1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 
9 #define ICE_PF_RESET_WAIT_COUNT	300
10 
11 /**
12  * ice_set_mac_type - Sets MAC type
13  * @hw: pointer to the HW structure
14  *
15  * This function sets the MAC type of the adapter based on the
16  * vendor ID and device ID stored in the HW structure.
17  */
ice_set_mac_type(struct ice_hw * hw)18 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
19 {
20 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
21 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
22 
23 	switch (hw->device_id) {
24 	case ICE_DEV_ID_E810C_BACKPLANE:
25 	case ICE_DEV_ID_E810C_QSFP:
26 	case ICE_DEV_ID_E810C_SFP:
27 	case ICE_DEV_ID_E810_XXV_SFP:
28 		hw->mac_type = ICE_MAC_E810;
29 		break;
30 	case ICE_DEV_ID_E823C_10G_BASE_T:
31 	case ICE_DEV_ID_E823C_BACKPLANE:
32 	case ICE_DEV_ID_E823C_QSFP:
33 	case ICE_DEV_ID_E823C_SFP:
34 	case ICE_DEV_ID_E823C_SGMII:
35 	case ICE_DEV_ID_E822C_10G_BASE_T:
36 	case ICE_DEV_ID_E822C_BACKPLANE:
37 	case ICE_DEV_ID_E822C_QSFP:
38 	case ICE_DEV_ID_E822C_SFP:
39 	case ICE_DEV_ID_E822C_SGMII:
40 	case ICE_DEV_ID_E822L_10G_BASE_T:
41 	case ICE_DEV_ID_E822L_BACKPLANE:
42 	case ICE_DEV_ID_E822L_SFP:
43 	case ICE_DEV_ID_E822L_SGMII:
44 	case ICE_DEV_ID_E823L_10G_BASE_T:
45 	case ICE_DEV_ID_E823L_1GBE:
46 	case ICE_DEV_ID_E823L_BACKPLANE:
47 	case ICE_DEV_ID_E823L_QSFP:
48 	case ICE_DEV_ID_E823L_SFP:
49 		hw->mac_type = ICE_MAC_GENERIC;
50 		break;
51 	default:
52 		hw->mac_type = ICE_MAC_UNKNOWN;
53 		break;
54 	}
55 
56 	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
57 	return 0;
58 }
59 
60 /**
61  * ice_clear_pf_cfg - Clear PF configuration
62  * @hw: pointer to the hardware structure
63  *
64  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
65  * configuration, flow director filters, etc.).
66  */
ice_clear_pf_cfg(struct ice_hw * hw)67 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
68 {
69 	struct ice_aq_desc desc;
70 
71 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
72 
73 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
74 }
75 
76 /**
77  * ice_aq_manage_mac_read - manage MAC address read command
78  * @hw: pointer to the HW struct
79  * @buf: a virtual buffer to hold the manage MAC read response
80  * @buf_size: Size of the virtual buffer
81  * @cd: pointer to command details structure or NULL
82  *
83  * This function is used to return per PF station MAC address (0x0107).
84  * NOTE: Upon successful completion of this command, MAC address information
85  * is returned in user specified buffer. Please interpret user specified
86  * buffer as "manage_mac_read" response.
87  * Response such as various MAC addresses are stored in HW struct (port.mac)
88  * ice_discover_dev_caps is expected to be called before this function is
89  * called.
90  */
91 static enum ice_status
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)92 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
93 		       struct ice_sq_cd *cd)
94 {
95 	struct ice_aqc_manage_mac_read_resp *resp;
96 	struct ice_aqc_manage_mac_read *cmd;
97 	struct ice_aq_desc desc;
98 	enum ice_status status;
99 	u16 flags;
100 	u8 i;
101 
102 	cmd = &desc.params.mac_read;
103 
104 	if (buf_size < sizeof(*resp))
105 		return ICE_ERR_BUF_TOO_SHORT;
106 
107 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
108 
109 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
110 	if (status)
111 		return status;
112 
113 	resp = buf;
114 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
115 
116 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
117 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
118 		return ICE_ERR_CFG;
119 	}
120 
121 	/* A single port can report up to two (LAN and WoL) addresses */
122 	for (i = 0; i < cmd->num_addr; i++)
123 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
124 			ether_addr_copy(hw->port_info->mac.lan_addr,
125 					resp[i].mac_addr);
126 			ether_addr_copy(hw->port_info->mac.perm_addr,
127 					resp[i].mac_addr);
128 			break;
129 		}
130 
131 	return 0;
132 }
133 
134 /**
135  * ice_aq_get_phy_caps - returns PHY capabilities
136  * @pi: port information structure
137  * @qual_mods: report qualified modules
138  * @report_mode: report mode capabilities
139  * @pcaps: structure for PHY capabilities to be filled
140  * @cd: pointer to command details structure or NULL
141  *
142  * Returns the various PHY capabilities supported on the Port (0x0600)
143  */
144 enum ice_status
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)145 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
146 		    struct ice_aqc_get_phy_caps_data *pcaps,
147 		    struct ice_sq_cd *cd)
148 {
149 	struct ice_aqc_get_phy_caps *cmd;
150 	u16 pcaps_size = sizeof(*pcaps);
151 	struct ice_aq_desc desc;
152 	enum ice_status status;
153 	struct ice_hw *hw;
154 
155 	cmd = &desc.params.get_phy;
156 
157 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
158 		return ICE_ERR_PARAM;
159 	hw = pi->hw;
160 
161 	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
162 	    !ice_fw_supports_report_dflt_cfg(hw))
163 		return ICE_ERR_PARAM;
164 
165 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
166 
167 	if (qual_mods)
168 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
169 
170 	cmd->param0 |= cpu_to_le16(report_mode);
171 	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
172 
173 	ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
174 		  report_mode);
175 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
176 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
177 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
178 		  (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
179 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", pcaps->caps);
180 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
181 		  pcaps->low_power_ctrl_an);
182 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", pcaps->eee_cap);
183 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n",
184 		  pcaps->eeer_value);
185 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_options = 0x%x\n",
186 		  pcaps->link_fec_options);
187 	ice_debug(hw, ICE_DBG_LINK, "	module_compliance_enforcement = 0x%x\n",
188 		  pcaps->module_compliance_enforcement);
189 	ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
190 		  pcaps->extended_compliance_code);
191 	ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
192 		  pcaps->module_type[0]);
193 	ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
194 		  pcaps->module_type[1]);
195 	ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
196 		  pcaps->module_type[2]);
197 
198 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
199 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
200 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
201 		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
202 		       sizeof(pi->phy.link_info.module_type));
203 	}
204 
205 	return status;
206 }
207 
208 /**
209  * ice_aq_get_link_topo_handle - get link topology node return status
210  * @pi: port information structure
211  * @node_type: requested node type
212  * @cd: pointer to command details structure or NULL
213  *
214  * Get link topology node return status for specified node type (0x06E0)
215  *
216  * Node type cage can be used to determine if cage is present. If AQC
217  * returns error (ENOENT), then no cage present. If no cage present, then
218  * connection type is backplane or BASE-T.
219  */
220 static enum ice_status
ice_aq_get_link_topo_handle(struct ice_port_info * pi,u8 node_type,struct ice_sq_cd * cd)221 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
222 			    struct ice_sq_cd *cd)
223 {
224 	struct ice_aqc_get_link_topo *cmd;
225 	struct ice_aq_desc desc;
226 
227 	cmd = &desc.params.get_link_topo;
228 
229 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
230 
231 	cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
232 				   ICE_AQC_LINK_TOPO_NODE_CTX_S);
233 
234 	/* set node type */
235 	cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
236 
237 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
238 }
239 
240 /**
241  * ice_is_media_cage_present
242  * @pi: port information structure
243  *
244  * Returns true if media cage is present, else false. If no cage, then
245  * media type is backplane or BASE-T.
246  */
ice_is_media_cage_present(struct ice_port_info * pi)247 static bool ice_is_media_cage_present(struct ice_port_info *pi)
248 {
249 	/* Node type cage can be used to determine if cage is present. If AQC
250 	 * returns error (ENOENT), then no cage present. If no cage present then
251 	 * connection type is backplane or BASE-T.
252 	 */
253 	return !ice_aq_get_link_topo_handle(pi,
254 					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
255 					    NULL);
256 }
257 
258 /**
259  * ice_get_media_type - Gets media type
260  * @pi: port information structure
261  */
ice_get_media_type(struct ice_port_info * pi)262 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
263 {
264 	struct ice_link_status *hw_link_info;
265 
266 	if (!pi)
267 		return ICE_MEDIA_UNKNOWN;
268 
269 	hw_link_info = &pi->phy.link_info;
270 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
271 		/* If more than one media type is selected, report unknown */
272 		return ICE_MEDIA_UNKNOWN;
273 
274 	if (hw_link_info->phy_type_low) {
275 		/* 1G SGMII is a special case where some DA cable PHYs
276 		 * may show this as an option when it really shouldn't
277 		 * be since SGMII is meant to be between a MAC and a PHY
278 		 * in a backplane. Try to detect this case and handle it
279 		 */
280 		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
281 		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
282 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
283 		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
284 		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
285 			return ICE_MEDIA_DA;
286 
287 		switch (hw_link_info->phy_type_low) {
288 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
289 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
290 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
291 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
292 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
293 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
294 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
295 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
296 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
297 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
298 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
299 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
300 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
301 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
302 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
303 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
304 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
305 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
306 		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
307 		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
308 		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
309 		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
310 		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
311 		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
312 		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
313 		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
314 			return ICE_MEDIA_FIBER;
315 		case ICE_PHY_TYPE_LOW_100BASE_TX:
316 		case ICE_PHY_TYPE_LOW_1000BASE_T:
317 		case ICE_PHY_TYPE_LOW_2500BASE_T:
318 		case ICE_PHY_TYPE_LOW_5GBASE_T:
319 		case ICE_PHY_TYPE_LOW_10GBASE_T:
320 		case ICE_PHY_TYPE_LOW_25GBASE_T:
321 			return ICE_MEDIA_BASET;
322 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
323 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
324 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
325 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
326 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
327 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
328 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
329 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
330 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
331 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
332 			return ICE_MEDIA_DA;
333 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
334 		case ICE_PHY_TYPE_LOW_40G_XLAUI:
335 		case ICE_PHY_TYPE_LOW_50G_LAUI2:
336 		case ICE_PHY_TYPE_LOW_50G_AUI2:
337 		case ICE_PHY_TYPE_LOW_50G_AUI1:
338 		case ICE_PHY_TYPE_LOW_100G_AUI4:
339 		case ICE_PHY_TYPE_LOW_100G_CAUI4:
340 			if (ice_is_media_cage_present(pi))
341 				return ICE_MEDIA_DA;
342 			fallthrough;
343 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
344 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
345 		case ICE_PHY_TYPE_LOW_2500BASE_X:
346 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
347 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
348 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
349 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
350 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
351 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
352 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
353 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
354 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
355 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
356 			return ICE_MEDIA_BACKPLANE;
357 		}
358 	} else {
359 		switch (hw_link_info->phy_type_high) {
360 		case ICE_PHY_TYPE_HIGH_100G_AUI2:
361 		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
362 			if (ice_is_media_cage_present(pi))
363 				return ICE_MEDIA_DA;
364 			fallthrough;
365 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
366 			return ICE_MEDIA_BACKPLANE;
367 		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
368 		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
369 			return ICE_MEDIA_FIBER;
370 		}
371 	}
372 	return ICE_MEDIA_UNKNOWN;
373 }
374 
375 /**
376  * ice_aq_get_link_info
377  * @pi: port information structure
378  * @ena_lse: enable/disable LinkStatusEvent reporting
379  * @link: pointer to link status structure - optional
380  * @cd: pointer to command details structure or NULL
381  *
382  * Get Link Status (0x607). Returns the link status of the adapter.
383  */
384 enum ice_status
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)385 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
386 		     struct ice_link_status *link, struct ice_sq_cd *cd)
387 {
388 	struct ice_aqc_get_link_status_data link_data = { 0 };
389 	struct ice_aqc_get_link_status *resp;
390 	struct ice_link_status *li_old, *li;
391 	enum ice_media_type *hw_media_type;
392 	struct ice_fc_info *hw_fc_info;
393 	bool tx_pause, rx_pause;
394 	struct ice_aq_desc desc;
395 	enum ice_status status;
396 	struct ice_hw *hw;
397 	u16 cmd_flags;
398 
399 	if (!pi)
400 		return ICE_ERR_PARAM;
401 	hw = pi->hw;
402 	li_old = &pi->phy.link_info_old;
403 	hw_media_type = &pi->phy.media_type;
404 	li = &pi->phy.link_info;
405 	hw_fc_info = &pi->fc;
406 
407 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
408 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
409 	resp = &desc.params.get_link_status;
410 	resp->cmd_flags = cpu_to_le16(cmd_flags);
411 	resp->lport_num = pi->lport;
412 
413 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
414 
415 	if (status)
416 		return status;
417 
418 	/* save off old link status information */
419 	*li_old = *li;
420 
421 	/* update current link status information */
422 	li->link_speed = le16_to_cpu(link_data.link_speed);
423 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
424 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
425 	*hw_media_type = ice_get_media_type(pi);
426 	li->link_info = link_data.link_info;
427 	li->an_info = link_data.an_info;
428 	li->ext_info = link_data.ext_info;
429 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
430 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
431 	li->topo_media_conflict = link_data.topo_media_conflict;
432 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
433 				      ICE_AQ_CFG_PACING_TYPE_M);
434 
435 	/* update fc info */
436 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
437 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
438 	if (tx_pause && rx_pause)
439 		hw_fc_info->current_mode = ICE_FC_FULL;
440 	else if (tx_pause)
441 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
442 	else if (rx_pause)
443 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
444 	else
445 		hw_fc_info->current_mode = ICE_FC_NONE;
446 
447 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
448 
449 	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
450 	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
451 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
452 		  (unsigned long long)li->phy_type_low);
453 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
454 		  (unsigned long long)li->phy_type_high);
455 	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
456 	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
457 	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
458 	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
459 	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
460 	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
461 	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
462 		  li->max_frame_size);
463 	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
464 
465 	/* save link status information */
466 	if (link)
467 		*link = *li;
468 
469 	/* flag cleared so calling functions don't call AQ again */
470 	pi->phy.get_link_info = false;
471 
472 	return 0;
473 }
474 
475 /**
476  * ice_fill_tx_timer_and_fc_thresh
477  * @hw: pointer to the HW struct
478  * @cmd: pointer to MAC cfg structure
479  *
480  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
481  * descriptor
482  */
483 static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw * hw,struct ice_aqc_set_mac_cfg * cmd)484 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
485 				struct ice_aqc_set_mac_cfg *cmd)
486 {
487 	u16 fc_thres_val, tx_timer_val;
488 	u32 val;
489 
490 	/* We read back the transmit timer and FC threshold value of
491 	 * LFC. Thus, we will use index =
492 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
493 	 *
494 	 * Also, because we are operating on transmit timer and FC
495 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
496 	 */
497 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
498 
499 	/* Retrieve the transmit timer */
500 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
501 	tx_timer_val = val &
502 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
503 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
504 
505 	/* Retrieve the FC threshold */
506 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
507 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
508 
509 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
510 }
511 
512 /**
513  * ice_aq_set_mac_cfg
514  * @hw: pointer to the HW struct
515  * @max_frame_size: Maximum Frame Size to be supported
516  * @cd: pointer to command details structure or NULL
517  *
518  * Set MAC configuration (0x0603)
519  */
520 enum ice_status
ice_aq_set_mac_cfg(struct ice_hw * hw,u16 max_frame_size,struct ice_sq_cd * cd)521 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
522 {
523 	struct ice_aqc_set_mac_cfg *cmd;
524 	struct ice_aq_desc desc;
525 
526 	cmd = &desc.params.set_mac_cfg;
527 
528 	if (max_frame_size == 0)
529 		return ICE_ERR_PARAM;
530 
531 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
532 
533 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
534 
535 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
536 
537 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
538 }
539 
540 /**
541  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
542  * @hw: pointer to the HW struct
543  */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)544 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
545 {
546 	struct ice_switch_info *sw;
547 	enum ice_status status;
548 
549 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
550 				       sizeof(*hw->switch_info), GFP_KERNEL);
551 	sw = hw->switch_info;
552 
553 	if (!sw)
554 		return ICE_ERR_NO_MEMORY;
555 
556 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
557 
558 	status = ice_init_def_sw_recp(hw);
559 	if (status) {
560 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
561 		return status;
562 	}
563 	return 0;
564 }
565 
566 /**
567  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
568  * @hw: pointer to the HW struct
569  */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)570 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
571 {
572 	struct ice_switch_info *sw = hw->switch_info;
573 	struct ice_vsi_list_map_info *v_pos_map;
574 	struct ice_vsi_list_map_info *v_tmp_map;
575 	struct ice_sw_recipe *recps;
576 	u8 i;
577 
578 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
579 				 list_entry) {
580 		list_del(&v_pos_map->list_entry);
581 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
582 	}
583 	recps = hw->switch_info->recp_list;
584 	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
585 		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
586 
587 		recps[i].root_rid = i;
588 		mutex_destroy(&recps[i].filt_rule_lock);
589 		list_for_each_entry_safe(lst_itr, tmp_entry,
590 					 &recps[i].filt_rules, list_entry) {
591 			list_del(&lst_itr->list_entry);
592 			devm_kfree(ice_hw_to_dev(hw), lst_itr);
593 		}
594 	}
595 	ice_rm_all_sw_replay_rule_info(hw);
596 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
597 	devm_kfree(ice_hw_to_dev(hw), sw);
598 }
599 
600 /**
601  * ice_get_fw_log_cfg - get FW logging configuration
602  * @hw: pointer to the HW struct
603  */
ice_get_fw_log_cfg(struct ice_hw * hw)604 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
605 {
606 	struct ice_aq_desc desc;
607 	enum ice_status status;
608 	__le16 *config;
609 	u16 size;
610 
611 	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
612 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
613 	if (!config)
614 		return ICE_ERR_NO_MEMORY;
615 
616 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
617 
618 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
619 	if (!status) {
620 		u16 i;
621 
622 		/* Save FW logging information into the HW structure */
623 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
624 			u16 v, m, flgs;
625 
626 			v = le16_to_cpu(config[i]);
627 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
628 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
629 
630 			if (m < ICE_AQC_FW_LOG_ID_MAX)
631 				hw->fw_log.evnts[m].cur = flgs;
632 		}
633 	}
634 
635 	devm_kfree(ice_hw_to_dev(hw), config);
636 
637 	return status;
638 }
639 
640 /**
641  * ice_cfg_fw_log - configure FW logging
642  * @hw: pointer to the HW struct
643  * @enable: enable certain FW logging events if true, disable all if false
644  *
645  * This function enables/disables the FW logging via Rx CQ events and a UART
646  * port based on predetermined configurations. FW logging via the Rx CQ can be
647  * enabled/disabled for individual PF's. However, FW logging via the UART can
648  * only be enabled/disabled for all PFs on the same device.
649  *
650  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
651  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
652  * before initializing the device.
653  *
654  * When re/configuring FW logging, callers need to update the "cfg" elements of
655  * the hw->fw_log.evnts array with the desired logging event configurations for
656  * modules of interest. When disabling FW logging completely, the callers can
657  * just pass false in the "enable" parameter. On completion, the function will
658  * update the "cur" element of the hw->fw_log.evnts array with the resulting
659  * logging event configurations of the modules that are being re/configured. FW
660  * logging modules that are not part of a reconfiguration operation retain their
661  * previous states.
662  *
663  * Before resetting the device, it is recommended that the driver disables FW
664  * logging before shutting down the control queue. When disabling FW logging
665  * ("enable" = false), the latest configurations of FW logging events stored in
666  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
667  * a device reset.
668  *
669  * When enabling FW logging to emit log messages via the Rx CQ during the
670  * device's initialization phase, a mechanism alternative to interrupt handlers
671  * needs to be used to extract FW log messages from the Rx CQ periodically and
672  * to prevent the Rx CQ from being full and stalling other types of control
673  * messages from FW to SW. Interrupts are typically disabled during the device's
674  * initialization phase.
675  */
ice_cfg_fw_log(struct ice_hw * hw,bool enable)676 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
677 {
678 	struct ice_aqc_fw_logging *cmd;
679 	enum ice_status status = 0;
680 	u16 i, chgs = 0, len = 0;
681 	struct ice_aq_desc desc;
682 	__le16 *data = NULL;
683 	u8 actv_evnts = 0;
684 	void *buf = NULL;
685 
686 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
687 		return 0;
688 
689 	/* Disable FW logging only when the control queue is still responsive */
690 	if (!enable &&
691 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
692 		return 0;
693 
694 	/* Get current FW log settings */
695 	status = ice_get_fw_log_cfg(hw);
696 	if (status)
697 		return status;
698 
699 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
700 	cmd = &desc.params.fw_logging;
701 
702 	/* Indicate which controls are valid */
703 	if (hw->fw_log.cq_en)
704 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
705 
706 	if (hw->fw_log.uart_en)
707 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
708 
709 	if (enable) {
710 		/* Fill in an array of entries with FW logging modules and
711 		 * logging events being reconfigured.
712 		 */
713 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
714 			u16 val;
715 
716 			/* Keep track of enabled event types */
717 			actv_evnts |= hw->fw_log.evnts[i].cfg;
718 
719 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
720 				continue;
721 
722 			if (!data) {
723 				data = devm_kcalloc(ice_hw_to_dev(hw),
724 						    ICE_AQC_FW_LOG_ID_MAX,
725 						    sizeof(*data),
726 						    GFP_KERNEL);
727 				if (!data)
728 					return ICE_ERR_NO_MEMORY;
729 			}
730 
731 			val = i << ICE_AQC_FW_LOG_ID_S;
732 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
733 			data[chgs++] = cpu_to_le16(val);
734 		}
735 
736 		/* Only enable FW logging if at least one module is specified.
737 		 * If FW logging is currently enabled but all modules are not
738 		 * enabled to emit log messages, disable FW logging altogether.
739 		 */
740 		if (actv_evnts) {
741 			/* Leave if there is effectively no change */
742 			if (!chgs)
743 				goto out;
744 
745 			if (hw->fw_log.cq_en)
746 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
747 
748 			if (hw->fw_log.uart_en)
749 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
750 
751 			buf = data;
752 			len = sizeof(*data) * chgs;
753 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
754 		}
755 	}
756 
757 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
758 	if (!status) {
759 		/* Update the current configuration to reflect events enabled.
760 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
761 		 * logging mode is enabled for the device. They do not reflect
762 		 * actual modules being enabled to emit log messages. So, their
763 		 * values remain unchanged even when all modules are disabled.
764 		 */
765 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
766 
767 		hw->fw_log.actv_evnts = actv_evnts;
768 		for (i = 0; i < cnt; i++) {
769 			u16 v, m;
770 
771 			if (!enable) {
772 				/* When disabling all FW logging events as part
773 				 * of device's de-initialization, the original
774 				 * configurations are retained, and can be used
775 				 * to reconfigure FW logging later if the device
776 				 * is re-initialized.
777 				 */
778 				hw->fw_log.evnts[i].cur = 0;
779 				continue;
780 			}
781 
782 			v = le16_to_cpu(data[i]);
783 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
784 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
785 		}
786 	}
787 
788 out:
789 	if (data)
790 		devm_kfree(ice_hw_to_dev(hw), data);
791 
792 	return status;
793 }
794 
795 /**
796  * ice_output_fw_log
797  * @hw: pointer to the HW struct
798  * @desc: pointer to the AQ message descriptor
799  * @buf: pointer to the buffer accompanying the AQ message
800  *
801  * Formats a FW Log message and outputs it via the standard driver logs.
802  */
ice_output_fw_log(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf)803 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
804 {
805 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
806 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
807 			le16_to_cpu(desc->datalen));
808 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
809 }
810 
811 /**
812  * ice_get_itr_intrl_gran
813  * @hw: pointer to the HW struct
814  *
815  * Determines the ITR/INTRL granularities based on the maximum aggregate
816  * bandwidth according to the device's configuration during power-on.
817  */
ice_get_itr_intrl_gran(struct ice_hw * hw)818 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
819 {
820 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
821 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
822 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
823 
824 	switch (max_agg_bw) {
825 	case ICE_MAX_AGG_BW_200G:
826 	case ICE_MAX_AGG_BW_100G:
827 	case ICE_MAX_AGG_BW_50G:
828 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
829 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
830 		break;
831 	case ICE_MAX_AGG_BW_25G:
832 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
833 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
834 		break;
835 	}
836 }
837 
838 /**
839  * ice_init_hw - main hardware initialization routine
840  * @hw: pointer to the hardware structure
841  */
ice_init_hw(struct ice_hw * hw)842 enum ice_status ice_init_hw(struct ice_hw *hw)
843 {
844 	struct ice_aqc_get_phy_caps_data *pcaps;
845 	enum ice_status status;
846 	u16 mac_buf_len;
847 	void *mac_buf;
848 
849 	/* Set MAC type based on DeviceID */
850 	status = ice_set_mac_type(hw);
851 	if (status)
852 		return status;
853 
854 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
855 			 PF_FUNC_RID_FUNC_NUM_M) >>
856 		PF_FUNC_RID_FUNC_NUM_S;
857 
858 	status = ice_reset(hw, ICE_RESET_PFR);
859 	if (status)
860 		return status;
861 
862 	ice_get_itr_intrl_gran(hw);
863 
864 	status = ice_create_all_ctrlq(hw);
865 	if (status)
866 		goto err_unroll_cqinit;
867 
868 	/* Enable FW logging. Not fatal if this fails. */
869 	status = ice_cfg_fw_log(hw, true);
870 	if (status)
871 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
872 
873 	status = ice_clear_pf_cfg(hw);
874 	if (status)
875 		goto err_unroll_cqinit;
876 
877 	/* Set bit to enable Flow Director filters */
878 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
879 	INIT_LIST_HEAD(&hw->fdir_list_head);
880 
881 	ice_clear_pxe_mode(hw);
882 
883 	status = ice_init_nvm(hw);
884 	if (status)
885 		goto err_unroll_cqinit;
886 
887 	status = ice_get_caps(hw);
888 	if (status)
889 		goto err_unroll_cqinit;
890 
891 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
892 				     sizeof(*hw->port_info), GFP_KERNEL);
893 	if (!hw->port_info) {
894 		status = ICE_ERR_NO_MEMORY;
895 		goto err_unroll_cqinit;
896 	}
897 
898 	/* set the back pointer to HW */
899 	hw->port_info->hw = hw;
900 
901 	/* Initialize port_info struct with switch configuration data */
902 	status = ice_get_initial_sw_cfg(hw);
903 	if (status)
904 		goto err_unroll_alloc;
905 
906 	hw->evb_veb = true;
907 
908 	/* Query the allocated resources for Tx scheduler */
909 	status = ice_sched_query_res_alloc(hw);
910 	if (status) {
911 		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
912 		goto err_unroll_alloc;
913 	}
914 	ice_sched_get_psm_clk_freq(hw);
915 
916 	/* Initialize port_info struct with scheduler data */
917 	status = ice_sched_init_port(hw->port_info);
918 	if (status)
919 		goto err_unroll_sched;
920 
921 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
922 	if (!pcaps) {
923 		status = ICE_ERR_NO_MEMORY;
924 		goto err_unroll_sched;
925 	}
926 
927 	/* Initialize port_info struct with PHY capabilities */
928 	status = ice_aq_get_phy_caps(hw->port_info, false,
929 				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
930 				     NULL);
931 	devm_kfree(ice_hw_to_dev(hw), pcaps);
932 	if (status)
933 		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
934 			 status);
935 
936 	/* Initialize port_info struct with link information */
937 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
938 	if (status)
939 		goto err_unroll_sched;
940 
941 	/* need a valid SW entry point to build a Tx tree */
942 	if (!hw->sw_entry_point_layer) {
943 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
944 		status = ICE_ERR_CFG;
945 		goto err_unroll_sched;
946 	}
947 	INIT_LIST_HEAD(&hw->agg_list);
948 	/* Initialize max burst size */
949 	if (!hw->max_burst_size)
950 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
951 
952 	status = ice_init_fltr_mgmt_struct(hw);
953 	if (status)
954 		goto err_unroll_sched;
955 
956 	/* Get MAC information */
957 	/* A single port can report up to two (LAN and WoL) addresses */
958 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
959 			       sizeof(struct ice_aqc_manage_mac_read_resp),
960 			       GFP_KERNEL);
961 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
962 
963 	if (!mac_buf) {
964 		status = ICE_ERR_NO_MEMORY;
965 		goto err_unroll_fltr_mgmt_struct;
966 	}
967 
968 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
969 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
970 
971 	if (status)
972 		goto err_unroll_fltr_mgmt_struct;
973 	/* enable jumbo frame support at MAC level */
974 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
975 	if (status)
976 		goto err_unroll_fltr_mgmt_struct;
977 	/* Obtain counter base index which would be used by flow director */
978 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
979 	if (status)
980 		goto err_unroll_fltr_mgmt_struct;
981 	status = ice_init_hw_tbls(hw);
982 	if (status)
983 		goto err_unroll_fltr_mgmt_struct;
984 	mutex_init(&hw->tnl_lock);
985 	return 0;
986 
987 err_unroll_fltr_mgmt_struct:
988 	ice_cleanup_fltr_mgmt_struct(hw);
989 err_unroll_sched:
990 	ice_sched_cleanup_all(hw);
991 err_unroll_alloc:
992 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
993 err_unroll_cqinit:
994 	ice_destroy_all_ctrlq(hw);
995 	return status;
996 }
997 
998 /**
999  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1000  * @hw: pointer to the hardware structure
1001  *
1002  * This should be called only during nominal operation, not as a result of
1003  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1004  * applicable initializations if it fails for any reason.
1005  */
ice_deinit_hw(struct ice_hw * hw)1006 void ice_deinit_hw(struct ice_hw *hw)
1007 {
1008 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1009 	ice_cleanup_fltr_mgmt_struct(hw);
1010 
1011 	ice_sched_cleanup_all(hw);
1012 	ice_sched_clear_agg(hw);
1013 	ice_free_seg(hw);
1014 	ice_free_hw_tbls(hw);
1015 	mutex_destroy(&hw->tnl_lock);
1016 
1017 	if (hw->port_info) {
1018 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1019 		hw->port_info = NULL;
1020 	}
1021 
1022 	/* Attempt to disable FW logging before shutting down control queues */
1023 	ice_cfg_fw_log(hw, false);
1024 	ice_destroy_all_ctrlq(hw);
1025 
1026 	/* Clear VSI contexts if not already cleared */
1027 	ice_clear_all_vsi_ctx(hw);
1028 }
1029 
1030 /**
1031  * ice_check_reset - Check to see if a global reset is complete
1032  * @hw: pointer to the hardware structure
1033  */
ice_check_reset(struct ice_hw * hw)1034 enum ice_status ice_check_reset(struct ice_hw *hw)
1035 {
1036 	u32 cnt, reg = 0, grst_timeout, uld_mask;
1037 
1038 	/* Poll for Device Active state in case a recent CORER, GLOBR,
1039 	 * or EMPR has occurred. The grst delay value is in 100ms units.
1040 	 * Add 1sec for outstanding AQ commands that can take a long time.
1041 	 */
1042 	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1043 			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1044 
1045 	for (cnt = 0; cnt < grst_timeout; cnt++) {
1046 		mdelay(100);
1047 		reg = rd32(hw, GLGEN_RSTAT);
1048 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1049 			break;
1050 	}
1051 
1052 	if (cnt == grst_timeout) {
1053 		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1054 		return ICE_ERR_RESET_FAILED;
1055 	}
1056 
1057 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1058 				 GLNVM_ULD_PCIER_DONE_1_M |\
1059 				 GLNVM_ULD_CORER_DONE_M |\
1060 				 GLNVM_ULD_GLOBR_DONE_M |\
1061 				 GLNVM_ULD_POR_DONE_M |\
1062 				 GLNVM_ULD_POR_DONE_1_M |\
1063 				 GLNVM_ULD_PCIER_DONE_2_M)
1064 
1065 	uld_mask = ICE_RESET_DONE_MASK;
1066 
1067 	/* Device is Active; check Global Reset processes are done */
1068 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1069 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1070 		if (reg == uld_mask) {
1071 			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1072 			break;
1073 		}
1074 		mdelay(10);
1075 	}
1076 
1077 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1078 		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1079 			  reg);
1080 		return ICE_ERR_RESET_FAILED;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 /**
1087  * ice_pf_reset - Reset the PF
1088  * @hw: pointer to the hardware structure
1089  *
1090  * If a global reset has been triggered, this function checks
1091  * for its completion and then issues the PF reset
1092  */
ice_pf_reset(struct ice_hw * hw)1093 static enum ice_status ice_pf_reset(struct ice_hw *hw)
1094 {
1095 	u32 cnt, reg;
1096 
1097 	/* If at function entry a global reset was already in progress, i.e.
1098 	 * state is not 'device active' or any of the reset done bits are not
1099 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1100 	 * global reset is done.
1101 	 */
1102 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1103 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1104 		/* poll on global reset currently in progress until done */
1105 		if (ice_check_reset(hw))
1106 			return ICE_ERR_RESET_FAILED;
1107 
1108 		return 0;
1109 	}
1110 
1111 	/* Reset the PF */
1112 	reg = rd32(hw, PFGEN_CTRL);
1113 
1114 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1115 
1116 	/* Wait for the PFR to complete. The wait time is the global config lock
1117 	 * timeout plus the PFR timeout which will account for a possible reset
1118 	 * that is occurring during a download package operation.
1119 	 */
1120 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1121 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1122 		reg = rd32(hw, PFGEN_CTRL);
1123 		if (!(reg & PFGEN_CTRL_PFSWR_M))
1124 			break;
1125 
1126 		mdelay(1);
1127 	}
1128 
1129 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1130 		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1131 		return ICE_ERR_RESET_FAILED;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  * ice_reset - Perform different types of reset
1139  * @hw: pointer to the hardware structure
1140  * @req: reset request
1141  *
1142  * This function triggers a reset as specified by the req parameter.
1143  *
1144  * Note:
1145  * If anything other than a PF reset is triggered, PXE mode is restored.
1146  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1147  * interface has been restored in the rebuild flow.
1148  */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)1149 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1150 {
1151 	u32 val = 0;
1152 
1153 	switch (req) {
1154 	case ICE_RESET_PFR:
1155 		return ice_pf_reset(hw);
1156 	case ICE_RESET_CORER:
1157 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1158 		val = GLGEN_RTRIG_CORER_M;
1159 		break;
1160 	case ICE_RESET_GLOBR:
1161 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1162 		val = GLGEN_RTRIG_GLOBR_M;
1163 		break;
1164 	default:
1165 		return ICE_ERR_PARAM;
1166 	}
1167 
1168 	val |= rd32(hw, GLGEN_RTRIG);
1169 	wr32(hw, GLGEN_RTRIG, val);
1170 	ice_flush(hw);
1171 
1172 	/* wait for the FW to be ready */
1173 	return ice_check_reset(hw);
1174 }
1175 
1176 /**
1177  * ice_copy_rxq_ctx_to_hw
1178  * @hw: pointer to the hardware structure
1179  * @ice_rxq_ctx: pointer to the rxq context
1180  * @rxq_index: the index of the Rx queue
1181  *
1182  * Copies rxq context from dense structure to HW register space
1183  */
1184 static enum ice_status
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,u8 * ice_rxq_ctx,u32 rxq_index)1185 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1186 {
1187 	u8 i;
1188 
1189 	if (!ice_rxq_ctx)
1190 		return ICE_ERR_BAD_PTR;
1191 
1192 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1193 		return ICE_ERR_PARAM;
1194 
1195 	/* Copy each dword separately to HW */
1196 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1197 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1198 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1199 
1200 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1201 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 /* LAN Rx Queue Context */
1208 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1209 	/* Field		Width	LSB */
1210 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1211 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1212 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1213 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1214 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1215 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1216 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1217 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1218 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1219 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1220 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1221 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1222 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1223 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1224 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1225 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1226 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1227 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1228 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1229 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1230 	{ 0 }
1231 };
1232 
1233 /**
1234  * ice_write_rxq_ctx
1235  * @hw: pointer to the hardware structure
1236  * @rlan_ctx: pointer to the rxq context
1237  * @rxq_index: the index of the Rx queue
1238  *
1239  * Converts rxq context from sparse to dense structure and then writes
1240  * it to HW register space and enables the hardware to prefetch descriptors
1241  * instead of only fetching them on demand
1242  */
1243 enum ice_status
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)1244 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1245 		  u32 rxq_index)
1246 {
1247 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1248 
1249 	if (!rlan_ctx)
1250 		return ICE_ERR_BAD_PTR;
1251 
1252 	rlan_ctx->prefena = 1;
1253 
1254 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1255 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1256 }
1257 
1258 /* LAN Tx Queue Context */
1259 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1260 				    /* Field			Width	LSB */
1261 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1262 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1263 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1264 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1265 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1266 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1267 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1268 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1269 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1270 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1271 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1272 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1273 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1274 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1275 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1276 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1277 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1278 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1279 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1280 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1281 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1282 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1283 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1284 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1285 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1286 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1287 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1288 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1289 	{ 0 }
1290 };
1291 
1292 /* FW Admin Queue command wrappers */
1293 
1294 /* Software lock/mutex that is meant to be held while the Global Config Lock
1295  * in firmware is acquired by the software to prevent most (but not all) types
1296  * of AQ commands from being sent to FW
1297  */
1298 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1299 
1300 /**
1301  * ice_should_retry_sq_send_cmd
1302  * @opcode: AQ opcode
1303  *
1304  * Decide if we should retry the send command routine for the ATQ, depending
1305  * on the opcode.
1306  */
ice_should_retry_sq_send_cmd(u16 opcode)1307 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1308 {
1309 	switch (opcode) {
1310 	case ice_aqc_opc_get_link_topo:
1311 	case ice_aqc_opc_lldp_stop:
1312 	case ice_aqc_opc_lldp_start:
1313 	case ice_aqc_opc_lldp_filter_ctrl:
1314 		return true;
1315 	}
1316 
1317 	return false;
1318 }
1319 
1320 /**
1321  * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1322  * @hw: pointer to the HW struct
1323  * @cq: pointer to the specific Control queue
1324  * @desc: prefilled descriptor describing the command
1325  * @buf: buffer to use for indirect commands (or NULL for direct commands)
1326  * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1327  * @cd: pointer to command details structure
1328  *
1329  * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1330  * Queue if the EBUSY AQ error is returned.
1331  */
1332 static enum ice_status
ice_sq_send_cmd_retry(struct ice_hw * hw,struct ice_ctl_q_info * cq,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1333 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1334 		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1335 		      struct ice_sq_cd *cd)
1336 {
1337 	struct ice_aq_desc desc_cpy;
1338 	enum ice_status status;
1339 	bool is_cmd_for_retry;
1340 	u8 *buf_cpy = NULL;
1341 	u8 idx = 0;
1342 	u16 opcode;
1343 
1344 	opcode = le16_to_cpu(desc->opcode);
1345 	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1346 	memset(&desc_cpy, 0, sizeof(desc_cpy));
1347 
1348 	if (is_cmd_for_retry) {
1349 		if (buf) {
1350 			buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1351 			if (!buf_cpy)
1352 				return ICE_ERR_NO_MEMORY;
1353 		}
1354 
1355 		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1356 	}
1357 
1358 	do {
1359 		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1360 
1361 		if (!is_cmd_for_retry || !status ||
1362 		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1363 			break;
1364 
1365 		if (buf_cpy)
1366 			memcpy(buf, buf_cpy, buf_size);
1367 
1368 		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1369 
1370 		mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1371 
1372 	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1373 
1374 	kfree(buf_cpy);
1375 
1376 	return status;
1377 }
1378 
1379 /**
1380  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1381  * @hw: pointer to the HW struct
1382  * @desc: descriptor describing the command
1383  * @buf: buffer to use for indirect commands (NULL for direct commands)
1384  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1385  * @cd: pointer to command details structure
1386  *
1387  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1388  */
1389 enum ice_status
ice_aq_send_cmd(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)1390 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1391 		u16 buf_size, struct ice_sq_cd *cd)
1392 {
1393 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1394 	bool lock_acquired = false;
1395 	enum ice_status status;
1396 
1397 	/* When a package download is in process (i.e. when the firmware's
1398 	 * Global Configuration Lock resource is held), only the Download
1399 	 * Package, Get Version, Get Package Info List and Release Resource
1400 	 * (with resource ID set to Global Config Lock) AdminQ commands are
1401 	 * allowed; all others must block until the package download completes
1402 	 * and the Global Config Lock is released.  See also
1403 	 * ice_acquire_global_cfg_lock().
1404 	 */
1405 	switch (le16_to_cpu(desc->opcode)) {
1406 	case ice_aqc_opc_download_pkg:
1407 	case ice_aqc_opc_get_pkg_info_list:
1408 	case ice_aqc_opc_get_ver:
1409 		break;
1410 	case ice_aqc_opc_release_res:
1411 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1412 			break;
1413 		fallthrough;
1414 	default:
1415 		mutex_lock(&ice_global_cfg_lock_sw);
1416 		lock_acquired = true;
1417 		break;
1418 	}
1419 
1420 	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1421 	if (lock_acquired)
1422 		mutex_unlock(&ice_global_cfg_lock_sw);
1423 
1424 	return status;
1425 }
1426 
1427 /**
1428  * ice_aq_get_fw_ver
1429  * @hw: pointer to the HW struct
1430  * @cd: pointer to command details structure or NULL
1431  *
1432  * Get the firmware version (0x0001) from the admin queue commands
1433  */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)1434 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1435 {
1436 	struct ice_aqc_get_ver *resp;
1437 	struct ice_aq_desc desc;
1438 	enum ice_status status;
1439 
1440 	resp = &desc.params.get_ver;
1441 
1442 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1443 
1444 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1445 
1446 	if (!status) {
1447 		hw->fw_branch = resp->fw_branch;
1448 		hw->fw_maj_ver = resp->fw_major;
1449 		hw->fw_min_ver = resp->fw_minor;
1450 		hw->fw_patch = resp->fw_patch;
1451 		hw->fw_build = le32_to_cpu(resp->fw_build);
1452 		hw->api_branch = resp->api_branch;
1453 		hw->api_maj_ver = resp->api_major;
1454 		hw->api_min_ver = resp->api_minor;
1455 		hw->api_patch = resp->api_patch;
1456 	}
1457 
1458 	return status;
1459 }
1460 
1461 /**
1462  * ice_aq_send_driver_ver
1463  * @hw: pointer to the HW struct
1464  * @dv: driver's major, minor version
1465  * @cd: pointer to command details structure or NULL
1466  *
1467  * Send the driver version (0x0002) to the firmware
1468  */
1469 enum ice_status
ice_aq_send_driver_ver(struct ice_hw * hw,struct ice_driver_ver * dv,struct ice_sq_cd * cd)1470 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1471 		       struct ice_sq_cd *cd)
1472 {
1473 	struct ice_aqc_driver_ver *cmd;
1474 	struct ice_aq_desc desc;
1475 	u16 len;
1476 
1477 	cmd = &desc.params.driver_ver;
1478 
1479 	if (!dv)
1480 		return ICE_ERR_PARAM;
1481 
1482 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1483 
1484 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1485 	cmd->major_ver = dv->major_ver;
1486 	cmd->minor_ver = dv->minor_ver;
1487 	cmd->build_ver = dv->build_ver;
1488 	cmd->subbuild_ver = dv->subbuild_ver;
1489 
1490 	len = 0;
1491 	while (len < sizeof(dv->driver_string) &&
1492 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1493 		len++;
1494 
1495 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1496 }
1497 
1498 /**
1499  * ice_aq_q_shutdown
1500  * @hw: pointer to the HW struct
1501  * @unloading: is the driver unloading itself
1502  *
1503  * Tell the Firmware that we're shutting down the AdminQ and whether
1504  * or not the driver is unloading as well (0x0003).
1505  */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)1506 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1507 {
1508 	struct ice_aqc_q_shutdown *cmd;
1509 	struct ice_aq_desc desc;
1510 
1511 	cmd = &desc.params.q_shutdown;
1512 
1513 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1514 
1515 	if (unloading)
1516 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1517 
1518 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1519 }
1520 
1521 /**
1522  * ice_aq_req_res
1523  * @hw: pointer to the HW struct
1524  * @res: resource ID
1525  * @access: access type
1526  * @sdp_number: resource number
1527  * @timeout: the maximum time in ms that the driver may hold the resource
1528  * @cd: pointer to command details structure or NULL
1529  *
1530  * Requests common resource using the admin queue commands (0x0008).
1531  * When attempting to acquire the Global Config Lock, the driver can
1532  * learn of three states:
1533  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1534  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1535  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1536  *                          successfully downloaded the package; the driver does
1537  *                          not have to download the package and can continue
1538  *                          loading
1539  *
1540  * Note that if the caller is in an acquire lock, perform action, release lock
1541  * phase of operation, it is possible that the FW may detect a timeout and issue
1542  * a CORER. In this case, the driver will receive a CORER interrupt and will
1543  * have to determine its cause. The calling thread that is handling this flow
1544  * will likely get an error propagated back to it indicating the Download
1545  * Package, Update Package or the Release Resource AQ commands timed out.
1546  */
1547 static enum ice_status
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)1548 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1549 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1550 	       struct ice_sq_cd *cd)
1551 {
1552 	struct ice_aqc_req_res *cmd_resp;
1553 	struct ice_aq_desc desc;
1554 	enum ice_status status;
1555 
1556 	cmd_resp = &desc.params.res_owner;
1557 
1558 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1559 
1560 	cmd_resp->res_id = cpu_to_le16(res);
1561 	cmd_resp->access_type = cpu_to_le16(access);
1562 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1563 	cmd_resp->timeout = cpu_to_le32(*timeout);
1564 	*timeout = 0;
1565 
1566 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1567 
1568 	/* The completion specifies the maximum time in ms that the driver
1569 	 * may hold the resource in the Timeout field.
1570 	 */
1571 
1572 	/* Global config lock response utilizes an additional status field.
1573 	 *
1574 	 * If the Global config lock resource is held by some other driver, the
1575 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1576 	 * and the timeout field indicates the maximum time the current owner
1577 	 * of the resource has to free it.
1578 	 */
1579 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1580 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1581 			*timeout = le32_to_cpu(cmd_resp->timeout);
1582 			return 0;
1583 		} else if (le16_to_cpu(cmd_resp->status) ==
1584 			   ICE_AQ_RES_GLBL_IN_PROG) {
1585 			*timeout = le32_to_cpu(cmd_resp->timeout);
1586 			return ICE_ERR_AQ_ERROR;
1587 		} else if (le16_to_cpu(cmd_resp->status) ==
1588 			   ICE_AQ_RES_GLBL_DONE) {
1589 			return ICE_ERR_AQ_NO_WORK;
1590 		}
1591 
1592 		/* invalid FW response, force a timeout immediately */
1593 		*timeout = 0;
1594 		return ICE_ERR_AQ_ERROR;
1595 	}
1596 
1597 	/* If the resource is held by some other driver, the command completes
1598 	 * with a busy return value and the timeout field indicates the maximum
1599 	 * time the current owner of the resource has to free it.
1600 	 */
1601 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1602 		*timeout = le32_to_cpu(cmd_resp->timeout);
1603 
1604 	return status;
1605 }
1606 
1607 /**
1608  * ice_aq_release_res
1609  * @hw: pointer to the HW struct
1610  * @res: resource ID
1611  * @sdp_number: resource number
1612  * @cd: pointer to command details structure or NULL
1613  *
1614  * release common resource using the admin queue commands (0x0009)
1615  */
1616 static enum ice_status
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)1617 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1618 		   struct ice_sq_cd *cd)
1619 {
1620 	struct ice_aqc_req_res *cmd;
1621 	struct ice_aq_desc desc;
1622 
1623 	cmd = &desc.params.res_owner;
1624 
1625 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1626 
1627 	cmd->res_id = cpu_to_le16(res);
1628 	cmd->res_number = cpu_to_le32(sdp_number);
1629 
1630 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1631 }
1632 
1633 /**
1634  * ice_acquire_res
1635  * @hw: pointer to the HW structure
1636  * @res: resource ID
1637  * @access: access type (read or write)
1638  * @timeout: timeout in milliseconds
1639  *
1640  * This function will attempt to acquire the ownership of a resource.
1641  */
1642 enum ice_status
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)1643 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1644 		enum ice_aq_res_access_type access, u32 timeout)
1645 {
1646 #define ICE_RES_POLLING_DELAY_MS	10
1647 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1648 	u32 time_left = timeout;
1649 	enum ice_status status;
1650 
1651 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1652 
1653 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1654 	 * previously acquired the resource and performed any necessary updates;
1655 	 * in this case the caller does not obtain the resource and has no
1656 	 * further work to do.
1657 	 */
1658 	if (status == ICE_ERR_AQ_NO_WORK)
1659 		goto ice_acquire_res_exit;
1660 
1661 	if (status)
1662 		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1663 
1664 	/* If necessary, poll until the current lock owner timeouts */
1665 	timeout = time_left;
1666 	while (status && timeout && time_left) {
1667 		mdelay(delay);
1668 		timeout = (timeout > delay) ? timeout - delay : 0;
1669 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1670 
1671 		if (status == ICE_ERR_AQ_NO_WORK)
1672 			/* lock free, but no work to do */
1673 			break;
1674 
1675 		if (!status)
1676 			/* lock acquired */
1677 			break;
1678 	}
1679 	if (status && status != ICE_ERR_AQ_NO_WORK)
1680 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1681 
1682 ice_acquire_res_exit:
1683 	if (status == ICE_ERR_AQ_NO_WORK) {
1684 		if (access == ICE_RES_WRITE)
1685 			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1686 		else
1687 			ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1688 	}
1689 	return status;
1690 }
1691 
1692 /**
1693  * ice_release_res
1694  * @hw: pointer to the HW structure
1695  * @res: resource ID
1696  *
1697  * This function will release a resource using the proper Admin Command.
1698  */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)1699 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1700 {
1701 	enum ice_status status;
1702 	u32 total_delay = 0;
1703 
1704 	status = ice_aq_release_res(hw, res, 0, NULL);
1705 
1706 	/* there are some rare cases when trying to release the resource
1707 	 * results in an admin queue timeout, so handle them correctly
1708 	 */
1709 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1710 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1711 		mdelay(1);
1712 		status = ice_aq_release_res(hw, res, 0, NULL);
1713 		total_delay++;
1714 	}
1715 }
1716 
1717 /**
1718  * ice_aq_alloc_free_res - command to allocate/free resources
1719  * @hw: pointer to the HW struct
1720  * @num_entries: number of resource entries in buffer
1721  * @buf: Indirect buffer to hold data parameters and response
1722  * @buf_size: size of buffer for indirect commands
1723  * @opc: pass in the command opcode
1724  * @cd: pointer to command details structure or NULL
1725  *
1726  * Helper function to allocate/free resources using the admin queue commands
1727  */
1728 enum ice_status
ice_aq_alloc_free_res(struct ice_hw * hw,u16 num_entries,struct ice_aqc_alloc_free_res_elem * buf,u16 buf_size,enum ice_adminq_opc opc,struct ice_sq_cd * cd)1729 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1730 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1731 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1732 {
1733 	struct ice_aqc_alloc_free_res_cmd *cmd;
1734 	struct ice_aq_desc desc;
1735 
1736 	cmd = &desc.params.sw_res_ctrl;
1737 
1738 	if (!buf)
1739 		return ICE_ERR_PARAM;
1740 
1741 	if (buf_size < flex_array_size(buf, elem, num_entries))
1742 		return ICE_ERR_PARAM;
1743 
1744 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1745 
1746 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1747 
1748 	cmd->num_entries = cpu_to_le16(num_entries);
1749 
1750 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1751 }
1752 
1753 /**
1754  * ice_alloc_hw_res - allocate resource
1755  * @hw: pointer to the HW struct
1756  * @type: type of resource
1757  * @num: number of resources to allocate
1758  * @btm: allocate from bottom
1759  * @res: pointer to array that will receive the resources
1760  */
1761 enum ice_status
ice_alloc_hw_res(struct ice_hw * hw,u16 type,u16 num,bool btm,u16 * res)1762 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1763 {
1764 	struct ice_aqc_alloc_free_res_elem *buf;
1765 	enum ice_status status;
1766 	u16 buf_len;
1767 
1768 	buf_len = struct_size(buf, elem, num);
1769 	buf = kzalloc(buf_len, GFP_KERNEL);
1770 	if (!buf)
1771 		return ICE_ERR_NO_MEMORY;
1772 
1773 	/* Prepare buffer to allocate resource. */
1774 	buf->num_elems = cpu_to_le16(num);
1775 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1776 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1777 	if (btm)
1778 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1779 
1780 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1781 				       ice_aqc_opc_alloc_res, NULL);
1782 	if (status)
1783 		goto ice_alloc_res_exit;
1784 
1785 	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1786 
1787 ice_alloc_res_exit:
1788 	kfree(buf);
1789 	return status;
1790 }
1791 
1792 /**
1793  * ice_free_hw_res - free allocated HW resource
1794  * @hw: pointer to the HW struct
1795  * @type: type of resource to free
1796  * @num: number of resources
1797  * @res: pointer to array that contains the resources to free
1798  */
ice_free_hw_res(struct ice_hw * hw,u16 type,u16 num,u16 * res)1799 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1800 {
1801 	struct ice_aqc_alloc_free_res_elem *buf;
1802 	enum ice_status status;
1803 	u16 buf_len;
1804 
1805 	buf_len = struct_size(buf, elem, num);
1806 	buf = kzalloc(buf_len, GFP_KERNEL);
1807 	if (!buf)
1808 		return ICE_ERR_NO_MEMORY;
1809 
1810 	/* Prepare buffer to free resource. */
1811 	buf->num_elems = cpu_to_le16(num);
1812 	buf->res_type = cpu_to_le16(type);
1813 	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1814 
1815 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1816 				       ice_aqc_opc_free_res, NULL);
1817 	if (status)
1818 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1819 
1820 	kfree(buf);
1821 	return status;
1822 }
1823 
1824 /**
1825  * ice_get_num_per_func - determine number of resources per PF
1826  * @hw: pointer to the HW structure
1827  * @max: value to be evenly split between each PF
1828  *
1829  * Determine the number of valid functions by going through the bitmap returned
1830  * from parsing capabilities and use this to calculate the number of resources
1831  * per PF based on the max value passed in.
1832  */
ice_get_num_per_func(struct ice_hw * hw,u32 max)1833 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1834 {
1835 	u8 funcs;
1836 
1837 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1838 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1839 			 ICE_CAPS_VALID_FUNCS_M);
1840 
1841 	if (!funcs)
1842 		return 0;
1843 
1844 	return max / funcs;
1845 }
1846 
1847 /**
1848  * ice_parse_common_caps - parse common device/function capabilities
1849  * @hw: pointer to the HW struct
1850  * @caps: pointer to common capabilities structure
1851  * @elem: the capability element to parse
1852  * @prefix: message prefix for tracing capabilities
1853  *
1854  * Given a capability element, extract relevant details into the common
1855  * capability structure.
1856  *
1857  * Returns: true if the capability matches one of the common capability ids,
1858  * false otherwise.
1859  */
1860 static bool
ice_parse_common_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps,struct ice_aqc_list_caps_elem * elem,const char * prefix)1861 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1862 		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1863 {
1864 	u32 logical_id = le32_to_cpu(elem->logical_id);
1865 	u32 phys_id = le32_to_cpu(elem->phys_id);
1866 	u32 number = le32_to_cpu(elem->number);
1867 	u16 cap = le16_to_cpu(elem->cap);
1868 	bool found = true;
1869 
1870 	switch (cap) {
1871 	case ICE_AQC_CAPS_VALID_FUNCTIONS:
1872 		caps->valid_functions = number;
1873 		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
1874 			  caps->valid_functions);
1875 		break;
1876 	case ICE_AQC_CAPS_SRIOV:
1877 		caps->sr_iov_1_1 = (number == 1);
1878 		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
1879 			  caps->sr_iov_1_1);
1880 		break;
1881 	case ICE_AQC_CAPS_DCB:
1882 		caps->dcb = (number == 1);
1883 		caps->active_tc_bitmap = logical_id;
1884 		caps->maxtc = phys_id;
1885 		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
1886 		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
1887 			  caps->active_tc_bitmap);
1888 		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
1889 		break;
1890 	case ICE_AQC_CAPS_RSS:
1891 		caps->rss_table_size = number;
1892 		caps->rss_table_entry_width = logical_id;
1893 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
1894 			  caps->rss_table_size);
1895 		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
1896 			  caps->rss_table_entry_width);
1897 		break;
1898 	case ICE_AQC_CAPS_RXQS:
1899 		caps->num_rxq = number;
1900 		caps->rxq_first_id = phys_id;
1901 		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
1902 			  caps->num_rxq);
1903 		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
1904 			  caps->rxq_first_id);
1905 		break;
1906 	case ICE_AQC_CAPS_TXQS:
1907 		caps->num_txq = number;
1908 		caps->txq_first_id = phys_id;
1909 		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
1910 			  caps->num_txq);
1911 		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
1912 			  caps->txq_first_id);
1913 		break;
1914 	case ICE_AQC_CAPS_MSIX:
1915 		caps->num_msix_vectors = number;
1916 		caps->msix_vector_first_id = phys_id;
1917 		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
1918 			  caps->num_msix_vectors);
1919 		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
1920 			  caps->msix_vector_first_id);
1921 		break;
1922 	case ICE_AQC_CAPS_PENDING_NVM_VER:
1923 		caps->nvm_update_pending_nvm = true;
1924 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
1925 		break;
1926 	case ICE_AQC_CAPS_PENDING_OROM_VER:
1927 		caps->nvm_update_pending_orom = true;
1928 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
1929 		break;
1930 	case ICE_AQC_CAPS_PENDING_NET_VER:
1931 		caps->nvm_update_pending_netlist = true;
1932 		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
1933 		break;
1934 	case ICE_AQC_CAPS_NVM_MGMT:
1935 		caps->nvm_unified_update =
1936 			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
1937 			true : false;
1938 		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
1939 			  caps->nvm_unified_update);
1940 		break;
1941 	case ICE_AQC_CAPS_MAX_MTU:
1942 		caps->max_mtu = number;
1943 		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1944 			  prefix, caps->max_mtu);
1945 		break;
1946 	default:
1947 		/* Not one of the recognized common capabilities */
1948 		found = false;
1949 	}
1950 
1951 	return found;
1952 }
1953 
1954 /**
1955  * ice_recalc_port_limited_caps - Recalculate port limited capabilities
1956  * @hw: pointer to the HW structure
1957  * @caps: pointer to capabilities structure to fix
1958  *
1959  * Re-calculate the capabilities that are dependent on the number of physical
1960  * ports; i.e. some features are not supported or function differently on
1961  * devices with more than 4 ports.
1962  */
1963 static void
ice_recalc_port_limited_caps(struct ice_hw * hw,struct ice_hw_common_caps * caps)1964 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
1965 {
1966 	/* This assumes device capabilities are always scanned before function
1967 	 * capabilities during the initialization flow.
1968 	 */
1969 	if (hw->dev_caps.num_funcs > 4) {
1970 		/* Max 4 TCs per port */
1971 		caps->maxtc = 4;
1972 		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
1973 			  caps->maxtc);
1974 	}
1975 }
1976 
1977 /**
1978  * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
1979  * @hw: pointer to the HW struct
1980  * @func_p: pointer to function capabilities structure
1981  * @cap: pointer to the capability element to parse
1982  *
1983  * Extract function capabilities for ICE_AQC_CAPS_VF.
1984  */
1985 static void
ice_parse_vf_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)1986 ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
1987 		       struct ice_aqc_list_caps_elem *cap)
1988 {
1989 	u32 logical_id = le32_to_cpu(cap->logical_id);
1990 	u32 number = le32_to_cpu(cap->number);
1991 
1992 	func_p->num_allocd_vfs = number;
1993 	func_p->vf_base_id = logical_id;
1994 	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
1995 		  func_p->num_allocd_vfs);
1996 	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
1997 		  func_p->vf_base_id);
1998 }
1999 
2000 /**
2001  * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2002  * @hw: pointer to the HW struct
2003  * @func_p: pointer to function capabilities structure
2004  * @cap: pointer to the capability element to parse
2005  *
2006  * Extract function capabilities for ICE_AQC_CAPS_VSI.
2007  */
2008 static void
ice_parse_vsi_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,struct ice_aqc_list_caps_elem * cap)2009 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2010 			struct ice_aqc_list_caps_elem *cap)
2011 {
2012 	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2013 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2014 		  le32_to_cpu(cap->number));
2015 	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2016 		  func_p->guar_num_vsi);
2017 }
2018 
2019 /**
2020  * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2021  * @hw: pointer to the HW struct
2022  * @func_p: pointer to function capabilities structure
2023  *
2024  * Extract function capabilities for ICE_AQC_CAPS_FD.
2025  */
2026 static void
ice_parse_fdir_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p)2027 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2028 {
2029 	u32 reg_val, val;
2030 
2031 	reg_val = rd32(hw, GLQF_FD_SIZE);
2032 	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2033 		GLQF_FD_SIZE_FD_GSIZE_S;
2034 	func_p->fd_fltr_guar =
2035 		ice_get_num_per_func(hw, val);
2036 	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2037 		GLQF_FD_SIZE_FD_BSIZE_S;
2038 	func_p->fd_fltr_best_effort = val;
2039 
2040 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2041 		  func_p->fd_fltr_guar);
2042 	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2043 		  func_p->fd_fltr_best_effort);
2044 }
2045 
2046 /**
2047  * ice_parse_func_caps - Parse function capabilities
2048  * @hw: pointer to the HW struct
2049  * @func_p: pointer to function capabilities structure
2050  * @buf: buffer containing the function capability records
2051  * @cap_count: the number of capabilities
2052  *
2053  * Helper function to parse function (0x000A) capabilities list. For
2054  * capabilities shared between device and function, this relies on
2055  * ice_parse_common_caps.
2056  *
2057  * Loop through the list of provided capabilities and extract the relevant
2058  * data into the function capabilities structured.
2059  */
2060 static void
ice_parse_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_p,void * buf,u32 cap_count)2061 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2062 		    void *buf, u32 cap_count)
2063 {
2064 	struct ice_aqc_list_caps_elem *cap_resp;
2065 	u32 i;
2066 
2067 	cap_resp = buf;
2068 
2069 	memset(func_p, 0, sizeof(*func_p));
2070 
2071 	for (i = 0; i < cap_count; i++) {
2072 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2073 		bool found;
2074 
2075 		found = ice_parse_common_caps(hw, &func_p->common_cap,
2076 					      &cap_resp[i], "func caps");
2077 
2078 		switch (cap) {
2079 		case ICE_AQC_CAPS_VF:
2080 			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2081 			break;
2082 		case ICE_AQC_CAPS_VSI:
2083 			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2084 			break;
2085 		case ICE_AQC_CAPS_FD:
2086 			ice_parse_fdir_func_caps(hw, func_p);
2087 			break;
2088 		default:
2089 			/* Don't list common capabilities as unknown */
2090 			if (!found)
2091 				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2092 					  i, cap);
2093 			break;
2094 		}
2095 	}
2096 
2097 	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2098 }
2099 
2100 /**
2101  * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2102  * @hw: pointer to the HW struct
2103  * @dev_p: pointer to device capabilities structure
2104  * @cap: capability element to parse
2105  *
2106  * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2107  */
2108 static void
ice_parse_valid_functions_cap(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2109 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2110 			      struct ice_aqc_list_caps_elem *cap)
2111 {
2112 	u32 number = le32_to_cpu(cap->number);
2113 
2114 	dev_p->num_funcs = hweight32(number);
2115 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2116 		  dev_p->num_funcs);
2117 }
2118 
2119 /**
2120  * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2121  * @hw: pointer to the HW struct
2122  * @dev_p: pointer to device capabilities structure
2123  * @cap: capability element to parse
2124  *
2125  * Parse ICE_AQC_CAPS_VF for device capabilities.
2126  */
2127 static void
ice_parse_vf_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2128 ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2129 		      struct ice_aqc_list_caps_elem *cap)
2130 {
2131 	u32 number = le32_to_cpu(cap->number);
2132 
2133 	dev_p->num_vfs_exposed = number;
2134 	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2135 		  dev_p->num_vfs_exposed);
2136 }
2137 
2138 /**
2139  * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2140  * @hw: pointer to the HW struct
2141  * @dev_p: pointer to device capabilities structure
2142  * @cap: capability element to parse
2143  *
2144  * Parse ICE_AQC_CAPS_VSI for device capabilities.
2145  */
2146 static void
ice_parse_vsi_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2147 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2148 		       struct ice_aqc_list_caps_elem *cap)
2149 {
2150 	u32 number = le32_to_cpu(cap->number);
2151 
2152 	dev_p->num_vsi_allocd_to_host = number;
2153 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2154 		  dev_p->num_vsi_allocd_to_host);
2155 }
2156 
2157 /**
2158  * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2159  * @hw: pointer to the HW struct
2160  * @dev_p: pointer to device capabilities structure
2161  * @cap: capability element to parse
2162  *
2163  * Parse ICE_AQC_CAPS_FD for device capabilities.
2164  */
2165 static void
ice_parse_fdir_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,struct ice_aqc_list_caps_elem * cap)2166 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2167 			struct ice_aqc_list_caps_elem *cap)
2168 {
2169 	u32 number = le32_to_cpu(cap->number);
2170 
2171 	dev_p->num_flow_director_fltr = number;
2172 	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2173 		  dev_p->num_flow_director_fltr);
2174 }
2175 
2176 /**
2177  * ice_parse_dev_caps - Parse device capabilities
2178  * @hw: pointer to the HW struct
2179  * @dev_p: pointer to device capabilities structure
2180  * @buf: buffer containing the device capability records
2181  * @cap_count: the number of capabilities
2182  *
2183  * Helper device to parse device (0x000B) capabilities list. For
2184  * capabilities shared between device and function, this relies on
2185  * ice_parse_common_caps.
2186  *
2187  * Loop through the list of provided capabilities and extract the relevant
2188  * data into the device capabilities structured.
2189  */
2190 static void
ice_parse_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_p,void * buf,u32 cap_count)2191 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2192 		   void *buf, u32 cap_count)
2193 {
2194 	struct ice_aqc_list_caps_elem *cap_resp;
2195 	u32 i;
2196 
2197 	cap_resp = buf;
2198 
2199 	memset(dev_p, 0, sizeof(*dev_p));
2200 
2201 	for (i = 0; i < cap_count; i++) {
2202 		u16 cap = le16_to_cpu(cap_resp[i].cap);
2203 		bool found;
2204 
2205 		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2206 					      &cap_resp[i], "dev caps");
2207 
2208 		switch (cap) {
2209 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2210 			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2211 			break;
2212 		case ICE_AQC_CAPS_VF:
2213 			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2214 			break;
2215 		case ICE_AQC_CAPS_VSI:
2216 			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2217 			break;
2218 		case  ICE_AQC_CAPS_FD:
2219 			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2220 			break;
2221 		default:
2222 			/* Don't list common capabilities as unknown */
2223 			if (!found)
2224 				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2225 					  i, cap);
2226 			break;
2227 		}
2228 	}
2229 
2230 	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2231 }
2232 
2233 /**
2234  * ice_aq_list_caps - query function/device capabilities
2235  * @hw: pointer to the HW struct
2236  * @buf: a buffer to hold the capabilities
2237  * @buf_size: size of the buffer
2238  * @cap_count: if not NULL, set to the number of capabilities reported
2239  * @opc: capabilities type to discover, device or function
2240  * @cd: pointer to command details structure or NULL
2241  *
2242  * Get the function (0x000A) or device (0x000B) capabilities description from
2243  * firmware and store it in the buffer.
2244  *
2245  * If the cap_count pointer is not NULL, then it is set to the number of
2246  * capabilities firmware will report. Note that if the buffer size is too
2247  * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2248  * cap_count will still be updated in this case. It is recommended that the
2249  * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2250  * firmware could return) to avoid this.
2251  */
2252 enum ice_status
ice_aq_list_caps(struct ice_hw * hw,void * buf,u16 buf_size,u32 * cap_count,enum ice_adminq_opc opc,struct ice_sq_cd * cd)2253 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2254 		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2255 {
2256 	struct ice_aqc_list_caps *cmd;
2257 	struct ice_aq_desc desc;
2258 	enum ice_status status;
2259 
2260 	cmd = &desc.params.get_cap;
2261 
2262 	if (opc != ice_aqc_opc_list_func_caps &&
2263 	    opc != ice_aqc_opc_list_dev_caps)
2264 		return ICE_ERR_PARAM;
2265 
2266 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2267 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2268 
2269 	if (cap_count)
2270 		*cap_count = le32_to_cpu(cmd->count);
2271 
2272 	return status;
2273 }
2274 
2275 /**
2276  * ice_discover_dev_caps - Read and extract device capabilities
2277  * @hw: pointer to the hardware structure
2278  * @dev_caps: pointer to device capabilities structure
2279  *
2280  * Read the device capabilities and extract them into the dev_caps structure
2281  * for later use.
2282  */
2283 enum ice_status
ice_discover_dev_caps(struct ice_hw * hw,struct ice_hw_dev_caps * dev_caps)2284 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2285 {
2286 	enum ice_status status;
2287 	u32 cap_count = 0;
2288 	void *cbuf;
2289 
2290 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2291 	if (!cbuf)
2292 		return ICE_ERR_NO_MEMORY;
2293 
2294 	/* Although the driver doesn't know the number of capabilities the
2295 	 * device will return, we can simply send a 4KB buffer, the maximum
2296 	 * possible size that firmware can return.
2297 	 */
2298 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2299 
2300 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2301 				  ice_aqc_opc_list_dev_caps, NULL);
2302 	if (!status)
2303 		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2304 	kfree(cbuf);
2305 
2306 	return status;
2307 }
2308 
2309 /**
2310  * ice_discover_func_caps - Read and extract function capabilities
2311  * @hw: pointer to the hardware structure
2312  * @func_caps: pointer to function capabilities structure
2313  *
2314  * Read the function capabilities and extract them into the func_caps structure
2315  * for later use.
2316  */
2317 static enum ice_status
ice_discover_func_caps(struct ice_hw * hw,struct ice_hw_func_caps * func_caps)2318 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2319 {
2320 	enum ice_status status;
2321 	u32 cap_count = 0;
2322 	void *cbuf;
2323 
2324 	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2325 	if (!cbuf)
2326 		return ICE_ERR_NO_MEMORY;
2327 
2328 	/* Although the driver doesn't know the number of capabilities the
2329 	 * device will return, we can simply send a 4KB buffer, the maximum
2330 	 * possible size that firmware can return.
2331 	 */
2332 	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2333 
2334 	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2335 				  ice_aqc_opc_list_func_caps, NULL);
2336 	if (!status)
2337 		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2338 	kfree(cbuf);
2339 
2340 	return status;
2341 }
2342 
2343 /**
2344  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2345  * @hw: pointer to the hardware structure
2346  */
ice_set_safe_mode_caps(struct ice_hw * hw)2347 void ice_set_safe_mode_caps(struct ice_hw *hw)
2348 {
2349 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2350 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2351 	struct ice_hw_common_caps cached_caps;
2352 	u32 num_funcs;
2353 
2354 	/* cache some func_caps values that should be restored after memset */
2355 	cached_caps = func_caps->common_cap;
2356 
2357 	/* unset func capabilities */
2358 	memset(func_caps, 0, sizeof(*func_caps));
2359 
2360 #define ICE_RESTORE_FUNC_CAP(name) \
2361 	func_caps->common_cap.name = cached_caps.name
2362 
2363 	/* restore cached values */
2364 	ICE_RESTORE_FUNC_CAP(valid_functions);
2365 	ICE_RESTORE_FUNC_CAP(txq_first_id);
2366 	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2367 	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2368 	ICE_RESTORE_FUNC_CAP(max_mtu);
2369 	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2370 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2371 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2372 	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2373 
2374 	/* one Tx and one Rx queue in safe mode */
2375 	func_caps->common_cap.num_rxq = 1;
2376 	func_caps->common_cap.num_txq = 1;
2377 
2378 	/* two MSIX vectors, one for traffic and one for misc causes */
2379 	func_caps->common_cap.num_msix_vectors = 2;
2380 	func_caps->guar_num_vsi = 1;
2381 
2382 	/* cache some dev_caps values that should be restored after memset */
2383 	cached_caps = dev_caps->common_cap;
2384 	num_funcs = dev_caps->num_funcs;
2385 
2386 	/* unset dev capabilities */
2387 	memset(dev_caps, 0, sizeof(*dev_caps));
2388 
2389 #define ICE_RESTORE_DEV_CAP(name) \
2390 	dev_caps->common_cap.name = cached_caps.name
2391 
2392 	/* restore cached values */
2393 	ICE_RESTORE_DEV_CAP(valid_functions);
2394 	ICE_RESTORE_DEV_CAP(txq_first_id);
2395 	ICE_RESTORE_DEV_CAP(rxq_first_id);
2396 	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2397 	ICE_RESTORE_DEV_CAP(max_mtu);
2398 	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2399 	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2400 	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2401 	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2402 	dev_caps->num_funcs = num_funcs;
2403 
2404 	/* one Tx and one Rx queue per function in safe mode */
2405 	dev_caps->common_cap.num_rxq = num_funcs;
2406 	dev_caps->common_cap.num_txq = num_funcs;
2407 
2408 	/* two MSIX vectors per function */
2409 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2410 }
2411 
2412 /**
2413  * ice_get_caps - get info about the HW
2414  * @hw: pointer to the hardware structure
2415  */
ice_get_caps(struct ice_hw * hw)2416 enum ice_status ice_get_caps(struct ice_hw *hw)
2417 {
2418 	enum ice_status status;
2419 
2420 	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2421 	if (status)
2422 		return status;
2423 
2424 	return ice_discover_func_caps(hw, &hw->func_caps);
2425 }
2426 
2427 /**
2428  * ice_aq_manage_mac_write - manage MAC address write command
2429  * @hw: pointer to the HW struct
2430  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2431  * @flags: flags to control write behavior
2432  * @cd: pointer to command details structure or NULL
2433  *
2434  * This function is used to write MAC address to the NVM (0x0108).
2435  */
2436 enum ice_status
ice_aq_manage_mac_write(struct ice_hw * hw,const u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)2437 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2438 			struct ice_sq_cd *cd)
2439 {
2440 	struct ice_aqc_manage_mac_write *cmd;
2441 	struct ice_aq_desc desc;
2442 
2443 	cmd = &desc.params.mac_write;
2444 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2445 
2446 	cmd->flags = flags;
2447 	ether_addr_copy(cmd->mac_addr, mac_addr);
2448 
2449 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2450 }
2451 
2452 /**
2453  * ice_aq_clear_pxe_mode
2454  * @hw: pointer to the HW struct
2455  *
2456  * Tell the firmware that the driver is taking over from PXE (0x0110).
2457  */
ice_aq_clear_pxe_mode(struct ice_hw * hw)2458 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2459 {
2460 	struct ice_aq_desc desc;
2461 
2462 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2463 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2464 
2465 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2466 }
2467 
2468 /**
2469  * ice_clear_pxe_mode - clear pxe operations mode
2470  * @hw: pointer to the HW struct
2471  *
2472  * Make sure all PXE mode settings are cleared, including things
2473  * like descriptor fetch/write-back mode.
2474  */
ice_clear_pxe_mode(struct ice_hw * hw)2475 void ice_clear_pxe_mode(struct ice_hw *hw)
2476 {
2477 	if (ice_check_sq_alive(hw, &hw->adminq))
2478 		ice_aq_clear_pxe_mode(hw);
2479 }
2480 
2481 /**
2482  * ice_get_link_speed_based_on_phy_type - returns link speed
2483  * @phy_type_low: lower part of phy_type
2484  * @phy_type_high: higher part of phy_type
2485  *
2486  * This helper function will convert an entry in PHY type structure
2487  * [phy_type_low, phy_type_high] to its corresponding link speed.
2488  * Note: In the structure of [phy_type_low, phy_type_high], there should
2489  * be one bit set, as this function will convert one PHY type to its
2490  * speed.
2491  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2492  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2493  */
2494 static u16
ice_get_link_speed_based_on_phy_type(u64 phy_type_low,u64 phy_type_high)2495 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2496 {
2497 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2498 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2499 
2500 	switch (phy_type_low) {
2501 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2502 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2503 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2504 		break;
2505 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2506 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2507 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2508 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2509 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2510 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2511 		break;
2512 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2513 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2514 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2515 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2516 		break;
2517 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2518 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2519 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2520 		break;
2521 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2522 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2523 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2524 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2525 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2526 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2527 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2528 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2529 		break;
2530 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2531 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2532 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2533 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2534 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2535 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2536 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2537 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2538 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2539 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2540 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2541 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2542 		break;
2543 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2544 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2545 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2546 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2547 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2548 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2549 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2550 		break;
2551 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2552 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2553 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2554 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2555 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2556 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2557 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2558 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2559 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2560 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2561 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2562 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2563 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2564 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2565 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2566 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2567 		break;
2568 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2569 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2570 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2571 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2572 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2573 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2574 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2575 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2576 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2577 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2578 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2579 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2580 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2581 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2582 		break;
2583 	default:
2584 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2585 		break;
2586 	}
2587 
2588 	switch (phy_type_high) {
2589 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2590 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2591 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2592 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2593 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2594 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2595 		break;
2596 	default:
2597 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2598 		break;
2599 	}
2600 
2601 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2602 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2603 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2604 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2605 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2606 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2607 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2608 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2609 		return speed_phy_type_low;
2610 	else
2611 		return speed_phy_type_high;
2612 }
2613 
2614 /**
2615  * ice_update_phy_type
2616  * @phy_type_low: pointer to the lower part of phy_type
2617  * @phy_type_high: pointer to the higher part of phy_type
2618  * @link_speeds_bitmap: targeted link speeds bitmap
2619  *
2620  * Note: For the link_speeds_bitmap structure, you can check it at
2621  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2622  * link_speeds_bitmap include multiple speeds.
2623  *
2624  * Each entry in this [phy_type_low, phy_type_high] structure will
2625  * present a certain link speed. This helper function will turn on bits
2626  * in [phy_type_low, phy_type_high] structure based on the value of
2627  * link_speeds_bitmap input parameter.
2628  */
2629 void
ice_update_phy_type(u64 * phy_type_low,u64 * phy_type_high,u16 link_speeds_bitmap)2630 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2631 		    u16 link_speeds_bitmap)
2632 {
2633 	u64 pt_high;
2634 	u64 pt_low;
2635 	int index;
2636 	u16 speed;
2637 
2638 	/* We first check with low part of phy_type */
2639 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2640 		pt_low = BIT_ULL(index);
2641 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2642 
2643 		if (link_speeds_bitmap & speed)
2644 			*phy_type_low |= BIT_ULL(index);
2645 	}
2646 
2647 	/* We then check with high part of phy_type */
2648 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2649 		pt_high = BIT_ULL(index);
2650 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2651 
2652 		if (link_speeds_bitmap & speed)
2653 			*phy_type_high |= BIT_ULL(index);
2654 	}
2655 }
2656 
2657 /**
2658  * ice_aq_set_phy_cfg
2659  * @hw: pointer to the HW struct
2660  * @pi: port info structure of the interested logical port
2661  * @cfg: structure with PHY configuration data to be set
2662  * @cd: pointer to command details structure or NULL
2663  *
2664  * Set the various PHY configuration parameters supported on the Port.
2665  * One or more of the Set PHY config parameters may be ignored in an MFP
2666  * mode as the PF may not have the privilege to set some of the PHY Config
2667  * parameters. This status will be indicated by the command response (0x0601).
2668  */
2669 enum ice_status
ice_aq_set_phy_cfg(struct ice_hw * hw,struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)2670 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2671 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2672 {
2673 	struct ice_aq_desc desc;
2674 	enum ice_status status;
2675 
2676 	if (!cfg)
2677 		return ICE_ERR_PARAM;
2678 
2679 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2680 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2681 		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2682 			  cfg->caps);
2683 
2684 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2685 	}
2686 
2687 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2688 	desc.params.set_phy.lport_num = pi->lport;
2689 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2690 
2691 	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2692 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
2693 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2694 	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
2695 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2696 	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
2697 	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
2698 		  cfg->low_power_ctrl_an);
2699 	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
2700 	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
2701 	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
2702 		  cfg->link_fec_opt);
2703 
2704 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2705 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2706 		status = 0;
2707 
2708 	if (!status)
2709 		pi->phy.curr_user_phy_cfg = *cfg;
2710 
2711 	return status;
2712 }
2713 
2714 /**
2715  * ice_update_link_info - update status of the HW network link
2716  * @pi: port info structure of the interested logical port
2717  */
ice_update_link_info(struct ice_port_info * pi)2718 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2719 {
2720 	struct ice_link_status *li;
2721 	enum ice_status status;
2722 
2723 	if (!pi)
2724 		return ICE_ERR_PARAM;
2725 
2726 	li = &pi->phy.link_info;
2727 
2728 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2729 	if (status)
2730 		return status;
2731 
2732 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2733 		struct ice_aqc_get_phy_caps_data *pcaps;
2734 		struct ice_hw *hw;
2735 
2736 		hw = pi->hw;
2737 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2738 				     GFP_KERNEL);
2739 		if (!pcaps)
2740 			return ICE_ERR_NO_MEMORY;
2741 
2742 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2743 					     pcaps, NULL);
2744 
2745 		devm_kfree(ice_hw_to_dev(hw), pcaps);
2746 	}
2747 
2748 	return status;
2749 }
2750 
2751 /**
2752  * ice_cache_phy_user_req
2753  * @pi: port information structure
2754  * @cache_data: PHY logging data
2755  * @cache_mode: PHY logging mode
2756  *
2757  * Log the user request on (FC, FEC, SPEED) for later use.
2758  */
2759 static void
ice_cache_phy_user_req(struct ice_port_info * pi,struct ice_phy_cache_mode_data cache_data,enum ice_phy_cache_mode cache_mode)2760 ice_cache_phy_user_req(struct ice_port_info *pi,
2761 		       struct ice_phy_cache_mode_data cache_data,
2762 		       enum ice_phy_cache_mode cache_mode)
2763 {
2764 	if (!pi)
2765 		return;
2766 
2767 	switch (cache_mode) {
2768 	case ICE_FC_MODE:
2769 		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2770 		break;
2771 	case ICE_SPEED_MODE:
2772 		pi->phy.curr_user_speed_req =
2773 			cache_data.data.curr_user_speed_req;
2774 		break;
2775 	case ICE_FEC_MODE:
2776 		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2777 		break;
2778 	default:
2779 		break;
2780 	}
2781 }
2782 
2783 /**
2784  * ice_caps_to_fc_mode
2785  * @caps: PHY capabilities
2786  *
2787  * Convert PHY FC capabilities to ice FC mode
2788  */
ice_caps_to_fc_mode(u8 caps)2789 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2790 {
2791 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2792 	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2793 		return ICE_FC_FULL;
2794 
2795 	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2796 		return ICE_FC_TX_PAUSE;
2797 
2798 	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2799 		return ICE_FC_RX_PAUSE;
2800 
2801 	return ICE_FC_NONE;
2802 }
2803 
2804 /**
2805  * ice_caps_to_fec_mode
2806  * @caps: PHY capabilities
2807  * @fec_options: Link FEC options
2808  *
2809  * Convert PHY FEC capabilities to ice FEC mode
2810  */
ice_caps_to_fec_mode(u8 caps,u8 fec_options)2811 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
2812 {
2813 	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
2814 		return ICE_FEC_AUTO;
2815 
2816 	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2817 			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2818 			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
2819 			   ICE_AQC_PHY_FEC_25G_KR_REQ))
2820 		return ICE_FEC_BASER;
2821 
2822 	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2823 			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
2824 			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
2825 		return ICE_FEC_RS;
2826 
2827 	return ICE_FEC_NONE;
2828 }
2829 
2830 /**
2831  * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
2832  * @pi: port information structure
2833  * @cfg: PHY configuration data to set FC mode
2834  * @req_mode: FC mode to configure
2835  */
2836 enum ice_status
ice_cfg_phy_fc(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fc_mode req_mode)2837 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2838 	       enum ice_fc_mode req_mode)
2839 {
2840 	struct ice_phy_cache_mode_data cache_data;
2841 	u8 pause_mask = 0x0;
2842 
2843 	if (!pi || !cfg)
2844 		return ICE_ERR_BAD_PTR;
2845 
2846 	switch (req_mode) {
2847 	case ICE_FC_FULL:
2848 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2849 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2850 		break;
2851 	case ICE_FC_RX_PAUSE:
2852 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2853 		break;
2854 	case ICE_FC_TX_PAUSE:
2855 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2856 		break;
2857 	default:
2858 		break;
2859 	}
2860 
2861 	/* clear the old pause settings */
2862 	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2863 		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2864 
2865 	/* set the new capabilities */
2866 	cfg->caps |= pause_mask;
2867 
2868 	/* Cache user FC request */
2869 	cache_data.data.curr_user_fc_req = req_mode;
2870 	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
2871 
2872 	return 0;
2873 }
2874 
2875 /**
2876  * ice_set_fc
2877  * @pi: port information structure
2878  * @aq_failures: pointer to status code, specific to ice_set_fc routine
2879  * @ena_auto_link_update: enable automatic link update
2880  *
2881  * Set the requested flow control mode.
2882  */
2883 enum ice_status
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool ena_auto_link_update)2884 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2885 {
2886 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2887 	struct ice_aqc_get_phy_caps_data *pcaps;
2888 	enum ice_status status;
2889 	struct ice_hw *hw;
2890 
2891 	if (!pi || !aq_failures)
2892 		return ICE_ERR_BAD_PTR;
2893 
2894 	*aq_failures = 0;
2895 	hw = pi->hw;
2896 
2897 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2898 	if (!pcaps)
2899 		return ICE_ERR_NO_MEMORY;
2900 
2901 	/* Get the current PHY config */
2902 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
2903 				     pcaps, NULL);
2904 	if (status) {
2905 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2906 		goto out;
2907 	}
2908 
2909 	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
2910 
2911 	/* Configure the set PHY data */
2912 	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
2913 	if (status)
2914 		goto out;
2915 
2916 	/* If the capabilities have changed, then set the new config */
2917 	if (cfg.caps != pcaps->caps) {
2918 		int retry_count, retry_max = 10;
2919 
2920 		/* Auto restart link so settings take effect */
2921 		if (ena_auto_link_update)
2922 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2923 
2924 		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
2925 		if (status) {
2926 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2927 			goto out;
2928 		}
2929 
2930 		/* Update the link info
2931 		 * It sometimes takes a really long time for link to
2932 		 * come back from the atomic reset. Thus, we wait a
2933 		 * little bit.
2934 		 */
2935 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2936 			status = ice_update_link_info(pi);
2937 
2938 			if (!status)
2939 				break;
2940 
2941 			mdelay(100);
2942 		}
2943 
2944 		if (status)
2945 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2946 	}
2947 
2948 out:
2949 	devm_kfree(ice_hw_to_dev(hw), pcaps);
2950 	return status;
2951 }
2952 
2953 /**
2954  * ice_phy_caps_equals_cfg
2955  * @phy_caps: PHY capabilities
2956  * @phy_cfg: PHY configuration
2957  *
2958  * Helper function to determine if PHY capabilities matches PHY
2959  * configuration
2960  */
2961 bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data * phy_caps,struct ice_aqc_set_phy_cfg_data * phy_cfg)2962 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
2963 			struct ice_aqc_set_phy_cfg_data *phy_cfg)
2964 {
2965 	u8 caps_mask, cfg_mask;
2966 
2967 	if (!phy_caps || !phy_cfg)
2968 		return false;
2969 
2970 	/* These bits are not common between capabilities and configuration.
2971 	 * Do not use them to determine equality.
2972 	 */
2973 	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
2974 					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
2975 	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2976 
2977 	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
2978 	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
2979 	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
2980 	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
2981 	    phy_caps->eee_cap != phy_cfg->eee_cap ||
2982 	    phy_caps->eeer_value != phy_cfg->eeer_value ||
2983 	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
2984 		return false;
2985 
2986 	return true;
2987 }
2988 
2989 /**
2990  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2991  * @pi: port information structure
2992  * @caps: PHY ability structure to copy date from
2993  * @cfg: PHY configuration structure to copy data to
2994  *
2995  * Helper function to copy AQC PHY get ability data to PHY set configuration
2996  * data structure
2997  */
2998 void
ice_copy_phy_caps_to_cfg(struct ice_port_info * pi,struct ice_aqc_get_phy_caps_data * caps,struct ice_aqc_set_phy_cfg_data * cfg)2999 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3000 			 struct ice_aqc_get_phy_caps_data *caps,
3001 			 struct ice_aqc_set_phy_cfg_data *cfg)
3002 {
3003 	if (!pi || !caps || !cfg)
3004 		return;
3005 
3006 	memset(cfg, 0, sizeof(*cfg));
3007 	cfg->phy_type_low = caps->phy_type_low;
3008 	cfg->phy_type_high = caps->phy_type_high;
3009 	cfg->caps = caps->caps;
3010 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3011 	cfg->eee_cap = caps->eee_cap;
3012 	cfg->eeer_value = caps->eeer_value;
3013 	cfg->link_fec_opt = caps->link_fec_options;
3014 	cfg->module_compliance_enforcement =
3015 		caps->module_compliance_enforcement;
3016 }
3017 
3018 /**
3019  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3020  * @pi: port information structure
3021  * @cfg: PHY configuration data to set FEC mode
3022  * @fec: FEC mode to configure
3023  */
3024 enum ice_status
ice_cfg_phy_fec(struct ice_port_info * pi,struct ice_aqc_set_phy_cfg_data * cfg,enum ice_fec_mode fec)3025 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3026 		enum ice_fec_mode fec)
3027 {
3028 	struct ice_aqc_get_phy_caps_data *pcaps;
3029 	enum ice_status status;
3030 	struct ice_hw *hw;
3031 
3032 	if (!pi || !cfg)
3033 		return ICE_ERR_BAD_PTR;
3034 
3035 	hw = pi->hw;
3036 
3037 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3038 	if (!pcaps)
3039 		return ICE_ERR_NO_MEMORY;
3040 
3041 	status = ice_aq_get_phy_caps(pi, false,
3042 				     (ice_fw_supports_report_dflt_cfg(hw) ?
3043 				      ICE_AQC_REPORT_DFLT_CFG :
3044 				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3045 	if (status)
3046 		goto out;
3047 
3048 	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3049 	cfg->link_fec_opt = pcaps->link_fec_options;
3050 
3051 	switch (fec) {
3052 	case ICE_FEC_BASER:
3053 		/* Clear RS bits, and AND BASE-R ability
3054 		 * bits and OR request bits.
3055 		 */
3056 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3057 			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3058 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3059 			ICE_AQC_PHY_FEC_25G_KR_REQ;
3060 		break;
3061 	case ICE_FEC_RS:
3062 		/* Clear BASE-R bits, and AND RS ability
3063 		 * bits and OR request bits.
3064 		 */
3065 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3066 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3067 			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3068 		break;
3069 	case ICE_FEC_NONE:
3070 		/* Clear all FEC option bits. */
3071 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3072 		break;
3073 	case ICE_FEC_AUTO:
3074 		/* AND auto FEC bit, and all caps bits. */
3075 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3076 		cfg->link_fec_opt |= pcaps->link_fec_options;
3077 		break;
3078 	default:
3079 		status = ICE_ERR_PARAM;
3080 		break;
3081 	}
3082 
3083 	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3084 	    !ice_fw_supports_report_dflt_cfg(hw)) {
3085 		struct ice_link_default_override_tlv tlv;
3086 
3087 		if (ice_get_link_default_override(&tlv, pi))
3088 			goto out;
3089 
3090 		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3091 		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3092 			cfg->link_fec_opt = tlv.fec_options;
3093 	}
3094 
3095 out:
3096 	kfree(pcaps);
3097 
3098 	return status;
3099 }
3100 
3101 /**
3102  * ice_get_link_status - get status of the HW network link
3103  * @pi: port information structure
3104  * @link_up: pointer to bool (true/false = linkup/linkdown)
3105  *
3106  * Variable link_up is true if link is up, false if link is down.
3107  * The variable link_up is invalid if status is non zero. As a
3108  * result of this call, link status reporting becomes enabled
3109  */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)3110 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3111 {
3112 	struct ice_phy_info *phy_info;
3113 	enum ice_status status = 0;
3114 
3115 	if (!pi || !link_up)
3116 		return ICE_ERR_PARAM;
3117 
3118 	phy_info = &pi->phy;
3119 
3120 	if (phy_info->get_link_info) {
3121 		status = ice_update_link_info(pi);
3122 
3123 		if (status)
3124 			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3125 				  status);
3126 	}
3127 
3128 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3129 
3130 	return status;
3131 }
3132 
3133 /**
3134  * ice_aq_set_link_restart_an
3135  * @pi: pointer to the port information structure
3136  * @ena_link: if true: enable link, if false: disable link
3137  * @cd: pointer to command details structure or NULL
3138  *
3139  * Sets up the link and restarts the Auto-Negotiation over the link.
3140  */
3141 enum ice_status
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)3142 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3143 			   struct ice_sq_cd *cd)
3144 {
3145 	struct ice_aqc_restart_an *cmd;
3146 	struct ice_aq_desc desc;
3147 
3148 	cmd = &desc.params.restart_an;
3149 
3150 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3151 
3152 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3153 	cmd->lport_num = pi->lport;
3154 	if (ena_link)
3155 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3156 	else
3157 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3158 
3159 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3160 }
3161 
3162 /**
3163  * ice_aq_set_event_mask
3164  * @hw: pointer to the HW struct
3165  * @port_num: port number of the physical function
3166  * @mask: event mask to be set
3167  * @cd: pointer to command details structure or NULL
3168  *
3169  * Set event mask (0x0613)
3170  */
3171 enum ice_status
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)3172 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3173 		      struct ice_sq_cd *cd)
3174 {
3175 	struct ice_aqc_set_event_mask *cmd;
3176 	struct ice_aq_desc desc;
3177 
3178 	cmd = &desc.params.set_event_mask;
3179 
3180 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3181 
3182 	cmd->lport_num = port_num;
3183 
3184 	cmd->event_mask = cpu_to_le16(mask);
3185 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3186 }
3187 
3188 /**
3189  * ice_aq_set_mac_loopback
3190  * @hw: pointer to the HW struct
3191  * @ena_lpbk: Enable or Disable loopback
3192  * @cd: pointer to command details structure or NULL
3193  *
3194  * Enable/disable loopback on a given port
3195  */
3196 enum ice_status
ice_aq_set_mac_loopback(struct ice_hw * hw,bool ena_lpbk,struct ice_sq_cd * cd)3197 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3198 {
3199 	struct ice_aqc_set_mac_lb *cmd;
3200 	struct ice_aq_desc desc;
3201 
3202 	cmd = &desc.params.set_mac_lb;
3203 
3204 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3205 	if (ena_lpbk)
3206 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3207 
3208 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3209 }
3210 
3211 /**
3212  * ice_aq_set_port_id_led
3213  * @pi: pointer to the port information
3214  * @is_orig_mode: is this LED set to original mode (by the net-list)
3215  * @cd: pointer to command details structure or NULL
3216  *
3217  * Set LED value for the given port (0x06e9)
3218  */
3219 enum ice_status
ice_aq_set_port_id_led(struct ice_port_info * pi,bool is_orig_mode,struct ice_sq_cd * cd)3220 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3221 		       struct ice_sq_cd *cd)
3222 {
3223 	struct ice_aqc_set_port_id_led *cmd;
3224 	struct ice_hw *hw = pi->hw;
3225 	struct ice_aq_desc desc;
3226 
3227 	cmd = &desc.params.set_port_id_led;
3228 
3229 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3230 
3231 	if (is_orig_mode)
3232 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3233 	else
3234 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3235 
3236 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3237 }
3238 
3239 /**
3240  * ice_aq_sff_eeprom
3241  * @hw: pointer to the HW struct
3242  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3243  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3244  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3245  * @page: QSFP page
3246  * @set_page: set or ignore the page
3247  * @data: pointer to data buffer to be read/written to the I2C device.
3248  * @length: 1-16 for read, 1 for write.
3249  * @write: 0 read, 1 for write.
3250  * @cd: pointer to command details structure or NULL
3251  *
3252  * Read/Write SFF EEPROM (0x06EE)
3253  */
3254 enum ice_status
ice_aq_sff_eeprom(struct ice_hw * hw,u16 lport,u8 bus_addr,u16 mem_addr,u8 page,u8 set_page,u8 * data,u8 length,bool write,struct ice_sq_cd * cd)3255 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3256 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3257 		  bool write, struct ice_sq_cd *cd)
3258 {
3259 	struct ice_aqc_sff_eeprom *cmd;
3260 	struct ice_aq_desc desc;
3261 	enum ice_status status;
3262 
3263 	if (!data || (mem_addr & 0xff00))
3264 		return ICE_ERR_PARAM;
3265 
3266 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3267 	cmd = &desc.params.read_write_sff_param;
3268 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3269 	cmd->lport_num = (u8)(lport & 0xff);
3270 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3271 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3272 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3273 					((set_page <<
3274 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3275 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3276 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3277 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3278 	if (write)
3279 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3280 
3281 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3282 	return status;
3283 }
3284 
3285 /**
3286  * __ice_aq_get_set_rss_lut
3287  * @hw: pointer to the hardware structure
3288  * @params: RSS LUT parameters
3289  * @set: set true to set the table, false to get the table
3290  *
3291  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3292  */
3293 static enum ice_status
__ice_aq_get_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * params,bool set)3294 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3295 {
3296 	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3297 	struct ice_aqc_get_set_rss_lut *cmd_resp;
3298 	struct ice_aq_desc desc;
3299 	enum ice_status status;
3300 	u8 *lut;
3301 
3302 	if (!params)
3303 		return ICE_ERR_PARAM;
3304 
3305 	vsi_handle = params->vsi_handle;
3306 	lut = params->lut;
3307 
3308 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3309 		return ICE_ERR_PARAM;
3310 
3311 	lut_size = params->lut_size;
3312 	lut_type = params->lut_type;
3313 	glob_lut_idx = params->global_lut_id;
3314 	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3315 
3316 	cmd_resp = &desc.params.get_set_rss_lut;
3317 
3318 	if (set) {
3319 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3320 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3321 	} else {
3322 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3323 	}
3324 
3325 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3326 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3327 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3328 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3329 
3330 	switch (lut_type) {
3331 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3332 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3333 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3334 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3335 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3336 		break;
3337 	default:
3338 		status = ICE_ERR_PARAM;
3339 		goto ice_aq_get_set_rss_lut_exit;
3340 	}
3341 
3342 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3343 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3344 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3345 
3346 		if (!set)
3347 			goto ice_aq_get_set_rss_lut_send;
3348 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3349 		if (!set)
3350 			goto ice_aq_get_set_rss_lut_send;
3351 	} else {
3352 		goto ice_aq_get_set_rss_lut_send;
3353 	}
3354 
3355 	/* LUT size is only valid for Global and PF table types */
3356 	switch (lut_size) {
3357 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3358 		break;
3359 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3360 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3361 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3362 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3363 		break;
3364 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3365 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3366 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3367 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3368 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3369 			break;
3370 		}
3371 		fallthrough;
3372 	default:
3373 		status = ICE_ERR_PARAM;
3374 		goto ice_aq_get_set_rss_lut_exit;
3375 	}
3376 
3377 ice_aq_get_set_rss_lut_send:
3378 	cmd_resp->flags = cpu_to_le16(flags);
3379 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3380 
3381 ice_aq_get_set_rss_lut_exit:
3382 	return status;
3383 }
3384 
3385 /**
3386  * ice_aq_get_rss_lut
3387  * @hw: pointer to the hardware structure
3388  * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3389  *
3390  * get the RSS lookup table, PF or VSI type
3391  */
3392 enum ice_status
ice_aq_get_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * get_params)3393 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3394 {
3395 	return __ice_aq_get_set_rss_lut(hw, get_params, false);
3396 }
3397 
3398 /**
3399  * ice_aq_set_rss_lut
3400  * @hw: pointer to the hardware structure
3401  * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3402  *
3403  * set the RSS lookup table, PF or VSI type
3404  */
3405 enum ice_status
ice_aq_set_rss_lut(struct ice_hw * hw,struct ice_aq_get_set_rss_lut_params * set_params)3406 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3407 {
3408 	return __ice_aq_get_set_rss_lut(hw, set_params, true);
3409 }
3410 
3411 /**
3412  * __ice_aq_get_set_rss_key
3413  * @hw: pointer to the HW struct
3414  * @vsi_id: VSI FW index
3415  * @key: pointer to key info struct
3416  * @set: set true to set the key, false to get the key
3417  *
3418  * get (0x0B04) or set (0x0B02) the RSS key per VSI
3419  */
3420 static enum
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)3421 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3422 				    struct ice_aqc_get_set_rss_keys *key,
3423 				    bool set)
3424 {
3425 	struct ice_aqc_get_set_rss_key *cmd_resp;
3426 	u16 key_size = sizeof(*key);
3427 	struct ice_aq_desc desc;
3428 
3429 	cmd_resp = &desc.params.get_set_rss_key;
3430 
3431 	if (set) {
3432 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3433 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3434 	} else {
3435 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3436 	}
3437 
3438 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3439 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3440 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3441 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3442 
3443 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3444 }
3445 
3446 /**
3447  * ice_aq_get_rss_key
3448  * @hw: pointer to the HW struct
3449  * @vsi_handle: software VSI handle
3450  * @key: pointer to key info struct
3451  *
3452  * get the RSS key per VSI
3453  */
3454 enum ice_status
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * key)3455 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3456 		   struct ice_aqc_get_set_rss_keys *key)
3457 {
3458 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3459 		return ICE_ERR_PARAM;
3460 
3461 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3462 					key, false);
3463 }
3464 
3465 /**
3466  * ice_aq_set_rss_key
3467  * @hw: pointer to the HW struct
3468  * @vsi_handle: software VSI handle
3469  * @keys: pointer to key info struct
3470  *
3471  * set the RSS key per VSI
3472  */
3473 enum ice_status
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_handle,struct ice_aqc_get_set_rss_keys * keys)3474 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3475 		   struct ice_aqc_get_set_rss_keys *keys)
3476 {
3477 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3478 		return ICE_ERR_PARAM;
3479 
3480 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3481 					keys, true);
3482 }
3483 
3484 /**
3485  * ice_aq_add_lan_txq
3486  * @hw: pointer to the hardware structure
3487  * @num_qgrps: Number of added queue groups
3488  * @qg_list: list of queue groups to be added
3489  * @buf_size: size of buffer for indirect command
3490  * @cd: pointer to command details structure or NULL
3491  *
3492  * Add Tx LAN queue (0x0C30)
3493  *
3494  * NOTE:
3495  * Prior to calling add Tx LAN queue:
3496  * Initialize the following as part of the Tx queue context:
3497  * Completion queue ID if the queue uses Completion queue, Quanta profile,
3498  * Cache profile and Packet shaper profile.
3499  *
3500  * After add Tx LAN queue AQ command is completed:
3501  * Interrupts should be associated with specific queues,
3502  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3503  * flow.
3504  */
3505 static enum ice_status
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)3506 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3507 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3508 		   struct ice_sq_cd *cd)
3509 {
3510 	struct ice_aqc_add_tx_qgrp *list;
3511 	struct ice_aqc_add_txqs *cmd;
3512 	struct ice_aq_desc desc;
3513 	u16 i, sum_size = 0;
3514 
3515 	cmd = &desc.params.add_txqs;
3516 
3517 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3518 
3519 	if (!qg_list)
3520 		return ICE_ERR_PARAM;
3521 
3522 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3523 		return ICE_ERR_PARAM;
3524 
3525 	for (i = 0, list = qg_list; i < num_qgrps; i++) {
3526 		sum_size += struct_size(list, txqs, list->num_txqs);
3527 		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3528 						      list->num_txqs);
3529 	}
3530 
3531 	if (buf_size != sum_size)
3532 		return ICE_ERR_PARAM;
3533 
3534 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3535 
3536 	cmd->num_qgrps = num_qgrps;
3537 
3538 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3539 }
3540 
3541 /**
3542  * ice_aq_dis_lan_txq
3543  * @hw: pointer to the hardware structure
3544  * @num_qgrps: number of groups in the list
3545  * @qg_list: the list of groups to disable
3546  * @buf_size: the total size of the qg_list buffer in bytes
3547  * @rst_src: if called due to reset, specifies the reset source
3548  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3549  * @cd: pointer to command details structure or NULL
3550  *
3551  * Disable LAN Tx queue (0x0C31)
3552  */
3553 static enum ice_status
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)3554 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3555 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3556 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3557 		   struct ice_sq_cd *cd)
3558 {
3559 	struct ice_aqc_dis_txq_item *item;
3560 	struct ice_aqc_dis_txqs *cmd;
3561 	struct ice_aq_desc desc;
3562 	enum ice_status status;
3563 	u16 i, sz = 0;
3564 
3565 	cmd = &desc.params.dis_txqs;
3566 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3567 
3568 	/* qg_list can be NULL only in VM/VF reset flow */
3569 	if (!qg_list && !rst_src)
3570 		return ICE_ERR_PARAM;
3571 
3572 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3573 		return ICE_ERR_PARAM;
3574 
3575 	cmd->num_entries = num_qgrps;
3576 
3577 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3578 					    ICE_AQC_Q_DIS_TIMEOUT_M);
3579 
3580 	switch (rst_src) {
3581 	case ICE_VM_RESET:
3582 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3583 		cmd->vmvf_and_timeout |=
3584 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3585 		break;
3586 	case ICE_VF_RESET:
3587 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3588 		/* In this case, FW expects vmvf_num to be absolute VF ID */
3589 		cmd->vmvf_and_timeout |=
3590 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3591 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
3592 		break;
3593 	case ICE_NO_RESET:
3594 	default:
3595 		break;
3596 	}
3597 
3598 	/* flush pipe on time out */
3599 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3600 	/* If no queue group info, we are in a reset flow. Issue the AQ */
3601 	if (!qg_list)
3602 		goto do_aq;
3603 
3604 	/* set RD bit to indicate that command buffer is provided by the driver
3605 	 * and it needs to be read by the firmware
3606 	 */
3607 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3608 
3609 	for (i = 0, item = qg_list; i < num_qgrps; i++) {
3610 		u16 item_size = struct_size(item, q_id, item->num_qs);
3611 
3612 		/* If the num of queues is even, add 2 bytes of padding */
3613 		if ((item->num_qs % 2) == 0)
3614 			item_size += 2;
3615 
3616 		sz += item_size;
3617 
3618 		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3619 	}
3620 
3621 	if (buf_size != sz)
3622 		return ICE_ERR_PARAM;
3623 
3624 do_aq:
3625 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3626 	if (status) {
3627 		if (!qg_list)
3628 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3629 				  vmvf_num, hw->adminq.sq_last_status);
3630 		else
3631 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3632 				  le16_to_cpu(qg_list[0].q_id[0]),
3633 				  hw->adminq.sq_last_status);
3634 	}
3635 	return status;
3636 }
3637 
3638 /* End of FW Admin Queue command wrappers */
3639 
3640 /**
3641  * ice_write_byte - write a byte to a packed context structure
3642  * @src_ctx:  the context structure to read from
3643  * @dest_ctx: the context to be written to
3644  * @ce_info:  a description of the struct to be filled
3645  */
3646 static void
ice_write_byte(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3647 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3648 {
3649 	u8 src_byte, dest_byte, mask;
3650 	u8 *from, *dest;
3651 	u16 shift_width;
3652 
3653 	/* copy from the next struct field */
3654 	from = src_ctx + ce_info->offset;
3655 
3656 	/* prepare the bits and mask */
3657 	shift_width = ce_info->lsb % 8;
3658 	mask = (u8)(BIT(ce_info->width) - 1);
3659 
3660 	src_byte = *from;
3661 	src_byte &= mask;
3662 
3663 	/* shift to correct alignment */
3664 	mask <<= shift_width;
3665 	src_byte <<= shift_width;
3666 
3667 	/* get the current bits from the target bit string */
3668 	dest = dest_ctx + (ce_info->lsb / 8);
3669 
3670 	memcpy(&dest_byte, dest, sizeof(dest_byte));
3671 
3672 	dest_byte &= ~mask;	/* get the bits not changing */
3673 	dest_byte |= src_byte;	/* add in the new bits */
3674 
3675 	/* put it all back */
3676 	memcpy(dest, &dest_byte, sizeof(dest_byte));
3677 }
3678 
3679 /**
3680  * ice_write_word - write a word to a packed context structure
3681  * @src_ctx:  the context structure to read from
3682  * @dest_ctx: the context to be written to
3683  * @ce_info:  a description of the struct to be filled
3684  */
3685 static void
ice_write_word(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3686 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3687 {
3688 	u16 src_word, mask;
3689 	__le16 dest_word;
3690 	u8 *from, *dest;
3691 	u16 shift_width;
3692 
3693 	/* copy from the next struct field */
3694 	from = src_ctx + ce_info->offset;
3695 
3696 	/* prepare the bits and mask */
3697 	shift_width = ce_info->lsb % 8;
3698 	mask = BIT(ce_info->width) - 1;
3699 
3700 	/* don't swizzle the bits until after the mask because the mask bits
3701 	 * will be in a different bit position on big endian machines
3702 	 */
3703 	src_word = *(u16 *)from;
3704 	src_word &= mask;
3705 
3706 	/* shift to correct alignment */
3707 	mask <<= shift_width;
3708 	src_word <<= shift_width;
3709 
3710 	/* get the current bits from the target bit string */
3711 	dest = dest_ctx + (ce_info->lsb / 8);
3712 
3713 	memcpy(&dest_word, dest, sizeof(dest_word));
3714 
3715 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
3716 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3717 
3718 	/* put it all back */
3719 	memcpy(dest, &dest_word, sizeof(dest_word));
3720 }
3721 
3722 /**
3723  * ice_write_dword - write a dword to a packed context structure
3724  * @src_ctx:  the context structure to read from
3725  * @dest_ctx: the context to be written to
3726  * @ce_info:  a description of the struct to be filled
3727  */
3728 static void
ice_write_dword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3729 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3730 {
3731 	u32 src_dword, mask;
3732 	__le32 dest_dword;
3733 	u8 *from, *dest;
3734 	u16 shift_width;
3735 
3736 	/* copy from the next struct field */
3737 	from = src_ctx + ce_info->offset;
3738 
3739 	/* prepare the bits and mask */
3740 	shift_width = ce_info->lsb % 8;
3741 
3742 	/* if the field width is exactly 32 on an x86 machine, then the shift
3743 	 * operation will not work because the SHL instructions count is masked
3744 	 * to 5 bits so the shift will do nothing
3745 	 */
3746 	if (ce_info->width < 32)
3747 		mask = BIT(ce_info->width) - 1;
3748 	else
3749 		mask = (u32)~0;
3750 
3751 	/* don't swizzle the bits until after the mask because the mask bits
3752 	 * will be in a different bit position on big endian machines
3753 	 */
3754 	src_dword = *(u32 *)from;
3755 	src_dword &= mask;
3756 
3757 	/* shift to correct alignment */
3758 	mask <<= shift_width;
3759 	src_dword <<= shift_width;
3760 
3761 	/* get the current bits from the target bit string */
3762 	dest = dest_ctx + (ce_info->lsb / 8);
3763 
3764 	memcpy(&dest_dword, dest, sizeof(dest_dword));
3765 
3766 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3767 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
3768 
3769 	/* put it all back */
3770 	memcpy(dest, &dest_dword, sizeof(dest_dword));
3771 }
3772 
3773 /**
3774  * ice_write_qword - write a qword to a packed context structure
3775  * @src_ctx:  the context structure to read from
3776  * @dest_ctx: the context to be written to
3777  * @ce_info:  a description of the struct to be filled
3778  */
3779 static void
ice_write_qword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3780 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3781 {
3782 	u64 src_qword, mask;
3783 	__le64 dest_qword;
3784 	u8 *from, *dest;
3785 	u16 shift_width;
3786 
3787 	/* copy from the next struct field */
3788 	from = src_ctx + ce_info->offset;
3789 
3790 	/* prepare the bits and mask */
3791 	shift_width = ce_info->lsb % 8;
3792 
3793 	/* if the field width is exactly 64 on an x86 machine, then the shift
3794 	 * operation will not work because the SHL instructions count is masked
3795 	 * to 6 bits so the shift will do nothing
3796 	 */
3797 	if (ce_info->width < 64)
3798 		mask = BIT_ULL(ce_info->width) - 1;
3799 	else
3800 		mask = (u64)~0;
3801 
3802 	/* don't swizzle the bits until after the mask because the mask bits
3803 	 * will be in a different bit position on big endian machines
3804 	 */
3805 	src_qword = *(u64 *)from;
3806 	src_qword &= mask;
3807 
3808 	/* shift to correct alignment */
3809 	mask <<= shift_width;
3810 	src_qword <<= shift_width;
3811 
3812 	/* get the current bits from the target bit string */
3813 	dest = dest_ctx + (ce_info->lsb / 8);
3814 
3815 	memcpy(&dest_qword, dest, sizeof(dest_qword));
3816 
3817 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
3818 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
3819 
3820 	/* put it all back */
3821 	memcpy(dest, &dest_qword, sizeof(dest_qword));
3822 }
3823 
3824 /**
3825  * ice_set_ctx - set context bits in packed structure
3826  * @hw: pointer to the hardware structure
3827  * @src_ctx:  pointer to a generic non-packed context structure
3828  * @dest_ctx: pointer to memory for the packed structure
3829  * @ce_info:  a description of the structure to be transformed
3830  */
3831 enum ice_status
ice_set_ctx(struct ice_hw * hw,u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)3832 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
3833 	    const struct ice_ctx_ele *ce_info)
3834 {
3835 	int f;
3836 
3837 	for (f = 0; ce_info[f].width; f++) {
3838 		/* We have to deal with each element of the FW response
3839 		 * using the correct size so that we are correct regardless
3840 		 * of the endianness of the machine.
3841 		 */
3842 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
3843 			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
3844 				  f, ce_info[f].width, ce_info[f].size_of);
3845 			continue;
3846 		}
3847 		switch (ce_info[f].size_of) {
3848 		case sizeof(u8):
3849 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3850 			break;
3851 		case sizeof(u16):
3852 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3853 			break;
3854 		case sizeof(u32):
3855 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3856 			break;
3857 		case sizeof(u64):
3858 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3859 			break;
3860 		default:
3861 			return ICE_ERR_INVAL_SIZE;
3862 		}
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 /**
3869  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3870  * @hw: pointer to the HW struct
3871  * @vsi_handle: software VSI handle
3872  * @tc: TC number
3873  * @q_handle: software queue handle
3874  */
3875 struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw * hw,u16 vsi_handle,u8 tc,u16 q_handle)3876 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3877 {
3878 	struct ice_vsi_ctx *vsi;
3879 	struct ice_q_ctx *q_ctx;
3880 
3881 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
3882 	if (!vsi)
3883 		return NULL;
3884 	if (q_handle >= vsi->num_lan_q_entries[tc])
3885 		return NULL;
3886 	if (!vsi->lan_q_ctx[tc])
3887 		return NULL;
3888 	q_ctx = vsi->lan_q_ctx[tc];
3889 	return &q_ctx[q_handle];
3890 }
3891 
3892 /**
3893  * ice_ena_vsi_txq
3894  * @pi: port information structure
3895  * @vsi_handle: software VSI handle
3896  * @tc: TC number
3897  * @q_handle: software queue handle
3898  * @num_qgrps: Number of added queue groups
3899  * @buf: list of queue groups to be added
3900  * @buf_size: size of buffer for indirect command
3901  * @cd: pointer to command details structure or NULL
3902  *
3903  * This function adds one LAN queue
3904  */
3905 enum ice_status
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u16 q_handle,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)3906 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3907 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3908 		struct ice_sq_cd *cd)
3909 {
3910 	struct ice_aqc_txsched_elem_data node = { 0 };
3911 	struct ice_sched_node *parent;
3912 	struct ice_q_ctx *q_ctx;
3913 	enum ice_status status;
3914 	struct ice_hw *hw;
3915 
3916 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3917 		return ICE_ERR_CFG;
3918 
3919 	if (num_qgrps > 1 || buf->num_txqs > 1)
3920 		return ICE_ERR_MAX_LIMIT;
3921 
3922 	hw = pi->hw;
3923 
3924 	if (!ice_is_vsi_valid(hw, vsi_handle))
3925 		return ICE_ERR_PARAM;
3926 
3927 	mutex_lock(&pi->sched_lock);
3928 
3929 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3930 	if (!q_ctx) {
3931 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3932 			  q_handle);
3933 		status = ICE_ERR_PARAM;
3934 		goto ena_txq_exit;
3935 	}
3936 
3937 	/* find a parent node */
3938 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3939 					    ICE_SCHED_NODE_OWNER_LAN);
3940 	if (!parent) {
3941 		status = ICE_ERR_PARAM;
3942 		goto ena_txq_exit;
3943 	}
3944 
3945 	buf->parent_teid = parent->info.node_teid;
3946 	node.parent_teid = parent->info.node_teid;
3947 	/* Mark that the values in the "generic" section as valid. The default
3948 	 * value in the "generic" section is zero. This means that :
3949 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3950 	 * - 0 priority among siblings, indicated by Bit 1-3.
3951 	 * - WFQ, indicated by Bit 4.
3952 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3953 	 * Bit 5-6.
3954 	 * - Bit 7 is reserved.
3955 	 * Without setting the generic section as valid in valid_sections, the
3956 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3957 	 */
3958 	buf->txqs[0].info.valid_sections =
3959 		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
3960 		ICE_AQC_ELEM_VALID_EIR;
3961 	buf->txqs[0].info.generic = 0;
3962 	buf->txqs[0].info.cir_bw.bw_profile_idx =
3963 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3964 	buf->txqs[0].info.cir_bw.bw_alloc =
3965 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
3966 	buf->txqs[0].info.eir_bw.bw_profile_idx =
3967 		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3968 	buf->txqs[0].info.eir_bw.bw_alloc =
3969 		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
3970 
3971 	/* add the LAN queue */
3972 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3973 	if (status) {
3974 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3975 			  le16_to_cpu(buf->txqs[0].txq_id),
3976 			  hw->adminq.sq_last_status);
3977 		goto ena_txq_exit;
3978 	}
3979 
3980 	node.node_teid = buf->txqs[0].q_teid;
3981 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3982 	q_ctx->q_handle = q_handle;
3983 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
3984 
3985 	/* add a leaf node into scheduler tree queue layer */
3986 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3987 	if (!status)
3988 		status = ice_sched_replay_q_bw(pi, q_ctx);
3989 
3990 ena_txq_exit:
3991 	mutex_unlock(&pi->sched_lock);
3992 	return status;
3993 }
3994 
3995 /**
3996  * ice_dis_vsi_txq
3997  * @pi: port information structure
3998  * @vsi_handle: software VSI handle
3999  * @tc: TC number
4000  * @num_queues: number of queues
4001  * @q_handles: pointer to software queue handle array
4002  * @q_ids: pointer to the q_id array
4003  * @q_teids: pointer to queue node teids
4004  * @rst_src: if called due to reset, specifies the reset source
4005  * @vmvf_num: the relative VM or VF number that is undergoing the reset
4006  * @cd: pointer to command details structure or NULL
4007  *
4008  * This function removes queues and their corresponding nodes in SW DB
4009  */
4010 enum ice_status
ice_dis_vsi_txq(struct ice_port_info * pi,u16 vsi_handle,u8 tc,u8 num_queues,u16 * q_handles,u16 * q_ids,u32 * q_teids,enum ice_disq_rst_src rst_src,u16 vmvf_num,struct ice_sq_cd * cd)4011 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4012 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4013 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4014 		struct ice_sq_cd *cd)
4015 {
4016 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4017 	struct ice_aqc_dis_txq_item *qg_list;
4018 	struct ice_q_ctx *q_ctx;
4019 	struct ice_hw *hw;
4020 	u16 i, buf_size;
4021 
4022 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4023 		return ICE_ERR_CFG;
4024 
4025 	hw = pi->hw;
4026 
4027 	if (!num_queues) {
4028 		/* if queue is disabled already yet the disable queue command
4029 		 * has to be sent to complete the VF reset, then call
4030 		 * ice_aq_dis_lan_txq without any queue information
4031 		 */
4032 		if (rst_src)
4033 			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4034 						  vmvf_num, NULL);
4035 		return ICE_ERR_CFG;
4036 	}
4037 
4038 	buf_size = struct_size(qg_list, q_id, 1);
4039 	qg_list = kzalloc(buf_size, GFP_KERNEL);
4040 	if (!qg_list)
4041 		return ICE_ERR_NO_MEMORY;
4042 
4043 	mutex_lock(&pi->sched_lock);
4044 
4045 	for (i = 0; i < num_queues; i++) {
4046 		struct ice_sched_node *node;
4047 
4048 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4049 		if (!node)
4050 			continue;
4051 		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4052 		if (!q_ctx) {
4053 			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4054 				  q_handles[i]);
4055 			continue;
4056 		}
4057 		if (q_ctx->q_handle != q_handles[i]) {
4058 			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4059 				  q_ctx->q_handle, q_handles[i]);
4060 			continue;
4061 		}
4062 		qg_list->parent_teid = node->info.parent_teid;
4063 		qg_list->num_qs = 1;
4064 		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4065 		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4066 					    vmvf_num, cd);
4067 
4068 		if (status)
4069 			break;
4070 		ice_free_sched_node(pi, node);
4071 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4072 	}
4073 	mutex_unlock(&pi->sched_lock);
4074 	kfree(qg_list);
4075 	return status;
4076 }
4077 
4078 /**
4079  * ice_cfg_vsi_qs - configure the new/existing VSI queues
4080  * @pi: port information structure
4081  * @vsi_handle: software VSI handle
4082  * @tc_bitmap: TC bitmap
4083  * @maxqs: max queues array per TC
4084  * @owner: LAN or RDMA
4085  *
4086  * This function adds/updates the VSI queues per TC.
4087  */
4088 static enum ice_status
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * maxqs,u8 owner)4089 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4090 	       u16 *maxqs, u8 owner)
4091 {
4092 	enum ice_status status = 0;
4093 	u8 i;
4094 
4095 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4096 		return ICE_ERR_CFG;
4097 
4098 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4099 		return ICE_ERR_PARAM;
4100 
4101 	mutex_lock(&pi->sched_lock);
4102 
4103 	ice_for_each_traffic_class(i) {
4104 		/* configuration is possible only if TC node is present */
4105 		if (!ice_sched_get_tc_node(pi, i))
4106 			continue;
4107 
4108 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4109 					   ice_is_tc_ena(tc_bitmap, i));
4110 		if (status)
4111 			break;
4112 	}
4113 
4114 	mutex_unlock(&pi->sched_lock);
4115 	return status;
4116 }
4117 
4118 /**
4119  * ice_cfg_vsi_lan - configure VSI LAN queues
4120  * @pi: port information structure
4121  * @vsi_handle: software VSI handle
4122  * @tc_bitmap: TC bitmap
4123  * @max_lanqs: max LAN queues array per TC
4124  *
4125  * This function adds/updates the VSI LAN queues per TC.
4126  */
4127 enum ice_status
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_handle,u8 tc_bitmap,u16 * max_lanqs)4128 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4129 		u16 *max_lanqs)
4130 {
4131 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4132 			      ICE_SCHED_NODE_OWNER_LAN);
4133 }
4134 
4135 /**
4136  * ice_replay_pre_init - replay pre initialization
4137  * @hw: pointer to the HW struct
4138  *
4139  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4140  */
ice_replay_pre_init(struct ice_hw * hw)4141 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
4142 {
4143 	struct ice_switch_info *sw = hw->switch_info;
4144 	u8 i;
4145 
4146 	/* Delete old entries from replay filter list head if there is any */
4147 	ice_rm_all_sw_replay_rule_info(hw);
4148 	/* In start of replay, move entries into replay_rules list, it
4149 	 * will allow adding rules entries back to filt_rules list,
4150 	 * which is operational list.
4151 	 */
4152 	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
4153 		list_replace_init(&sw->recp_list[i].filt_rules,
4154 				  &sw->recp_list[i].filt_replay_rules);
4155 	ice_sched_replay_agg_vsi_preinit(hw);
4156 
4157 	return 0;
4158 }
4159 
4160 /**
4161  * ice_replay_vsi - replay VSI configuration
4162  * @hw: pointer to the HW struct
4163  * @vsi_handle: driver VSI handle
4164  *
4165  * Restore all VSI configuration after reset. It is required to call this
4166  * function with main VSI first.
4167  */
ice_replay_vsi(struct ice_hw * hw,u16 vsi_handle)4168 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4169 {
4170 	enum ice_status status;
4171 
4172 	if (!ice_is_vsi_valid(hw, vsi_handle))
4173 		return ICE_ERR_PARAM;
4174 
4175 	/* Replay pre-initialization if there is any */
4176 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4177 		status = ice_replay_pre_init(hw);
4178 		if (status)
4179 			return status;
4180 	}
4181 	/* Replay per VSI all RSS configurations */
4182 	status = ice_replay_rss_cfg(hw, vsi_handle);
4183 	if (status)
4184 		return status;
4185 	/* Replay per VSI all filters */
4186 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4187 	if (!status)
4188 		status = ice_replay_vsi_agg(hw, vsi_handle);
4189 	return status;
4190 }
4191 
4192 /**
4193  * ice_replay_post - post replay configuration cleanup
4194  * @hw: pointer to the HW struct
4195  *
4196  * Post replay cleanup.
4197  */
ice_replay_post(struct ice_hw * hw)4198 void ice_replay_post(struct ice_hw *hw)
4199 {
4200 	/* Delete old entries from replay filter list head */
4201 	ice_rm_all_sw_replay_rule_info(hw);
4202 	ice_sched_replay_agg(hw);
4203 }
4204 
4205 /**
4206  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4207  * @hw: ptr to the hardware info
4208  * @reg: offset of 64 bit HW register to read from
4209  * @prev_stat_loaded: bool to specify if previous stats are loaded
4210  * @prev_stat: ptr to previous loaded stat value
4211  * @cur_stat: ptr to current stat value
4212  */
4213 void
ice_stat_update40(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)4214 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4215 		  u64 *prev_stat, u64 *cur_stat)
4216 {
4217 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4218 
4219 	/* device stats are not reset at PFR, they likely will not be zeroed
4220 	 * when the driver starts. Thus, save the value from the first read
4221 	 * without adding to the statistic value so that we report stats which
4222 	 * count up from zero.
4223 	 */
4224 	if (!prev_stat_loaded) {
4225 		*prev_stat = new_data;
4226 		return;
4227 	}
4228 
4229 	/* Calculate the difference between the new and old values, and then
4230 	 * add it to the software stat value.
4231 	 */
4232 	if (new_data >= *prev_stat)
4233 		*cur_stat += new_data - *prev_stat;
4234 	else
4235 		/* to manage the potential roll-over */
4236 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4237 
4238 	/* Update the previously stored value to prepare for next read */
4239 	*prev_stat = new_data;
4240 }
4241 
4242 /**
4243  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4244  * @hw: ptr to the hardware info
4245  * @reg: offset of HW register to read from
4246  * @prev_stat_loaded: bool to specify if previous stats are loaded
4247  * @prev_stat: ptr to previous loaded stat value
4248  * @cur_stat: ptr to current stat value
4249  */
4250 void
ice_stat_update32(struct ice_hw * hw,u32 reg,bool prev_stat_loaded,u64 * prev_stat,u64 * cur_stat)4251 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4252 		  u64 *prev_stat, u64 *cur_stat)
4253 {
4254 	u32 new_data;
4255 
4256 	new_data = rd32(hw, reg);
4257 
4258 	/* device stats are not reset at PFR, they likely will not be zeroed
4259 	 * when the driver starts. Thus, save the value from the first read
4260 	 * without adding to the statistic value so that we report stats which
4261 	 * count up from zero.
4262 	 */
4263 	if (!prev_stat_loaded) {
4264 		*prev_stat = new_data;
4265 		return;
4266 	}
4267 
4268 	/* Calculate the difference between the new and old values, and then
4269 	 * add it to the software stat value.
4270 	 */
4271 	if (new_data >= *prev_stat)
4272 		*cur_stat += new_data - *prev_stat;
4273 	else
4274 		/* to manage the potential roll-over */
4275 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4276 
4277 	/* Update the previously stored value to prepare for next read */
4278 	*prev_stat = new_data;
4279 }
4280 
4281 /**
4282  * ice_sched_query_elem - query element information from HW
4283  * @hw: pointer to the HW struct
4284  * @node_teid: node TEID to be queried
4285  * @buf: buffer to element information
4286  *
4287  * This function queries HW element information
4288  */
4289 enum ice_status
ice_sched_query_elem(struct ice_hw * hw,u32 node_teid,struct ice_aqc_txsched_elem_data * buf)4290 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4291 		     struct ice_aqc_txsched_elem_data *buf)
4292 {
4293 	u16 buf_size, num_elem_ret = 0;
4294 	enum ice_status status;
4295 
4296 	buf_size = sizeof(*buf);
4297 	memset(buf, 0, buf_size);
4298 	buf->node_teid = cpu_to_le32(node_teid);
4299 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4300 					  NULL);
4301 	if (status || num_elem_ret != 1)
4302 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4303 	return status;
4304 }
4305 
4306 /**
4307  * ice_fw_supports_link_override
4308  * @hw: pointer to the hardware structure
4309  *
4310  * Checks if the firmware supports link override
4311  */
ice_fw_supports_link_override(struct ice_hw * hw)4312 bool ice_fw_supports_link_override(struct ice_hw *hw)
4313 {
4314 	if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4315 		if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4316 			return true;
4317 		if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4318 		    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4319 			return true;
4320 	} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4321 		return true;
4322 	}
4323 
4324 	return false;
4325 }
4326 
4327 /**
4328  * ice_get_link_default_override
4329  * @ldo: pointer to the link default override struct
4330  * @pi: pointer to the port info struct
4331  *
4332  * Gets the link default override for a port
4333  */
4334 enum ice_status
ice_get_link_default_override(struct ice_link_default_override_tlv * ldo,struct ice_port_info * pi)4335 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4336 			      struct ice_port_info *pi)
4337 {
4338 	u16 i, tlv, tlv_len, tlv_start, buf, offset;
4339 	struct ice_hw *hw = pi->hw;
4340 	enum ice_status status;
4341 
4342 	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4343 					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4344 	if (status) {
4345 		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
4346 		return status;
4347 	}
4348 
4349 	/* Each port has its own config; calculate for our port */
4350 	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4351 		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4352 
4353 	/* link options first */
4354 	status = ice_read_sr_word(hw, tlv_start, &buf);
4355 	if (status) {
4356 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4357 		return status;
4358 	}
4359 	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4360 	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4361 		ICE_LINK_OVERRIDE_PHY_CFG_S;
4362 
4363 	/* link PHY config */
4364 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4365 	status = ice_read_sr_word(hw, offset, &buf);
4366 	if (status) {
4367 		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
4368 		return status;
4369 	}
4370 	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4371 
4372 	/* PHY types low */
4373 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4374 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4375 		status = ice_read_sr_word(hw, (offset + i), &buf);
4376 		if (status) {
4377 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4378 			return status;
4379 		}
4380 		/* shift 16 bits at a time to fill 64 bits */
4381 		ldo->phy_type_low |= ((u64)buf << (i * 16));
4382 	}
4383 
4384 	/* PHY types high */
4385 	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4386 		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4387 	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4388 		status = ice_read_sr_word(hw, (offset + i), &buf);
4389 		if (status) {
4390 			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4391 			return status;
4392 		}
4393 		/* shift 16 bits at a time to fill 64 bits */
4394 		ldo->phy_type_high |= ((u64)buf << (i * 16));
4395 	}
4396 
4397 	return status;
4398 }
4399 
4400 /**
4401  * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4402  * @caps: get PHY capability data
4403  */
ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data * caps)4404 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4405 {
4406 	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4407 	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4408 				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
4409 				       ICE_AQC_PHY_AN_EN_CLAUSE37))
4410 		return true;
4411 
4412 	return false;
4413 }
4414 
4415 /**
4416  * ice_aq_set_lldp_mib - Set the LLDP MIB
4417  * @hw: pointer to the HW struct
4418  * @mib_type: Local, Remote or both Local and Remote MIBs
4419  * @buf: pointer to the caller-supplied buffer to store the MIB block
4420  * @buf_size: size of the buffer (in bytes)
4421  * @cd: pointer to command details structure or NULL
4422  *
4423  * Set the LLDP MIB. (0x0A08)
4424  */
4425 enum ice_status
ice_aq_set_lldp_mib(struct ice_hw * hw,u8 mib_type,void * buf,u16 buf_size,struct ice_sq_cd * cd)4426 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
4427 		    struct ice_sq_cd *cd)
4428 {
4429 	struct ice_aqc_lldp_set_local_mib *cmd;
4430 	struct ice_aq_desc desc;
4431 
4432 	cmd = &desc.params.lldp_set_mib;
4433 
4434 	if (buf_size == 0 || !buf)
4435 		return ICE_ERR_PARAM;
4436 
4437 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
4438 
4439 	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
4440 	desc.datalen = cpu_to_le16(buf_size);
4441 
4442 	cmd->type = mib_type;
4443 	cmd->length = cpu_to_le16(buf_size);
4444 
4445 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4446 }
4447 
4448 /**
4449  * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
4450  * @hw: pointer to HW struct
4451  */
ice_fw_supports_lldp_fltr_ctrl(struct ice_hw * hw)4452 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
4453 {
4454 	if (hw->mac_type != ICE_MAC_E810)
4455 		return false;
4456 
4457 	if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
4458 		if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
4459 			return true;
4460 		if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
4461 		    hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
4462 			return true;
4463 	} else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
4464 		return true;
4465 	}
4466 	return false;
4467 }
4468 
4469 /**
4470  * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
4471  * @hw: pointer to HW struct
4472  * @vsi_num: absolute HW index for VSI
4473  * @add: boolean for if adding or removing a filter
4474  */
4475 enum ice_status
ice_lldp_fltr_add_remove(struct ice_hw * hw,u16 vsi_num,bool add)4476 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
4477 {
4478 	struct ice_aqc_lldp_filter_ctrl *cmd;
4479 	struct ice_aq_desc desc;
4480 
4481 	cmd = &desc.params.lldp_filter_ctrl;
4482 
4483 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
4484 
4485 	if (add)
4486 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
4487 	else
4488 		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
4489 
4490 	cmd->vsi_num = cpu_to_le16(vsi_num);
4491 
4492 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4493 }
4494 
4495 /**
4496  * ice_fw_supports_report_dflt_cfg
4497  * @hw: pointer to the hardware structure
4498  *
4499  * Checks if the firmware supports report default configuration
4500  */
ice_fw_supports_report_dflt_cfg(struct ice_hw * hw)4501 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
4502 {
4503 	if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
4504 		if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
4505 			return true;
4506 		if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
4507 		    hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
4508 			return true;
4509 	} else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
4510 		return true;
4511 	}
4512 	return false;
4513 }
4514