_SVC_BOOT,
377 		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
378 		.arginfo = QCOM_SCM_ARGS(2),
379 		.args[0] = state,
380 		.args[1] = id,
381 		.owner = ARM_SMCCC_OWNER_SIP,
382 	};
383 	struct qcom_scm_res res;
384 	int ret;
385 
386 	ret = qcom_scm_call(__scm->dev, &desc, &res);
387 
388 	return ret ? : res.result[0];
389 }
390 EXPORT_SYMBOL(qcom_scm_set_remote_state);
391 
__qcom_scm_set_dload_mode(struct device * dev,bool enable)392 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
393 {
394 	struct qcom_scm_desc desc = {
395 		.svc = QCOM_SCM_SVC_BOOT,
396 		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
397 		.arginfo = QCOM_SCM_ARGS(2),
398 		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
399 		.owner = ARM_SMCCC_OWNER_SIP,
400 	};
401 
402 	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
403 
404 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
405 }
406 
qcom_scm_set_download_mode(bool enable)407 static void qcom_scm_set_download_mode(bool enable)
408 {
409 	bool avail;
410 	int ret = 0;
411 
412 	avail = __qcom_scm_is_call_available(__scm->dev,
413 					     QCOM_SCM_SVC_BOOT,
414 					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
415 	if (avail) {
416 		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
417 	} else if (__scm->dload_mode_addr) {
418 		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
419 				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
420 	} else {
421 		dev_err(__scm->dev,
422 			"No available mechanism for setting download mode\n");
423 	}
424 
425 	if (ret)
426 		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
427 }
428 
429 /**
430  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
431  *			       state machine for a given peripheral, using the
432  *			       metadata
433  * @peripheral: peripheral id
434  * @metadata:	pointer to memory containing ELF header, program header table
435  *		and optional blob of data used for authenticating the metadata
436  *		and the rest of the firmware
437  * @size:	size of the metadata
438  *
439  * Returns 0 on success.
440  */
qcom_scm_pas_init_image(u32 peripheral,const void * metadata,size_t size)441 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
442 {
443 	dma_addr_t mdata_phys;
444 	void *mdata_buf;
445 	int ret;
446 	struct qcom_scm_desc desc = {
447 		.svc = QCOM_SCM_SVC_PIL,
448 		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
449 		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
450 		.args[0] = peripheral,
451 		.owner = ARM_SMCCC_OWNER_SIP,
452 	};
453 	struct qcom_scm_res res;
454 
455 	/*
456 	 * During the scm call memory protection will be enabled for the meta
457 	 * data blob, so make sure it's physically contiguous, 4K aligned and
458 	 * non-cachable to avoid XPU violations.
459 	 */
460 	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
461 				       GFP_KERNEL);
462 	if (!mdata_buf) {
463 		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
464 		return -ENOMEM;
465 	}
466 	memcpy(mdata_buf, metadata, size);
467 
468 	ret = qcom_scm_clk_enable();
469 	if (ret)
470 		goto free_metadata;
471 
472 	desc.args[1] = mdata_phys;
473 
474 	ret = qcom_scm_call(__scm->dev, &desc, &res);
475 
476 	qcom_scm_clk_disable();
477 
478 free_metadata:
479 	dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
480 
481 	return ret ? : res.result[0];
482 }
483 EXPORT_SYMBOL(qcom_scm_pas_init_image);
484 
485 /**
486  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
487  *			      for firmware loading
488  * @peripheral:	peripheral id
489  * @addr:	start address of memory area to prepare
490  * @size:	size of the memory area to prepare
491  *
492  * Returns 0 on success.
493  */
qcom_scm_pas_mem_setup(u32 peripheral,phys_addr_t addr,phys_addr_t size)494 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
495 {
496 	int ret;
497 	struct qcom_scm_desc desc = {
498 		.svc = QCOM_SCM_SVC_PIL,
499 		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
500 		.arginfo = QCOM_SCM_ARGS(3),
501 		.args[0] = peripheral,
502 		.args[1] = addr,
503 		.args[2] = size,
504 		.owner = ARM_SMCCC_OWNER_SIP,
505 	};
506 	struct qcom_scm_res res;
507 
508 	ret = qcom_scm_clk_enable();
509 	if (ret)
510 		return ret;
511 
512 	ret = qcom_scm_call(__scm->dev, &desc, &res);
513 	qcom_scm_clk_disable();
514 
515 	return ret ? : res.result[0];
516 }
517 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
518 
519 /**
520  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
521  *				   and reset the remote processor
522  * @peripheral:	peripheral id
523  *
524  * Return 0 on success.
525  */
qcom_scm_pas_auth_and_reset(u32 peripheral)526 int qcom_scm_pas_auth_and_reset(u32 peripheral)
527 {
528 	int ret;
529 	struct qcom_scm_desc desc = {
530 		.svc = QCOM_SCM_SVC_PIL,
531 		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
532 		.arginfo = QCOM_SCM_ARGS(1),
533 		.args[0] = peripheral,
534 		.owner = ARM_SMCCC_OWNER_SIP,
535 	};
536 	struct qcom_scm_res res;
537 
538 	ret = qcom_scm_clk_enable();
539 	if (ret)
540 		return ret;
541 
542 	ret = qcom_scm_call(__scm->dev, &desc, &res);
543 	qcom_scm_clk_disable();
544 
545 	return ret ? : res.result[0];
546 }
547 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
548 
549 /**
550  * qcom_scm_pas_shutdown() - Shut down the remote processor
551  * @peripheral: peripheral id
552  *
553  * Returns 0 on success.
554  */
qcom_scm_pas_shutdown(u32 peripheral)555 int qcom_scm_pas_shutdown(u32 peripheral)
556 {
557 	int ret;
558 	struct qcom_scm_desc desc = {
559 		.svc = QCOM_SCM_SVC_PIL,
560 		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
561 		.arginfo = QCOM_SCM_ARGS(1),
562 		.args[0] = peripheral,
563 		.owner = ARM_SMCCC_OWNER_SIP,
564 	};
565 	struct qcom_scm_res res;
566 
567 	ret = qcom_scm_clk_enable();
568 	if (ret)
569 		return ret;
570 
571 	ret = qcom_scm_call(__scm->dev, &desc, &res);
572 
573 	qcom_scm_clk_disable();
574 
575 	return ret ? : res.result[0];
576 }
577 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
578 
579 /**
580  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
581  *			      available for the given peripherial
582  * @peripheral:	peripheral id
583  *
584  * Returns true if PAS is supported for this peripheral, otherwise false.
585  */
qcom_scm_pas_supported(u32 peripheral)586 bool qcom_scm_pas_supported(u32 peripheral)
587 {
588 	int ret;
589 	struct qcom_scm_desc desc = {
590 		.svc = QCOM_SCM_SVC_PIL,
591 		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
592 		.arginfo = QCOM_SCM_ARGS(1),
593 		.args[0] = peripheral,
594 		.owner = ARM_SMCCC_OWNER_SIP,
595 	};
596 	struct qcom_scm_res res;
597 
598 	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
599 					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
600 		return false;
601 
602 	ret = qcom_scm_call(__scm->dev, &desc, &res);
603 
604 	return ret ? false : !!res.result[0];
605 }
606 EXPORT_SYMBOL(qcom_scm_pas_supported);
607 
__qcom_scm_pas_mss_reset(struct device * dev,bool reset)608 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
609 {
610 	struct qcom_scm_desc desc = {
611 		.svc = QCOM_SCM_SVC_PIL,
612 		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
613 		.arginfo = QCOM_SCM_ARGS(2),
614 		.args[0] = reset,
615 		.args[1] = 0,
616 		.owner = ARM_SMCCC_OWNER_SIP,
617 	};
618 	struct qcom_scm_res res;
619 	int ret;
620 
621 	ret = qcom_scm_call(__scm->dev, &desc, &res);
622 
623 	return ret ? : res.result[0];
624 }
625 
qcom_scm_pas_reset_assert(struct reset_controller_dev * rcdev,unsigned long idx)626 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
627 				     unsigned long idx)
628 {
629 	if (idx != 0)
630 		return -EINVAL;
631 
632 	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
633 }
634 
qcom_scm_pas_reset_deassert(struct reset_controller_dev * rcdev,unsigned long idx)635 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
636 				       unsigned long idx)
637 {
638 	if (idx != 0)
639 		return -EINVAL;
640 
641 	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
642 }
643 
644 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
645 	.assert = qcom_scm_pas_reset_assert,
646 	.deassert = qcom_scm_pas_reset_deassert,
647 };
648 
qcom_scm_io_readl(phys_addr_t addr,unsigned int * val)649 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
650 {
651 	struct qcom_scm_desc desc = {
652 		.svc = QCOM_SCM_SVC_IO,
653 		.cmd = QCOM_SCM_IO_READ,
654 		.arginfo = QCOM_SCM_ARGS(1),
655 		.args[0] = addr,
656 		.owner = ARM_SMCCC_OWNER_SIP,
657 	};
658 	struct qcom_scm_res res;
659 	int ret;
660 
661 
662 	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
663 	if (ret >= 0)
664 		*val = res.result[0];
665 
666 	return ret < 0 ? ret : 0;
667 }
668 EXPORT_SYMBOL(qcom_scm_io_readl);
669 
qcom_scm_io_writel(phys_addr_t addr,unsigned int val)670 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
671 {
672 	struct qcom_scm_desc desc = {
673 		.svc = QCOM_SCM_SVC_IO,
674 		.cmd = QCOM_SCM_IO_WRITE,
675 		.arginfo = QCOM_SCM_ARGS(2),
676 		.args[0] = addr,
677 		.args[1] = val,
678 		.owner = ARM_SMCCC_OWNER_SIP,
679 	};
680 
681 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
682 }
683 EXPORT_SYMBOL(qcom_scm_io_writel);
684 
685 /**
686  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
687  * supports restore security config interface.
688  *
689  * Return true if restore-cfg interface is supported, false if not.
690  */
qcom_scm_restore_sec_cfg_available(void)691 bool qcom_scm_restore_sec_cfg_available(void)
692 {
693 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
694 					    QCOM_SCM_MP_RESTORE_SEC_CFG);
695 }
696 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
697 
qcom_scm_restore_sec_cfg(u32 device_id,u32 spare)698 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
699 {
700 	struct qcom_scm_desc desc = {
701 		.svc = QCOM_SCM_SVC_MP,
702 		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
703 		.arginfo = QCOM_SCM_ARGS(2),
704 		.args[0] = device_id,
705 		.args[1] = spare,
706 		.owner = ARM_SMCCC_OWNER_SIP,
707 	};
708 	struct qcom_scm_res res;
709 	int ret;
710 
711 	ret = qcom_scm_call(__scm->dev, &desc, &res);
712 
713 	return ret ? : res.result[0];
714 }
715 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
716 
qcom_scm_iommu_secure_ptbl_size(u32 spare,size_t * size)717 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
718 {
719 	struct qcom_scm_desc desc = {
720 		.svc = QCOM_SCM_SVC_MP,
721 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
722 		.arginfo = QCOM_SCM_ARGS(1),
723 		.args[0] = spare,
724 		.owner = ARM_SMCCC_OWNER_SIP,
725 	};
726 	struct qcom_scm_res res;
727 	int ret;
728 
729 	ret = qcom_scm_call(__scm->dev, &desc, &res);
730 
731 	if (size)
732 		*size = res.result[0];
733 
734 	return ret ? : res.result[1];
735 }
736 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
737 
qcom_scm_iommu_secure_ptbl_init(u64 addr,u32 size,u32 spare)738 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
739 {
740 	struct qcom_scm_desc desc = {
741 		.svc = QCOM_SCM_SVC_MP,
742 		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
743 		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
744 					 QCOM_SCM_VAL),
745 		.args[0] = addr,
746 		.args[1] = size,
747 		.args[2] = spare,
748 		.owner = ARM_SMCCC_OWNER_SIP,
749 	};
750 	int ret;
751 
752 	desc.args[0] = addr;
753 	desc.args[1] = size;
754 	desc.args[2] = spare;
755 	desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
756 				     QCOM_SCM_VAL);
757 
758 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
759 
760 	/* the pg table has been initialized already, ignore the error */
761 	if (ret == -EPERM)
762 		ret = 0;
763 
764 	return ret;
765 }
766 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
767 
qcom_scm_mem_protect_video_var(u32 cp_start,u32 cp_size,u32 cp_nonpixel_start,u32 cp_nonpixel_size)768 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
769 				   u32 cp_nonpixel_start,
770 				   u32 cp_nonpixel_size)
771 {
772 	int ret;
773 	struct qcom_scm_desc desc = {
774 		.svc = QCOM_SCM_SVC_MP,
775 		.cmd = QCOM_SCM_MP_VIDEO_VAR,
776 		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
777 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
778 		.args[0] = cp_start,
779 		.args[1] = cp_size,
780 		.args[2] = cp_nonpixel_start,
781 		.args[3] = cp_nonpixel_size,
782 		.owner = ARM_SMCCC_OWNER_SIP,
783 	};
784 	struct qcom_scm_res res;
785 
786 	ret = qcom_scm_call(__scm->dev, &desc, &res);
787 
788 	return ret ? : res.result[0];
789 }
790 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
791 
__qcom_scm_assign_mem(struct device * dev,phys_addr_t mem_region,size_t mem_sz,phys_addr_t src,size_t src_sz,phys_addr_t dest,size_t dest_sz)792 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
793 				 size_t mem_sz, phys_addr_t src, size_t src_sz,
794 				 phys_addr_t dest, size_t dest_sz)
795 {
796 	int ret;
797 	struct qcom_scm_desc desc = {
798 		.svc = QCOM_SCM_SVC_MP,
799 		.cmd = QCOM_SCM_MP_ASSIGN,
800 		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
801 					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
802 					 QCOM_SCM_VAL, QCOM_SCM_VAL),
803 		.args[0] = mem_region,
804 		.args[1] = mem_sz,
805 		.args[2] = src,
806 		.args[3] = src_sz,
807 		.args[4] = dest,
808 		.args[5] = dest_sz,
809 		.args[6] = 0,
810 		.owner = ARM_SMCCC_OWNER_SIP,
811 	};
812 	struct qcom_scm_res res;
813 
814 	ret = qcom_scm_call(dev, &desc, &res);
815 
816 	return ret ? : res.result[0];
817 }
818 
819 /**
820  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
821  * @mem_addr: mem region whose ownership need to be reassigned
822  * @mem_sz:   size of the region.
823  * @srcvm:    vmid for current set of owners, each set bit in
824  *            flag indicate a unique owner
825  * @newvm:    array having new owners and corresponding permission
826  *            flags
827  * @dest_cnt: number of owners in next set.
828  *
829  * Return negative errno on failure or 0 on success with @srcvm updated.
830  */
qcom_scm_assign_mem(phys_addr_t mem_addr,size_t mem_sz,unsigned int * srcvm,const struct qcom_scm_vmperm * newvm,unsigned int dest_cnt)831 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
832 			unsigned int *srcvm,
833 			const struct qcom_scm_vmperm *newvm,
834 			unsigned int dest_cnt)
835 {
836 	struct qcom_scm_current_perm_info *destvm;
837 	struct qcom_scm_mem_map_info *mem_to_map;
838 	phys_addr_t mem_to_map_phys;
839 	phys_addr_t dest_phys;
840 	dma_addr_t ptr_phys;
841 	size_t mem_to_map_sz;
842 	size_t dest_sz;
843 	size_t src_sz;
844 	size_t ptr_sz;
845 	int next_vm;
846 	__le32 *src;
847 	void *ptr;
848 	int ret, i, b;
849 	unsigned long srcvm_bits = *srcvm;
850 
851 	src_sz = hweight_long(srcvm_bits) * sizeof(*src);
852 	mem_to_map_sz = sizeof(*mem_to_map);
853 	dest_sz = dest_cnt * sizeof(*destvm);
854 	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
855 			ALIGN(dest_sz, SZ_64);
856 
857 	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
858 	if (!ptr)
859 		return -ENOMEM;
860 
861 	/* Fill source vmid detail */
862 	src = ptr;
863 	i = 0;
864 	for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
865 		src[i++] = cpu_to_le32(b);
866 
867 	/* Fill details of mem buff to map */
868 	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
869 	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
870 	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
871 	mem_to_map->mem_size = cpu_to_le64(mem_sz);
872 
873 	next_vm = 0;
874 	/* Fill details of next vmid detail */
875 	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
876 	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
877 	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
878 		destvm->vmid = cpu_to_le32(newvm->vmid);
879 		destvm->perm = cpu_to_le32(newvm->perm);
880 		destvm->ctx = 0;
881 		destvm->ctx_size = 0;
882 		next_vm |= BIT(newvm->vmid);
883 	}
884 
885 	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
886 				    ptr_phys, src_sz, dest_phys, dest_sz);
887 	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
888 	if (ret) {
889 		dev_err(__scm->dev,
890 			"Assign memory protection call failed %d\n", ret);
891 		return -EINVAL;
892 	}
893 
894 	*srcvm = next_vm;
895 	return 0;
896 }
897 EXPORT_SYMBOL(qcom_scm_assign_mem);
898 
899 /**
900  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
901  */
qcom_scm_ocmem_lock_available(void)902 bool qcom_scm_ocmem_lock_available(void)
903 {
904 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
905 					    QCOM_SCM_OCMEM_LOCK_CMD);
906 }
907 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
908 
909 /**
910  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
911  * region to the specified initiator
912  *
913  * @id:     tz initiator id
914  * @offset: OCMEM offset
915  * @size:   OCMEM size
916  * @mode:   access mode (WIDE/NARROW)
917  */
qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id,u32 offset,u32 size,u32 mode)918 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
919 			u32 mode)
920 {
921 	struct qcom_scm_desc desc = {
922 		.svc = QCOM_SCM_SVC_OCMEM,
923 		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
924 		.args[0] = id,
925 		.args[1] = offset,
926 		.args[2] = size,
927 		.args[3] = mode,
928 		.arginfo = QCOM_SCM_ARGS(4),
929 	};
930 
931 	return qcom_scm_call(__scm->dev, &desc, NULL);
932 }
933 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
934 
935 /**
936  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
937  * region from the specified initiator
938  *
939  * @id:     tz initiator id
940  * @offset: OCMEM offset
941  * @size:   OCMEM size
942  */
qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id,u32 offset,u32 size)943 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
944 {
945 	struct qcom_scm_desc desc = {
946 		.svc = QCOM_SCM_SVC_OCMEM,
947 		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
948 		.args[0] = id,
949 		.args[1] = offset,
950 		.args[2] = size,
951 		.arginfo = QCOM_SCM_ARGS(3),
952 	};
953 
954 	return qcom_scm_call(__scm->dev, &desc, NULL);
955 }
956 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
957 
958 /**
959  * qcom_scm_ice_available() - Is the ICE key programming interface available?
960  *
961  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
962  *	   qcom_scm_ice_set_key() are available.
963  */
qcom_scm_ice_available(void)964 bool qcom_scm_ice_available(void)
965 {
966 	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
967 					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
968 		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
969 					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
970 }
971 EXPORT_SYMBOL(qcom_scm_ice_available);
972 
973 /**
974  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
975  * @index: the keyslot to invalidate
976  *
977  * The UFSHCI and eMMC standards define a standard way to do this, but it
978  * doesn't work on these SoCs; only this SCM call does.
979  *
980  * It is assumed that the SoC has only one ICE instance being used, as this SCM
981  * call doesn't specify which ICE instance the keyslot belongs to.
982  *
983  * Return: 0 on success; -errno on failure.
984  */
qcom_scm_ice_invalidate_key(u32 index)985 int qcom_scm_ice_invalidate_key(u32 index)
986 {
987 	struct qcom_scm_desc desc = {
988 		.svc = QCOM_SCM_SVC_ES,
989 		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
990 		.arginfo = QCOM_SCM_ARGS(1),
991 		.args[0] = index,
992 		.owner = ARM_SMCCC_OWNER_SIP,
993 	};
994 
995 	return qcom_scm_call(__scm->dev, &desc, NULL);
996 }
997 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
998 
999 /**
1000  * qcom_scm_ice_set_key() - Set an inline encryption key
1001  * @index: the keyslot into which to set the key
1002  * @key: the key to program
1003  * @key_size: the size of the key in bytes
1004  * @cipher: the encryption algorithm the key is for
1005  * @data_unit_size: the encryption data unit size, i.e. the size of each
1006  *		    individual plaintext and ciphertext.  Given in 512-byte
1007  *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1008  *
1009  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1010  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1011  *
1012  * The UFSHCI and eMMC standards define a standard way to do this, but it
1013  * doesn't work on these SoCs; only this SCM call does.
1014  *
1015  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1016  * call doesn't specify which ICE instance the keyslot belongs to.
1017  *
1018  * Return: 0 on success; -errno on failure.
1019  */
qcom_scm_ice_set_key(u32 index,const u8 * key,u32 key_size,enum qcom_scm_ice_cipher cipher,u32 data_unit_size)1020 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1021 			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1022 {
1023 	struct qcom_scm_desc desc = {
1024 		.svc = QCOM_SCM_SVC_ES,
1025 		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1026 		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1027 					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1028 					 QCOM_SCM_VAL),
1029 		.args[0] = index,
1030 		.args[2] = key_size,
1031 		.args[3] = cipher,
1032 		.args[4] = data_unit_size,
1033 		.owner = ARM_SMCCC_OWNER_SIP,
1034 	};
1035 	void *keybuf;
1036 	dma_addr_t key_phys;
1037 	int ret;
1038 
1039 	/*
1040 	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1041 	 * physical address that's been properly flushed.  The sanctioned way to
1042 	 * do this is by using the DMA API.  But as is best practice for crypto
1043 	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1044 	 * dma_map_single() not clearly correct, since the DMA API can use
1045 	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1046 	 * keys is normally rare and thus not performance-critical.
1047 	 */
1048 
1049 	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1050 				    GFP_KERNEL);
1051 	if (!keybuf)
1052 		return -ENOMEM;
1053 	memcpy(keybuf, key, key_size);
1054 	desc.args[1] = key_phys;
1055 
1056 	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1057 
1058 	memzero_explicit(keybuf, key_size);
1059 
1060 	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1061 	return ret;
1062 }
1063 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1064 
1065 /**
1066  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1067  *
1068  * Return true if HDCP is supported, false if not.
1069  */
qcom_scm_hdcp_available(void)1070 bool qcom_scm_hdcp_available(void)
1071 {
1072 	bool avail;
1073 	int ret = qcom_scm_clk_enable();
1074 
1075 	if (ret)
1076 		return ret;
1077 
1078 	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1079 						QCOM_SCM_HDCP_INVOKE);
1080 
1081 	qcom_scm_clk_disable();
1082 
1083 	return avail;
1084 }
1085 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1086 
1087 /**
1088  * qcom_scm_hdcp_req() - Send HDCP request.
1089  * @req: HDCP request array
1090  * @req_cnt: HDCP request array count
1091  * @resp: response buffer passed to SCM
1092  *
1093  * Write HDCP register(s) through SCM.
1094  */
qcom_scm_hdcp_req(struct qcom_scm_hdcp_req * req,u32 req_cnt,u32 * resp)1095 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1096 {
1097 	int ret;
1098 	struct qcom_scm_desc desc = {
1099 		.svc = QCOM_SCM_SVC_HDCP,
1100 		.cmd = QCOM_SCM_HDCP_INVOKE,
1101 		.arginfo = QCOM_SCM_ARGS(10),
1102 		.args = {
1103 			req[0].addr,
1104 			req[0].val,
1105 			req[1].addr,
1106 			req[1].val,
1107 			req[2].addr,
1108 			req[2].val,
1109 			req[3].addr,
1110 			req[3].val,
1111 			req[4].addr,
1112 			req[4].val
1113 		},
1114 		.owner = ARM_SMCCC_OWNER_SIP,
1115 	};
1116 	struct qcom_scm_res res;
1117 
1118 	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1119 		return -ERANGE;
1120 
1121 	ret = qcom_scm_clk_enable();
1122 	if (ret)
1123 		return ret;
1124 
1125 	ret = qcom_scm_call(__scm->dev, &desc, &res);
1126 	*resp = res.result[0];
1127 
1128 	qcom_scm_clk_disable();
1129 
1130 	return ret;
1131 }
1132 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1133 
qcom_scm_qsmmu500_wait_safe_toggle(bool en)1134 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1135 {
1136 	struct qcom_scm_desc desc = {
1137 		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1138 		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1139 		.arginfo = QCOM_SCM_ARGS(2),
1140 		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1141 		.args[1] = en,
1142 		.owner = ARM_SMCCC_OWNER_SIP,
1143 	};
1144 
1145 
1146 	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1147 }
1148 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1149 
qcom_scm_find_dload_address(struct device * dev,u64 * addr)1150 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1151 {
1152 	struct device_node *tcsr;
1153 	struct device_node *np = dev->of_node;
1154 	struct resource res;
1155 	u32 offset;
1156 	int ret;
1157 
1158 	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1159 	if (!tcsr)
1160 		return 0;
1161 
1162 	ret = of_address_to_resource(tcsr, 0, &res);
1163 	of_node_put(tcsr);
1164 	if (ret)
1165 		return ret;
1166 
1167 	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1168 	if (ret < 0)
1169 		return ret;
1170 
1171 	*addr = res.start + offset;
1172 
1173 	return 0;
1174 }
1175 
1176 /**
1177  * qcom_scm_is_available() - Checks if SCM is available
1178  */
qcom_scm_is_available(void)1179 bool qcom_scm_is_available(void)
1180 {
1181 	return !!__scm;
1182 }
1183 EXPORT_SYMBOL(qcom_scm_is_available);
1184 
qcom_scm_probe(struct platform_device * pdev)1185 static int qcom_scm_probe(struct platform_device *pdev)
1186 {
1187 	struct qcom_scm *scm;
1188 	unsigned long clks;
1189 	int ret;
1190 
1191 	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1192 	if (!scm)
1193 		return -ENOMEM;
1194 
1195 	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1196 	if (ret < 0)
1197 		return ret;
1198 
1199 	clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1200 
1201 	scm->core_clk = devm_clk_get(&pdev->dev, "core");
1202 	if (IS_ERR(scm->core_clk)) {
1203 		if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1204 			return PTR_ERR(scm->core_clk);
1205 
1206 		if (clks & SCM_HAS_CORE_CLK) {
1207 			dev_err(&pdev->dev, "failed to acquire core clk\n");
1208 			return PTR_ERR(scm->core_clk);
1209 		}
1210 
1211 		scm->core_clk = NULL;
1212 	}
1213 
1214 	scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1215 	if (IS_ERR(scm->iface_clk)) {
1216 		if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1217 			return PTR_ERR(scm->iface_clk);
1218 
1219 		if (clks & SCM_HAS_IFACE_CLK) {
1220 			dev_err(&pdev->dev, "failed to acquire iface clk\n");
1221 			return PTR_ERR(scm->iface_clk);
1222 		}
1223 
1224 		scm->iface_clk = NULL;
1225 	}
1226 
1227 	scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1228 	if (IS_ERR(scm->bus_clk)) {
1229 		if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1230 			return PTR_ERR(scm->bus_clk);
1231 
1232 		if (clks & SCM_HAS_BUS_CLK) {
1233 			dev_err(&pdev->dev, "failed to acquire bus clk\n");
1234 			return PTR_ERR(scm->bus_clk);
1235 		}
1236 
1237 		scm->bus_clk = NULL;
1238 	}
1239 
1240 	scm->reset.ops = &qcom_scm_pas_reset_ops;
1241 	scm->reset.nr_resets = 1;
1242 	scm->reset.of_node = pdev->dev.of_node;
1243 	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1244 	if (ret)
1245 		return ret;
1246 
1247 	/* vote for max clk rate for highest performance */
1248 	ret = clk_set_rate(scm->core_clk, INT_MAX);
1249 	if (ret)
1250 		return ret;
1251 
1252 	__scm = scm;
1253 	__scm->dev = &pdev->dev;
1254 
1255 	__get_convention();
1256 
1257 	/*
1258 	 * If requested enable "download mode", from this point on warmboot
1259 	 * will cause the the boot stages to enter download mode, unless
1260 	 * disabled below by a clean shutdown/reboot.
1261 	 */
1262 	if (download_mode)
1263 		qcom_scm_set_download_mode(true);
1264 
1265 	return 0;
1266 }
1267 
qcom_scm_shutdown(struct platform_device * pdev)1268 static void qcom_scm_shutdown(struct platform_device *pdev)
1269 {
1270 	/* Clean shutdown, disable download mode to allow normal restart */
1271 	if (download_mode)
1272 		qcom_scm_set_download_mode(false);
1273 }
1274 
1275 static const struct of_device_id qcom_scm_dt_match[] = {
1276 	{ .compatible = "qcom,scm-apq8064",
1277 	  /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1278 	},
1279 	{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1280 							     SCM_HAS_IFACE_CLK |
1281 							     SCM_HAS_BUS_CLK)
1282 	},
1283 	{ .compatible = "qcom,scm-ipq4019" },
1284 	{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1285 	{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1286 	{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1287 							     SCM_HAS_IFACE_CLK |
1288 							     SCM_HAS_BUS_CLK)
1289 	},
1290 	{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1291 							     SCM_HAS_IFACE_CLK |
1292 							     SCM_HAS_BUS_CLK)
1293 	},
1294 	{ .compatible = "qcom,scm-msm8994" },
1295 	{ .compatible = "qcom,scm-msm8996" },
1296 	{ .compatible = "qcom,scm" },
1297 	{}
1298 };
1299 
1300 static struct platform_driver qcom_scm_driver = {
1301 	.driver = {
1302 		.name	= "qcom_scm",
1303 		.of_match_table = qcom_scm_dt_match,
1304 		.suppress_bind_attrs = true,
1305 	},
1306 	.probe = qcom_scm_probe,
1307 	.shutdown = qcom_scm_shutdown,
1308 };
1309 
qcom_scm_init(void)1310 static int __init qcom_scm_init(void)
1311 {
1312 	return platform_driver_register(&qcom_scm_driver);
1313 }
1314 subsys_initcall(qcom_scm_init);
1315