1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SN Platform GRU Driver
4 *
5 * MMUOPS callbacks + TLB flushing
6 *
7 * This file handles emu notifier callbacks from the core kernel. The callbacks
8 * are used to update the TLB in the GRU as a result of changes in the
9 * state of a process address space. This file also handles TLB invalidates
10 * from the GRU driver.
11 *
12 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/hugetlb.h>
22 #include <linux/delay.h>
23 #include <linux/timex.h>
24 #include <linux/srcu.h>
25 #include <asm/processor.h>
26 #include "gru.h"
27 #include "grutables.h"
28 #include <asm/uv/uv_hub.h>
29
30 #define gru_random() get_cycles()
31
32 /* ---------------------------------- TLB Invalidation functions --------
33 * get_tgh_handle
34 *
35 * Find a TGH to use for issuing a TLB invalidate. For GRUs that are on the
36 * local blade, use a fixed TGH that is a function of the blade-local cpu
37 * number. Normally, this TGH is private to the cpu & no contention occurs for
38 * the TGH. For offblade GRUs, select a random TGH in the range above the
39 * private TGHs. A spinlock is required to access this TGH & the lock must be
40 * released when the invalidate is completes. This sucks, but it is the best we
41 * can do.
42 *
43 * Note that the spinlock is IN the TGH handle so locking does not involve
44 * additional cache lines.
45 *
46 */
get_off_blade_tgh(struct gru_state * gru)47 static inline int get_off_blade_tgh(struct gru_state *gru)
48 {
49 int n;
50
51 n = GRU_NUM_TGH - gru->gs_tgh_first_remote;
52 n = gru_random() % n;
53 n += gru->gs_tgh_first_remote;
54 return n;
55 }
56
get_on_blade_tgh(struct gru_state * gru)57 static inline int get_on_blade_tgh(struct gru_state *gru)
58 {
59 return uv_blade_processor_id() >> gru->gs_tgh_local_shift;
60 }
61
get_lock_tgh_handle(struct gru_state * gru)62 static struct gru_tlb_global_handle *get_lock_tgh_handle(struct gru_state
63 *gru)
64 {
65 struct gru_tlb_global_handle *tgh;
66 int n;
67
68 preempt_disable();
69 if (uv_numa_blade_id() == gru->gs_blade_id)
70 n = get_on_blade_tgh(gru);
71 else
72 n = get_off_blade_tgh(gru);
73 tgh = get_tgh_by_index(gru, n);
74 lock_tgh_handle(tgh);
75
76 return tgh;
77 }
78
get_unlock_tgh_handle(struct gru_tlb_global_handle * tgh)79 static void get_unlock_tgh_handle(struct gru_tlb_global_handle *tgh)
80 {
81 unlock_tgh_handle(tgh);
82 preempt_enable();
83 }
84
85 /*
86 * gru_flush_tlb_range
87 *
88 * General purpose TLB invalidation function. This function scans every GRU in
89 * the ENTIRE system (partition) looking for GRUs where the specified MM has
90 * been accessed by the GRU. For each GRU found, the TLB must be invalidated OR
91 * the ASID invalidated. Invalidating an ASID causes a new ASID to be assigned
92 * on the next fault. This effectively flushes the ENTIRE TLB for the MM at the
93 * cost of (possibly) a large number of future TLBmisses.
94 *
95 * The current algorithm is optimized based on the following (somewhat true)
96 * assumptions:
97 * - GRU contexts are not loaded into a GRU unless a reference is made to
98 * the data segment or control block (this is true, not an assumption).
99 * If a DS/CB is referenced, the user will also issue instructions that
100 * cause TLBmisses. It is not necessary to optimize for the case where
101 * contexts are loaded but no instructions cause TLB misses. (I know
102 * this will happen but I'm not optimizing for it).
103 * - GRU instructions to invalidate TLB entries are SLOOOOWWW - normally
104 * a few usec but in unusual cases, it could be longer. Avoid if
105 * possible.
106 * - intrablade process migration between cpus is not frequent but is
107 * common.
108 * - a GRU context is not typically migrated to a different GRU on the
109 * blade because of intrablade migration
110 * - interblade migration is rare. Processes migrate their GRU context to
111 * the new blade.
112 * - if interblade migration occurs, migration back to the original blade
113 * is very very rare (ie., no optimization for this case)
114 * - most GRU instruction operate on a subset of the user REGIONS. Code
115 * & shared library regions are not likely targets of GRU instructions.
116 *
117 * To help improve the efficiency of TLB invalidation, the GMS data
118 * structure is maintained for EACH address space (MM struct). The GMS is
119 * also the structure that contains the pointer to the mmu callout
120 * functions. This structure is linked to the mm_struct for the address space
121 * using the mmu "register" function. The mmu interfaces are used to
122 * provide the callbacks for TLB invalidation. The GMS contains:
123 *
124 * - asid[maxgrus] array. ASIDs are assigned to a GRU when a context is
125 * loaded into the GRU.
126 * - asidmap[maxgrus]. bitmap to make it easier to find non-zero asids in
127 * the above array
128 * - ctxbitmap[maxgrus]. Indicates the contexts that are currently active
129 * in the GRU for the address space. This bitmap must be passed to the
130 * GRU to do an invalidate.
131 *
132 * The current algorithm for invalidating TLBs is:
133 * - scan the asidmap for GRUs where the context has been loaded, ie,
134 * asid is non-zero.
135 * - for each gru found:
136 * - if the ctxtmap is non-zero, there are active contexts in the
137 * GRU. TLB invalidate instructions must be issued to the GRU.
138 * - if the ctxtmap is zero, no context is active. Set the ASID to
139 * zero to force a full TLB invalidation. This is fast but will
140 * cause a lot of TLB misses if the context is reloaded onto the
141 * GRU
142 *
143 */
144
gru_flush_tlb_range(struct gru_mm_struct * gms,unsigned long start,unsigned long len)145 void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
146 unsigned long len)
147 {
148 struct gru_state *gru;
149 struct gru_mm_tracker *asids;
150 struct gru_tlb_global_handle *tgh;
151 unsigned long num;
152 int grupagesize, pagesize, pageshift, gid, asid;
153
154 /* ZZZ TODO - handle huge pages */
155 pageshift = PAGE_SHIFT;
156 pagesize = (1UL << pageshift);
157 grupagesize = GRU_PAGESIZE(pageshift);
158 num = min(((len + pagesize - 1) >> pageshift), GRUMAXINVAL);
159
160 STAT(flush_tlb);
161 gru_dbg(grudev, "gms %p, start 0x%lx, len 0x%lx, asidmap 0x%lx\n", gms,
162 start, len, gms->ms_asidmap[0]);
163
164 spin_lock(&gms->ms_asid_lock);
165 for_each_gru_in_bitmap(gid, gms->ms_asidmap) {
166 STAT(flush_tlb_gru);
167 gru = GID_TO_GRU(gid);
168 asids = gms->ms_asids + gid;
169 asid = asids->mt_asid;
170 if (asids->mt_ctxbitmap && asid) {
171 STAT(flush_tlb_gru_tgh);
172 asid = GRUASID(asid, start);
173 gru_dbg(grudev,
174 " FLUSH gruid %d, asid 0x%x, vaddr 0x%lx, vamask 0x%x, num %ld, cbmap 0x%x\n",
175 gid, asid, start, grupagesize, num, asids->mt_ctxbitmap);
176 tgh = get_lock_tgh_handle(gru);
177 tgh_invalidate(tgh, start, ~0, asid, grupagesize, 0,
178 num - 1, asids->mt_ctxbitmap);
179 get_unlock_tgh_handle(tgh);
180 } else {
181 STAT(flush_tlb_gru_zero_asid);
182 asids->mt_asid = 0;
183 __clear_bit(gru->gs_gid, gms->ms_asidmap);
184 gru_dbg(grudev,
185 " CLEARASID gruid %d, asid 0x%x, cbtmap 0x%x, asidmap 0x%lx\n",
186 gid, asid, asids->mt_ctxbitmap,
187 gms->ms_asidmap[0]);
188 }
189 }
190 spin_unlock(&gms->ms_asid_lock);
191 }
192
193 /*
194 * Flush the entire TLB on a chiplet.
195 */
gru_flush_all_tlb(struct gru_state * gru)196 void gru_flush_all_tlb(struct gru_state *gru)
197 {
198 struct gru_tlb_global_handle *tgh;
199
200 gru_dbg(grudev, "gid %d\n", gru->gs_gid);
201 tgh = get_lock_tgh_handle(gru);
202 tgh_invalidate(tgh, 0, ~0, 0, 1, 1, GRUMAXINVAL - 1, 0xffff);
203 get_unlock_tgh_handle(tgh);
204 }
205
206 /*
207 * MMUOPS notifier callout functions
208 */
gru_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)209 static int gru_invalidate_range_start(struct mmu_notifier *mn,
210 const struct mmu_notifier_range *range)
211 {
212 struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
213 ms_notifier);
214
215 STAT(mmu_invalidate_range);
216 atomic_inc(&gms->ms_range_active);
217 gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx, act %d\n", gms,
218 range->start, range->end, atomic_read(&gms->ms_range_active));
219 gru_flush_tlb_range(gms, range->start, range->end - range->start);
220
221 return 0;
222 }
223
gru_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)224 static void gru_invalidate_range_end(struct mmu_notifier *mn,
225 const struct mmu_notifier_range *range)
226 {
227 struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
228 ms_notifier);
229
230 /* ..._and_test() provides needed barrier */
231 (void)atomic_dec_and_test(&gms->ms_range_active);
232
233 wake_up_all(&gms->ms_wait_queue);
234 gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx\n",
235 gms, range->start, range->end);
236 }
237
gru_alloc_notifier(struct mm_struct * mm)238 static struct mmu_notifier *gru_alloc_notifier(struct mm_struct *mm)
239 {
240 struct gru_mm_struct *gms;
241
242 gms = kzalloc(sizeof(*gms), GFP_KERNEL);
243 if (!gms)
244 return ERR_PTR(-ENOMEM);
245 STAT(gms_alloc);
246 spin_lock_init(&gms->ms_asid_lock);
247 init_waitqueue_head(&gms->ms_wait_queue);
248
249 return &gms->ms_notifier;
250 }
251
gru_free_notifier(struct mmu_notifier * mn)252 static void gru_free_notifier(struct mmu_notifier *mn)
253 {
254 kfree(container_of(mn, struct gru_mm_struct, ms_notifier));
255 STAT(gms_free);
256 }
257
258 static const struct mmu_notifier_ops gru_mmuops = {
259 .invalidate_range_start = gru_invalidate_range_start,
260 .invalidate_range_end = gru_invalidate_range_end,
261 .alloc_notifier = gru_alloc_notifier,
262 .free_notifier = gru_free_notifier,
263 };
264
gru_register_mmu_notifier(void)265 struct gru_mm_struct *gru_register_mmu_notifier(void)
266 {
267 struct mmu_notifier *mn;
268
269 mn = mmu_notifier_get_locked(&gru_mmuops, current->mm);
270 if (IS_ERR(mn))
271 return ERR_CAST(mn);
272
273 return container_of(mn, struct gru_mm_struct, ms_notifier);
274 }
275
gru_drop_mmu_notifier(struct gru_mm_struct * gms)276 void gru_drop_mmu_notifier(struct gru_mm_struct *gms)
277 {
278 mmu_notifier_put(&gms->ms_notifier);
279 }
280
281 /*
282 * Setup TGH parameters. There are:
283 * - 24 TGH handles per GRU chiplet
284 * - a portion (MAX_LOCAL_TGH) of the handles are reserved for
285 * use by blade-local cpus
286 * - the rest are used by off-blade cpus. This usage is
287 * less frequent than blade-local usage.
288 *
289 * For now, use 16 handles for local flushes, 8 for remote flushes. If the blade
290 * has less tan or equal to 16 cpus, each cpu has a unique handle that it can
291 * use.
292 */
293 #define MAX_LOCAL_TGH 16
294
gru_tgh_flush_init(struct gru_state * gru)295 void gru_tgh_flush_init(struct gru_state *gru)
296 {
297 int cpus, shift = 0, n;
298
299 cpus = uv_blade_nr_possible_cpus(gru->gs_blade_id);
300
301 /* n = cpus rounded up to next power of 2 */
302 if (cpus) {
303 n = 1 << fls(cpus - 1);
304
305 /*
306 * shift count for converting local cpu# to TGH index
307 * 0 if cpus <= MAX_LOCAL_TGH,
308 * 1 if cpus <= 2*MAX_LOCAL_TGH,
309 * etc
310 */
311 shift = max(0, fls(n - 1) - fls(MAX_LOCAL_TGH - 1));
312 }
313 gru->gs_tgh_local_shift = shift;
314
315 /* first starting TGH index to use for remote purges */
316 gru->gs_tgh_first_remote = (cpus + (1 << shift) - 1) >> shift;
317
318 }
319