1 /*
2  * Copyright(c) 2015 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/err.h>
49 #include <linux/vmalloc.h>
50 #include <linux/hash.h>
51 #include <linux/module.h>
52 #include <linux/seq_file.h>
53 #include <rdma/rdma_vt.h>
54 #include <rdma/rdmavt_qp.h>
55 #include <rdma/ib_verbs.h>
56 
57 #include "hfi.h"
58 #include "qp.h"
59 #include "trace.h"
60 #include "verbs_txreq.h"
61 
62 unsigned int hfi1_qp_table_size = 256;
63 module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO);
64 MODULE_PARM_DESC(qp_table_size, "QP table size");
65 
66 static void flush_tx_list(struct rvt_qp *qp);
67 static int iowait_sleep(
68 	struct sdma_engine *sde,
69 	struct iowait_work *wait,
70 	struct sdma_txreq *stx,
71 	unsigned int seq,
72 	bool pkts_sent);
73 static void iowait_wakeup(struct iowait *wait, int reason);
74 static void iowait_sdma_drained(struct iowait *wait);
75 static void qp_pio_drain(struct rvt_qp *qp);
76 
77 const struct rvt_operation_params hfi1_post_parms[RVT_OPERATION_MAX] = {
78 [IB_WR_RDMA_WRITE] = {
79 	.length = sizeof(struct ib_rdma_wr),
80 	.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
81 },
82 
83 [IB_WR_RDMA_READ] = {
84 	.length = sizeof(struct ib_rdma_wr),
85 	.qpt_support = BIT(IB_QPT_RC),
86 	.flags = RVT_OPERATION_ATOMIC,
87 },
88 
89 [IB_WR_ATOMIC_CMP_AND_SWP] = {
90 	.length = sizeof(struct ib_atomic_wr),
91 	.qpt_support = BIT(IB_QPT_RC),
92 	.flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
93 },
94 
95 [IB_WR_ATOMIC_FETCH_AND_ADD] = {
96 	.length = sizeof(struct ib_atomic_wr),
97 	.qpt_support = BIT(IB_QPT_RC),
98 	.flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
99 },
100 
101 [IB_WR_RDMA_WRITE_WITH_IMM] = {
102 	.length = sizeof(struct ib_rdma_wr),
103 	.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
104 },
105 
106 [IB_WR_SEND] = {
107 	.length = sizeof(struct ib_send_wr),
108 	.qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
109 		       BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
110 },
111 
112 [IB_WR_SEND_WITH_IMM] = {
113 	.length = sizeof(struct ib_send_wr),
114 	.qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
115 		       BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
116 },
117 
118 [IB_WR_REG_MR] = {
119 	.length = sizeof(struct ib_reg_wr),
120 	.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
121 	.flags = RVT_OPERATION_LOCAL,
122 },
123 
124 [IB_WR_LOCAL_INV] = {
125 	.length = sizeof(struct ib_send_wr),
126 	.qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
127 	.flags = RVT_OPERATION_LOCAL,
128 },
129 
130 [IB_WR_SEND_WITH_INV] = {
131 	.length = sizeof(struct ib_send_wr),
132 	.qpt_support = BIT(IB_QPT_RC),
133 },
134 
135 [IB_WR_OPFN] = {
136 	.length = sizeof(struct ib_atomic_wr),
137 	.qpt_support = BIT(IB_QPT_RC),
138 	.flags = RVT_OPERATION_USE_RESERVE,
139 },
140 
141 [IB_WR_TID_RDMA_WRITE] = {
142 	.length = sizeof(struct ib_rdma_wr),
143 	.qpt_support = BIT(IB_QPT_RC),
144 	.flags = RVT_OPERATION_IGN_RNR_CNT,
145 },
146 
147 };
148 
flush_list_head(struct list_head * l)149 static void flush_list_head(struct list_head *l)
150 {
151 	while (!list_empty(l)) {
152 		struct sdma_txreq *tx;
153 
154 		tx = list_first_entry(
155 			l,
156 			struct sdma_txreq,
157 			list);
158 		list_del_init(&tx->list);
159 		hfi1_put_txreq(
160 			container_of(tx, struct verbs_txreq, txreq));
161 	}
162 }
163 
flush_tx_list(struct rvt_qp * qp)164 static void flush_tx_list(struct rvt_qp *qp)
165 {
166 	struct hfi1_qp_priv *priv = qp->priv;
167 
168 	flush_list_head(&iowait_get_ib_work(&priv->s_iowait)->tx_head);
169 	flush_list_head(&iowait_get_tid_work(&priv->s_iowait)->tx_head);
170 }
171 
flush_iowait(struct rvt_qp * qp)172 static void flush_iowait(struct rvt_qp *qp)
173 {
174 	struct hfi1_qp_priv *priv = qp->priv;
175 	unsigned long flags;
176 	seqlock_t *lock = priv->s_iowait.lock;
177 
178 	if (!lock)
179 		return;
180 	write_seqlock_irqsave(lock, flags);
181 	if (!list_empty(&priv->s_iowait.list)) {
182 		list_del_init(&priv->s_iowait.list);
183 		priv->s_iowait.lock = NULL;
184 		rvt_put_qp(qp);
185 	}
186 	write_sequnlock_irqrestore(lock, flags);
187 }
188 
189 /*
190  * This function is what we would push to the core layer if we wanted to be a
191  * "first class citizen".  Instead we hide this here and rely on Verbs ULPs
192  * to blindly pass the MTU enum value from the PathRecord to us.
193  */
verbs_mtu_enum_to_int(struct ib_device * dev,enum ib_mtu mtu)194 static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu)
195 {
196 	/* Constraining 10KB packets to 8KB packets */
197 	if (mtu == (enum ib_mtu)OPA_MTU_10240)
198 		mtu = (enum ib_mtu)OPA_MTU_8192;
199 	return opa_mtu_enum_to_int((enum opa_mtu)mtu);
200 }
201 
hfi1_check_modify_qp(struct rvt_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)202 int hfi1_check_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
203 			 int attr_mask, struct ib_udata *udata)
204 {
205 	struct ib_qp *ibqp = &qp->ibqp;
206 	struct hfi1_ibdev *dev = to_idev(ibqp->device);
207 	struct hfi1_devdata *dd = dd_from_dev(dev);
208 	u8 sc;
209 
210 	if (attr_mask & IB_QP_AV) {
211 		sc = ah_to_sc(ibqp->device, &attr->ah_attr);
212 		if (sc == 0xf)
213 			return -EINVAL;
214 
215 		if (!qp_to_sdma_engine(qp, sc) &&
216 		    dd->flags & HFI1_HAS_SEND_DMA)
217 			return -EINVAL;
218 
219 		if (!qp_to_send_context(qp, sc))
220 			return -EINVAL;
221 	}
222 
223 	if (attr_mask & IB_QP_ALT_PATH) {
224 		sc = ah_to_sc(ibqp->device, &attr->alt_ah_attr);
225 		if (sc == 0xf)
226 			return -EINVAL;
227 
228 		if (!qp_to_sdma_engine(qp, sc) &&
229 		    dd->flags & HFI1_HAS_SEND_DMA)
230 			return -EINVAL;
231 
232 		if (!qp_to_send_context(qp, sc))
233 			return -EINVAL;
234 	}
235 
236 	return 0;
237 }
238 
239 /*
240  * qp_set_16b - Set the hdr_type based on whether the slid or the
241  * dlid in the connection is extended. Only applicable for RC and UC
242  * QPs. UD QPs determine this on the fly from the ah in the wqe
243  */
qp_set_16b(struct rvt_qp * qp)244 static inline void qp_set_16b(struct rvt_qp *qp)
245 {
246 	struct hfi1_pportdata *ppd;
247 	struct hfi1_ibport *ibp;
248 	struct hfi1_qp_priv *priv = qp->priv;
249 
250 	/* Update ah_attr to account for extended LIDs */
251 	hfi1_update_ah_attr(qp->ibqp.device, &qp->remote_ah_attr);
252 
253 	/* Create 32 bit LIDs */
254 	hfi1_make_opa_lid(&qp->remote_ah_attr);
255 
256 	if (!(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH))
257 		return;
258 
259 	ibp = to_iport(qp->ibqp.device, qp->port_num);
260 	ppd = ppd_from_ibp(ibp);
261 	priv->hdr_type = hfi1_get_hdr_type(ppd->lid, &qp->remote_ah_attr);
262 }
263 
hfi1_modify_qp(struct rvt_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)264 void hfi1_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
265 		    int attr_mask, struct ib_udata *udata)
266 {
267 	struct ib_qp *ibqp = &qp->ibqp;
268 	struct hfi1_qp_priv *priv = qp->priv;
269 
270 	if (attr_mask & IB_QP_AV) {
271 		priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
272 		priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
273 		priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
274 		qp_set_16b(qp);
275 	}
276 
277 	if (attr_mask & IB_QP_PATH_MIG_STATE &&
278 	    attr->path_mig_state == IB_MIG_MIGRATED &&
279 	    qp->s_mig_state == IB_MIG_ARMED) {
280 		qp->s_flags |= HFI1_S_AHG_CLEAR;
281 		priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
282 		priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
283 		priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
284 		qp_set_16b(qp);
285 	}
286 
287 	opfn_qp_init(qp, attr, attr_mask);
288 }
289 
290 /**
291  * hfi1_setup_wqe - set up the wqe
292  * @qp: The qp
293  * @wqe: The built wqe
294  * @call_send: Determine if the send should be posted or scheduled.
295  *
296  * Perform setup of the wqe.  This is called
297  * prior to inserting the wqe into the ring but after
298  * the wqe has been setup by RDMAVT. This function
299  * allows the driver the opportunity to perform
300  * validation and additional setup of the wqe.
301  *
302  * Returns 0 on success, -EINVAL on failure
303  *
304  */
hfi1_setup_wqe(struct rvt_qp * qp,struct rvt_swqe * wqe,bool * call_send)305 int hfi1_setup_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe, bool *call_send)
306 {
307 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
308 	struct rvt_ah *ah;
309 	struct hfi1_pportdata *ppd;
310 	struct hfi1_devdata *dd;
311 
312 	switch (qp->ibqp.qp_type) {
313 	case IB_QPT_RC:
314 		hfi1_setup_tid_rdma_wqe(qp, wqe);
315 		fallthrough;
316 	case IB_QPT_UC:
317 		if (wqe->length > 0x80000000U)
318 			return -EINVAL;
319 		if (wqe->length > qp->pmtu)
320 			*call_send = false;
321 		break;
322 	case IB_QPT_SMI:
323 		/*
324 		 * SM packets should exclusively use VL15 and their SL is
325 		 * ignored (IBTA v1.3, Section 3.5.8.2). Therefore, when ah
326 		 * is created, SL is 0 in most cases and as a result some
327 		 * fields (vl and pmtu) in ah may not be set correctly,
328 		 * depending on the SL2SC and SC2VL tables at the time.
329 		 */
330 		ppd = ppd_from_ibp(ibp);
331 		dd = dd_from_ppd(ppd);
332 		if (wqe->length > dd->vld[15].mtu)
333 			return -EINVAL;
334 		break;
335 	case IB_QPT_GSI:
336 	case IB_QPT_UD:
337 		ah = rvt_get_swqe_ah(wqe);
338 		if (wqe->length > (1 << ah->log_pmtu))
339 			return -EINVAL;
340 		if (ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)] == 0xf)
341 			return -EINVAL;
342 		break;
343 	default:
344 		break;
345 	}
346 
347 	/*
348 	 * System latency between send and schedule is large enough that
349 	 * forcing call_send to true for piothreshold packets is necessary.
350 	 */
351 	if (wqe->length <= piothreshold)
352 		*call_send = true;
353 	return 0;
354 }
355 
356 /**
357  * _hfi1_schedule_send - schedule progress
358  * @qp: the QP
359  *
360  * This schedules qp progress w/o regard to the s_flags.
361  *
362  * It is only used in the post send, which doesn't hold
363  * the s_lock.
364  */
_hfi1_schedule_send(struct rvt_qp * qp)365 bool _hfi1_schedule_send(struct rvt_qp *qp)
366 {
367 	struct hfi1_qp_priv *priv = qp->priv;
368 	struct hfi1_ibport *ibp =
369 		to_iport(qp->ibqp.device, qp->port_num);
370 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
371 	struct hfi1_devdata *dd = ppd->dd;
372 
373 	if (dd->flags & HFI1_SHUTDOWN)
374 		return true;
375 
376 	return iowait_schedule(&priv->s_iowait, ppd->hfi1_wq,
377 			       priv->s_sde ?
378 			       priv->s_sde->cpu :
379 			       cpumask_first(cpumask_of_node(dd->node)));
380 }
381 
qp_pio_drain(struct rvt_qp * qp)382 static void qp_pio_drain(struct rvt_qp *qp)
383 {
384 	struct hfi1_qp_priv *priv = qp->priv;
385 
386 	if (!priv->s_sendcontext)
387 		return;
388 	while (iowait_pio_pending(&priv->s_iowait)) {
389 		write_seqlock_irq(&priv->s_sendcontext->waitlock);
390 		hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 1);
391 		write_sequnlock_irq(&priv->s_sendcontext->waitlock);
392 		iowait_pio_drain(&priv->s_iowait);
393 		write_seqlock_irq(&priv->s_sendcontext->waitlock);
394 		hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 0);
395 		write_sequnlock_irq(&priv->s_sendcontext->waitlock);
396 	}
397 }
398 
399 /**
400  * hfi1_schedule_send - schedule progress
401  * @qp: the QP
402  *
403  * This schedules qp progress and caller should hold
404  * the s_lock.
405  * @return true if the first leg is scheduled;
406  * false if the first leg is not scheduled.
407  */
hfi1_schedule_send(struct rvt_qp * qp)408 bool hfi1_schedule_send(struct rvt_qp *qp)
409 {
410 	lockdep_assert_held(&qp->s_lock);
411 	if (hfi1_send_ok(qp)) {
412 		_hfi1_schedule_send(qp);
413 		return true;
414 	}
415 	if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
416 		iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
417 				IOWAIT_PENDING_IB);
418 	return false;
419 }
420 
hfi1_qp_schedule(struct rvt_qp * qp)421 static void hfi1_qp_schedule(struct rvt_qp *qp)
422 {
423 	struct hfi1_qp_priv *priv = qp->priv;
424 	bool ret;
425 
426 	if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_IB)) {
427 		ret = hfi1_schedule_send(qp);
428 		if (ret)
429 			iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
430 	}
431 	if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_TID)) {
432 		ret = hfi1_schedule_tid_send(qp);
433 		if (ret)
434 			iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
435 	}
436 }
437 
hfi1_qp_wakeup(struct rvt_qp * qp,u32 flag)438 void hfi1_qp_wakeup(struct rvt_qp *qp, u32 flag)
439 {
440 	unsigned long flags;
441 
442 	spin_lock_irqsave(&qp->s_lock, flags);
443 	if (qp->s_flags & flag) {
444 		qp->s_flags &= ~flag;
445 		trace_hfi1_qpwakeup(qp, flag);
446 		hfi1_qp_schedule(qp);
447 	}
448 	spin_unlock_irqrestore(&qp->s_lock, flags);
449 	/* Notify hfi1_destroy_qp() if it is waiting. */
450 	rvt_put_qp(qp);
451 }
452 
hfi1_qp_unbusy(struct rvt_qp * qp,struct iowait_work * wait)453 void hfi1_qp_unbusy(struct rvt_qp *qp, struct iowait_work *wait)
454 {
455 	struct hfi1_qp_priv *priv = qp->priv;
456 
457 	if (iowait_set_work_flag(wait) == IOWAIT_IB_SE) {
458 		qp->s_flags &= ~RVT_S_BUSY;
459 		/*
460 		 * If we are sending a first-leg packet from the second leg,
461 		 * we need to clear the busy flag from priv->s_flags to
462 		 * avoid a race condition when the qp wakes up before
463 		 * the call to hfi1_verbs_send() returns to the second
464 		 * leg. In that case, the second leg will terminate without
465 		 * being re-scheduled, resulting in failure to send TID RDMA
466 		 * WRITE DATA and TID RDMA ACK packets.
467 		 */
468 		if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
469 			priv->s_flags &= ~(HFI1_S_TID_BUSY_SET |
470 					   RVT_S_BUSY);
471 			iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
472 		}
473 	} else {
474 		priv->s_flags &= ~RVT_S_BUSY;
475 	}
476 }
477 
iowait_sleep(struct sdma_engine * sde,struct iowait_work * wait,struct sdma_txreq * stx,uint seq,bool pkts_sent)478 static int iowait_sleep(
479 	struct sdma_engine *sde,
480 	struct iowait_work *wait,
481 	struct sdma_txreq *stx,
482 	uint seq,
483 	bool pkts_sent)
484 {
485 	struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq);
486 	struct rvt_qp *qp;
487 	struct hfi1_qp_priv *priv;
488 	unsigned long flags;
489 	int ret = 0;
490 
491 	qp = tx->qp;
492 	priv = qp->priv;
493 
494 	spin_lock_irqsave(&qp->s_lock, flags);
495 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
496 		/*
497 		 * If we couldn't queue the DMA request, save the info
498 		 * and try again later rather than destroying the
499 		 * buffer and undoing the side effects of the copy.
500 		 */
501 		/* Make a common routine? */
502 		list_add_tail(&stx->list, &wait->tx_head);
503 		write_seqlock(&sde->waitlock);
504 		if (sdma_progress(sde, seq, stx))
505 			goto eagain;
506 		if (list_empty(&priv->s_iowait.list)) {
507 			struct hfi1_ibport *ibp =
508 				to_iport(qp->ibqp.device, qp->port_num);
509 
510 			ibp->rvp.n_dmawait++;
511 			qp->s_flags |= RVT_S_WAIT_DMA_DESC;
512 			iowait_get_priority(&priv->s_iowait);
513 			iowait_queue(pkts_sent, &priv->s_iowait,
514 				     &sde->dmawait);
515 			priv->s_iowait.lock = &sde->waitlock;
516 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_DMA_DESC);
517 			rvt_get_qp(qp);
518 		}
519 		write_sequnlock(&sde->waitlock);
520 		hfi1_qp_unbusy(qp, wait);
521 		spin_unlock_irqrestore(&qp->s_lock, flags);
522 		ret = -EBUSY;
523 	} else {
524 		spin_unlock_irqrestore(&qp->s_lock, flags);
525 		hfi1_put_txreq(tx);
526 	}
527 	return ret;
528 eagain:
529 	write_sequnlock(&sde->waitlock);
530 	spin_unlock_irqrestore(&qp->s_lock, flags);
531 	list_del_init(&stx->list);
532 	return -EAGAIN;
533 }
534 
iowait_wakeup(struct iowait * wait,int reason)535 static void iowait_wakeup(struct iowait *wait, int reason)
536 {
537 	struct rvt_qp *qp = iowait_to_qp(wait);
538 
539 	WARN_ON(reason != SDMA_AVAIL_REASON);
540 	hfi1_qp_wakeup(qp, RVT_S_WAIT_DMA_DESC);
541 }
542 
iowait_sdma_drained(struct iowait * wait)543 static void iowait_sdma_drained(struct iowait *wait)
544 {
545 	struct rvt_qp *qp = iowait_to_qp(wait);
546 	unsigned long flags;
547 
548 	/*
549 	 * This happens when the send engine notes
550 	 * a QP in the error state and cannot
551 	 * do the flush work until that QP's
552 	 * sdma work has finished.
553 	 */
554 	spin_lock_irqsave(&qp->s_lock, flags);
555 	if (qp->s_flags & RVT_S_WAIT_DMA) {
556 		qp->s_flags &= ~RVT_S_WAIT_DMA;
557 		hfi1_schedule_send(qp);
558 	}
559 	spin_unlock_irqrestore(&qp->s_lock, flags);
560 }
561 
hfi1_init_priority(struct iowait * w)562 static void hfi1_init_priority(struct iowait *w)
563 {
564 	struct rvt_qp *qp = iowait_to_qp(w);
565 	struct hfi1_qp_priv *priv = qp->priv;
566 
567 	if (qp->s_flags & RVT_S_ACK_PENDING)
568 		w->priority++;
569 	if (priv->s_flags & RVT_S_ACK_PENDING)
570 		w->priority++;
571 }
572 
573 /**
574  * qp_to_sdma_engine - map a qp to a send engine
575  * @qp: the QP
576  * @sc5: the 5 bit sc
577  *
578  * Return:
579  * A send engine for the qp or NULL for SMI type qp.
580  */
qp_to_sdma_engine(struct rvt_qp * qp,u8 sc5)581 struct sdma_engine *qp_to_sdma_engine(struct rvt_qp *qp, u8 sc5)
582 {
583 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
584 	struct sdma_engine *sde;
585 
586 	if (!(dd->flags & HFI1_HAS_SEND_DMA))
587 		return NULL;
588 	switch (qp->ibqp.qp_type) {
589 	case IB_QPT_SMI:
590 		return NULL;
591 	default:
592 		break;
593 	}
594 	sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5);
595 	return sde;
596 }
597 
598 /**
599  * qp_to_send_context - map a qp to a send context
600  * @qp: the QP
601  * @sc5: the 5 bit sc
602  *
603  * Return:
604  * A send context for the qp
605  */
qp_to_send_context(struct rvt_qp * qp,u8 sc5)606 struct send_context *qp_to_send_context(struct rvt_qp *qp, u8 sc5)
607 {
608 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
609 
610 	switch (qp->ibqp.qp_type) {
611 	case IB_QPT_SMI:
612 		/* SMA packets to VL15 */
613 		return dd->vld[15].sc;
614 	default:
615 		break;
616 	}
617 
618 	return pio_select_send_context_sc(dd, qp->ibqp.qp_num >> dd->qos_shift,
619 					  sc5);
620 }
621 
622 static const char * const qp_type_str[] = {
623 	"SMI", "GSI", "RC", "UC", "UD",
624 };
625 
qp_idle(struct rvt_qp * qp)626 static int qp_idle(struct rvt_qp *qp)
627 {
628 	return
629 		qp->s_last == qp->s_acked &&
630 		qp->s_acked == qp->s_cur &&
631 		qp->s_cur == qp->s_tail &&
632 		qp->s_tail == qp->s_head;
633 }
634 
635 /**
636  * qp_iter_print - print the qp information to seq_file
637  * @s: the seq_file to emit the qp information on
638  * @iter: the iterator for the qp hash list
639  */
qp_iter_print(struct seq_file * s,struct rvt_qp_iter * iter)640 void qp_iter_print(struct seq_file *s, struct rvt_qp_iter *iter)
641 {
642 	struct rvt_swqe *wqe;
643 	struct rvt_qp *qp = iter->qp;
644 	struct hfi1_qp_priv *priv = qp->priv;
645 	struct sdma_engine *sde;
646 	struct send_context *send_context;
647 	struct rvt_ack_entry *e = NULL;
648 	struct rvt_srq *srq = qp->ibqp.srq ?
649 		ibsrq_to_rvtsrq(qp->ibqp.srq) : NULL;
650 
651 	sde = qp_to_sdma_engine(qp, priv->s_sc);
652 	wqe = rvt_get_swqe_ptr(qp, qp->s_last);
653 	send_context = qp_to_send_context(qp, priv->s_sc);
654 	if (qp->s_ack_queue)
655 		e = &qp->s_ack_queue[qp->s_tail_ack_queue];
656 	seq_printf(s,
657 		   "N %d %s QP %x R %u %s %u %u f=%x %u %u %u %u %u %u SPSN %x %x %x %x %x RPSN %x S(%u %u %u %u %u %u %u) R(%u %u %u) RQP %x LID %x SL %u MTU %u %u %u %u %u SDE %p,%u SC %p,%u SCQ %u %u PID %d OS %x %x E %x %x %x RNR %d %s %d\n",
658 		   iter->n,
659 		   qp_idle(qp) ? "I" : "B",
660 		   qp->ibqp.qp_num,
661 		   atomic_read(&qp->refcount),
662 		   qp_type_str[qp->ibqp.qp_type],
663 		   qp->state,
664 		   wqe ? wqe->wr.opcode : 0,
665 		   qp->s_flags,
666 		   iowait_sdma_pending(&priv->s_iowait),
667 		   iowait_pio_pending(&priv->s_iowait),
668 		   !list_empty(&priv->s_iowait.list),
669 		   qp->timeout,
670 		   wqe ? wqe->ssn : 0,
671 		   qp->s_lsn,
672 		   qp->s_last_psn,
673 		   qp->s_psn, qp->s_next_psn,
674 		   qp->s_sending_psn, qp->s_sending_hpsn,
675 		   qp->r_psn,
676 		   qp->s_last, qp->s_acked, qp->s_cur,
677 		   qp->s_tail, qp->s_head, qp->s_size,
678 		   qp->s_avail,
679 		   /* ack_queue ring pointers, size */
680 		   qp->s_tail_ack_queue, qp->r_head_ack_queue,
681 		   rvt_max_atomic(&to_idev(qp->ibqp.device)->rdi),
682 		   /* remote QP info  */
683 		   qp->remote_qpn,
684 		   rdma_ah_get_dlid(&qp->remote_ah_attr),
685 		   rdma_ah_get_sl(&qp->remote_ah_attr),
686 		   qp->pmtu,
687 		   qp->s_retry,
688 		   qp->s_retry_cnt,
689 		   qp->s_rnr_retry_cnt,
690 		   qp->s_rnr_retry,
691 		   sde,
692 		   sde ? sde->this_idx : 0,
693 		   send_context,
694 		   send_context ? send_context->sw_index : 0,
695 		   ib_cq_head(qp->ibqp.send_cq),
696 		   ib_cq_tail(qp->ibqp.send_cq),
697 		   qp->pid,
698 		   qp->s_state,
699 		   qp->s_ack_state,
700 		   /* ack queue information */
701 		   e ? e->opcode : 0,
702 		   e ? e->psn : 0,
703 		   e ? e->lpsn : 0,
704 		   qp->r_min_rnr_timer,
705 		   srq ? "SRQ" : "RQ",
706 		   srq ? srq->rq.size : qp->r_rq.size
707 		);
708 }
709 
qp_priv_alloc(struct rvt_dev_info * rdi,struct rvt_qp * qp)710 void *qp_priv_alloc(struct rvt_dev_info *rdi, struct rvt_qp *qp)
711 {
712 	struct hfi1_qp_priv *priv;
713 
714 	priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, rdi->dparms.node);
715 	if (!priv)
716 		return ERR_PTR(-ENOMEM);
717 
718 	priv->owner = qp;
719 
720 	priv->s_ahg = kzalloc_node(sizeof(*priv->s_ahg), GFP_KERNEL,
721 				   rdi->dparms.node);
722 	if (!priv->s_ahg) {
723 		kfree(priv);
724 		return ERR_PTR(-ENOMEM);
725 	}
726 	iowait_init(
727 		&priv->s_iowait,
728 		1,
729 		_hfi1_do_send,
730 		_hfi1_do_tid_send,
731 		iowait_sleep,
732 		iowait_wakeup,
733 		iowait_sdma_drained,
734 		hfi1_init_priority);
735 	/* Init to a value to start the running average correctly */
736 	priv->s_running_pkt_size = piothreshold / 2;
737 	return priv;
738 }
739 
qp_priv_free(struct rvt_dev_info * rdi,struct rvt_qp * qp)740 void qp_priv_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
741 {
742 	struct hfi1_qp_priv *priv = qp->priv;
743 
744 	hfi1_qp_priv_tid_free(rdi, qp);
745 	kfree(priv->s_ahg);
746 	kfree(priv);
747 }
748 
free_all_qps(struct rvt_dev_info * rdi)749 unsigned free_all_qps(struct rvt_dev_info *rdi)
750 {
751 	struct hfi1_ibdev *verbs_dev = container_of(rdi,
752 						    struct hfi1_ibdev,
753 						    rdi);
754 	struct hfi1_devdata *dd = container_of(verbs_dev,
755 					       struct hfi1_devdata,
756 					       verbs_dev);
757 	int n;
758 	unsigned qp_inuse = 0;
759 
760 	for (n = 0; n < dd->num_pports; n++) {
761 		struct hfi1_ibport *ibp = &dd->pport[n].ibport_data;
762 
763 		rcu_read_lock();
764 		if (rcu_dereference(ibp->rvp.qp[0]))
765 			qp_inuse++;
766 		if (rcu_dereference(ibp->rvp.qp[1]))
767 			qp_inuse++;
768 		rcu_read_unlock();
769 	}
770 
771 	return qp_inuse;
772 }
773 
flush_qp_waiters(struct rvt_qp * qp)774 void flush_qp_waiters(struct rvt_qp *qp)
775 {
776 	lockdep_assert_held(&qp->s_lock);
777 	flush_iowait(qp);
778 	hfi1_tid_rdma_flush_wait(qp);
779 }
780 
stop_send_queue(struct rvt_qp * qp)781 void stop_send_queue(struct rvt_qp *qp)
782 {
783 	struct hfi1_qp_priv *priv = qp->priv;
784 
785 	iowait_cancel_work(&priv->s_iowait);
786 	if (cancel_work_sync(&priv->tid_rdma.trigger_work))
787 		rvt_put_qp(qp);
788 }
789 
quiesce_qp(struct rvt_qp * qp)790 void quiesce_qp(struct rvt_qp *qp)
791 {
792 	struct hfi1_qp_priv *priv = qp->priv;
793 
794 	hfi1_del_tid_reap_timer(qp);
795 	hfi1_del_tid_retry_timer(qp);
796 	iowait_sdma_drain(&priv->s_iowait);
797 	qp_pio_drain(qp);
798 	flush_tx_list(qp);
799 }
800 
notify_qp_reset(struct rvt_qp * qp)801 void notify_qp_reset(struct rvt_qp *qp)
802 {
803 	hfi1_qp_kern_exp_rcv_clear_all(qp);
804 	qp->r_adefered = 0;
805 	clear_ahg(qp);
806 
807 	/* Clear any OPFN state */
808 	if (qp->ibqp.qp_type == IB_QPT_RC)
809 		opfn_conn_error(qp);
810 }
811 
812 /*
813  * Switch to alternate path.
814  * The QP s_lock should be held and interrupts disabled.
815  */
hfi1_migrate_qp(struct rvt_qp * qp)816 void hfi1_migrate_qp(struct rvt_qp *qp)
817 {
818 	struct hfi1_qp_priv *priv = qp->priv;
819 	struct ib_event ev;
820 
821 	qp->s_mig_state = IB_MIG_MIGRATED;
822 	qp->remote_ah_attr = qp->alt_ah_attr;
823 	qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
824 	qp->s_pkey_index = qp->s_alt_pkey_index;
825 	qp->s_flags |= HFI1_S_AHG_CLEAR;
826 	priv->s_sc = ah_to_sc(qp->ibqp.device, &qp->remote_ah_attr);
827 	priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
828 	qp_set_16b(qp);
829 
830 	ev.device = qp->ibqp.device;
831 	ev.element.qp = &qp->ibqp;
832 	ev.event = IB_EVENT_PATH_MIG;
833 	qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
834 }
835 
mtu_to_path_mtu(u32 mtu)836 int mtu_to_path_mtu(u32 mtu)
837 {
838 	return mtu_to_enum(mtu, OPA_MTU_8192);
839 }
840 
mtu_from_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,u32 pmtu)841 u32 mtu_from_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, u32 pmtu)
842 {
843 	u32 mtu;
844 	struct hfi1_ibdev *verbs_dev = container_of(rdi,
845 						    struct hfi1_ibdev,
846 						    rdi);
847 	struct hfi1_devdata *dd = container_of(verbs_dev,
848 					       struct hfi1_devdata,
849 					       verbs_dev);
850 	struct hfi1_ibport *ibp;
851 	u8 sc, vl;
852 
853 	ibp = &dd->pport[qp->port_num - 1].ibport_data;
854 	sc = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)];
855 	vl = sc_to_vlt(dd, sc);
856 
857 	mtu = verbs_mtu_enum_to_int(qp->ibqp.device, pmtu);
858 	if (vl < PER_VL_SEND_CONTEXTS)
859 		mtu = min_t(u32, mtu, dd->vld[vl].mtu);
860 	return mtu;
861 }
862 
get_pmtu_from_attr(struct rvt_dev_info * rdi,struct rvt_qp * qp,struct ib_qp_attr * attr)863 int get_pmtu_from_attr(struct rvt_dev_info *rdi, struct rvt_qp *qp,
864 		       struct ib_qp_attr *attr)
865 {
866 	int mtu, pidx = qp->port_num - 1;
867 	struct hfi1_ibdev *verbs_dev = container_of(rdi,
868 						    struct hfi1_ibdev,
869 						    rdi);
870 	struct hfi1_devdata *dd = container_of(verbs_dev,
871 					       struct hfi1_devdata,
872 					       verbs_dev);
873 	mtu = verbs_mtu_enum_to_int(qp->ibqp.device, attr->path_mtu);
874 	if (mtu == -1)
875 		return -1; /* values less than 0 are error */
876 
877 	if (mtu > dd->pport[pidx].ibmtu)
878 		return mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048);
879 	else
880 		return attr->path_mtu;
881 }
882 
notify_error_qp(struct rvt_qp * qp)883 void notify_error_qp(struct rvt_qp *qp)
884 {
885 	struct hfi1_qp_priv *priv = qp->priv;
886 	seqlock_t *lock = priv->s_iowait.lock;
887 
888 	if (lock) {
889 		write_seqlock(lock);
890 		if (!list_empty(&priv->s_iowait.list) &&
891 		    !(qp->s_flags & RVT_S_BUSY) &&
892 		    !(priv->s_flags & RVT_S_BUSY)) {
893 			qp->s_flags &= ~HFI1_S_ANY_WAIT_IO;
894 			iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
895 			iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
896 			list_del_init(&priv->s_iowait.list);
897 			priv->s_iowait.lock = NULL;
898 			rvt_put_qp(qp);
899 		}
900 		write_sequnlock(lock);
901 	}
902 
903 	if (!(qp->s_flags & RVT_S_BUSY) && !(priv->s_flags & RVT_S_BUSY)) {
904 		qp->s_hdrwords = 0;
905 		if (qp->s_rdma_mr) {
906 			rvt_put_mr(qp->s_rdma_mr);
907 			qp->s_rdma_mr = NULL;
908 		}
909 		flush_tx_list(qp);
910 	}
911 }
912 
913 /**
914  * hfi1_qp_iter_cb - callback for iterator
915  * @qp: the qp
916  * @v: the sl in low bits of v
917  *
918  * This is called from the iterator callback to work
919  * on an individual qp.
920  */
hfi1_qp_iter_cb(struct rvt_qp * qp,u64 v)921 static void hfi1_qp_iter_cb(struct rvt_qp *qp, u64 v)
922 {
923 	int lastwqe;
924 	struct ib_event ev;
925 	struct hfi1_ibport *ibp =
926 		to_iport(qp->ibqp.device, qp->port_num);
927 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
928 	u8 sl = (u8)v;
929 
930 	if (qp->port_num != ppd->port ||
931 	    (qp->ibqp.qp_type != IB_QPT_UC &&
932 	     qp->ibqp.qp_type != IB_QPT_RC) ||
933 	    rdma_ah_get_sl(&qp->remote_ah_attr) != sl ||
934 	    !(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))
935 		return;
936 
937 	spin_lock_irq(&qp->r_lock);
938 	spin_lock(&qp->s_hlock);
939 	spin_lock(&qp->s_lock);
940 	lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
941 	spin_unlock(&qp->s_lock);
942 	spin_unlock(&qp->s_hlock);
943 	spin_unlock_irq(&qp->r_lock);
944 	if (lastwqe) {
945 		ev.device = qp->ibqp.device;
946 		ev.element.qp = &qp->ibqp;
947 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
948 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
949 	}
950 }
951 
952 /**
953  * hfi1_error_port_qps - put a port's RC/UC qps into error state
954  * @ibp: the ibport.
955  * @sl: the service level.
956  *
957  * This function places all RC/UC qps with a given service level into error
958  * state. It is generally called to force upper lay apps to abandon stale qps
959  * after an sl->sc mapping change.
960  */
hfi1_error_port_qps(struct hfi1_ibport * ibp,u8 sl)961 void hfi1_error_port_qps(struct hfi1_ibport *ibp, u8 sl)
962 {
963 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
964 	struct hfi1_ibdev *dev = &ppd->dd->verbs_dev;
965 
966 	rvt_qp_iter(&dev->rdi, sl, hfi1_qp_iter_cb);
967 }
968